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Metabolic reprogramming
through mitochondrial
biogenesis drives adenosine
anti-inflammatory effects:
new mechanism controlling
gingival fibroblast hyper-
inflammatory state
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and Ana Carolina Morandini1,4*

1Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University,
Augusta, GA, United States, 2Department of Cellular Biology and Anatomy, Medical College of
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Introduction: Fibroblasts are the dominant stromal cells in the gingival lamina

propria with a well-established relevance in regulation of inflammation, and in

innate immunity. This is exemplified by their hypersecretion of CXCL8, enhancing

leukocyte infiltration in chronic and sustained inflammatory conditions. We have

previously shown adenosine to be a key metabolic nucleoside that regulates

stromal inflammation, but the underlying mechanisms linking adenosine to the

metabolic status of fibroblasts and to the resultant inflammatory response are

unclear. This study examined, by seahorse real-time cell metabolic analysis, the

bioenergetics of the stromal fibroblast response to extracellular adenosine and

IL-1b, focusing on CXCL8 secretion by primary human gingival fibroblasts (HGF).

Methods: Markers of the glycolytic pathway and mitochondrial biogenesis were

tracked through immunoblot. Further, the influence of adenosine on

mitochondrial accumulation was measured by uptake of MitoTracker Red

fluorescent probe and assessment of the role of FCCP (a mitochondrial

uncoupler) in CXCL8 secretion and mitochondrial accumulation.

Results: Our results show that the anti-inflammatory response of HGF to

extracellular adenosine, typified by reduced CXCL8 secretion, is mediated by

mitochondrial oxidative phosphorylation, reflected in higher oxygen

consumption rate (OCR). In the presence of IL-1b, adenosine-treated cells

induced higher ATP production, basal respiration and proton leak compared to

IL-1b without adenosine. Surprisingly, adenosine had no additional effect on the
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IL-1b-induced higher glycolysis rate demonstrated by the extracellular

acidification rate (ECAR). In addition, the higher OCR in adenosine-stimulated

cells was not due to the mitochondrial fuel dependency or capacity, but due to

an increase in mitochondrial biogenesis and accumulation in the cells with

concomitant decrease in mitophagy-required p-PINK1 marker. We detected

the accumulation of functional mitochondria with increased activation of the

AMPK/SIRT1/PGC-1a pathway. The adenosine-induced uptake of MitoTracker

was abrogated by PGC-1a inhibition with SR-12898. In addition, the adenosine

effects on reduced CXCL8 were ablated by treatment with FCCP, a potent

uncoupler of mitochondrial oxidative phosphorylation.

Conclusion: Our findings reveal a key role for mitochondrial bioenergetics in

regulation of CXCL8-mediated inflammation by HGF through the adenosine/

AMPK/SIRT1/PGC-1a axis. Therapeutically targeting this pathway in gingival

fibroblasts might be a promising future strategy to modulate stromal-mediated

sustained hyper-inflammatory responses.
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Introduction

Human gingival fibroblasts (HGF), are the most abundant cells

in the gingival lamina propria, and play a vital role in the

development and progression of periodontitis through their

response to periodontal pathogens (1) and inflammatory

cytokines (2). These factors are abundant in the inflammatory

milieu of untreated disease. Among the inflammatory markers

relevant to periodontal immunobiology, interleukin (IL)-1b is

most prominent, as it is a strong stimulator of bone resorption

(3), as reviewed previously (4). IL-b is a key inflammatory mediator

in the pathogenesis of periodontitis (5–8), and is one of the

dominant cytokines detected in the gingival crevicular fluid of

diseased patients (9); moreover, the IL-1 genotype has been

implicated in susceptibility to severe disease manifestation (10).

Previous study by our group showed that autocrine IL-1 signaling is

necessary for leukocyte recruitment and keystone pathogen

clearance (11). In this regard, our group and others have also

demonstrated the importance of adenine nucleotides such as

adenosine triphosphate (ATP) and its by-product adenosine, as

endogenous regulators of inflammation and essential mediators for

the balance between cell damage and repair (12, 13).

