
Resolution enhancement of 2D
controlled-source
electromagnetic images by use of
point-spread function inversion

Vemund S. Thorkildsen* and Leiv-J. Gelius

Department of Geosciences, University of Oslo, Oslo, Norway

The marine controlled-source electromagnetic technique is employed both in
large-scale geophysical applications as well as within the exploration of
hydrocarbons and gas hydrates. Because of the diffusive character of the EM
field, only very low frequencies are used, leading to inversion results with low
resolution. In this paper, we calculated the resolution matrix associated with the
inversion and derived the corresponding point-spread functions. The PSFs
provided information about how much the actual inversion was blurred. Using
a space-varying deconvolution can thus further improve the inversion result. The
actual deblurring was carried out using the nonnegative flexible conjugate
gradient least-squares (NN-FCGLS) algorithm, which is a fast iterative
restoration technique. To attain completeness, we also introduced the results
obtained using a blind deconvolution algorithm based on themaximum likelihood
estimation with unknown PSFs. The potential of the proposed approach has been
demonstrated using both complex synthetic data and field data acquired at the
Wisting oil field in the Barents Sea. In both cases, the resolution of the final
inversion result was improved and showed greater agreement with the known
target area.
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1 Introduction

The marine controlled-source electromagnetic (CSEM) technique has the potential to
resolve the fluid distribution in a reservoir. This method is particularly sensitive to high-
resistivity fluids like hydrocarbons and has therefore proven successful within petroleum
exploration (Um and Alumbaugh, 2007; Constable, 2010). Initially, CSEM data were
processed directly in the data domain using normalized magnitude and phase-versus-
offset plots (Ellingsrud et al., 2002; Røsten et al., 2003). During the last 2 decades, and in
parallel with the improvement in computing power, the processing of CSEM data has moved
to the model domain through inversion. Nowadays, such inversion can handle complex 2D
and 3D Earth models including anisotropy (Brown et al., 2012; Jakobsen and Tveit, 2018;
Wang et al., 2018). However, the CSEM technique has a low resolution because low
frequencies (typically in the range of 0.25–10 Hz) are used to achieve the desired
penetration depths because of the characteristics of the diffusive wave. Thus, the actual
inversion represents a blurred version of the true target. In addition, data noise, bias, and
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inappropriate a priori geological information may lead to further
uncertainties in the final inversion result.

The use of sophisticated inversion techniques like the Gauss-
Newton method (Key, 2016; Nguyen et al., 2016; Bjørke et al., 2020)
may (partly) correct for resolution losses by including the
approximate Hessian matrix. In this study, we proposed the use
of point-spread functions (PSFs) to quantify the remaining
deblurring after a Gauss-Newton inversion. Such functions can
be extracted from the model resolution matrix (Jackson, 1972;
Menke, 2012). Several examples of the use of resolution matrices
to analyze various inversion problems can be found in the literature
(Alumbaugh and Newman, 2000; Friedel, 2003; Routh and Miller,
2006; Kalscheuer et al., 2010; Fichtner and Leeuwen, 2015;
Chrapkiewicz et al., 2020; Ren and Kalscheuer, 2020). A few
publications have also briefly discussed applications of the model
resolution matrix within CSEM inversion but with limited
demonstrations (Grayver et al., 2014; Mattsson, 2015; Mckay
et al., 2015). In a recent publication, Thorkildsen and Gelius
(2023) introduced for the first time the rigorous use of resolution
matrices within CSEM and demonstrated how the associated PSFs
can be employed to quantify the resolution power and as an aid in
survey planning.

By analogy with work carried out earlier regarding seismic data
imaging and inversion (Hu et al., 2001; Sjoeberg et al., 2003; Yu et al.,
2006; Takahata et al., 2013; Yang et al., 2022) and astrophysics (Xu
et al., 2020), we proposed using the PSFs extracted from a
regularized Gauss-Newton inversion of marine CSEM data to
further deblur the inversion result in a post-processing step. The
actual deblurring was carried out using the nonnegative flexible
conjugate gradient least-squares (NN-FCGLS) algorithm (Gazzola
et al., 2017). The feasibility of the proposed approach was
demonstrated using both complex synthetic data as well as field
data from the Wisting oil field in the Barents Sea.

