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Abstract: This paper explores estimation of stress-strength reliability based on upper record values.
When the strength and stress variables follow unit-Burr III distributions, a generalized inferential
approach is proposed for estimating stress-strength reliability (SSR). Under the common strength
and stress parameter case, two types of pivotal quantities are constructed respectively, and then the
generalized point and interval estimates for SSR are proposed in consequence, where the associated
Monte-Carlo sampling approach is provided for computation. In addition, when strength and stress
variables feature unequal model parameters, different generalized point and confidence interval estimates
are also established in this regard. Extensive simulation studies are conducted to examine the behavior
of proposed methods. Finally, a real-life data example is presented for illustration.
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1. Introduction

The stress-strength model is of great significance in lifetime studies and engineering applications. In
the context, the stress-strength model could be described as the probability of reliability of a system or
unit where its strength variable X overcomes the associated stress variable Y upon it. Therefore, stress-
strength reliability (SSR) is defined as R = P(Y < X). The notion of stress-strength model was initially
illustrated in Birnbaum [1] and further explored by Birnbaum and McCarty [2]. The applications
of stress-strength model are reported in many fields such as reliability engineering, oceanography,
hydrology, economics and survival analysis. For example, in medical science, when X and Y represent the
life span of patients in the treatment group and the control group respectively, the probability R = P(Y < X)
is used as a measure of the therapeutic effect. Due to its theoretical importance and applicability, extensive
works of on stress-strength model have been done in literature. For example, Baklizi [3] considered the
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problem of estimating SSR when the available data is in the form of record values from exponential
distribution. Krishnamoorthy and Yin [4] studied interval estimation problem of the stress-strength
reliability of two independent Weibull distributions, and the interval estimation method based on the
generalized variable (GV) method was presented. Ahmed and Batah [5] estimated SSR of a single
reliability system when the strength and stress variables come from power Rayleigh distributions, and
different inferential methods are proposed in consequence. The SSR under Weibull distrubution is
discussed by Pak et al. [6] with inter-record times, when strength and stress shape parameters are
assumed to be known. Kumari et al. [7] considered estimation of the reliability in a stress-strength
model from classical likelihood and Bayesian methods when generalized exponential distributions
are implemented. Classical and Bayesian estimation procedures for SSR R = P(Y < X) for Lomax
distribution is discussed by Yadav et al. [8] where the sample information is Type-II hybrid censored. For
more discussions, one could also refer to some recent constributions of Jafari and Bafekri [9], Kumari et
al. [10], Luo et. al [11], Safariyan et al. [12], Hamad [13] as well as the references therein. Interested
readers may also refer to monograph of Kotz and Pensky [14] for more details.

In life-testing and engineering, due to practical limitations of time and cost constraints as well as internal
operating mechanisms, complete failure times are difficult to collect, and observations often appeared as
censored data in practice. In practice, there are many censoring schemes implemented in experiments for
collecting failure data, and some familiar ones include Type-I censoring, Type-II censoring and progressive
censoring as well as hybrid censoring scenarios. In this regard, extensive studies have been discussed
by many authors, to name a few, see some recent contributions of Abushal [15], Hu and Chen [16],
Kohansal [17], Okasha et al. [18], Roy et al. [19] and Singh and Tripathi [20], Zhuang et al. [21] among
others. One may also refer to the monographes of Lawless [22] and Balakrishnan and Cramer [23] for a
comprehensive review. Besides the aforementioned censored data, record value is also another common
appeared data type in many practical situations such as reliability engineering, hydrology, economics,
mining and meteorology. For example, a wooden beam breaks when sufficient perpendicular force is
applied to it, an electronic component ceases to function in an environment of too high temperature, and
a battery dies under the stress of time. Thus, in such experiments, measurements may be performed
sequentially, recording only values larger than all previous values. The mathematical study of records
is initially introduced by Chandler [24]. Let X1, X2, . . . be a sequence of i.i.d. random variables, an
observation X j is called a upper record if X j > Xi for every i < j. Therefore, the record time sequence
is defined as T1 = 1 and Tn = min

{
j : X j > XTn−1

}
, and the upper record values R0,R1, . . . ,Rn, . . . are

observed as Rn = XTn , n = 1, 2, . . .. Suppose the record values (R1,R2, . . . ,Rm) of size m from population
with cumulative distribution function (CDF) F(t) and probability density function (PDF) f (t), then the
joint density function can be expressed as

f (r1, r2, · · · , rm) = f (rm)
m−1∏
i=1

f (ri)
1 − F(ri)

, (1.1)

where (r1, r2, · · · , rm) is the observations of (R1,R2, . . . ,Rm). After proposed by Chandler [24], record
values have attracted wide attention and been discussed by many authors. See, for example, some recent
contributions of Hassan et al. [25], Kizilaslan [26], Pak [6], Tarvirdizade and Ahmadpour [27] as well
as the reference therein. One could also refer to the monograps of Ahsanullah [28].