Extracellular ATP (eATP) acts as a mediator of stress signaling

to cells during times of infection or inflammation (14). Adenosine is

a purine nucleoside which limits mucosal inflammation (15) being

well known for its immunosuppressive functions. eATP is not very

stable and can be easily hydrolyzed by the action of

ectonucleotidases, particularly under pathological conditions. This

increases the adenosine concentration (16). Our previous research

demonstrated the degradation of ATP to adenosine through

ectonucleotidase CD73 reduced chemokine CXCL8 secretion

induced by IL-1b in HGF, effectively decreasing inflammation in
02
these cells through adenosine receptors (17). Adenosine receptors

are classified into four subtypes, A1, A2A, A2B, and A3, all activated

by extracellular adenosine, playing central roles in a broad range of

physiological processes, including modulation of the immune

system (18). A2AR is one of the most well characterized G-

protein coupled receptors and A2A and A2B are broadly

recognized as critical to the immune functions of adenosine (19).

Physiologically, the concentration of extracellular adenosine in

healthy tissues is low (20), but it can rapidly escalate from

nanomolar to micromolar concentrations depending on cellular

stress, such as injury, hypoxia or inflammation (21, 22). Therefore, a

rise in local adenosine levels contributes to tissue protection against

damage (23) from hyper-inflammatory response or excessive

immune activation (24).

An increase in phosphorylated adenosine monophosphate-

activated protein kinase (pAMPK) was observed after IL-1b
stimulation and adenosine receptor activation, suggesting the

anti-inflammatory effects of adenosine exposure are dependent on

the upregulation of pAMPK (17). AMPK is an energy sensor in the

body and thus acts as a major regulator of cell energy metabolism.

AMPK can sense changes in the ATP-to-AMP ratio and is activated

when intracellular levels of ATP decrease. Primarily, AMPK acts to

inhibit anabolism and stimulate catabolism to restore intracellular

ATP levels. Studies have shown AMPK is involved in the activation

of genes related to mitochondrial biogenesis, which is a self‐renewal

route by which new mitochondria are generated from existing

stores. Among the specific molecules involved in this fine‐tuning,

the peroxisome proliferator‐activated receptor‐g coactivator (PGC)‐
1a is the main regulator of mitochondrial biogenesis (25). In fact,

AMPK and PGC-1a have a unique relationship in regulating

mitochondrial biogenesis (25, 26) because of a strong overlap in

the genes transcriptionally regulated by AMPK and those by PGC-
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1a. Additionally, there is evidence that Sirtuin 1 (SIRT1), a histone

deacetylase works in concert with AMPK and PGC-1a to regulate

cell metabolism (26). SIRT1 interacts with PGC-1a and promotes

its transcriptional activity through deacetylation, but whether and

how adenosine can eventually modulate all these sensors affecting

cell energy metabolism and ultimately influencing inflammation is

far from conclusive.

The participation of adenosine signaling in key metabolic

pathways affecting the cellular energy outcome such as AMPK/

SIRT1/PGC-1a pathway and consequently chemokine secretion is

not clear, especially in gingival stromal cells. In fact, stromal cells have

been showing an undeniable biological significance to promote or

inhibit inflammation as protagonists in models of cancer

microenvironment (27), dermal inflammation (28) and oral mucosa

immunity (29). The exaggerated stromal cell responsiveness of

fibroblasts is typified by hypersecretion of CXCL8 (29), which

enhances leukocyte infiltration in periodontitis. Dysregulation of

CXCL8 is a key feature of active periodontal inflammation (30, 31)

and bone pathology (32). Understanding the pathways that regulate

CXCL8may provide vital clues for controlling inflammatory bone loss.