2 General framework of the 2D CSEM
inversion

2.1 MARE2DEM package

CSEM inversion was performed using the open-source inversion
package MARE2DEM (Modeling with Adaptively Refined Elements
2D EM) (Key, 2016). This package was developed for 2D anisotropic
modeling and inversion of both offshore and onshore CSEM and
magnetotelluric (MT) data. MARE2DEM is based on the Occam
approach (Constable et al., 1987), which is a variant of Gauss-
Newton minimization. The starting point of the inversion scheme is
a nonlinear problem formulation, which is solved iteratively by
minimizing a cost function (Key, 2016; Ren and Kalscheuer, 2020).

ϕ m, α[ ] � d − F m[ ]( )†W†
dWd d − F m[ ]( )[ ] + αm†W†

mWmm, (1)

where d of size i = 1,2, . . . N is the measured complex field data
(i.e., frequency domain), F[m] is the corresponding model response,
Wd is the weighting matrix for the data misfit, α is the Langrangian
weight factor for the regularization term, and Wm is the
regularization matrix. While dealing with complex fields, the
Hermitian † (i.e., matrix transpose and complex conjugation)

notation should be adopted for the matrices involved. In
MARE2DEM, Wd is the diagonal matrix composed of the
inverse of the standard error δ for each sample and Wm is the
weighting matrix that forces smoothness on the model. The latter is
obtained by use of a gradient roughness operator. In the case of
anisotropic Earth models, the roughness is implemented by
partitioning the model vector into anisotropic subsets (Key,
2016). In MARE2DEM, the model parameter m represents the
logarithm of resistivity log(ρ) (bounded to a user-defined interval).

In practice and due to the nonlinearity of the inverse problem,
the forward (modeling) operator F in Eq.1 is quasi-linearized using a
Taylor series expansion. This leads to an iterative formulation where
the (k+1)th update is given as

ϕlin mk+1, α[ ] � [ d − F mk[ ] − J mk+1 −mk( )( )†W†
dWd

d − F mk[ ] − J mk+1 −mk( )( )] + αm†
k+1W

†
mWmmk+1, (2)

where J is the model Jacobian matrix with entries (zFi(mk)/zmj)
where mj � log(ρj) and ρj is the resistivity in cell j. Finally, after
differentiating the cost function (2) with respect to the current
model and setting (zϕlin[mk+1, α]/zmk+1) � 0, a least-squares
solution is obtained after rearrangement:

mk+1 � J−gw Wddk, (3)
with dk � [d − F[mk] + Jmk] being the modified data vector and J−gw
being the generalized inverse matrix defined as
[J†W†

dWdJ + αW†
mWm]−1J†W†

d.
In MARE2DEM, Eq. 3 is solved iteratively by applying the

Occam approach. This implies that the Langrangian multiplier α is
optimized as part of the inversion. For more details, the reader is
referred to Key (2016) and Constable et al. (1987).

In general, for an EM problem, there is a total of six different
data components, which correspond to the three different directions
of the magnetic and electric fields. However, in this study, we only
used the embedded inline horizontal electric field (Ey), which is the
most important component for marine CSEM.

2.2 Resolution matrix

If we assume a noise-free case and that the true model has been
obtained from the inversion, the modified data vector can be
written as

dk � dtrue � Jmtrue. (4)
The combination of Eqs 3, 4 gives then

mk+1 � RMmtrue, (5)
with RM being the resolution matrix, which can be written explicitly
as (Ren and Kalscheuer, 2020)

RM � R J†W†
dWdJ + αW†

mWm[ ]−1J†W†
dWdJ{ }, (6)

and where R implies taking the real part.
In a practical inversion case mtrue is unobtainable. The model

resolution matrix reveals how close the preferred inversion model is
to the true model, which relies on the Lagrangian multiplier α. By
letting α → 0, the model resolution matrix approximates the unity
matrix. In this case, the inverse problem is perfectly solved if no
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noise is present. As a pragmatic approach, we assume that mk+1
represents the preferred inversion model if the inversion is
terminated after iteration number k.