In data analysis, various lifetime distributions have been proposed for modeling failure samples in
both theoretical and practical perspectives, and some famous distributions include exponential, gamma,
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Weibull, normal etc. One feature of such models is that they all have infinity support, however, data
collected in practice sometimes is often appeared as bounded data within specified ranges. Therefore,
common lifetime distributoins with infinite supports may not provide good enough fitting under such
situations. Thus, the bounded data frequently appears in various fields of economy, measurements,
finance, engineering among others. Therefore, distributions with bounded support may be implemented
in this regard that may provide higher weight to the bounded data and give better fitting effect in data
analysis. Specifically, distributions with unit bound within (0, 1) have attracted considerable attention,
some famous ones includes beta, Kumaraswamy, Topp-Lenoey distributions, among other (e.g., Jha et
al. [29], Kohansal [17], Mazucheli et al. [30] and Sultana et al. [31]). Specially, Korkmaz et al. have
also systemly discussed the importance of unit distributions on their series papers, and interested readers
may refer to references [32], [33], [34] and [35] for more details. In addition, distributions with unit
bound have a wide application in stress-strength analysis. Jha et al. [36] estimated the multicomponent
reliability by assuming the unit-Gompertz strength and stress variables. Cruz et al. [37] proposed a
novel estimation procedure of stress-strength reliability in the case of two independent unit-half-normal
distributions which could fit asymmetrical data with either positive or negative skew. More applications
could be found in the works of Alotaibi et al. [5], Dey and Wang [38] and Jha et al. [39] as well as the
reference therein. Recently, Modi and Gill [40] introduced a new unit-Burr III distribution with unit
support in (0, 1), which possesses a flexible density and bathtub shape hazard rate curves. Hereafter,
the unit-Burr III model with parameters α and β is denoted by UB(α, β) for concision. Let T be the
random variable of the UB distribution with parameters α and β, the associated CDF, PDF and hazard
rate function (HRF) of T are given respectively by

f (t;α, β) = αβ
(log(1/t))−α−1

t(1 + (log(1/t))−α)β+1 , 0 < t < 1,

F(t;α, β) = 1 − (1 + (log(1/t))−α)−β, 0 < t < 1,

H(t) =
αβ(log(1/t))−α−1

t(1 + (log(1/t))−α)
, 0 < t < 1,

(1.2)

where α > 0 and β > 0 are both shape parameters. It is noted that the parameters α and β affect
the geometric shape of the density distribution curve and the steepness of the density curve. The UB
distribution has been also discussed by several authors. For example, Singh et al. [41] studied the
problem of estimating multicomponent stress-strength reliability under progressive Type-II censoring
when stress and strength variables follow UB distributions with common shape parameter. Dey
and Wang [38] used classical estimation method to estimate the parameters of UB distribution. For
illustration, some plots of PDF and HRF of the UB model are shown in Figure 1, and one could observe
in visual that the UB has very flexible fitting ability and may be used as an alternative to the conventional
unit bound models.

Inference for the SSR is of considerable interest and practical significance in reliability applications
and lifetime studies. However, sometimes sample size heavily affects the inferential accuracy of SSR
estimation especially when there are not enough strength and stress observations due to practical time and
cost constriants. In this regard, sample size may has such a strong effect on the validity of analytical results
and the estimate sometimes is even misunderstood. In addition, it is frequently observed that the record
values appear rarely in practical data collection process, therefore, as data sets consisting of record values
often lack sufficient data for statistical inference. Motivated by such reasons and due to the potential
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theoretical and practical applications of the UB model, this paper proposes generalized inferential
approach to estimate the SSR when record values for strength and stress variables are available.
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Figure 1. Plots of PDF and HRF of unit-Burr III with different parameters.

The rest parts of this paper is organized as follows. Under common unit-Burr III strength and stress
parameter case, Section 2 explores generalized SSR estimation common parameter case. In addition,
generalized point and interval estimates are also proposed in Section 3. Section 4 provides some
numerical studies to investigate the performance of differnt results. Finally, some concluding remarks
are given in Section 5.

2. SSR estimation under common parameter case

In this section, pivotal quantities based generalized inferential approach is proposed for SSR under
common parameter case with α1 = α2 = α. Suppose that X = (X1, X2, . . . , Xm) are strength upper
record values of size m from population UB(α, β1), and the associated stress upper record values
Y = (Y1,Y2, . . . ,Ym) from population UB(α, β2). Under this case, the SSR is obtained as

R = P(Y < X) =
∫ 1

0

[∫ x

0
f (y; β2, α)dy

]
f (x; β1, α)dx

=
β2

β1 + β2
. (2.1)

It is noted from (2.1) that when the strength and stress variables share common parameters with
α1 = α2 = α, the SSR just characterized by parameters β1 and β2 being free of α.

2.1. CC based generalized estimation

In this part, generalized estimator for the SSR is constructed based on two chi-square pivotal
quantities, and the result under this approach is called as CC based generalized estimates for concision.

Theorem 1. Consider pivotal quantities

AX
1 (α) = 2

m−1∑
j=1

log
[
log(1 + (− log(xm))−α)
log(1 + (− log(x j))−α)

]
and BX

1 (β1, α) = 2β1 log(1 + (− log(xm))−α).
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Then AX
1 (α) and BX

1 (β1, α) are statistically independent and follow chi-square distributions with 2(m− 1)
and 2m degrees of freedom, respectively.

Proof. See Appendix A. □

Following similar approach of Theorem 1, one further has following results and the proof is omitted
for concision.

Theorem 2. Consider pivotal quantities

AY
1 (α) = 2

m−1∑
j=1

log
[
log(1 + (− log(ym))−α)
log(1 + (− log(y j))−α)

]
and BY

1 (β2, α) = 2β2 log(1 + (− log(ym)−α)).

Then AY
1 and BY

1 follow chi-square distributions with 2(m − 1) and m degrees of freedom, and are also
statistically independent.

Lemma 1. For arbitrary constants c and d with 0 < c < d < 1, let R(h) = log(1+(− log(d))−h)
log(1+(− log(c))−h) , h > 0. Then

following results hold

• R(h) increases in h.
• lim

h→0
R(h) = 1 and lim

h→∞
R(h) = ∞.

Proof. See Appendix B □

Due to Lemma 1, following results could be obtained in consequence, and the detailed proof is
omitted for concision.

Corollary 1. Pivotal quantity AX
1 (α) and AY

1 (α) increase in α with range (0,+∞).

