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Introduction: Outer membrane proteins are crucial in maintaining the structural
stability and permeability of the outer membrane. Outer membrane proteins
exhibit several functions such as antigenicity and strong immunogenicity,
which have potential applications in clinical diagnosis and disease prevention.
However, wet experiments for studying OMPs are time and capital-intensive,
thereby necessitating the use of computational methods for their identification.

Methods: In this study, we developed a computational model to predict outer
membrane proteins. The non-redundant dataset consists of a positive set of 208
outer membrane proteins and a negative set of 876 non-outer membrane
proteins. In this study, we employed the pseudo amino acid composition
method to extract feature vectors and subsequently utilized the support vector
machine for prediction.

Results and Discussion: In the Jackknife cross-validation, the overall accuracy
and the area under receiver operating characteristic curve were observed to be
93.19% and 0.966, respectively. These results demonstrate that our model can
produce accurate predictions, and could serve as a valuable guide for
experimental research on outer membrane proteins.
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1 Introduction

Outer membrane proteins (OMPs) are a special type of proteins that are found in the
outermost membranes of Gram-negative bacteria, mitochondria, and chloroplasts (Rollauer
et al., 2015; Qi et al., 2022). OMPs serve a wide range of functions, including acting as
adhesion factors in virulence, channels for small hydrophilic molecules, enzymes in
biochemical reactions, and antigens in immune responses. They also work in concert
with other substances to enhance the bacteria pathogenicity. Recent research on OMPs has
revealed their potential for clinical diagnosis and disease prevention. Several published
studies have explored OMPs as potential vaccine candidates (Budiardjo et al., 2021; Fahie
et al., 2021; Cheng et al., 2022; Yu et al., 2022). The functions are determined by the OMP’s
structure and the way it interacts with other molecules. OMPs are typically composed of a
transmembrane β-barrel architecture, providing permeability to the outer membrane and
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maintaining structural stability. Among different types of OMPs, β-
buckets consist of varying even numbers of β-folding sheets, ranging
from 8 to 26 (Rollauer et al., 2015). The specific composition of the
β-barrel architecture is determined by the amino acid sequence of
the OMPs. Mutations in sequences can impact the stability and
function of the protein.

Distinguishing OMPs from non-OMPs can aid researchers in
identifying promising vaccine targets, developing new antibiotics and
therapeutics, and understanding the evolution of Gram-negative
bacteria. Despite their distinctive β-barrel structure, OMPs are
exposed to numerous charged and polar residues in the
membrane, making it challenging to distinguish them from non-
OMPs. This is a primary challenge and a significant obstacle in the
research process, given the considerable time and capital costs
associated with laboratory studies of OMPs. As a result, OMP
prediction has tremendous significance for the scientific
community. Currently, various machine learning methods have
been used for the identification of OMPs, such as support vector
machine (SVM) (Park et al., 2005; Gromiha et al., 2006; Hu et al.,
2017; Zhang et al., 2021), k-nearest neighbor (K-NN) method (Yan
et al., 2008), neural networks (NN) (Hu et al., 2017). These methods
utilize the amino acid composition, and physical and chemical
properties of the amino acid sequences to construct the prediction
models. Gromiha and Suwa (2003); Gromiha and Suwa (2005)
developed multiple OMP prediction methods based on amino acid
composition, residue pair preference, and motif sequence. However,
these methods only achieved prediction accuracies of 80%–90%.
Subsequently, a machine learning algorithm was proposed with a
higher accuracy ranging from 90% to 94% (Gromiha et al., 2005;
Gromiha et al., 2006). Lin (2008) further improved the OMP
prediction model by introducing the Incremental Diversity with
Quality Distinctness analysis, which combines the Markov
discriminant method and the pseudo amino acid composition
(Pse-AAC). Despite the progress made in OMP predictions, there
is still room for further improvement in prediction quality.