In this study, we examined the intersection of stromal

inflammation, mitochondrial metabolism and adenosine signaling

by examining anti-inflammatory adenosine effects on

mitochondrial function and biogenesis and, conversely,

mitochondrial feedback on inflammation, with an emphasis on

metabolic markers that influence cellular homeostasis during the

course of periodontal inflammation.
Methods

Cell culture and treatments

Primary human gingival fibroblasts (HGF-1) were previously

established in the lab (IRB # 911778-10) and purchased from ATCC

(CRL-2014). Cells were cultivated in Dulbecco’s Modified Eagle’s

Medium (DMEM) supplemented with 10% fetal bovine serum and

100 UI/mL penicillin/streptomycin. HGF were cultured in a 5% CO2

incubator at 37°C. The growth media was replaced every 2-3 days.

Experiments were performed using cells between the 4th and 8th

passages, at approximately 80% confluence detailed in figure legends.

The fibroblast phenotype was confirmed by positive staining for

vimentin and FSP1. Viable cells were automatically counted using a

cell counter andTrypan Blue staining and seeded in uniformity of cell

distribution in OptiMEM medium the day before each experiment.

For cell treatments, the following reagents were used: 1ng/mL human

recombinant IL-1b (201LB005, R&D systems); 100mM Adenosine

(A4036-5G, MilliporeSigma); 30mM EHNA (E114-25MG,

MilliporeSigma), 1mM FCCP (S8276, Selleck Chemicals LLC) and

10mM SR-18292 (HY-101491, MedChem Express). Pre-treatment

with drugs was performed 1 hour prior to the adenosine or EHNA

+adenosine stimulation. EHNA was added 5min prior to adenosine.

Adenosine was added 5 min prior to IL-1b and cells were incubated

for the time points indicated in each figure legend.
Frontiers in Immunology 03
Antibodies

Western blotting experiments were performed using the

following antibodies with respective dilutions: Antibodies from

Abcam: A2AR (1:1000, ab151523); PFKFB3 (1:1000, ab181861);

PGC-1alpha (1:1000, ab176328); mitobiogenesis cocktail [SDHA/

MT-COX1] (1:250, ab123545). Antibodies from Cell Signaling:

Phospho-AMPKa (Thr172) (40H9) (1:1000, #2535); AMPKa
(D5A2) (1:1000, #5831); HRP Conjugate b-Tubulin (9F3) (1:1000,

#5346); SIRT1 (D1D7) (1:1000, #9475); Hexokinase II (C64G5)

(1:1000, #2867); PKM2 (D78A4) XP (1:1000, #4053); Phospho-

PINK1 (Ser228) (1:1000, #46421).
Metabolic analysis using
seahorse technology

Metabolic characterization of HGF was performed using a

Seahorse XFe96 Extracellular Flux Analyzer (Seahorse

Bioscience). Briefly, 4 × 104 cells were seeded into the Seahorse

XF Cell Culture Microplate (Agilent Technology) in OPTiMEM,

one day before the experiment. For analysis, cells were resuspended

in XF assay media (Agilent Technology) supplemented with 10 mM

glucose (Sigma-Aldrich), 1 mM pyruvate (Sigma-Aldrich), and 2

mM glutamine (Sigma-Aldrich). The Cell Mito Stress Test was

performed using 1.5 mM oligomycin, 1.0 mM FCCP (carbonyl

cyanide-p-trifluoromethoxy-phenyl-hydrazone), 0.5 mM rotenone,

and 0.5 mM antimycin A (RotAA) purchased from Agilent

Technologies. The Glycolysis Stress Test was performed using 1.0

mM oligomycin, 10mM Glucose, and 50 mM 2-Deoxy-D-glucose

purchased from Agilent Technologies. All results were normalized

per the total protein in each well after the assay using the BCA

method (Pierce Protein Biology). Mitochondrial stress and

glycolytic parameters were measured via Oxygen Consumption

Rate (OCR) and Extracellular Acidification Rate (ECAR),

respectively, in pmol/min/µg of protein. The Mito Fuel Flex Test

was performed to measure the OCR and test dependency, capacity

and flexibility of cells to oxidize glucose, glutamine or long-chain

fatty acids as mitochondrial fuel. Metabolic parameters were

exported and calculated according to the manufacturer’s

instructions (Agilent Technologies) using the Seahorse Wave

desktop software (Agilent Technologies).
RNA isolation, cDNA synthesis and
quantitative PCR