According to the additivity of chi-square distribution, the quantity A1(α) = AX
1 (α) + AY

1 (α) follows
chi-square distribution with 4(m − 1) degrees of freedom. It is also conducted from Lemma 1 that A1(α)
increses in α with range (0,∞). Therefore, for a given a1 ∼ χ

2
4(m−1), equation A1(α) = a1 has an unique

solution, denoted as α̂ = α̂1(A1; x, y), where the bisection method can be used to solve the equation.
Further, using substitution method of Weerahandi [42] and substituting α̂1 for α, generalized pivotal
quantities for β1 and β2 can be constructed respectively as

S X
1 =

BX
1

HX
1 [α̂]

with HX
1 [α] = 2 log(1 + (− log(xm))−α) and BX

1 ∼ χ
2
2m

and

S Y
1 =

BY
1

HY
1 [α̂]

with HY
1 [α] = 2 log(1 + (− log(ym))−α) and BY

1 ∼ χ
2
2m.

Consequently, a generalized pivotal quantity for SSR R defined in (2.1) can be constructed by using the
substitution method of Weerahandi [42] as follows

RCC
1 =

BY
1

HY
1 [α̂]

BX
1

HX
1 [α̂] +

BY
1

HY
1 [α̂]

.
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Furthermore, a Monte Carlo procedure called Algorithm 1 is provided to obtain the CC based
generalized point estimate (GPE) and generlized confidence interval (GCI) of SSR under common
parameter case.

Algorithm 1: CC based generalized estimation of SSR under common parameter case.

Step 1 Generate a1 ∼ χ
2
4(m−1), and then obtain α̂ from the equation A1(α) = a1.

Step 2 Generate BX
1 and BY

1 from χ2
2m and calculate SSR using RCC

1 .

Step 3 Repeat Steps 1 and 2 M times, and M estimates of SSR are obtained as R[1],R[2], · · · ,R[M]

showing in ascending order.

Step 4 A natural GPE of SSR R is constructed as

R̂ =
1
M

M∑
j=1

R[ j]

Step 5 Based on R[1],R[2], · · · ,R[M] and for 0 < µ < 1, a series of 100(1 − µ)% confidence interval

of R can be expressed as

(R[ j],R[ j+M−[Mµ+1]]), j = 1, 2, · · · , [Mµ]

where [h] is the integer function. Therefore, the 100(1 − µ)% GCI of R can be selected as

j∗th one satisfying

R[ j∗+M−[Mµ+1]] − R[ j∗] =
[Mµ]
min

j=1
(R[ j+M−[Mµ+1]] − R[ j]).

2.2. RC pivotal based generalized estimation

In this part, the RG distributed and chi-square distributed pivotal quantities are constructed, and
then generalized estimate is proposed for SSR under common parameter case. For simplicity, estimate
obtained using these two pivotal quantities is called as RC based generalized estimate for short.

Before proceeding, the previous mentioned RG model is introduced as follows.

Definition 1. For independent variables Q1 ∼ F(a, b) and Q2 ∼ F(c, d), then the quantity ac
bd Q1Q2 is

RG distributed with parameters a, c, b, d, i.e. ac
bd Q1Q2 ∼ RG(a, c, b, d).

Theorem 3. Denote quantities

AX
2 (α) =

(m − 2) log(1 + (− log(x1))−α)
log(1 + (− log(xm))−α) − log(1 + (− log(x1))−α)

and BX
2 (β1, α) = 2β1 log(1 + (− log(xm))−α).

Then AX
2 (α) follows an F distribution with (2, 2m − 2) degrees of freedom, whereas BX

2 (β1, α) follows
chi-square distribution with 2m degrees of freedom, and AX

2 (α) and BX
2 (β1, α) statistically independent.

Proof. See Appendix C. □
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Similarly, one also has the following results and the proof is omotted for brevity.

Theorem 4. Quantities

AY
2 (α) =

(m − 2) log(1 + (− log(y1))−α)
log(1 + (− log(ym))−α) − log(1 + (− log(y1))−α)

and BY
2 (β2, α) = 2β2 log(1 + (− log(ym))−α)

follow F distribution with (2, 2m − 2) degrees of freedom and chi-square distribution with 2m degrees of
freedom respectively. In addition, AY

2 (α) and BY
2 (β2, α) are statistically independent.

Lemma 2. For arbitrary constants e and f with 0 < e < f < 1, let G(h) =
log(1+(− log(e))−h)

log(1+(− log( f ))−h)−log(1+(− log(e))−h) , h > 0. Then one has following results.

• G(h) decreases in h.
• lim

h→0
G(h) = ∞ and lim

h→∞
G(h) = 0.

Proof. See Appendix D. □

Corollary 2. Pivotal quantity AX
2 (α) and AY

2 (α) decrease in α with range (0,+∞).

It is noted from Definition 1 that quantity A2(α) = 4
(2m−2)2 AX

2 AY
2 ∼ RG(2, 2, 2m − 2, 2m − 2), then

for a given a2 ∼ RG(2, 2, 2m − 2, 2m − 2), it is conducted from Corollary 2 that equation A2(α) = a2

has an unique solution with respect to α that is denoted as ά = ά(A2; x, y) that can be also computed
using the bisection method. Similarly, substituting ά for α and using the substitution method
of Weerahandi [42], the generalized pivotal quantities for parameters β1 and β2 can be constructed
respectively from Theorems 3 and 4 as

S X
2 =

BX
2

HX
2 [ά]

with HX
2 [α] = 2 log(1 + (− log(xm))−α) and BX

2 ∼ χ
2
2m

and

S Y
2 =

BY
2

HY
2 [ά]

with HY
2 [α] = 2 log(1 + (− log(ym))−α) and BY

2 ∼ χ
2
2m.

Therefore, the RC pivotal quantity based generalized estimator for SSR under common parameter case
can be expressed as

RRC
1 =

BY
2

HY
2 [ά]

BX
2

HX
2 [ά] +

BY
2

HY
2 [ά]

.

