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This investigation aims to study Magnetohydrodynamics (MHD)two-dimensional
incompressible boundary layer performing non-Newtonian Carreau ternary-
hybrid nanofluid flow with heat transfer through an exponential stretching
curved surface. The ternary-hybrid nanofluid has been synthesized with
titanium oxide, aluminum oxide, and silver dispersionin the base fluid water.
TheNavier Stokes equation and Carreau ternary-hybrid nanofluid model govern
the partial differential equations (PDEs), and appropriate similarity transformations
are utilized to transfer these PDEs into ordinary differential equations (ODEs). The
effects of the pertinent parameters on the dimensionless velocity and temperature
profiles are analyzed withfigures. This study provides new insights and solutions to
previously unsolved problems related to heat transfer in the MHD flow of a
Carreau Ternary-Hybrid Nanofluid over a curved surface stretched
exponentially, or it could contribute to the existing knowledge and literature by
refining existing models or methods. The surface drag force and Nusselt numbers
are studied for the different values of the governing parameters throughgraphs. It
is demonstrated that the heat transfer rate and skin friction increase from base
fluid to mono, hybrid, and ternary nanofluids. Both heat transfer rate and skin
friction increase with the addition of nanoparticles.
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1 Introduction

Nanotechnology is a rapidly growing field that studies and manipulates materials at the
nanoscale level, typically between 1 and 100 nm. This field has seen a significant increase in
research and development over the past few decades, with numerous applications emerging
in electronics, medicine, energy, and materials science. One promising application of
nanotechnology is developingnanofluids, engineered fluids containing nanoparticles
dispersed in a base fluid. These fluids have been shown to have unique thermal and
transport properties, such as enhanced thermal conductivity, convective heat transfer, and
viscosity. Choi [1] investigated the thermal properties of nanoparticles dispersed in water
and other fluids. His work showed that adding nanoparticles to the base fluid could
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significantly enhance the thermal conductivity of the fluid, which
could have critical applications in various thermal systems,
including heat exchangers, electronics cooling, and power
generation.

Since the publication of Choi’s work, numerous studies have
been conducted on applyingnanofluids in various thermal systems.
These studies have shown that nanofluids can significantly improve
thermal performance and efficiency, making them a promising
technology for various applications. However, challenges in
developing and implementing nanofluids, such as nanoparticle
stability, toxicity, and cost, must be addressed to realize their
potential.

Many researchers investigated the radiator’s performance using
nanofluid as a coolant theoretically and experimentally [2, 3].
Samantaray et al. [4] studied the impact of several physical
phenomena on radiativenanofluid flow, like the second-order slip
phenomenon. Researchers [5, 6] have provided insights into the
importance of heat transfer mechanisms through nanofluids in
industrial applications.

The significant challenges for studying the thermophysical
properties of hybrid nanofluids are investigating the
improvements for its various applications, especially those
related to cooling systems such as electronic cooling, heat
exchangers, and automotive cooling systems, as shown in [7].
According to Makishima [8], a hybrid nanofluid is a compound
of two or more different types of nanoparticles mixed into a
single base liquid. Rif et al. [9] investigated thermal transport
analysis using the applications of hybrid nanofluid flow with heat
transfer in an oscillating cylinder. Benkhedda et al. [10] explored
heat transfer using hybrid nanofluids considering differently
shaped nanoparticles in the water-based fluid. Sarkar et al.
[11] studiedthe thermal transport properties and analyzed that
hybrid nanofluids performed better with thermal performance
and pressure drop characteristics than unitary nanofluids. Wakif
et al. [12] studied the influence of thermal radiation and
roughness of the surface using the applications of
alumina–copper oxide hybrid nanofluids using the generalized
Buongiorno’snanofluid model. Many engineers and researchers
are involved in studying various articles aboutnanofluid in
References. [13–18].

However, using ternary-hybrid nanofluids is an emerging
area of research in nanofluids. Ternary-hybrid nanofluids refer to
suspensions of three different types of nanoparticles in a single
base fluid. These nanofluids can have complex particle-particle
and particle-fluid interactions, resulting in unique thermal
properties. Recent studies have explored using ternary-hybrid
nanofluids with differently shaped nanoparticles in various fields
of science, including electronics cooling, power generation, and
biomedical applications. These studies have shown that the use of
ternary-hybrid nanofluids can lead to a significant improvement
in heat transfer rates compared to traditional heat transfer fluids.
The use of differently shaped nanoparticles in ternary-hybrid
nanofluids can also lead to improvements in thermal
conductivity and convective heat transfer. For example, the
use of platelet-shaped nanoparticles in ternary-hybrid
nanofluids has been shown to significantly enhance the
thermal conductivity of the fluid, leading to improved heat
transfer rates. However, as with any new technology, several

challenges are addressed in developing and implementing
ternary-hybrid nanofluids, such as particle stability, toxicity,
and cost.

Further research is needed to fully understand these complex
fluids’ behavior and optimize their properties for various
applications.

