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Working memory refers to the brain’s ability to store and manipulate information

for a short period. It is disputably considered to rely on two mechanisms:

sustained neuronal firing, and “activity-silent” working memory. To develop a

highly biologically plausible neuromorphic computing system, it is anticipated to

physically realize workingmemory that corresponds to both of thesemechanisms.

In this study, we propose a memristor-based neural network to realize the

sustained neural firing and activity-silent working memory, which are reflected

as dual functional states within memory. Memristor-based synapses and two

types of artificial neurons are designed for the Winner-Takes-All learning rule.

During the cognitive task, state transformation between the “focused” state and

the “unfocused” state of working memory is demonstrated. This work paves the

way for further emulating the complex working memory functions with distinct

neural activities in our brains.

KEYWORDS

memristor, workingmemory, neural networks, bio-inspired computing, Hebbian learning

1. Introduction

Workingmemory is an essential brain function that allows for the temporary storage and

manipulation of information required for cognitive tasks (Baddeley and Hitch, 1974; Morris,

1986; Baddeley, 1992, 2010). For a long time, it was thought to be presented in the form of

persistent neuronal firing during the delay period (Funahashi, 2017). However, recent studies

have suggested that synaptic weight can also store information during the delay period, even

if persistent neuronal firing has ceased (Mongillo et al., 2008; Stokes, 2015; Silvanto, 2017).

This phenomenon is referred to as “activity-silent” working memory. In most previous

studies, the sustained neuronal firing and “activity-silent” working memory have been

modeled independently, and these mechanisms appear to be fundamentally opposed in

principle. On the other hand, in recent years, several studies have provided insights into

the interaction between sustained neuronal firing and “activity-silent” working memory.

Manohar et al. have proposed a memory model that unites both persistent activity attractors

and silent synaptic memory, which is applicable to many empirical phenomena (Manohar

et al., 2019). Barbosa et al. have investigated the interplay between persistent activity and

activity-silent dynamics in the prefrontal cortex usingmonkey and human electrophysiology

data (Barbosa et al., 2020).
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In the past decades, a great number of efforts had been

made for the hardware implementation of a wide variety of

artificial neural networks (Misra and Saha, 2010; Capra et al., 2020;

Nguyen et al., 2021; Ghimire et al., 2022). Recent works on silent

synapses and artificial synapses have highlighted their potential for

advancing the understanding of the nervous system and developing

neuromorphic computing technologies (Loke et al., 2016; Go

et al., 2021; Hao et al., 2021). Following this research trend,

there is a growing anticipation to realize a highly bio-plausible

neuromorphic computing system. Although working memory

plays a vital role in biological neurocomputing (Wang et al.,

2020), there have been only a handful of studies on the hardware

implementation of working memory, and the existing research has

mainly focused on the independent neural mechanism of working

memory (Brown and Aggleton, 2001; Ji et al., 2022). Proposing a

hardware design for working memory that is compatible with both

sustained neuronal firing and activity-silent working memory can

improve its biological plausibility and expand the breadth of its

application.

To achieve the aforementioned dual functional states of

working memory, this paper proposes a hardware design for

working memory based on memristors. Memristor is a non-

linear two-terminal electrical device that has been extensively

studied in the past decade, which is a key element used in

artificial neural networks for synapses and neurons due to

similarities in electrical behavior (Chua, 1971; Strukov et al.,

2008; Thomas, 2013; Li et al., 2018; Camuñas-Mesa et al., 2019;

Xia and Yang, 2019). In this work, we propose a memristor-

based neural network to realize the dual functional states of

working memory. To achieve this, the electrical characteristics

of an Au/LNO/Pt memristor based on Single-Crystalline LiNbO3

(SC-LNO) thin films is utilized. The use of the high-quality SC-

LNO thin film results in several advantageous properties, including

high switching uniformity, long retention time, stable endurance

performance, and reproducible multilevel resistance states (Wang

et al., 2022). An artificial synapse circuit with simplified Hebbian

learning rule is implemented with Au/LNO/Pt memristor. A

spiking neural network capable of realizing the winner-takes-

all (WTA) functionality is constructed, which is utilized to

achieve working memory working memory. State transformation

between the “focused” state (sustained neuronal firing) and the

“unfocused” state (activity-silent working memory) of memristor-

based working memory is demonstrated. This hardware solution

for bio-plausible working memory with dual functional states,

leveraging the intrinsic electrical properties of memristors, has

promising implications for the development of advanced bio-

plausible neuromorphic computing systems.