Consequently, a Monte-Carlo procedure called Algorithm 2 is provided for obtaining the RC based GPE
and GCI of SSR under common parameter case.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12360–12379.



12367

Algorithm 2: RC based generalized estimation of SSR under common parameter case.

Step 1 Generate a sample a2 from GR(2, 2, 2m − 2, 2m − 2) distribution, and obtain an observation

of ά from the equation A2(α) = a2.

Step 2 Generate samples of BX
2 and BY

2 from χ2
2m, and then obtain an estimate of SSR using RRC

1 .

Step 3 Step 1 and Step 2 are repeated M times and obtain M estimates of SSR.

Step 4 Using same Steps 4 and 5 shown in Algrithm 1, the RC based GPE and GCI are obtained

in this manner.

3. SSR estimation under unequal parameter case

In this section, pivotal quantities based generalized inferential approach is proposed for SSR when
the strength and stress parameters are totally unequal with α1 , α2 and β1 , β2. In this regard, suppose
that (X1, X2, . . . , Xm) are upper strength variables from UB(α1, β1), and independent stress upper record
values (Y1,Y2, . . . ,Ym) follows UB(α2, β2) distribution. Under this case, the SSR is obtained as

R = P(Y < X) =
∫ 1

0

[∫ x

0
f (y; β2, α2)dy

]
f (x; β1, α1)dx

= 1 − α1β1

∫ 1

0

(− log x)−α1−1

x(1 + (− log x)−α2)β2(1 + (− log x)−α1)β1+1 dx. (3.1)

Clearly, it is seen from (3.1) that under arbitrary unequal parameter case, the SSR is associated with all
strength and stress parameters α1, β1 and α2, β2. Consequently, the generalized result of R will be obtained
by using the substitution method after the generalized estimates of model parameters are derived.

3.1. CC based generalized estimation

In this part, CC based generalized estimator for SSR is conducted under uneuqal parameter case.

Theorem 5. Denote pivotal quantities

CX
1 (α1) = 2

m−1∑
j=1

log
[
log(1 + (− log(xm))−α1)
log(1 + (− log(x j))−α1)

]
, DX

1 (β1, α1) = 2β1 log(1 + (− log(xm))−α1)

and

CY
1 (α2) = 2

m−1∑
j=1

log
[
log(1 + (− log(ym)−α2))
log(1 + (− log(y j)−α2))

]
, DY

1 (β2, α2) = 2β2 log(1 + (− log(ym)−α2)).

Then, following results is observed as

• CX
1 (α1) ∼ χ2

2(m−1),D
X
1 (β1, α1) ∼ χ2

2m, CX
1 (α1) and DX

1 (β1, α1) are statistically independent.
• CY

1 (α2) ∼ χ2
2(m−1),D

Y
1 (β2, α2) ∼ χ2

2m,CY
1 (α2) and DY

1 (β2, α2)are statistically independent.
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Proof. Such results could be conducted following similar approach as Theorems 1 and 2, and the
detailed proof is ommited for concision. □

Based on Theorem 5, let α̌1 = α̌1(CX
1 ; x) and α̌2 = α̌2(CY

1 ; y) be the unique solutions of equations
CX

1 (α1) = cX
1 and CY

1 (α2) = cY
1 respectively, where cX

1 ∼ χ
2
2(m−1) and cY

1 ∼ χ
2
2(m−1) being arbitray generalied

data form the chi-square distributons. Using the substitution method of Weerahandi [42] and substituting α̌1

and α̌2 for α1 and α2, then generalized pivotal quantities for β1 and β2 are constructed from Theorem 5 as

S X
1 =

DX
1

HX
1 [α̌1]

with HX
1 [α1] = 2 log(1 + (− log(xm))−α1) and DX

1 ∼ χ
2
2m

and

S Y
1 =

DY
1

HY
1 [α̌2]

with HY
1 [α2] = 2 log(1 + (− log(ym))−α2) and DY

1 ∼ χ
2
2m.

Therefore, based the substitution method of Weerahandi [42], the CC pivotal quantities based generalized
estimator for SSR under unequal parameter case can be constructed as

RCC
2 = 1 −

α̌1BX
1

HX
1 [α̌1]

∫ 1

0

(− log x)−α̌1−1

x(1 + (− log x)−α̌2)
BY

1
HY

1 [α̌2] (1 + (− log x)−α̌2)
BX

1
HX

1 [α̌1]
+1

dx.

Further, another Monte-Carlo sampling termed as Algorithom 3 is presented to evaluate the GPE and
GCI of SSR under CC based generalized estimation in all unknown parameters case.

Algorithm 3: CC based SSR estimation under unequal parameter case.

Step 1 Generate samples cX
1 and cY

1 from χ2
2(m−1), and obtain α̌1 and α̌2 from the equations

CX
1 (α1) = cX

1 and CY
1 (α2) = cY

1 , respectively.

Step 2 Generate DX
1 and DY

1 from χ2
2m and obtain an estimate of SSR based on RCC

2 .

Step 3 Repeat Step 1 and 2 M times, and then obtain M estimates of SSR.

Step 4 Using same Steps 4 and 5 shown in Algrithm 1, the CC based GPE and GCI are obtained

in this manner.

3.2. FC based generalized estimation

In this part, generalized estimator for SSR is constructed based on F and chi-square distributed pivotal
quantities, and the result under this approach is called as FC based generalized estimates for concision.

Theorem 6. Denote pivotal quantities

CX
2 (α1) =

(m − 2) log(1 + (− log(x1))−α1)
log(1 + (− log(xm))−α1) − log(1 + (− log(x1))−α1)

, DX
2 (β1, α1) = 2β1 log(1 + (− log(xm))−α1)

and

CY
2 (α2) =

(m − 2) log(1 + (− log(y1))−α2)
log(1 + (− log(ym))−α2) − log(1 + (− log(y1))−α2)

, DY
2 (β2, α2) = 2β2 log(1 + (− log(ym))−α2).