Elnaqeeb et al. [19] discussed the dynamics of ternary hybrid
nanofluids best fit for the description of Newtonian fluids because
the density of ternary hybrid nanofluids decreases linearly with
the temperature rise. Sahoo and Kumar [20] studied the viscosity
of ternary hybrid nanofluids with applications. Recently, Xuan
et al. [21] explored some experimental results, thermal
performance, and sensitivity analysis of ternary hybrid
nanofluids. Currently, non-Newtonian fluid flows interest
many researchers due to their increasing industrial and
technical applications due to various applications in
industries-non-Newtonian liquids such as ketchup, spray,
honey lubrication, starch, etc., Carreau [22] introduced the
Carreau model given as:

τ � μ∞ + μo − μ∞( ) 1 + Γ _γ( )2( ) m−1
2[ ] _γij.

Where τ, _γ represent the extra stress tensor and generalized shear
rate, respectively, Γ is the material time, μo is the zero-shear rate
viscosity, μ∞ is the infinite shear rate viscosity. In terms of the
second invariant tensorΠ, the generalized shear rate can be given by:

_γ �
��������
1
2
ΣΣ _γij _γij

√
�

�
1
2

√
Π,

where Π � trace(∇U + ΔUŤ ) here, we consider the case for which
μo � 0. In the following form, the extra stress tensor is given:

τ � μ0 1 + Γ _γ( )2( ) m−1
2[ ] _γij.

Olajuwon [23] numericallystudied the non-Newtonian
Carreau fluid onto a porous plate. Heat transfer characteristics
are explored, including thermal diffusion and radiation. Shadid
and Eckert [24] investigated the Carreau fluid induced by a
stretched cylinder with viscous dissipation heating. Geogios
[25] discussed the unsteady compressible flow of Carreau fluid
with consideration of the slip effect. Hayat et al. [26] carried out
the mathematical analysis using a homotopic approach on
boundary-driven Carreau fluid flow induced by a stretched
heated sheet with permeability. Shehzad et al. [27] examined
the non-Newtonian three–dimensional (3D) flow of Jeffery fluid
going past a stretched surface with convective boundary
conditions. Khan and Hashima [28] investigated the flow field
and heat transfer analysis generated by a nonlinear stretching
sheet. Akbar et al. [29] studiedtheCarreau fluid boundary-driven
problem of shrinking permeable sheets. Abbas et al. [30] explored
the behavior of Carreau fluid on a stretching permeability sheet in
the presence of variable viscosity and thermal conductivity. Bilal
et al. [31] probed the flow features of Carreau fluid caused by a
linearly stretching surface in the fact of thermal stratification and
magnetic field. Machireddy and Naramgari [32] scrutinized the
heat mass transfer characteristics in Carreau fluid flow due to a
stretched sheet. Shah et al. [33] studiedthe analysis of MHD
Carreau fluid by considering variable thermal conductivity and
viscous dissipation heating. Santhosh et al. [34] documented the
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flow features of Carreau fluid generated by an exponential
stretchable surface and partial slip at the wall. Megahed [35]
pointed out the Carreau fluid flow prompted by a nonlinearly
stretching wall under consideration of heat flux, thermal
radiation effects, and variable conductivity. Ramzan et al. [36]
reveal that using Carreau ternary-hybrid nanofluids is a relatively
new research area, and only a limited number of studies are
available in the literature. This is because the behavior of ternary-
hybrid nanofluids is more complex than binary or single-
nanoparticle systems due to the interactions between the
different types of nanoparticles. Some articles about non-
Newtonian nanofluid flow are highlighted in References
[37–42]. The limited number of studies related to Carreau
ternary-hybrid nanofluids highlights the need for further
research. This can lead to the development of new theoretical
models and frameworks for predicting the behavior of complex
fluids.

However, there are still many gaps in our understanding of their
behavior and properties.

1. Lack of comprehensive experimental data: Due to the complex
nature of ternary-hybrid nanofluids, there is a lack of extensive
experimental data related to their thermal, electrical, and
mechanical properties.

2. Need for theoretical models: There is a need to develop new
theoretical models and frameworks for predicting the behavior of
Carreau ternary-hybrid nanofluids under various flow conditions
and geometries.

3. Effect of nanoparticle size and concentration: The effect of
nanoparticle size and concentration on the behavior and
properties of ternary-hybrid nanofluids is not well understood
and requires further investigation.

4. Limited application-specific research: There is a lack of
application-specific research on their use in various
engineering applications such as heat exchangers, cooling
systems, and energy generation systems.

Identifying and addressing these research gaps in the literature
can help advance our understanding of Carreau ternary-hybrid
nanofluids and their potential applications. This study focuses on
heat transfer over a curved surface stretched exponentially to fill
these gaps. The use of an exponentially stretched surface allows for a
more general case compared to previous studies, which have
typically focused on linear or power-law stretching.

By combining other factors, the study aims to investigate the
heat transfer properties of a complex fluid system under unique
conditions. This can provide new insights and understanding of the
behavior of such systems, which can be useful in various engineering
applications such as heat exchangers, cooling systems, and energy
generation systems.