2. Materials and methods

The memristor utilized in this study is an Au/LNO/Pt

memristor, which is based on 30 nm Single-Crystalline

LiNbO3 (SC-LNO) thin films. The detailed fabrication method

was presented in our prior work (Wang et al., 2022). The

electrical characteristics of the memristor were obtained at

room temperature using a Keithley 4200-SCS Semiconductor

Characterization System. A modified Yakopcic generalized

memristor model (Yakopcic et al., 2011) is employed to fit

the experimental data of the LNO memristor, taking into

account its inherent instability. The dual funtiaonal states

of working memory was validated using the Brian spiking

neural network simulator (Brian 2). The memristor-based

working memory circuit is designed and verified through SPICE

simulations.

2.1. Dual functional states of working
memory

Figure 1 depicts the working memory network model that

supports “focused” state (sustained neuronal firing) and the

“unfocused” state (activity-silent working memory), which builds

upon Manohar’s working memory model (Manohar et al., 2019)

by adjusting it to the form of Spiking Neural Networks (SNNs),

thus endowing it with greater biological plausibility. The network

comprises two distinct types of neurons: feature-selective neurons

and freely-conjunctive neurons. Feature-selective neurons receive

unique types of feature information such as colors, orientations,

and locations. On the other hand, freely-conjunctive neurons

encode a combination of simultaneously active features and

establish an associative mapping to feature-selective neurons. Upon

arrival of feature information stimulus, the membrane potential

of the corresponding feature-selective neuron increases. As the

potential of a feature-selective neuron approaches its threshold,

the neuron fires a spike. The spike train generated by feature-

selective neurons can be interpreted as sensory activation of

feature information, and it is perceived by freely-conjunctive

neurons. Initially, the synaptic weights between the two types of

neurons are randomly assigned, reflecting the connection strength

between neurons. As spikes arrive from feature-selective neurons,

the membrane potential of freely-conjunctive neurons increases,

eventually leading to firing. Synaptic connection strength changes

according to the temporal relationship between pre- and post-

synaptic spikes, in accordance with the Hebbian plasticity rule.

Freely-conjunctive neurons also compete with each other through

lateral inhibition and self-excitation, following the winner-takes-all

(WTA) rule. Through this competition, only one neuron remains

active in each feature dimension. The working memory network

model includes two independent weight vectors connecting

feature-selective neurons and freely-conjunctive neurons, which

depend on the direction of spike propagation. In Figure 1, Wfc

indicates the synaptic weight of the forward direction (feature-

selective neurons to freely-conjunctive neurons), andWcf indicates

the synaptic weight of the backward direction (freely-conjunctive

neurons to feature-selective neurons). During Hebbian learning,

both feature-to-conjunctive synapses and conjunctive-to-feature

synapses are strengthened for the winner among freely-conjunctive

neurons, while they are weakened for other freely-conjunctive

neurons. This process creates an synaptic mapping between the

freely-conjunctive neurons and the feature information stimulus.

Figure 2 shows the sequence of neuronal events in working

memory: encoding, attention, and retrieval. Step 1: sensory inputs

(color: blue, orientation: +45 degrees, location: top right) are

received by feature-selective neurons. Then, freely-conjunctive
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FIGURE 1

Network architecture of working memory with dual functional states.

neurons perceive spike trains from feature-selective neurons.