It is noted that
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• CX
2 (α1) ∼ F(2,2m−2),DX

2 (β1, α1) ∼ χ2
2m, CX

2 (α1),DX
2 (β1, α1) are statistically independent.

• CY
2 (α2) ∼ F(2,2m−2),DY

2 (β2, α2) ∼ χ2
2m, CY

2 (α2),DY
2 (β2, α2) are statistically independent.

Proof. The proof is similar as Theorems 3 and 4, and the details are omitted for concision. □

For given cX
2 ∼ F(2, 2m − 2) and cY

2 ∼ F(2, 2m − 2), let ὰ1 = ὰ
X
2 (CX

2 ; x) and ὰ2 = ὰ
Y
2 (CY

2 ; y) be the
unique solutions of equations CX

2 (α1) = cX
2 and CY

2 (α2) = cY
2 , respectively. Further, using the substitution

method of Weerahandi [42] and substituting ὰ1 and ὰ2 for α1 and α2, the generalized pivotal quantities
for β1 and β2 are constructed respectively as

S X
2 =

DX
2

HX
2 [ὰ1]

with HX
2 [α1] = 2 log(1 + (− log(xm))−α1) and DX

2 ∼ χ
2
2m

and

S Y
2 =

DY
2

HY
2 [ὰ2]

with HY
2 [α2] = 2 log(1 + (− log(ym))−α2) and DY

2 ∼ χ
2
2m.

Consequently, the pivotal quantities based generalized estimator for SSR can be established as follows

RFC
2 = 1 −

ὰ1BX
2

HX
2 [ὰ1]

∫ 1

0

(− log x)−ὰ1−1

x(1 + (− log x)−ὰ2)
BY

2
HY

2 [ὰ2] (1 + (− log x)−ὰ2)
BX

2
HX

2 [ὰ1]
+1

dx

In addition, another Monte-Carlo procedure termed as Algorithom 4 is presented to estimate GPE
and GCI of SSR in this manner under unequal parameters case.

Algorithm 4: FC based generalized estimation of SSR under unequal parameter case.

Step 1 Generate sample cX
2 and cY

2

from F(2, 2m − 2), and obtain the unique solution ὰ1 and ὰ2 from equations CX
2 (α1) = cX

2 and
CY

2 (α2) = cY
2 .

Step 2 Generate DX
2 and DY

2 from χ2
2m, and then obtain an estimate of R using RFC

2 .

Step 3 Repeat Steps 1 and 2 M times, and obtain M estimates of SSR.

Step 4 Using same Steps 4 and 5 shown in Algrithm 1, the FC based GPE and GCI are obtained

in this manner.

Remark 1. It is worth mentioning that different inferential approaches are conducted in previous two
sections based on the common and unequal strength and stress parameters, respectively. Therefore,
one may interest in whether these parameters are equal or not in practice. For solving this problem,
traditional likelihood ratio testing technique could be implemented for comparing the eqiuvalence of
different strength and stress parameters.
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4. Numerical analysis

4.1. Simulation studies

In this subsection, simulation experiments are conducted to examine the performance of the proposed
methods for SSR. The estimates are evaluated on the basis of mean square error (MSE) and average
bias (AB) values for point estimates, and in terms of coverage probability (CP) and average width (AW)
for interval estimates, respectively.

Before proceeding, a sampling approach termed as Algorithm 5 to generate a group of upper
record values.

Algorithm 5: Generation of upper record values

Step 1 Generate a group of i.i.d. samples, namely Z1,Z2, · · · ,Zn from uniform distribution U(0, 1).

Step 2 Make transformation Yi = − log(1 − Zi), then Yi, i = 1, 2, · · · , n are i.i.d. samples from

standard exponential distribution with mean one.

Step 3 Let Wi =
∑i

k=1 Yk, i = 1, 2, . . . , n, then sequences W1,W2, . . . ,Wn are record values from

the standard exponential distribution.

Step 4 Denote Ui = 1 − e−Wi , i = 1, 2, . . . , n, sequence U1,U2, . . . ,Un are record values from the
uniform distribution U(0, 1).

Step 5 For unit-Burr distribution F(x;α, β), let Xi = F−1(Ui) = exp
{
−((1 − u)−

1
β − 1)−

1
α

}
, then

X1, X2, . . . , Xn are record values from unit-Burr distribution, where F−1(·) is the inverse

function of F(·) .

Table 1. ABs(MSEs) and CPs(ALs) of UB stress-strength parameters with (α, β1, β2) =
(2, 1.5, 1).

m parameters
GPE GCI

CC RC CC RC
4 α 0.8229[1.1929] 0.7100[0.8040] 5.0652[0.9730] 4.5762[0.9409]

β1 1.0632[3.6400] 1.2723[3.5756] 5.8383[0.9820] 6.5546[0.9800]
β2 0.7989[2.9311] 1.0364[0.9670] 4.4065[0.9750] 5.2035[0.9670]
R 0.1236[0.0241] 0.1160[0.0215] 0.5874[0.9730] 0.5991[0.9820]

5 α 0.8348[1.2233] 0.7021[0.7754] 5.0402[0.9590] 4.5261[0.9359]
β1 0.9842[1.8093] 1.1653[2.3588] 5.3671[0.9780] 5.9968[0.9660]
β2 0.7986[1.4719] 1.0082[1.9205] 4.2393[0.9610] 4.8533[0.9580]
R 0.1154[0.0210] 0.1114[0.0198] 0.5389[0.9660] 0.5440[0.9760]