In this article, we proposed a novel method for predicting OMPs
that combines Pse-AAC and SVM. To extract the features for amino
acid composition and physical and chemical characteristics of amino
acids, we used the Pse-AAC feature extractionmethod. Additionally, we
introduced multi-level amino acid residue index correlation coefficients
such as hydrophobic value, average polarity, and solvation-free energy
to enhance the accuracy of our prediction model. To assess the
effectiveness and reliability of our approach, we also conducted a
comprehensive comparison and analysis of our proposed model
with existing methods for predicting OMPs. Our developed
approach will be useful for distinguishing OMPs from non-OMPs.

2 Materials and methods

2.1 Datasets

The construction of a reliable dataset is the basis for developing
an accurate outer membrane protein prediction model (Su et al.,
2021). A well-designed dataset is crucial for developing effective
algorithms and an objective evaluation and prediction system. In
this paper, membrane proteins were extracted from the PSORT-B
database (https://www.psort.org/) (Gardy et al., 2003), and globular

proteins were extracted from the PDB40D of SCOP_1.37 database
(http://scop.mrc-lmb.cam.ac.uk/scop/) (Andreeva et al., 2020). As a
result, a total of 208 OMPs were selected as the positive set, while
879 non-OMPs were chosen as the negative set. The negative set
included 206 inner membrane proteins and 673 globular proteins.
The globular protein dataset contained 154 complete α proteins,
156 complete β proteins, 184 α + β proteins, and 179 α/β proteins.
Since the sequence homology of each protein class was less than
40%, proteins in each database were not similar and were de-
redundant.

2.2 Feature encoding

To construct a prediction model, it is necessary to represent the
protein sequences as mathematical vectors. This conversion is
commonly known as feature extraction (Basith et al., 2020; Dao
et al., 2022b; Zhang Z.-Y. et al., 2022; Hunt et al., 2022; Karuna
Nidhi et al., 2022; Sun et al., 2022; Tran and Nguyen, 2022; Wang
et al., 2022; Yang et al., 2022). The amino acid composition (ACC) of
the protein has a great impact on protein classification research (Awais
et al., 2021; Shoombuatong et al., 2022b; Manavalan and Patra, 2022;
Rout et al., 2022; Zhu et al., 2022). By using the ACC, a protein sequence
can be represented as a 20-D (dimension) vector as follows:

VAAC S( ) � v1, v2, v3,/, v20( )T (1)
In Eq. 1, vi � fi/∑fi, fi represented the number of the

i (i � 1, 2,/, 20) amino acid in the protein sequence.
The type of amino acids is determined by their side chains, as the

20 types of amino acid side chains differ in shape, size, negativity,
hydrophobicity, and acid-base properties. The distinct characteristics
of the 20 amino acid side chains result in various combinations of
amino acid sequences that exhibit different structures and functions.
Therefore, algorithms based on the physicochemical properties of
amino acids are anothermajor category of feature extractionmethods.
Pse-AAC, originally proposed by Chou, is a feature extraction
algorithm, that is, based on the physical and chemical properties
of amino acids (Chou, 2005). By using Pse-AAC, a protein sample can
be represented as follows:

VPAAC � x1, . . . , x20, x20+1, . . . , x20+λ[ ]T (2)
where the first 20 numbers in Eq. 2 are the classic AAC features, and
the next λ discrete numbers represent the position information of
residues in amino acid sequences. For different problems, the optimal
value of λ may vary. In this study, we selected the optimal value of λ
that yielded the highest sensitivity through the jackknife test.

2.3 Support vector machine

SVM is a powerful supervised machine learning classification
method based on statistical learning theory (Manavalan et al., 2019).
It was originally designed based on the idea of the generalized linear
classifier. First, features were mapped to high-dimensional space. Next,
a separating hyperplane is constructed to separate the two categories in
the high-dimensional feature space (Vapnik and Control, 2019). To
avoid expensive computations, the mapping function only involves the
relatively low-dimensional vector in the input space and the dot product
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in the feature space. The global optimization approach and avoidance of
overfitting in SVM have made it a successful tool for addressing various
bioinformatics problems (Zhang H. et al., 2022). In this paper, the
support vector machine (SVM) was implemented using the widely used
software LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm) (Chang
and Lin, 2011). The radial basis function which is defined as
K(xi, xj) � exp(−γ‖xi − xj‖2) was chosen as the kernel function.
The regularization parameter C and the kernel width parameter γ

were optimized on the training set using a grid search strategy.