The resolution matrix is not calculated as part of the output from
MARE2DEM. We have therefore developed an extension to the
inversion package where this quantity is computed.

To gain further insight, we consider a 1D case first and
decompose the corresponding resolution matrix into its column
vectors:

RM � r1/rj/rM[ ], (7)

where rj is the jth column vector (j � 1, 2,/,M ) andM represents
the total number of 1D image points. Each column vector in Eq. 7
represents now a point-spread function (PSF) associated with a
corresponding fixed image point (cf. Figure 1A).

The concept of a PSF is well known from imaging theory
(Rossmann, 1969) and describes how much a point or pixel in
an image (i.e., a model parameter) is blurred due to the imaging
system (a combination of acquisition system and choice of inversion
algorithm in our case). A 2D image, as considered in this paper, is
represented by a lexicographical ordering as illustrated in Figure 2.
The resolution (blur) matrix then takes a more complex form as
discussed in Section 3.2 (cf. Eq. 9). A perfectly resolved case exhibits
a PSF with the value of 1 at the location of the image point and
0 elsewhere. Figures 1B, C show examples of a well-resolved and a
poorly resolved case, respectively, for a 2D image. The PSF in
Figure 1B is characterized by a small spread centered on the

FIGURE 1
(A) The relationship between the true modelmtrue and the preferred inversion modelmk+1 expressed as a matrix vector operation (1D case). (B) and
(C) are examples of PSF for a well-resolved and poorly resolved 2D case, respectively. Both PSFs have been normalized to 1 for presentation purposes.

FIGURE 2
Lexicographical ordering of the 2D image (the letters indicate
pixels).
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corresponding model parameter. However, in Figure 1C, the PSF is
characterized by a large spread.

3 General framework of deblurring

3.1 Forward (blur) model

From now on, we will use the notation A for the resolution
matrix corresponding to a lexicographic ordering of the 2D image or
model. The following general relationship between the true imagem
and its blurred counterpart b (i.e., the output from the CSEM
inversion) holds (forward model)

Am � b + n, (8)
where A is the blurring (resolution) matrix and n represents an
additive noise term. Since m (and b) is organized in lexicographical
order (cf. Figure 2), the structure of the blur matrix takes a special
form as discussed in the next section.

3.2 Blur matrix and a space-invariant PSF

We start by considering the case of a space-invariant PSF.
Assume that the number of image points is M = 2N + 1 along
each direction (and with indices running from -N toN). Assume also

that the PSF has the same size as the image (cf. upper part of
Figure 3). The first step in forming the blur matrix A is to organize
each column of the PSF in a Toeplitz matrix as shown in the lower
part of Figure 3 for row n.

The blur matrix A can now be constructed as a block Toeplitz
matrix with Toeplitz blocks (BTTB) with zero boundary conditions
(Hansen et al., 2006) and where each block element an(n �
−N, ..... − 1, 0, 1.....N) is defined in Figure 3:

A �

a0 a−1 / a−N 0 / 0

a1 1 1 1 1 1 ..
.

..

.
1 a0 a−1 1 a−N 0

aN 1 a1 a0 a−1 1 a−N

0 1 1 a1 a0 1 ..
.

..

.
1 aN 1 1 1 a−1

0 / 0 aN / a1 a0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The blur matrixA has dimensionsM2 xM2  where M � 2N + 1.