2 Mathematical modeling

This study considers an incompressible two-dimensional MHD
flow of a Carreau ternary-hybrid nanofluid over an exponentially
stretching curved surface. The nanofluid is composed of TiO2, Ag,
and Al2O3 nanoparticles in a water-based fluid. The heat transfer

mechanism is studied with thermal radiation and viscous dissipation
effects. Two coordinates, r and s, define the model coordinate
system. The s-axis is taken along the flow direction, and the
r-axis is taken orthogonal. The sheet is assumed to stretch along
the s-direction with velocity uw = uw � ce

s
L, where c is a constant,

and L is a characteristic length. An exponential varying magnetic
field B = B0 e

(s/2L) is applied in the radial direction, where B0 is a
constant. The surface is assumed to be curved with radius R, and the
temperature is defined as Tw at the surface and T∞ far away from the
surface, where Tw > T∞, as shown in Figure 1. This temperature
difference drives the heat transfer process.

Considering the above assumptions, the continuity, moment,
and energy equations [43-45] are as follows:

v + r + R( )zrv + Rzsu � 0, (1)
u2

r + R
� 1
ρthnf

zrp, (2)

vzru + Ru

r + R
zsu + uv

r + R
� − 1

ρthnf

R

r + R
zsp

+μthnf
ρthnf

1 + Γ2 zru − u

r + R
( )2{ }m−1

2

zrru + 1
r + R

zru − u

r + R( )2{ }
+μthnf
ρthnf

Γ2 m − 1( ) 1 + Γ2 zru − u

r + R
( )2{ }m−3

2

zru − u

r + R
( )2

× zrru + 1
r + R

zru − u

r + R( )2{ } − σthnf

ρthnf
B2
0u, (3)

ρcp( )
thnf

vzrT + Ru

r + R
zsT( ) � kthnf zrrT + 1

r + R
zrT( )

+ μthnf 1 + Γ2 zru − u

r + R
( )2{ }m−1

2

zru − u

r + R
( )2

− q

r + R
− zrq.

(4)

u and v are the velocities in the curvilinear directions s− and r−,
respectively. kthnf, ρthnf and (cP)thnf are the ternary-hybrid
nanofluid thermal conductivity, ternary-hybrid nanofluiddensity,
and ternary-hybrid nanofluidspecific heat, respectively, σthnf is the
ternary hybrid nanofluid electrical conductivity, B0 symbolizes the
magnetic field, p is the dimensional pressure, Γ is a favorable time
constant, T is the fluid temperature, q is the radiative heat flux

Boundary conditions are given by:

u � uw � ce
s
L, v � 0, hf Tw − T( ) � −kthnfzrT at r � 0, (5)

u → 0, zru → 0, T → T∞ as r → ∞ . (6)
Using Rosseland’s approximation.

q � −4�σ
3ǩ

zrT
4, (7)

where σ is the Stefan-Boltzmann constant, q represents the radiative
heat flux and k indicates the mean absorption coefficient.

Employing Taylor’s seriesfor the temperature variation (T4)
expansion about T∞.

T4 ≈ 4T3
∞T − 3T4

∞, (8)
Substituting Eq. 8 into Eq. 7, one can have

q � −16�σT
3
∞

3ǩ
zrrT, (9)
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Using Eq. 7, the energy Eq. 4 is given in the following form:

vzrT + Ru

r + R
zsT( ) � kthnf

ρcp( )
thnf

1 + 16�σT3
∞

3ǩk0
( ) zrrT + 1

r + R
zrT( )

+ μthnf

ρcp( )
thnf

1 + Γ2 zru − u

r + R
( )2{ } m−1

2

zru − u

r + R
( )2

.

(10)

The similarity variables ξ, δ are given as follows:

ξ � r
c

2]L
( )0.5

e
s
2L, δ � R

c

2]L
( )0.5

e
s
2L (11)

In terms of similarity variables, the expressions u, v, p, and T are
defined as follows:

Defining the following dimensionless variable transformations,
see [44–46].

u � ce
s
Lf′ ξ( ), v � − R

r + R

c]
2L

( )0.5

e
s
2L f ξ( ) + ξf′ ξ( )[ ], (12)

p � ρc2e
2s
L P ξ( ), θ � T − T∞

Tw − T∞
. (13)

The correlations for ternary hybrid nanoparticles given by [47]:

ρcp( )
Thnf

� ϕ1 ρcp( )
1
+ ϕ2 ρcp( )

2
+ ϕ3 ρcp( )

3

+ 1 − ϕ1 − ϕ2 − ϕ3( ) ρcp( )
f

(14)

ρ( )Thnf � 1 − ϕ1 − ϕ2 − ϕ3( )ρf + ϕ1ρ1 + ϕ2ρ2 + ϕ3ρ3 (15)

μThnf � μf

1 − ϕ1( )2.5 1 − ϕ2( )2.5 1 − ϕ3( )2.5 (16)

k( )Thnf
k( )hnf � k1 + 2khnf − 2ϕ1 khnf − k1( )

k1 + 2khnf + ϕ1 khnf − k1( ) ,
k( )hnf
k( )nf � k2 + 2knf − 2ϕ2 knf − k2( )

k2 + 2knf + ϕ2 knf − k2( ) ,
k( )nf
k( )f � k3 + 2kf − 2ϕ3 kf − k3( )

k3 + 2kf + ϕ3 kf − k3( ) ,
(17)