The freely-conjunctive neurons filled with light red indicate

relatively lower and erratic firing rates. During this process,

the freely-conjunctive neurons compete and encode the active

features. Following this, each feature dimension has a single

neuron that wins a competition, which can be seen as neuronal

events of encoding in working memory. Step 2: the neurons

filled with deep red indicate higher and more stable firing

rates. Under the WTA rule, firing from the winner among the

freely-conjunctive neurons is stabilized. Step 3: when the sensory

input to the feature-selective neuron is withdrawn, the freely-

conjunctive neuron that has been firing stimulates the feature-

selective neuron through the conjunctive-to-feature synapses, this

results in the firing of the feature-selective neuron and, in turn

causes the freely-conjunctive neuron to fire through the feature-

to-conjunctive synapses. The self-excitation synapse of the freely-

conjunctive neuron enhances its firing through self-stimulation.

This sustained neuronal firing can be considered as neuronal

events of attention in working memory, which indicate “focused”

state of working memory. Step 4: a new round of encoding

and competition in the working memory network, and different

freely-conjunctive neuron from the previous round may enter

the “focused” state. Although the feature information from the

previous round is not presented in the working memory network

in the “focused” state, it remains encoded in synaptic weights as

an activity-silent working memory in the “unfocused” state. Step

5: The providing partial feature information to feature-selective

neurons, which reactivates the “focused” state of corresponding

freely-conjunctive neurons. This can be considered as neuronal

events of retrieval in working memory. Step 6: freely-conjunctive

neuron reactivates original features, completing the process of

associative recall. From a certain perspective, the activity-silent

working memory in this model can be conceptualized as an

associative memory with long-term information storage. Although

working memory is typically regarded as a form of short-term

memory, several studies suggest that associative memory with

long-term information storage also contribute to working memory

(Burgess and Hitch, 2005; Olson et al., 2005; van Geldorp

et al., 2012). During working memory tasks, as many rounds of

sensory inputs are applied, the synaptic mapping of activity-silence

working memory may be interrupted by new feature information.

This is attributed to the limited capacity of working memory,

which is consistent with the concept of forgetting in working

memory. Although sustained neuronal firing weakens and ceases

during the bi-directional feedback between two types of neurons

after a relatively short period of time, this process indicates a

transition from the “focused” state to the “unfocused” state, rather

than forgetting.
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FIGURE 2

Sequence of neuronal events in working memory.

2.2. Synaptic behavior of the LNO
memristor

The cross-sectional structure of the Au/LNO/Pt memristor

used in this work is shown in the inset part of Figure 3A.

The insulating layer of the memristor is a Single-Crystalline

LiNbO3 (SC-LNO) thin film with the thickness of 30 nm. The

cross mark in Figure 3B display the electronic behavior of LNO

memristive conductance under appropriate spike trains applied to

the memristor. The blue cross mark depict the LTP characteristic

of the memristor. Positive pulse trains comprising 100 sequential

1.5 V pulses, each lasting 5ms, are applied to the top electrode

(i.e., the Au electrode) of the memristor while the bottom electrode

(i.e., the Pt electrode) is grounded, and the memristive conductance

gradually increases, indicating that the memristor undergoes a SET

process. The red cross mark depict the LTD characteristic of the

memristor. Negative pulse trains comprising 100 sequential −1.5

V pulses, each lasting 5 ms, are applied to the bottom electrode

(i.e., the Pt electrode) of the memristor while the top electrode (i.e.,

the Au electrode) is grounded, and the memristive conductance

gradually decreases, indicating that the memristor experiences a

RESET process.

In this work, a modified Yakopcic’s generalized memristor

model (Yakopcic et al., 2011) is used to fit the experimental data

of the LNO memristor. The equation of the modified memristor

model is as follows:
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FIGURE 3

Characteristics of the LNO memristor under (A) voltage sweep and (B) sequential LTP/LTD pulses.