6 α 0.8221[1.1568] 0.6896[0.7619] 5.0593[0.9610] 4.5054[0.9400]
β1 0.9802[1.8067] 1.1449[2.2443] 5.4484[0.9710] 5.8754[0.9650]
β2 0.9183[0.9609] 0.8453[1.2547] 4.0419[0.9720] 4.4379[0.9660]
R 0.0996[0.0156] 0.0979[0.0150] 0.4981[0.9650] 0.4996[0.9730]

7 α 0.8554[1.2627] 0.7157[0.8091] 5.3265[0.9630] 4.6262[0.9510]
β1 0.9621[1.7218] 1.0733[2.0935] 5.4388[0.9680] 5.7120[0.9580]
β2 0.7155[1.0447] 0.8045[1.2442] 3.9559[0.9590] 4.2045[0.9560]
R 0.0993[0.0152] 0.0985[0.0150] 0.4624[0.9560] 0.4634[0.9560]
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Table 2. ABs(MSEs) and CPs(ALs) of UB stress-strength parameters with (α, β1, β2) =
(2.2, 0.5, 1.5).

m parameters
GPE GCI

CC RC CC RC
4 α 0.8815[1.2776] 0.8321[0.9741] 5.6114[0.9670] 5.0658[0.9389]

β1 0.5733[0.6422] 0.8120[1.0502] 3.0928[0.9680] 3.8560[0.9530]
β2 1.2448[7.4208] 1.5761[12.2446] 6.8284[0.9710] 7.8299[0.9670]
R 0.0992[0.0162] 0.0967[0.0156] 0.5375[0.9680] 0.5577[0.9770]

5 α 0.8904[1.2696] 0.7778[0.8989] 5.7103[0.9660] 5.1718[0.9510]
β1 0.5335[0.5378] 0.6766[0.7794] 2.9014[0.9690] 3.3536[0.9500]
β2 1.2102[3.6247] 1.4420[4.3719] 6.3595[0.9650] 6.9773[0.9580]
R 0.0930[0.0140] 0.0919[0.0137] 0.4729[0.9530] 0.4828[0.9650]

6 α 0.8958[1.2915] 0.7919[0.8920] 5.7603[0.9690] 5.1388[0.9419]
β1 0.5136[0.4697] 0.6051[0.6331] 2.8171[0.9770] 3.0788[0.9560]
β2 1.1424[2.3675] 1.3184[2.8475] 5.2213[0.9710] 6.6142[0.9580]
R 0.0837[0.0114] 0.0830[0.0112] 0.4355[0.9680] 0.4401[0.9660]

7 α 0.8831[1.2722] 0.7496[0.8749] 5.8189[0.9650] 5.1400[0.9550]
β1 0.5089[0.4830] 0.5502[0.5378] 2.7543[0.9630] 2.8318[0.9540]
β2 1.1639[2.3066] 1.2521[2.4578] 6.3595[0.9730] 6.5225[0.9720]
R 0.0774[0.0102] 0.0774[0.0102] 0.4005[0.9570] 0.4005[0.9229]

Table 3. ABs(MSEs) and CPs(ALs) of UB stress-strength parameters with (α1, α2, β1, β2) =
(1.5, 2.5, 1, 2.5).

m parameters
GPE GCI

CC FC CC FC
4 α1 0.6044[0.5700] 0.5857[0.4841] 4.1094[0.9379] 3.7952[0.9319]

α2 1.0038[1.6691] 0.8316[1.0189] 6.1951[0.9720] 6.1465[0.9640]
β1 1.1301[2.1974] 1.3584[2.5398] 5.9356[0.9770] 6.4808[0.9730]
β2 2.1404[7.7400] 2.1209[8.3022] 13.1700[0.9750] 13.7354[0.9820]
R 0.1903[0.0465] 0.2059[0.0512] 0.8901[0.9940] 0.9103[0.9910]

5 α1 0.5913[0.5295] 0.8221[0.4877] 4.1169[0.9389] 3.4418[0.9100]
α2 0.8910[1.3209] 0.7992[0.9098] 5.9124[0.9720] 5.6916[0.9400]
β1 1.1499[1.6356] 1.7105[3.2579] 5.9308[0.9800] 7.2143[0.9660]
β2 1.2338[5.4290] 1.5255[5.4320] 7.5757[0.9800] 8.8648[0.9820]
R 0.1965[0.0484] 0.2445[0.0698] 0.8928[0.9930] 0.9139[0.9920]

6 α1 0.5899[0.5401] 0.6953[0.5676] 3.9401[0.9279] 3.1012[0.8819]
α2 0.9210[1.3615] 0.8266[0.9396] 5.7032[0.9720] 5.3478[0.9389]
β1 1.2743[2.0341] 2.1162[4.8848] 6.1050[0.9750] 8.0335[0.9459]
β2 1.1581[4.0446] 1.8750[6.4406] 7.3349[0.9760] 9.4623[0.9660]
R 0.2091[0.0548] 0.2780[0.0845] 0.8899[0.8970] 0.9239[0.9940]

7 α1 0.6042[0.5225] 0.7498[0.6303] 4.0987[0.9379] 2.9550[0.8799]
α2 0.8554[1.1800] 0.8478[0.9731] 5.7339[0.9680] 5.1827[0.9259]
β1 1.3278[2.1405] 2.4889[6.5570] 6.2263[0.9740] 8.9111[0.9379]
β2 1.0883[2.5727] 2.2221[6.6183] 7.2329[0.9730] 9.9989[0.9469]
R 0.2156[0.0582] 0.3062[0.0998] 0.8930[0.9940] 0.9320[0.9940]

Under different choices of parameter values α1, α2, β1, β2 and sample sizes m, the simulation pro-
cedure are conducted based on 1000 times repetitions, and then the performance of SSR under both
common and unequal parameter cases as well as the strength and stress parameters are obtained via
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criteria quantities. The generlized point estimate and generlized confidence interval based on two
chi-square pivotal quantites are called as GPE(CC) and GCI(CC) respectively. GPE(FC) and GCI(FC)
denote the generlized point estimate and generlized confidence interval based on F pivotal quantitey
and chi-square pivotal quantitey. The significance level is 0.95 for interval estimates. The results are
presented in Tables 1 to 4, respectively.