σ( )Thnf
σ( )hnf � σ1 1 + 2ϕ1( ) + ϕhnf 1 − 2ϕ1( )

σ1 1 − ϕ1( ) + σhnf 1 + ϕ1( ) ,

σ( )hnf
σ( )nf � σ2 1 + 2ϕ2( ) + ϕnf 1 − 2ϕ2( )

σ2 1 − ϕ2( ) + σnf 1 + ϕ2( ) ,

σ( )nf
σ( )f � σ3 1 + 2ϕ3( ) + ϕf 1 − 2ϕ3( )

σ3 1 − ϕ3( ) + σf 1 + ϕ3( ) ,

(18)

The thermophysical constants with respect to the nanoparticles
and base fluid are given in Table 1.

Using Eqs 11–13, the requirement of the continuity equation is
automatically satisfied. Eqs 2, 3, 10 given by:

f′2

ξ + δ
� ρf
ρthnf

P′ (19)
ρf
ρthnf

4δ
ξ + δ

P + δξ

ξ + δ
P′( ) � μthnf

μf

ρf
ρthnf

× 1 +We f″ − f′
ξ + δ

( )2{ } m−1
2

f‴ + f″
ξ + δ

− f′
ξ + δ( )2( ) + m − 1( )We[

× 1 +We f″ − f′
ξ + δ

( )2{ } m−3
2

f‴ + f″
ξ + δ

− f′
ξ + δ( )2( ) f″ − f′

ξ + δ
( )2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ δ

ξ + δ( )2 ff′ +
δ

ξ + δ
ff″ − ξ + 2δ( )

ξ + δ( )2 δf′
2 − σthnf

ρthnf
Mf′, (20)

FIGURE 1
Geometry of curved sheet mass conservation equation.
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kthnf
kf

ρcp( )
f

ρcp( )
thnf

θ″ + θ′
ξ + δ

( ) +
ρcp( )

f

ρcp( )
thnf

Rd θ″ + θ′
ξ + δ

( )
+ δPr

ξ + δ
fθ′ − 2f′θ( )

+ μthnf
μf

ρcp( )
f

ρcp( )
thnf

PrEc 1 +We f″ − f′
ξ + δ

( )2{ } m−1
2

f″ − f′
ξ + δ

( ),2
� 0, (21)
Using Eqs 19, 20, one can eliminate pressure

μthnf
μf

ρf
ρthnf

m − 1( ) m − 3( )We2 1 +We f″ − f′
ξ + δ

( )2{ } m−5
2[

× f″ − f′
ξ + δ

( )3

f‴ − f″
ξ + δ

+ f′
ξ + δ( )2( )2

+ m − 1( )We 1 +We f″ − f′
ξ + δ

( )2{ } m−3
2 f″ − f′

ξ + δ
( )2

× fiv + f″
ξ + δ( )2 −

f′
ξ + δ( )3( )

+ m − 1( )We 1 +We f″ − f′
ξ + δ

( )2{ } m−3
2 f″ − f′

ξ + δ
( )

× f‴ − f″
ξ + δ

+ f′
ξ + δ( )2( ) 3f‴ − f″

ξ + δ
+ f′

ξ + δ( )2( )
+ 1 +We f″ − f′

ξ + δ
( )2{ } m−1

2 fiv + 2f‴
ξ + δ

+ f″
ξ + δ( )2 −

f′
ξ + δ( )3[ ]⎤⎦

− 3δf′2

ξ + δ( )2 −
3δf′f″
ξ + δ

− δff′
ξ + δ( )3 +

δff″
ξ + δ( )2 +

δff‴
ξ + δ

− σthnf
ρthnf

Mf″

� 0.

(22)

The transformed boundary conditions are

f 0( ) � 0, f′ 0( ) � 1, θ′ 0( ) � −kthnf
kf

Bi 1 − θ 0( )( ) at ξ � 0,

f′ ξ( ) � 0, f″ ξ( ) � 0, θ ξ( ) � 0 as ξ → ∞ .

(23)
The emerging non-dimensional physical parameters in the

model are given by:

M � 2lσf B2
0

uwρf
is themagnetic f ield parameter,

pr �
μf cp( )

f

kf
is the Prandtl number,

We � Γ2u3
w

2lυf
Weissenberg number,

Rd � 16σT
3
∞

3kk0
is the radiation parameter,

Ec � u2
w

cp( )
f
Tw − T∞( ) is the Eckert number, and

Bi � h

kf
( ) ����

2lυf
c

√
e

−s
2L is the thermal Biot number

(24)

The skin friction cfs and Nusselt number Nus for our problem
are given as

cfs � τrs
ρfu

2
w

, Nus � sqw
kf Tw − T∞( ), (25)

where τrs implies the wall shear stress and qw indicates the wall heat
flux. These are given by.