2.4 Evaluation methods

At present, k-fold cross-validation and jackknife cross-
validation are widely used for prediction evaluation (Tabaie et al.,
2021; Dao et al., 2022a; Xiao et al., 2022; Zhou et al., 2022). The
jackknife test is a type of cross-validation that involves leaving one
observation out of the dataset at a time and using the remaining
observations to train a model. This process is repeated for each
observation in the dataset, resulting in n different models, where n is
the number of observations in the dataset. In this article, we used the
Jackknife test to evaluate the prediction results. The sensitivity (Sn),
specificity (Sp), average accuracy (AA), overall prediction accuracy
(OA), and Matthew’s correlation coefficient (MCC), the area under
ROC curve (auROC) were used to evaluate the prediction
performance of the algorithm (Yang et al., 2021; Zhang Q. et al.,
2022). The evaluation metrics are defined as follows:

Sn � TP

TP + FN
(3)

Sp � TN

TN + FP
(4)

MCC � TP × TN − FP × FN�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√ (5)

OA � TP + TN

TP + TN + FN + FP
(6)

AA � 1
2
×

TP

TP + FN
+ TN

TN + FP
( ) (7)

where TP represents the number of the positive sample correctly
identified, FN represents the positive sample wrongly identified as a
negative sample, FP represents the negative sample wrongly identified
as a positive sample, and TN represents the negative sample correctly
identified. AuROC is an indicator that relates to the receiver operating
characteristic (ROC) curve, which is a plot of a series of continuous (1-
Sp) values on the horizontal axis against their corresponding Sn values
on the vertical axis. The ROC curve is a useful tool for evaluating the
sensitivity and specificity of a model (Hasan et al., 2022; Jeon et al.,
2022). AuROC is calculated in this study as an indicator of classification
ability and performance. A larger auROC value indicates better
performance and classification ability of the model.

3 Results and discussion

3.1 Model performance

In this study, the proteins were first obtained in FASTA format
and then the PseAAC program (Shen and Chou, 2008) was used to

extract the feature vectors of pseudo amino acid components. To
achieve relatively optimal prediction results, different parameters
were selected to extract pseudo amino acid component feature
vectors of protein sequences. Specifically, feature vectors were
extracted using different values of ω (the weight factor) including
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, and λ was taken as either 3 or 5. The
extracted feature vectors were then used for prediction using
different values of γ including 0.04, 0.05, 0.06, 0.07, 0.08, and
0.09. The SVM model was trained using svm-train in LIBSVM,
and the optimal parameter array and optimal feature subset were
searched from the prediction results. Only the γ value that achieved
the optimal prediction result was selected and listed in Table 1.

In this study, the benchmark dataset consisted of 208 OMPs and
879 non-OMPs. Due to this imbalanced dataset, using average
accuracy as the sole evaluation criterion may lead to skewed
results toward the negative sets. Thus, the paper used overall
accuracy as the main criterion for model evaluation. By analyzing
the data in Table 1, it was observed that high prediction sensitivity
was achieved using Jackknife cross-validation with different
parameters. And, with the best prediction result obtained with a
weight factor of 0.5, the parameter λ taking 5, γ taking 0.07, resulting
in an overall accuracy of 93.10%.

3.2 Model comparison

Various methods have been proposed by different researchers to
predict and distinguish OMPs from other types of membrane
proteins. Wu et al. (2007) proposed a prediction method that
uses information differences to compare the distribution of
subsequences and residual sequences, resulting in a prediction
accuracy of 99.20%. Yan et al. (2008) proposed a method based
on the K-nearest neighbor (KNN) method, which predicted the
weighted Euclidean distance calculated by residual synthesis and
achieved a recognition accuracy of 96.1%, sensitivity of 87.5%,

TABLE 1 The performance comparison of prediction models under different
parameter conditions.