Table 4. ABs(MSEs) and CPs(ALs) of UB stress-strength parameters with (α1, α2, β1, β2) =
(1.8, 1.3, 0.6, 1.2).

m parameters
GPE GCI

CC FC CC FC
4 α1 0.8677[0.9183] 0.9242[0.9979] 3.5925[0.7928] 3.3176[0.7928]

α2 0.5184[0.4387] 0.4982[0.3482] 3.9129[0.9640] 3.5237[0.9469]
β1 1.3396[1.9601] 1.5450[2.5336] 5.6589[0.9710] 6.1842[0.9640]
β2 1.0584[1.9267] 1.4772[2.8442] 6.1049[0.9750] 7.2095[0.9690]
R 0.2119[0.0518] 0.2189[0.0533] 0.8784[0.9980] 0.9019[0.9990]

5 α1 0.8657[0.9165] 1.0159[1.1420] 3.5912[0.7948] 2.9826[0.7518]
α2 0.5410[0.4810] 0.5287[0.3414] 3.9925[0.9660] 3.3232[0.9329]
β1 1.4289[2.2340] 1.9109[3.7890] 5.7687[0.9730] 6.9564[0.9489]
β2 1.0639[1.6895] 1.7639[3.6214] 6.0434[0.9790] 7.7772[0.9610]
R 0.2163[0.0546] 0.2501[0.0671] 0.8787[0.9950] 0.9128[0.9970]

6 α1 0.8879[0.9489] 1.0974[1.2890] 3.5818[0.7666] 2.7624[0.7127]
α2 0.5389[0.4863] 0.5526[0.3726] 3.8958[0.9560] 3.0004[0.9049]
β1 1.5266[2.5151] 2.2784[5.3119] 5.9287[0.9690] 7.7777[0.9319]
β2 1.1287[1.7340] 2.1221[4.9711] 6.1317[0.9820] 8.4908[0.9489]
R 0.2237[0.0588] 0.2796[0.0821] 0.8799[0.9970] 0.9210[0.9990]

7 α1 0.8935[0.9617] 1.1685[1.4284] 3.6297[0.7678] 2.6091[0.6807]
α2 0.5273[0.4295] 0.5979[0.4253] 3.8719[0.9369] 2.7949[0.8629]
β1 1.5846[2.7127] 2.6480[7.1184] 6.0594[0.9429] 8.6587[0.8589]
β2 1.2113[1.9432] 2.5066[6.7948] 6.2998[0.9770] 9.2740[0.9339]
R 0.2261[0.0596] 0.3085[0.0984] 0.8879[0.9980] 0.9269[0.9980]

From the tabulated results, some conclusions could be observed as follows.

• Under both common and unequal parameter cases, the ABs and MSEs of SSR tends to decrease
when sample size m increase. Similar phenomenon also appears for the strength and stress
parameters. It indicates that the pivotal quantities based estimates feature consistency properties
and work satisfactorily under simulation design scenarios.
• In terms of AB and MSE, the GPEs of SSR and model parameters obtained with respect to

chi-square pivotal quantities outperform to the results from F distribution.
• For different GCIs, the corresponding CPs of intervals perform well that are close to nominal level

under both common and unequal parameter cases, whereas for fixed sample sizes, the interval
lengthes with respect to chi-square quantities are relatively smaller than those of other GCIs.

4.2. Real data illustration

In this real-life example, the dataset Badar and Priest [43] represents the strength measured in GPa
(giga-Pascals) for single carbon fibers, and impregnated 1000-carbon fiber tows. Single fibers were
tested under tension at gauge lengths of 20 and 10 mm, respectively. For these carbon fibers data, Kundu
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and Gupta [44] also discussed stress-strength estimation based on the traditional Weibull distribution.
In this illustration, we treat the data of carbon fibers at gauge lengths of 20 and 10 mm as strength and
stress variables, and following the similar idea of Kundu and Gupta [44], and rescale the origin data by
multiplying 1/3 and 1/5 for making them in interval (0, 1). Therefore, the transoformed carbon fibers
data is preented in Table 5.

Table 5. Carbon fibers data at different gauge lengths.
Strength 0.1873 0.4053 0.4913 0.5440 0.6053 0.6733 0.7723 0.1880 0.4157

0.4967 0.5587 0.6067 0.6743
Stress 0.2302 0.3408 0.3748 0.4454 0.5028 0.5574 0.6950 0.3764 0.3448

0.3818 0.4492 0.5044 0.5608

Before proceeding, we first check if the the UB distribution could be used as a proper model to
fit these real-life data. Based the observations shown in Table 5, parameter estimates, Kolmogorov-
Simirnov (K-S) distances and associated p-values for strength and stress variables are reported in
Table 6. In addition, the empirical cumulative distributions (ECD) plot overlaid with theoretical UB
distribution, the probability-probability (P-P) and the quantile-quantile (Q-Q) plots also presented in
Figure 2. Therefore, it is conducted that the UB distribution could be used as a reasonable model to fit
the real data.

Table 6. Summary of estimates and goodness-of-fit results under carbon fibers data.
Data α β K-S p-value
Strength 2.9760 0.5812 0.2390 0.3970
Stress 3.6960 0.7742 0.2015 0.6083

From Table 5, following upper carbon fibers record values for strength and stress variables are
generated as follows

strength 0.1873 0.4053 0.4913 0.5440 0.6053 0.6733 0.7723
stress 0.2302 0.3408 0.3748 0.4454 0.5028 0.5574 0.6950

In addition, for null hypothesis H0 : α1 = α2 and alternative hypothesis H1 : α1 , α2, likelihood ratio
test is also conducted with testing statistic 0.0225 and p-value 0.2335. Therefore, there is no sufficient
evident to reject null hypothesis α1 = α2 at significence level 0.05, and we treat UB strength and stress
parameters α1 and α2 as equal in our illustration. Therefore, different point and interval estimates are
calculated under common parameter case, and the associated results are provided in Table 7.