τrs � μthnf 1 + Γ2 zru − u

r + R
( )2{ } m−1

2 zru − u

r + R
( )[ ]

r�0
, qw

� −kthnf zrT( )r�0. (26)

Equations 25, 26 give

Re0.5s Cfs �
μthnf
μf

1 +We f″ − f′
δ

( )2{ } m−1
2

f″ 0( ) − f′ 0( )
δ

( ), (27)

5.5 × 106, (28)

3 Solution methodology

To solve the set of differential Eqs 20–22 with boundary
conditions (24), MATLABsoftware was employed. To utilize

TABLE 1 Thermal properties of the nanoparticles and base fluid [47].

Property Water (base fluid) Ti O2 (Titanium Oxide) Al2O3 (Aluminum Oxide) Ag (silver)

k (w /mK) 0.613 8.953 40 429

ρ (kg/m3) 997 4,250 3,970 10,500

σ (s/m) 5.5 × 106 2.6 × 106 5.96 × 107 5.96 × 107

cp( J
kgK) 4,179 686.5 765 235

TABLE 2 Comparison of −Re1/2s Cfs values for different radius of curvature.

δ −Re1/2s Cfs

[48] Present results

5 1.4196 1.3965

10 1.3467 1.3438

20 1.3135 1.3085

30 1.3028 1.3021

40 1.2975 1.2955

50 1.2944 1.2916

100 1.2881 1.2878

200 1.285 1.2825

1,000 1.2826 1.2824

∞ 1.2818 1.2818
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MATLAB’s bvp4c function, the general steps would involve the
following.

1. Define the boundary value problem (BVP.
2. Set up the problem in the form required by bvp4c.
3. Create a function file.
4. Call the bvp4c function.
5. Retrieve and analyze the solution.

Ensuring themethodology is accurately described in the paper to
avoid any confusion or misinterpretation is crucial. Also, Table 2
shows how the finding was validated by comparing it to the
literature, [48].

4 Results and discussion

This study investigates the MHD two-dimensional incompressible
boundary layer flow of non-Newtonian Carreau ternary-hybrid
nanofluid through an exponential stretching curved surface. The
current nanofluid model can be used to improve the.

• Heat transfer efficiency in microelectronics cooling,
• Efficiency of drug delivery systems,
• Mixing and reaction efficiency in chemical processing,

• The efficiency of energy conversion devices, such as
microturbines and microfuel cells.

In this study, the ternary-hybrid nanofluid has been
synthesized with the dispersion of titanium oxide, aluminum
oxide, and silver nanoparticles in the base fluid water. The
governing momentum and energy equations, along with
Carreau ternary-hybrid nanofluid models, are employed, and
appropriate similarity transformations are utilized to transfer
these PDEs into ordinary differential equations (ODEs). The
“bvp4c” function is used through MATLAB to solve the
nonlinear ODEs system that arises in BVPs. It is a robust and
efficient numerical method that is suitable for a wide range of
problems, including those with highly nonlinear behavior.
Theeffects of the pertinent parameters on dimensionless
velocity and temperature profiles and physical quantities of
interest are analyzed with figures.

In Figures 2A–D, the dimensionless velocity is shown as a
function of the power-law index and curvature parameter for
different types of fluids: base fluid, nanofluid, hybrid nanofluid,
and ternary hybrid nanofluid. The power-law index characterizes
the non-Newtonian behavior of the fluid and represents how its
viscosity changes with shear rate. A higher power-law index
indicates a more shear-thinning fluid, where the viscosity
decreases with increasing shear rate, resulting in a higher

FIGURE 2
Effects of power-law index and curvature parameter on dimensionless velocity along curved surface stretched exponentially.
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velocity. Conversely, a lower power-law index indicates a more
shear-thickening fluid, where viscosity increases with the shear rate,
resulting in a lower velocity.

On the other hand, the curvature parameter describes the
curvature of the surface along which the fluid flows. A positive
curvature parameter represents a surface that is curved conclusively,
while a negative curvature parameter represents a surface that is
curved convexly. The curvature parameter affects the fluid velocity
by altering the pressure gradient along the curved surface. Positive
curvature leads to a higher velocity, while negative curvature leads to
a lower velocity. It is observed that, in each case, the dimensionless
velocity increases with an increase in the power-law index. However,
the curvature parameter tends to reduce the velocity within the
boundary layer. As a result, the boundary layer thickness decreases
with an increasing nanoparticle volume fraction.

These figures provide valuable insights into the intricate
relationship between fluid properties and external factors such
as surface curvature. The power-law index quantifies the non-
Newtonian behavior of the fluid, while the curvature parameter
influences fluid velocity by affecting the pressure gradient along
the curved surface. The specific combination of nanoparticles and
base fluid used in the Carreau ternary-hybrid nanofluid would
determine its power-law index. The geometry of the surface,
characterized by the curvature parameter, can introduce velocity
gradients along the surface, with greater curvature resulting in

more significant velocity variations. The fact that non-Newtonian
behavior and surface geometry can have different effects on
different types of fluids emphasizes the importance of
understanding the specific properties of a fluid to model its
behavior accurately. This knowledge is crucial for optimizing
the performance of cooling systems and other applications
involving heat transfer in fluids.