3.3 Generalization to space-variant PSF
(image segmentation)

To discuss a more general case characterized by space-variant
PSFs, a pragmatic approach would be to subdivide the model space
into space-invariant regions and perform deblurring separately for

FIGURE 3
First step in forming the blurmatrix A: each column in the space-invariant PSF (upper part of the figure) is reorganized in a Toeplitzmatrix as shown in
the lower part of the figure.
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each region. This implies that each region is assigned a deblur matrix
of the form given by Eq. 9, but with its own representative PSF. The
final image is then constructed by combining the space-invariant
regions after deblurring (and with possibly some smoothing applied
to avoid edge effects). A more attractive approach, however, is to
construct a space-variant A matrix (Nagy and O’Leary, 1997). Let
Figure 4 represent an idealized case where the model space is
horizontally split into two regions, each of them characterized by
distinct and different PSFs. To minimize edge effects, a transition
zone, which defines a gradual transition between the two PSFs, has
also been introduced.

Before constructing the space-variant blur matrix A, we need to
define a corresponding space-invariant blur matrix for each
subregion (same form as in Eq. 9). In the idealized case shown
in Figure 4, two blur matrices (A1 and A2) need therefore to be
constructed. In this demonstration example, we have defined the
two PSFs as simple 2D Gaussian functions with different degrees of
blurring. More specifically, we chose the PSF of region 1 to introduce
less blurring than the corresponding PSF of region 2. This implies
that the blur matrix A1 has a more narrow band of values
concentrated along its diagonal compared to the blur matrix A2

(cf. upper row in Figure 5).
The next step is to calculate a weighting matrix for each of the

two regions in Figure 4 (D1 and D2). To avoid edge effects, the PSF
should vary smoothly between different subregions. This can be
achieved by applying linear tapering between neighboring
subregions. In such a transition zone, an effective PSF is
constructed as the linear combination between the two
neighboring PSFs. The two weighting matrices for the idealized
case in Figure 4 are shown in the middle row of Figure 5. A zoomed
version of a section of the weight matrixD2 is also included to better

visualize the smooth transition between the two subregions (i.e., no
sharp edges). The final blur matrix A can then be constructed as the
sum of the Hadamard product of the two space-invariant matrices
and the associated weighting matrices

A � A1 ⊙ D1 + A2 ⊙ D2, (10a)
where the effective blur matrix A is shown in the bottom row of
Figure 5. A zoomed version of a section of this matrix is also shown
to better illustrate the effect of the smooth transition zone
introduced between the two subregions in Figure 4.

For a general case with N regions, Eq. 10a generalizes to

A � ∑N
i�1
Ai ⊙ Di (10b)

As the inversion can be sensitive to input parameters (e.g., the
choice of PSFs and sizes of the transition zones), developing an
interactive user interface to assist in the selection of the
optimized parameters is crucial. Figure 6 shows the typical
plot output from this user interface (i.e., the blurred model
output from the CSEM inversion along with three selected
PSFs). In an interactive system, a PSF plot (Figures 6B–D)
automatically updates when clicking on the corresponding cell
location in the blurred model (green dots in Figure 6A). This
allows users to interactively evaluate whether a given PSF is
suitable, and the user can then add this PSF to a list. After
selecting the optimal PSFs, the user can define boundaries and the
size of the transition zones (cf. Figure 5). This set of parametric
choices is then used to construct the space-variant A-matrix. This
blur matrix A is stored in the memory of the user interface,
allowing the user to efficiently test different sets of input
parameters.

Nevertheless, the inversion is sensitive to the choice of PSFs.
In the example shown in Figure 6, one of the PSFs corresponds to
a poorly resolved model parameter (Figure 6B), whereas the PSFs
in Figures 6C, D both describe a fairly well-resolved model
parameter. These observations stress the important role our
interactive user interface plays in controlling the quality of the
selected parameters. The choice of an anomalous PSF (Figure 6B)
can thus be easily avoided. In general, PSFs located (well) outside
the target area should not be employed. Relevant PSFs are those
near and inside the target area or structure. The PSFs in Figures
6C, D are examples of proper selections. It is well known that the
output from a CSEM inversion is poorly resolved along the
vertical direction. If the two PSFs in Figures 6C, D are used to
construct the blur matrix, the corresponding deblurred image is
expected to show improved vertical resolution. For a practical
application, each PSF is delimited to a smaller area with tapering
and normalization that ensures that the sum of its values inside
the tapered area adds to 1.