Table 7. Generalized estimates of stress-strength reliability and model parameters.

parameters
GPE GCI

CC RC CC RC
α 2.1095 3.4869 (0.8791,4.8093)[3.9302] (1.5692,6.5457)[4.9756]
β1 2.7772 1.6844 (0.7449,6.7730)[6.0281] (0.4636,3.8435)[3.3799]
β2 3.4381 2.1772 (1.0054,8.1146)[7.1092] (0.6655,4.9692)[4.3036]
R 0.5668 0.5775 (0.3003,0.7803)[0.4860] (0.2976,0.8049)[0.5072]

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12360–12379.



12374

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fitted unit−Burr III quantile

E
m

p
ir

ic
a
l 
q
u
a
n
ti
ti
e
s

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fitted unit−Burr III CDF
E

m
p
ir

ic
a
l 
C

D
F

Empirical CDF

F
it
te

d
 u

n
it
−

B
u
rr

 I
II
 C

D
F

0 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fitted unit−Burr III quantile

E
m

p
ir

ic
a
l 
q
u
a
n
ti
ti
e
s

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fitted unit−Burr III CDF

E
m

p
ir

ic
a
l 
C

D
F

Empirical CDF

F
it
te

d
 u

n
it
−

B
u
rr

 I
II
 C

D
F

0 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Q-Q, P-P and ECD plots for carbon fiber data.

5. Conclusions

In this paper, the stress-strength model is analyzed when stress and strength variables follow the
unit-Burr III distributions and the failure times are upper record values. Various generalized inferential
approaches are proposed under both common and unequal strength and stress parameters cases, and the
generalized point and interval estimators of stress-strength reliability are constructed based on proposed
pivotal quantities, where associated Monte-Carlo sampling algorithm is also provided. Extensive
simulation studies and real-life example are further presented for investigating the performance of our
methods, and the results indicate that the estimates work satisfactorily. Although the discussions are
established for SSR R = P(Y < X), the results could be extended for a more general stress-strength
reliability R = P(Y < X < Z), which has attracted much attention recently (e.g., Pan et al. [45], Karam
and Yousif [46]). Following similar approaches, the generalized inferential estimation could be also
established when there are three strength and stress variables considered in analysis, which will be
discussed in future.

A. Proof of Theorem 1

For j = 1, 2, · · · ,m, X1, X2, · · · , Xm denote m record data from UB distribution. So Z j = β1 log(1 +
(− log(X j))−α), j = 1, 2, · · · ,m are record samples from one parameter exponential distribution with
average being one. It is observed that

L1 = Z1, L2 = Z2 − Z1, . . . , Lm−1 = Zm−1 − Zm−2, Lm = Zm − Zm−1,
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are i.i.d. standard exponential distribution.
Consider W j =

∑ j
i=1 L j = Z j = β1 log(1 + (− log(X j))−α), j = 1, 2, · · ·m, one further gets that

U1 =
W1

Wm
, U2 =

W2

Wm
, · · · , Um−1 =

Wm−1

Wm
,

are order statistics from standard uniform distribution of size m − 1. Further U1 < U2 < · · · < Um−1 are
independent such that Wm = β1 log(1 + (− log(Xm))−α).

Furthermore, it is seen that

AX
1 (α) = −2

m−1∑
j=1

log(U j) = 2
m−1∑
j=1

log
[
log(1 + (− log(Xm))−α)
log(1 + (− log(X j))−α)

]
,

has chi-squared distribution with 2(m − 1) degrees of freedom. This above quantity is independent of
the folllowing variable

BX
1 (β1, α) = 2Wm = 2β1 log(1 + (− log(Xm))−α),

which follows chi-squared distribution with 2m degrees of freedom.

B. Proof of Lemma 1

For R(h), it is noted that

dR(h)
dh

=
log(d) log(1 + (− log(c))−h)

log(1 + (− log(d))h)
−

log(c) log(1 + (− log(d))−h)
log(1 + (− log(c))h)

.

Since 0 < c < d < 1, one directly has

log(d) log(1 + (− log(c))−h)
log(1 + (− log(d))h)

>
log(c) log(1 + (− log(d))−h)

log(1 + (− log(c))h)
.

Thus the proof of the first result is completed. In addition, by direct computation,the limitations are
obtained. Therefore, the assertion is completed.

C. Proof of Theorem 3

For X1, X2, · · · , Xm being the record values from UB distribution, using similar notations in proof of
Theorem 1, it is noted that L1, L2, . . . , Lm−1, Lm are i.i.d. standard exponential distribution. In addition,
it is observed that

K1 = 2L1 and K2 = 2
m∑

i=2

Li,

follow the chi-square distribution with 2 and 2(m − 1) degrees of freedom, respectively. Additionally
K1 and K2 are statistically independent. Further, using sampling distribution theory, one has AX

2 (α) =
K1/2

K2/2(m−2) follows the F distribution with (2, 2m − 2) degrees of freedom. Similarly, quantity BX
2 (β1, α) =

K1 + K2 follows the chi-square distribution with 2m degrees of freedom. Therefore, the assertion is
completed.
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D. Proof of Lemma 2

Since function G(h) can be rewritten as

1
G(h)

=
log(1 + (− log( f ))−h)
log(1 + (− log(e))−h)

− 1.

Therefore, using the results of Lemma 1, the monotone and limitation results of G(h) could be established
in consequence, and the assertions is completed.
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