In Figures 3A–D, the influence of the magnetic field and
Weissenberg number on the dimensionless velocity of a non-
Newtonian Carreau ternary-hybrid nanofluid is depicted. It is
observed that both the magnetic field and the Weissenberg
number impact the dimensionless velocity in each case. The
magnetic field can affect the motion of charged particles and
induce flow in a conducting fluid. In the case of non-Newtonian
fluids, the magnetic field also influences the rheological properties of
the fluid, including its viscosity and elasticity. The magnitude and
orientation of the magnetic field can significantly alter the flow
characteristics of the nanofluid, such as the velocity profile and the
thickness of the boundary layer.

On the other hand, the Weissenberg number quantifies the
elastic effects present in non-Newtonian fluids. It represents the
ratio of elastic forces to viscous forces and determines the extent of
shear-induced deformation and relaxation of the fluid. A higher
Weissenberg number indicates a more elastic fluid, while a lower
Weissenberg number indicates a more viscous fluid.

FIGURE 3
Effects of magnetic field and Weissenberg number on dimensionless velocity along curved surface stretched exponentially.
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The specific effects of the magnetic field and Weissenberg
number on the dimensionless velocity of the fluid flowing along
an exponentially stretched curved surface will depend on the
particular details of the system and the governing equations that
describe the flow. Generally, the magnetic field can increase the
velocity of the nanofluid, depending on the field’s direction and the
fluid flow’s orientation. Moreover, a higher Weissenberg number
can enhance the elastic effects within the fluid, resulting in a higher
velocity, whereas a lower Weissenberg number can lead to a lower
velocity. The specific behavior will depend on the particular
conditions and characteristics of the fluid and the system being
studied.

In Figures 4A–D, the influence of the power-law index and
curvature parameter on the dimensionless temperature of a non-
Newtonian Carreau fluid flowing along an exponentially
stretched curved surface is presented. The power-law index is
a parameter that characterizes the viscosity behavior of non-
Newtonian fluids. Unlike Newtonian fluids, non-Newtonian
fluids exhibit more complex flow behavior, and their thermal
boundary layer thickness is affected by various physical
properties. The power-law index specifically affects the shear
stress and viscosity of the fluid, which in turn impacts the velocity
and temperature profiles of the flow. As the power-law index
increases, the fluid’s viscosity also increases, resulting in changes
in the velocity profile. Consequently, the surface temperature and

the thermal boundary layer thickness also increase. This
variation in temperature and thickness can significantly
influence the heat transfer characteristics of the flow. On the
other hand, the curvature parameter plays a role in determining
the dimensionless temperature of the fluid. When the fluid flows
over a curved surface, centrifugal forces are induced, which affect
the fluid flow and temperature distribution. For instance, on a
concave surface, the increased velocity near the surface due to the
centrifugal forces leads to a higher fluid temperature. Conversely,
on a convex surface, the reduced velocity results in a lower fluid
temperature.

The curvature of the surface causes the fluid to experience
centrifugal forces, which in turn generate secondary flows
perpendicular to the main flow direction. These secondary flows
contribute to the increased mixing of the fluid, creating a zigzag
motion. Consequently, the curvature of the surface influences the
thickness of the thermal boundary layer. As the curvature increases,
the thickness of the thermal boundary layer also increases due to the
presence of these secondary flows. Overall, the power-law index and
curvature parameter significantly affect the dimensionless
temperature of the non-Newtonian Carreau fluid flowing along a
curved surface. These parameters impact the fluid’s viscosity,
velocity profile, temperature distribution, and thermal boundary
layer thickness, ultimately influencing the heat transfer
characteristics of the flow.

FIGURE 4
Effects of power-law index and curvature parameter on dimensionless temperaturealong curved surface stretched exponentially.
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In Figures 5A–D, the effects of radiation and viscous dissipation
parameters on the dimensionless temperature of a fluid are
illustrated for four selected types of fluids. Radiation significantly
affects energy transfer within and between the fluid and its
surroundings. The curvature can further impact the radiation
effects when considering a curved surface. The radiation
parameter quantifies the importance of radiation in heat transfer.
A higher radiation parameter indicates a greater significance of
radiation effects, resulting in a higher heat transfer rate and
temperature distribution. As the radiation parameter increases,
the surface temperature also increases. Consequently, the thermal
boundary layer thickness and thermal resistance also increase. The
presence of radiation can alter the temperature distribution,
affecting the heat transfer characteristics of the fluid.

Viscous dissipation refers to the energy the fluid dissipates due
to internal frictional forces. It is closely related to the viscosity and
velocity gradient of the fluid. The viscous dissipation parameter
describes the significance of this energy dissipation in heat transfer.
A higher viscous dissipation parameter implies a greater energy
dissipation and heating within the fluid. As a result, the temperature
distribution increases. The viscous dissipation effects can be
particularly pronounced when the fluid experiences significant
internal friction. In general, both radiation and viscous
dissipation parameters tend to enhance the fluid’s temperature
distribution. Increased radiation parameter increases heat transfer

rates and surface temperatures, consequently affecting the thermal
boundary layer thickness and resistance. A higher viscous
dissipation parameter increases energy dissipation and heating
within the fluid, leading to a higher temperature distribution.