3.4 Deblurring the CSEM inversion using
NN-FCGLS

In this Section, we discuss how to deblur the output from the
CSEM inversion. This step represents a new inversion problem to be
solved, namely, the one with a forward model given by Eq. 8. Several

FIGURE 4
Idealized model space horizontally split into two regions
including a transition zone. Note that this case has been chosen for
illustration purposes of Eq. 10a (cf. Figure 5). In practical applications,
both vertical and horizontal splitting can be employed (cf.
Figure 8A).
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solution alternatives exist, and in this study, we used the nonnegative
flexible conjugate gradient least-squares (NN-FCGLS) algorithm
(Gazzola et al., 2017), which is implemented as an inner-outer
scheme. The updated model of the inner iteration can be written as

mk+1 � mk + αkpk, (11)
where αk is a bounded step size and pk is a vector of direction. To
fulfill the condition of nonnegativity in the solution space, the step
size αk is reduced so thatmk+1 ≥ 0  if mk > 0. In NN-FCGLS, this is
accomplished using a bounded step size calculated with the
following expression:

�αk � αk if pk ≥ 0

otherwise �αk � min αk,min − mk( )j/ pk( )j
j ∈ K

{ }, (12)

where K is a set of indices j such that (pk)j< 0 and the direction pk is
obtained by a linear combination of at most κk previously computed
pj with j varying in { max{0, k − κk},. . ., k−1}. If the maximum
number of iterations kmax is assigned to the inner cycle, the choice
κk = kmax corresponds to a full recursion, while a lower κk
corresponds to a truncated recursion and with κk = 1, only the
last computed vector pk−1 is used. The outer cycle relies on suitable

FIGURE 5
(Top row) Two space-invariant A-matrices corresponding to a well-resolved (A1) and smeared (A2) PSF. (Middle row) weightingmatrices (D1 andD2).
(Bottom row) the space-variant A-matrix is calculated as the sum of the Hadamard product of the two space-invariant blur matrices and the associated
weighting matrices.
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restarts to avoid stagnation. For further details about the algorithm,
the reader is referred to Gazzola et al. (2017). In this study, we
employed a code taken from the MATLAB library IR Tools (Gazzola
et al., 2019).

Because the NN-FCGLS method enforces a nonnegativity
constraint at each iteration, we consider that this algorithm will
produce a more accurate approximate solution when the output
from the CSEM inversion is a true nonnegative (i.e., log (ρ) and the
resistivity ρ is bounded by ρ≥ 1Ω-m) like in this case. The proposed
deblurring approach is based on PSFs extracted from the resolution
matrix associated with a linearized approximation of the original
nonlinear problem. Thus, this procedure does not represent an exact
solution to the blurring problem and the results obtained should
always be treated with caution.

3.5 Blind deconvolution as a benchmark
method

No precalculated PSFs are needed for blind deconvolution. This
implies that the blur matrix A is now unknown, and the blind
deconvolution technique estimates both the PSFs and the unknown
“true” imagem (Ayers and Dainty, 1988; Krishnamurthy et al., 1995;
Holmes et al., 2006). To solve this joint problem in an efficient
manner, the maximum likelihood estimation (MLE) principle is
employed (van Trees, 1968). The main idea is to search for a
statistical solution that maximizes the likelihood function, given
some observations. Thus, the parameter values obtained (i.e., PSF
andm) are most likely to lead to the observed data. For more details,
the reader is referred to Krishnamurthy et al. (1995) and Biggs and
Andrews (1997).

In this paper, we applied blind deconvolution to benchmark our
proposed approach, using the MATLAB routine deconvblind. It
restores the image and the point-spread function (PSF)
simultaneously employing the accelerated, damped Richardson-
Lucy algorithm in each iteration (Richardson, 1972; Lucy, 1974).