I(x) =

{

a1(
1
r +

(r−1)x(t)
r ) sinh(bV(t)),V(t) ≥ 0

a2(
1
r +

(r−1)x(t)
r ) sinh(bV(t)),V(t) < 0

(1)

g(V(t)) =











Ap(e
V(t) − eVp ),V(t) > Vp

−An(e
−V(t) − eVn ),V(t) < −Vn

0,−Vn < V(t) < Vp

(2)

f (x(t)) =

{

e−αp(x(t)−xp)wp(x(t), xp), x(t) ≥ xp
1, x(t) < xp

(3)

f (x(t)) =

{

eαn(x(t)+xn−1)wn(x(t), xn), x(t) ≤ 1− xn
1, x(t) > 1− xn

(4)

wp(x, xp) =
xp − x

1− xp
+ 1 (5)

wn(x, xn) =
x

1− xn
(6)

dx

dt
= ηg(V(t))f (x(t)) (7)

In Equation (1), the hyperbolic sinusoid function is used to

fit the I-V relationship of the memristor, along with parameters

a1, a2, and b. The state variable of the memristor is represented

by x(t), which varies between 0 and 1. At x(t) = 0, the

memristor’s resistance reaches its maximum value, while x(t) =

1 corresponds to the minimum resistance. In contrast to the

original Yakopcic memristor model, a parameter r is introduced in

Equation (1) to represent the ratio of the highest resistance value

to the lowest resistance value. The purpose of this modification

is to adjust the resistance range of the memristor to fall within

the range of experimental data and to prevent the occurrence of

infinitely large or small resistance values. Equation (2) presents the

function g(V(t)), which imposes a programming threshold on the

memristor. The positive and negative thresholds are denoted by Vp

and Vn, respectively, with adjustable parameters for the magnitude

of the exponentials represented by Ap and An. The state variable

motion is modeled by the function f (x(t)), which is expressed in

Equations (3) and (4). The motion remains constant until the point

xp or xn, where the rate of exponential decay is determined by αp or

αn, respectively. The window functionwn(x, xn) is utilized to ensure

the boundary of the state variable motion, as shown in Equations

(5) and (6). Additionally, Equation (7) models the state variable

motion, with the direction of the motion represented by η in

terms of the voltage polarity. Figure 3A shows the current-voltage

(I-V) relationship of the LNO memristor model under a voltage

sweep from −2 to 2 V for both experiment and simulation. The

LTP and LTD characteristics of the modified Yakopcic’s generalized

memristor model are illustrated by the green and orange lines in

Figure 3B, with the parameters used in this work listed in Table 1.

Considering the inherent instability of Cycle-to-cycle and Device-

to-device variations in practical memristors, 40, 10, 25, and 20%

noise are introduced to αp, αn, Ap, and An, respectively. The

errorbars on the green and orange lines represent the maximum

conductance variations of the memristor after 100 sequential LTD

and LTP pulses.

2.3. Memristor-based working memory
circuit

In this study, a simplified Hebbian learning rule is introduced

as the synaptic plasticity mechanism for feature-to-conjunctive
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TABLE 1 The parameters of the LNOmemristor model.

a1 a2 b r Vp Vn Ap An xp xn αp αn xo η

7× e−7 7× e−7 1.5 9 0.5 0.5 0.95 35 0.05 0.3 1.5 5 0.01 1

FIGURE 4

Simplified Hebbian learning rule.

synapses and conjunctive-to-feature synapses, as illustrated in

Figure 4. Long-term potentiation (LTP) and long-term depression

(LTD) of synaptic weights are determined by the temporal relation

between pre- and post-synaptic spikes. When the pre-synaptic

spike is fired first and the post-synaptic spike is fired immediately

within a time window of 2ms, the synapse exhibits LTP. When

the post-synaptic spike is fired outside of this time window, either

earlier or later, the synapse exhibits LTD. The strength of LTP and

LTD is determined by the SET/RESET pulse width, denoted by time

scalar Tp. The pulse width for SET is three times wider than that

for RESET. v̂ represents the direction of the pulse voltage, with the

direction of SET being positive and the direction of RESET being

negative.

To harness the LTP/LTD behavior of the LNO memristor, a

dedicated synaptic weight update circuit has been designed and

optimized based on our previous research (Hu et al., 2013). The

synaptic weight update circuit is comprised of a single LTPmodule,

a single LTD module, one memristor, and the peripheral circuit.