Understanding the influence of radiation and viscous dissipation
parameters on the temperature distribution is crucial for accurately
predicting and analyzing heat transfer in various fluid systems.
Considering these parameters, one can optimize heat transfer
processes and design more efficient thermal systems.

In Figures 6A–D, the relationship between skin friction along
a curved surface stretched exponentially, and various parameters,
including the power-law index, curvature parameter, and
Weissenberg number, are depicted. The skin friction
coefficient measures the resistance to fluid flow along a
surface. It quantifies the force exerted by the fluid on the
surface, indicating the amount of friction experienced by the
fluid. Several factors, such as the power-law index, curvature
parameter, and Weissenberg number, can influence skin friction.
The Weissenberg number characterizes the viscoelastic behavior
of the fluid and represents the ratio of the relaxation time to the
shear rate. As observed in Figures 6A–D, the Weissenberg
number positively influences skin friction. In the presence of
nanoparticles, the fluid’s viscosity increases, making it more
flow-resistant. This improved viscosity results in higher skin
friction as the fluid require more force to overcome the

FIGURE 5
Effects of radiation and viscous dissipation parameters on dimensionless temperaturealong curved surface stretched exponentially.
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resistance and move over the surface. Additionally, the presence
of nanoparticles can cause the boundary layer to thicken, further
increasing the contact between the fluid and the surface, leading
to higher skin friction.

The power-law index also affects the viscosity of the fluid. As the
power-law index increases, indicating amore non-Newtonian behavior,
the viscosity of the fluid increases. This increase in viscosity contributes
to a higher skin friction coefficient. The curvature parameter, on the
other hand, influences skin friction by altering the surface area, pressure
gradient, and boundary layer thickness. A curved surface can generally
reduce skin friction compared to a flat surface due to decreased surface
area and pressure gradient. It is worth noting that the solid volume
fraction of nanoparticles also plays a role in skin friction. As the volume
fraction of nanoparticles increases, the interaction between the fluid and
the surface intensifies, increasing skin friction.

Understanding the relationship between the power-law index,
curvature parameter, Weissenberg number, and skin friction is
important for predicting and optimizing fluid flow behavior and
frictional losses in various applications. Considering these
parameters, one can design surfaces and systems that minimize
skin friction and improve fluid flow efficiency.

In Figures 7A–D, the variation of the Nusselt number with the
power-law index for different values of the curvature parameter and
Weissenberg number is illustrated. TheNusselt number represents the
heat transfer between a fluid and a solid surface. It quantifies the

convective heat transfer rate, indicating how efficiently heat is
transferred from the surface to the fluid. Several factors, including
the power-law index, curvature parameter, and Weissenberg number,
influence the Nusselt number.

TheWeissenberg number characterizes the viscoelastic behavior
of the fluid and is determined by the product of the relaxation time
and the shear rate. As observed in Figure 7, theWeissenberg number
decreases the Nusselt number in a viscoelastic fluid. This is
attributed to various factors, such as the thinning of the
boundary layer, delayed vortex shedding, changes in flow
patterns, and alterations in the thermal boundary layer. These
effects collectively lead to a reduction in the heat transfer rate
and, consequently, a decrease in the Nusselt number.

The power-law index describes the rheological behavior of a non-
Newtonian fluid. An increase in the power-law index generally leads to
a decrease in the Nusselt number. A higher power-law index
corresponds to a steeper velocity profile near the solid surface than
a lower power-law index. This steeper velocity profile results in a
thinner thermal boundary layer and reduced heat transfer rate, leading
to a lower Nusselt number. Additionally, an increase in the power-law
index increases the apparent viscosity of the non-Newtonian fluid. The
higher viscosity near the solid surface reduces the fluid velocity,
decreasing the heat transfer rate and the Nusselt number.

The curvature parameter influences the heat transfer
characteristics of a fluid flowing over a curved surface. The

FIGURE 6
Variation of skin friction with power-law index for different values of curvature parameter and Weissenberg numberalong curved surface stretched
exponentially.
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curvature parameter generally enhances the Nusselt number along a
curved surface stretched exponentially. This is due to several factors,
including increased surface area, flow pattern changes, boundary
layer thickness reduction, and turbulence. These effects collectively
promote a higher heat transfer rate and, consequently, an increase in
the Nusselt number.

It is important to note that the Nusselt number increases from the
base fluid to the ternary hybrid nanofluid as the solid volume fraction of
nanoparticles increases. This suggests that nanoparticles can enhance the
heat transfer rate and, consequently, the Nusselt number. The increased
surface area and improved thermal conductivity associated with the
presence of nanoparticles contribute to this enhancement.
Understanding the influence of the power-law index, curvature
parameter, Weissenberg number, and nanoparticle volume fraction
on the Nusselt number are crucial for optimizing heat transfer in
various applications. Considering these factors, one can design
surfaces, fluids, and systems that maximize heat transfer efficiency
and improve overall performance.