4 Data demonstrations

4.1 Wisting oil field

The Wisting oil field is located in the southwestern Barents Sea.
The reservoir is highly segmented and very shallow (approximately
250 m below the seafloor), and contains oil in sandstone from the
late Triassic (Fruholmen Formation) and early Jurassic (Nordmela
and Stø Formations) periods.

In this Chapter, we start by considering an idealized model of the
Wisting field that can serve as a complex controlled-data case. Such a
synthetic data set is vital to perform quality control in the proposed
deblurring approach. The controlled-data example is then followed
by a case where CSEM field data acquired across the Wisting field is
employed.

4.2 Complex synthetic model

Figure 7 shows a plot of the synthetic model color-coded with
vertical resistivity. Although the model includes anisotropy in most
layers, we focus here on vertical resistivity because the CSEM
method is known to be most sensitive to this polarization. For
more details about the construction of the synthetic model, the

FIGURE 6
(A) Example of superimposed green dots in a blurred model, indicating the location of each of the PSFs shown in (B–D).
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reader is referred to Thorkildsen and Gelius (2023). Synthetic
marine CSEM data were generated using the model shown in
Figure 7, employing the MARE2DEM package in a forward-
modeling mode. Five receivers evenly deployed on the seafloor at
a 3000 m interval were used for the calculations. On the transmitter
side, approximately 180 source positions were simulated using a
spatial sample interval of around 200 m. Moreover, a total of
11 frequencies ranging from 0.2 to 12 Hz were included. Random
noise with a standard deviation equal to 1% of the data amplitude
was added to each recording.

The blurred model obtained from the CSEM inversion is
displayed in Figure 8A. The inversion was characterized by a
smooth transition from the low resistivity background to the
high resistivity inside the reservoir. During the inversion, we
constrained the model update to a rectangular area enclosing the
main reservoir, while keeping the rest of the model unchanged. We
also employed a vertical sample interval of 5 m, which is denser than
that normally employed in CSEM inversion. This was performed to
enhance the deblurring effect from a visualization point of view.
When compared to the “true” model in Figure 7, the inversion was
able to reproduce the main features of the reservoir. However, the
main resistive structure was too shallow for both the left and (parts
of) the middle compartment. The white vertical lines introduced in
Figure 8A indicate the borders between the different subregions
employed when constructing the space-variant blur matrix A
(transition zones not shown). In addition, ideal PSFs were
introduced along the red frame surrounding the target region to
constrain the outer parts of the image. An ideal PSF is a point-spread
function that takes the value of 1 at the corresponding parameter
location and 0 elsewhere.

If we use the proposed deblurring approach, we generally expect
to observe a better-resolved reservoir along the vertical direction
(i.e., thinner). A direct comparison between the output from the
CSEM inversion (Figure 8A) and the corresponding deblurred
image obtained from NN-FCGLS (Figure 8B) supports this

assumption. A total of six PSFs were employed during
deconvolution (their actual locations are represented by the
superimposed green dots in Figure 8). By using our interactive
interface software the PSFs were carefully chosen based on visual
inspection and extensive testing. After deblurring, the target
structure appeared thinner overall and the right compartment
showed the greatest change in resolution. This was also expected
because that part of the reservoir is known to be the most poorly
resolved. On the other hand, the result of blind deconvolution
(Figure 8C) exhibited no resolution enhancement but rather the
opposite. Note, however, that the blind deconvolution technique
applied can only handle the case of a space-invariant (and unknown)
PSF. The blind deconvolution result in Figure 8C was initialized
employing a flat PSF. We also tested a Gaussian PSF as initialization
but the results were poor. Use of multiple windows for both
initializations did not improve the quality of the result.

4.3 CSEM field data

To demonstrate the effectiveness of the proposed method on
field data, the proposed deblurring approach was applied to a 2D
CSEM line extracted from the BSMC08W 3D survey acquired across
the Wisting oil field during the summer of 2008 (with similar
acquisition parameters as in the synthetic model case). We used
data corresponding to a frequency range of 0.2–12 Hz (total of
23 frequencies) as the input for the CSEM inversion.