Schematic representations of the LTP and LTD modules are shown

in Figures 5A, B, respectively. The “PRE” and “POST” nodes are

connected to the pre-neuron and post-neuron, respectively, while

the LTP and LTD nodes represent the output generated by the

temporal relation between pre-synaptic and post-synaptic spikes, as

specified by the simplified Hebbian learning rule mentioned earlier.

At the initial state, both “SP” and “SD” nodes are set to a low level.

I1 and I3 function as inverters, while I2 and I4 function as NAND

gates. When the pre-synaptic neuron fires, transistor MP1 turns on,

causing capacitor C1 to charge up to Vdd, and as a result, the “SP”

node rises to Vdd. The output of I4 in the LTD module is held at a

low level, which means that the LTD module is inactive while the

LTP module is operating, and vice versa. When the LTP module

is in operation, C1 begins to discharge through transistors MN1

and MN2, with the discharge current being regulated by Vbp. The

maximumduration for the discharge of C1 is denoted as tLTP, which

represents the time window of the LTP. When the post-synaptic

neuron fires within tLTP, transistor MN3 will be turned on, causing

the charge to be redirected to capacitor C2, and setting the “S” input

of the S-R latch to a high level. As a result, the LTP output of the

S-R latch will be in a “HIGH” state. When the LTD module is in

operation, the “S” input of the S-R latch is immediately set to a high

level, causing the LTD output of the S-R latch to be in a “HIGH”

state. The only purpose of the discharge of C3 is to deactivate the

LTP module while the LTD module is in operation. The LTP/LTD

output will remain in a “HIGH” state until a “Ctrl” signal arrives

at the S-R latch, which in turn determines the duration of the

LTP/LTD output.

The LTP and LTD outputs described above are utilized to

implement a Hebbian learning rule in the synapse weight update

circuit, as depicted in Figure 6. When the LTP output is in a

“HIGH” state, transistorsMN7 andM10 turn on, applying a positive

voltage Vr to the memristor with the top electrode at high potential

and leading to a SET process in the memristor. Similarly, when

the LTD output is in a “HIGH” state, transistors MN8 and MN9

turn on, applying Vr to the memristor with the bottom electrode

at low potential, leading to a RESET process in the memristor.

The duration of the SET/RESET process is equal to the duration

of the LTP/LTD output. When the LTP and LTD outputs are in a

low state, their inverted outputs LTP and LTD are in a high state.

As a result, transistors MN11-MN14 in the path between the pre-

synaptic neuron and the post-synaptic neuron remain on, allowing

pre-synaptic spikes to transmit to the post-synaptic neuron through

thememristor. However, when the LTP or LTDmodule is activated,

two of the transistors among MN11-MN14 turn off, and the path

between the pre-synaptic neuron and the post-synaptic neuron is

closed.

To achieve working memory, we utilized a spiking neural

network with the winner-takes-all (WTA) functionality previously

developed in our research (Wang et al., 2019). All synapses involved

in working memory, including feature-to-conjunctive synapses,

conjunctive-to-feature synapses, self-exciting synapses, and lateral-

inhibition synapses, share the same synaptic architecture. The

synapse weight of feature-to-conjunctive and conjunctive-to-

feature synapses can be modified by the aforementioned synapse

weight update circuit that utilizes a simplified Hebbian learning

rule. On the other hand, the synaptic weight of self-exciting

synapses and lateral-inhibition synapses remain fixed. Both feature-

selective neurons and freely-conjunctive neurons in our network

utilize the leaky integrate-and-fire (LIF) neuron model. The

capacitor within the neuron integrates the input current from the
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FIGURE 5

Schematic illustration of (A) LTP Module and (B) LTD Module.

FIGURE 6

Schematic illustration of synapse weight update circuit.
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FIGURE 7

Sensory input of feature-selective neurons.

synapses, causing the neuron’s membrane potential to increase.

Once the neuron potential reaches the threshold, the neuron

fires a spike, and its potential returns to its resting state. The

network topology of our working memory design, consisting of

interconnected artificial neurons and synapses as illustrated in

Figure 1.