The variation of the Nusselt number with magnetic field for
different values of the Biot number and radiation along a curved
surface stretched exponentially is presented in Figures 8A–D for
various nanofluids. The Nusselt number indicates how efficiently
heat is transferred from the surface to the fluid. Several factors,
including the magnetic field, radiation parameter, and Biot number,
influence the Nusselt number in this scenario.

Firstly, let’s consider the effect of the magnetic field on the Nusselt
number. When a magnetic field is applied, it can alter the fluid’s flow
behavior and heat transfer characteristics. A magnetic field influences
the motion of charged particles and induces flow in conducting fluids,
which can affect convective heat transfer. In general, an increase in the
magnetic field strength leads to a decrease in the Nusselt number. The
magnetic field can suppress fluid motion, inhibit mixing near the
surface, and reduce the heat transfer rate. The magnetic field exerts
a restraining force on the fluid, making it more flow-resistant and
reducing the convective heat transfer. Hence, the Nusselt number
decreases with an increasing magnetic field.

Next, let’s discuss the influence of the radiation parameter on the
Nusselt number. Radiation refers to the transfer of heat energy through
electromagnetic waves, independent of any physical medium. The
radiation parameter represents the importance of radiation effects in
heat transfer. As the radiation parameter increases, the heat transfer rate
through radiation becomes more significant, increasing the Nusselt
number. This is because radiation can directly transfer heat energy from
the surface to the fluid, bypassing the convective heat transfer
mechanism. Therefore, a higher radiation parameter leads to
enhanced heat transfer and increasedNusselt number. The Biot
number characterizes the relative significance of conduction heat
transfer within the solid to the convective heat transfer at the solid-
fluid interface. A higher Biot number indicates that conduction within
the solid ismore dominant than convection at the surface. In general, an

FIGURE 7
Variation of Nusselt number with power-law index for different values of curvature parameter and Weissenberg numberalong curved surface
stretched exponentially.

Frontiers in Physics frontiersin.org11

Nabwey et al. 10.3389/fphy.2023.1212715

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1212715


increase in the Biot number leads to an increase in the Nusselt number.
This is because a higher Biot number implies a more conductive solid,
which enhances heat transfer through the solid-fluid interface.
Consequently, the convective heat transfer rate increases, resulting in
a higher Nusselt number.

Regarding the influence of the nanofluids or solid volume fraction
of nanoparticles on the Nusselt number, it is observed that the Nusselt
number is minimum for the base fluid and increases with an
increasing number of nanofluids or solid volume fraction of
nanoparticles. The presence of nanoparticles in the fluid can
enhance the convective heat transfer by increasing the effective
thermal conductivity and providing additional surface area for heat
transfer. As a result, the heat transfer rate improves, leading to a
higher Nusselt number. Moreover, the ternary nanofluids, which
consist of a combination of nanoparticles and base fluid, exhibit
the highest Nusselt number among the different nanofluid
configurations. This can be attributed to the synergistic effects of
the nanoparticles and base fluid, which further enhance heat transfer
through improved thermal conductivity and altered flow patterns.

Understanding the variations of the Nusselt number with the
magnetic field, radiation parameter, Biot number, and nanoparticle
concentration is crucial for optimizing heat transfer in applications
involving curved surfaces. Considering these factors, one can design
systems that maximize heat transfer efficiency, improve cooling
performance, and ensure effective thermal management.

5 Conclusion

The novelty of this paper lies in the combination of heat
transfer, MHD flow, Carreauternary-hybrid nanofluid, curved
surface, and exponential stretching. The study of this scenario
has the potential to provide new insights and contribute to the
development of new technologies. This study analyzes the heat
transfer phenomenon for a two-dimensional MHD heat transfer
of Carreau ternary-hybrid nanofluid over an exponential
stretching of a curve surface. The effects of radiation and
viscous dissipation are introduced through governing
equations. These equations are reduced to a highly nonlinear
coupled ODEs system, which is solved using MATLAB software.
The influences of relevant parameters are investigated to examine
the behavior of dimensionless velocity, temperature, skin
friction, and Nusselt number for base fluid, mono, hybrid, and
ternary nanofluids. The results of the study are presented in
graphical forms. From the comprehensive exploration, the
following conclusions can be drawn.

• The power-law index, magnetic field, and Weissenberg number
boost the dimensionless velocity, whereas the curvature
parameter tends to reduce the velocity inside the boundary layer.

• The power-law index, radiation, viscous dissipation, and
curvature parameters enhance the surface temperature.

FIGURE 8
Variation of Nusselt number with magnetic field for different values of Biot number and radiation along curved surface stretched exponentially.
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• The Weissenberg number helps in increasing skin friction,
which increases with the addition of nanoparticles.

• The power-law index leads to an increase in the skin friction
coefficient, whereas the curvature parameter reduces the skin
friction over a curved surface.

• The power-law index and Weissenberg number reduce the
Nusselt number.

• The curvature parameter boosts the Nusselt number along a
curved surface.

• The Nusselt number increases from base fluid to mono,
hybrid, and ternary nanofluids.
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