Figure 9A shows the blurred model obtained from an
unconstrained CSEM inversion. This result was achieved after
cubic interpolation of the originally coarser output grid resulting
from MARE2DEM. This coarser inversion grid was sampled at
200 m laterally and 30 m vertically and was chosen in collaboration
with the industry to ensure a reasonable computational time.
However, the interpolated grid was sampled at 50 m laterally and
5 m vertically. Resampling of the image (and also selected PSFs) was

FIGURE 7
2D synthetic model color-coded with vertical resistivity.
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performed to ensure that the deblurring step would be stable
(otherwise, very few grid points would define both the blurred
image and the corresponding PSFs). Figure 9A through C show
superimposed arrows indicating an estimate of the average reservoir
thickness (about 40 m).

Figure 9B displays the deblurred image obtained after six
iterations of the NN-FCGLS method. A total of three carefully
selected PSFs were employed during deconvolution (their actual
locations are represented by the superimposed green dots in
Figure 9). The overall effect of deconvolution is that the reservoir
has become thinner and with sharper boundaries. In addition, the
right portion of the reservoir, which was more poorly resolved,
appears slightly uplifted. Due to the coarse sampling of the original

inversion grid and the fact that Wisting is a thin reservoir, this field
data example represents a limiting case. However, the vertical
resolution of the deblurred image has still improved and is now
closer to the known average reservoir thickness. Thus demonstrating
the potential of the proposed method. By directly comparing the
deblurred or deconvolved result (Figure 9B) with the result obtained
through blind deconvolution (Figure 9C), it is clear that the latter
technique does a poor job of deblurring. Employing blind
deconvolution actually produces an image exhibiting lower
resolution as compared to the original input.

5 Discussion and conclusion

Here, we investigated the feasibility of applying deblurring as
a post-processing technique to enhance the resolution of the

FIGURE 8
(A) Blurred output from CSEM inversion of data generated in the
complex synthetic model shown in Figure 7. The white vertical lines
introduced indicate the borders between the different subregions
employed when constructing the space-variant blur matrix. (B)
Deblurred model obtained from NN-FCGLS after 12 iterations. (C)
Output from blind deconvolution. Color scale between 0 and 250 Ω-
m resistivity.

FIGURE 9
(A) Blurred output from the CSEM inversion of field data. (B)
Deblurred model obtained from NN-FCGLS after six iterations. (C)
Output from blind deconvolution. Color scale between 0 and 250 Ω-
m resistivity.
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model output from a CSEM inversion. We developed a portfolio
of supporting software for extracting the model resolution matrix
associated with the CSEM inversion (MARE2DEM) and built the
corresponding blur matrix, which can be used to correct the
blurring described by the space-invariant PSFs. The actual
deblurring was carried out using the nonnegative flexible
gradient least-squares (NN-FCGLS) algorithm. Applications to
both synthetic and field data demonstrated the potential of the
proposed approach. In case of the synthetic data example, where
the model is known, the deblurred CSEM image obtained
employing our proposed approach matched the target layers
well for all three compartments when compared with a
superimposed structural mask of the Earth model. In case of
the field data, the true Earth model is not exactly known, but the
deblurred CSEM image using our proposed method seems to fit
quite well with an expected average thickness of the reservoir of
about 40 m (obtained from seismic interpretation).

Blind deconvolution was employed as a benchmark method and
was shown to perform much poorer when applied to the same two
data sets.

CSEM inversion is rather computationally intensive. For the
data examples shown here, the inversion typically took several days
to complete using a computer with 40 cpu’s and no memory
constraints (within a 1% RMS error). Deblurring, on the other
hand, is a very fast technique. The combined process of constructing
the space-variant blur matrix A and running the actual deblurring
was typically completed within minutes. Thus, repeated deblurring
using different PSF choices is feasible.

Future work should address the optimal choice of PSFs for a
given problem, and investigate further challenges associated with
iterative convergence and the particular choice of inversion
algorithm.
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