3. Results and discussion

The functionality of the memristor-based working memory

was evaluated using SPICE simulation, leveraging the electrical

characteristics of Au/LNO/Pt memristors derived from

experimental data. The memristive conductance was normalized

to serve as synaptic weights. The working memory employed

a total of 9 feature-selective neurons, with each group of 3

neurons corresponding to a distinct feature dimension, including

color, orientation, and location. Each neuron was responsible

for encoding different feature information within its respective

dimension. Additionally, 3 freely-conjunctive neurons were fully-

connected to the feature-selective neurons, resulting in a total of

27 feature-to-conjunctive and 27 conjunctive-to-feature synapses.

To enable lateral inhibition, 6 synapses were established between

freely-conjunctive neurons, with self-connections excluded. Lastly,

3 self-exciting synapses were connected to the freely-conjunctive

network in a self-connected manner, for the purpose of inducing

self-excitation.

Figure 7 shows a typical sensory input for working memory.

Three input features were selected: Obj1 (color: red, orientation:

−45 degrees, location: bottom-left), Obj2 (color: yellow,

orientation: 0 degrees, location: top-left), and Obj3 (color:

blue, orientation: +45 degrees, location: top-right). The sensory

current was applied to corresponding feature-selective neurons,

and the magnitude of the sensory current was adjusted to the

same value for each of the 3 feature dimensions. The firing

rate of the feature-selective neuron was proportional to the
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FIGURE 8

Firing rate of freely-conjunctive neuron.

magnitude of the input current. An initialization time of 50

ms was allocated for stabilization at the beginning of working

memory. Each feature input lasted for 100 ms, and there was

a 50 ms resting time between each two features. The time

scalar Tp for the simplified Hebbian learning rule is defined

as 1 ms.

Figure 8 shows the activity of each freely-conjunctive neuron.

When the first feature input Obj1 is activated, feature-to-

conjunctive synapses modify their connectivity based on a

simplified Hebbian learning rule, and freely-conjunctive neurons

compete with each other. This process is known as encoding in

working memory. Once the competition is completed, the winning

neuron remains active even without the sensory input. The feature

information is encoded into working memory and is presented

in the form of persistent neuronal firing, which can be regarded

as the “focus” state of working memory. Additionally, feature

information is silently encoded into the synaptic weights of the

feature-to-conjunctive synapses. When the second feature Obj2 is

activated, the previous attention is disturbed by the new input,

and a new round of encoding occurs. Then, the neurons that

won the competition in this round persistently fire, forming a

new attention. Similarly, when the third feature input Obj3 is

activated, another “focus” state of workingmemory is formed as the

persistent firing freely-conjunctive neurons map to Obj3. However,

the “unfocused” state of working memory exists in the form of

synaptic mappings and persists as long as it is not overwritten

by new feature information during the working memory task.

After a resting time of 50 ms, a sensory input composed of

partial feature information of Obj1 (colors: red) is applied.

Despite using only a small fraction of the feature information,

persistent neuronal firing occurs again, which corresponds to

the retrieval of Obj1. This result demonstrates that the proposed
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memristor-based working memory system can successfully achieve

the dual functional states of working memory and accomplish the

working memory task.

4. Conclusion

In this paper, a memristor-based working memory that is

capable of exhibiting dual functional states is presented. To

achieve this, an artificial synapse with a simplified Hebbian

learning rule was designed based on the LTP/LTD properties

of the Au/LNO/Pt memristor, which uses a single-crystalline

LiNbO3 (SC-LNO) thin film as its insulating layer. Two types

of artificial LIF neurons were implemented in the network to

encode feature information to working memory through the WTA

rule and produce persistent neuronal firing patterns. The results

show that the proposed system can realize various neuronal

events in working memory, including encoding, attention, and

retrieval. This study demonstrates that the memristor-based

working memory can exist in the dual functional states: the

sustained neuronal firing and activity-silent working memory. This

study paves the way for the development of advanced bio-plausible

neuromorphic computing systems based on memristive neural

networks. This research represents a significant step toward the

development of advanced bio-plausible neuromorphic computing

systems based on memristive neural networks. It is hoped that

this work will inspire further research in this exciting and rapidly

evolving field.
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