ω, λ, γ Sn(%) Sp(%) MCC(%) OA
(%)

AA
(%)

AuROC

0.1,3,0.05 78.37 96.59 77.16 93.10 87.48 0.962

0.2,3,0.08 78.85 96.59 77.49 93.19 87.72 0.966

0.3,3,0.09 75.96 96.59 75.46 92.64 86.27 0.965

0.4,3,0.08 79.33 95.79 75.97 92.64 87.56 0.962

0.5,3,0.09 79.33 95.79 75.97 92.64 87.56 0.961

0.6,3,0.09 79.81 95.90 76.57 92.82 87.86 0.958

0.1,5,0.07 79.81 96.59 78.17 93.38 88.20 0.965

0.2,5,0.09 79.81 95.56 75.79 92.55 87.69 0.968

0.3,5,0.09 80.77 95.45 76.22 92.64 88.11 0.966

0.4,5,0.08 81.73 95.11 76.15 92.55 88.42 0.964

0.5,5,0.07 84.61 95.11 78.19 93.10 89.86 0.963

0.6,5,0.07 81.25 94.43 74.34 91.90 87.84 0.956
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specificity of 98.2% with 0.873 MCC. Gromiha et al. (2006)
discriminate of OMPs and non-OMPs using different machine
learning approaches, the best performance achieved sensitivity of
84.6%, specificity of 95.8% and accuracy of 93.7%. And the SVM-
based model achieved sensitivity of 72.6%, specificity of 98.2% and
accuracy of 93.3%. Park et al. (2005) proposed an SVM method that
considers both amino acid composition and residue pair
information, achieving sensitivity of 90.9 %, specificity of 94.7%,
MCC 0.816 of and accuracy of 93.9%. Gao et al. (2010) developed a
method that combined the structural and physicochemical
characteristics of sequence-derived proteins with amino acid
composition to distinguish OMPs and non-OMPs using SVM,
with an overall accuracy of 97.8%, sensitivity of 91.8 %,
specificity of 99.2% and MCC 0.928.

In this paper, the model constructed using the SVM algorithm
achieved an overall accuracy of 93.10% and auROC of 0.963 under
Jackknife cross-validation, respectively. Besides, the sensitivity,
specificity, MCC, and average accuracy were found to be 84.61%,
95.11%, 78.19%, and 89.86%, respectively. Compared to previous
SVM-based models, some progress has been made.

4 Conclusion

This article focused on the prediction and recognition of OMPs
using the method of combining Pse-AAC with SVM. The study
achieved good results with the Pse-AAC method, which not only
considers the content of 20 natural amino acids in each protein
sequence but also includes the correlation between various amino
acids, such as physical and chemical properties. This approach is
more advanced than traditional methods that only consider amino
acid composition, leading to more accurate prediction results. SVM
is a widely used algorithm in bioinformatics (Hasan et al., 2020;
Shoombuatong et al., 2022a; Bupi et al., 2023), and applying it to the
prediction of OMPs is an inevitable trend in current research. The
constructed model using the SVM algorithm achieved high
performance with an overall accuracy of 93.10% and auROC of
0.963 under Jackknife cross-validation. The sensitivity, specificity,
Matthew correlation coefficient, and average accuracy achieved
84.61%, 95.11%, 78.19%, and 89.86%, respectively. However,
while feature extraction algorithms have been widely used in
prediction methods and have achieved good performance, the
relationship between the extracted information and protein
structure and function needs to be further explored. This
challenge will undoubtedly be the focus of our future research
efforts aimed at identifying OMPs. The development of accurate
prediction models for OMPs has the potential to significantly impact

fields ranging from antibiotic discovery and vaccine development to
biotechnology and bacterial diagnostics.
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