RNA was extracted from 1x105 cells/well with the Invitrogen

PureLink RNA Mini Kit (ThermoFisher Scientific) according to the

manufacturer’s instruction. Briefly, samples were lysed in equal

volumes of lysis buffer and stored in a -80°C freezer for a few hours.

Then, samples were homogenized by vortexing and centrifuging for 5

minutes at 4°C at 12,000xg. After adding 70% ethanol, RNA was

extracted and purified using a fast spin-column workflow and kit-
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provided wash buffers. All samples were eluted in 30 µl of RNase-Free

water stored in a -80°C freezer. Reverse transcription was performed

using a SuperScript IV VILO Master Mix (ThermoFisher Scientific) to

obtain cDNA fromNanodrop read samples. The quantitative PCR was

performed using the following inventoried Taqman assays: human

CXCL1: Hs00236937_m1; human CXCL8: Hs00174103_m1 and

human RPL13A: Hs03043885_g1 in a 10uL final volume using

TaqMan Fast Advanced Master Mix in a StepOne Plus Real-Time

PCR system (Applied Biosystems). Relative quantitation of the

RPL13A reference gene versus the target gene was performed in

duplex reactions and calculated using the comparative Ct (DDCt)
values to generate the RQ for each sample based on the established

cycle threshold for each target. Analysis was performed using the

StepOne Plus software and Graph Pad Prism.
ELISA

The soluble secreted CXCL8 in the samples was measured by

using a capture and a detection antibody using a Human IL-8/

CXCL8 DuoSet ELISA (DY20805, R&D systems) and the respective

reagents and plates provided by the DuoSet ELISA Ancillary Reagent

Kit 2 (DY008B, R&D systems) according to the manufacturer’s

instructions. Plates were read at the recommended wavelength in a

Synergy H1 microplate reader (Biotek, Agilent Technologies).
Western blotting

For WB analyses, cold RIPA buffer (ThermoFisher) was applied to

extract total protein from 5x105 cells/well in 6-well plates. The extracted

proteins weremeasured using the BCA protein assay reagent kit (Pierce

Protein Biology). An equal amount of total protein (10 mg of protein/
lane) was then resolved with a 5–12% SDS-PAGE gel and

electrotransferred onto a polyvinylidenedifluoride (PVDF) membrane

(Bio-Rad) in a fast-transfer mode. The membranes were blocked with

5% non-fat dry milk in TBST (containing 0.05% Tween-20) and

incubated overnight at 4°C with a primary antibody against each

target (antibody dilution indicated in each figure legend). Following an

incubation with an HRP-conjugated anti-rabbit or anti-mouse

secondary antibody (1:25.000; abcam) at room temperature for 2 h,

the blots were washed in TBST and developed using an enhanced

chemiluminescence (ECL) detection kit (Bio-Rad) and visualized using

a ChemiDoc Touch Imager (Bio-Rad). The bands on the blots were

quantified using the ImageLab Software (Bio-Rad) and normalized for

tubulin values as a loading control for densitometry analysis.
Mitotracker red staining

HGF were seeded in an 8-well imaging chamber with coverslip

bottom. After treatments as indicated in figure legends, cells were

stained with MitoTracker™ Red CMXRos, a red-fluorescent dye

that localizes in actively respiring mitochondria in live cells and its
Frontiers in Immunology 04
accumulation is dependent upon membrane potential. Briefly, cells

were submitted to IL-1b stimulation with or without the pre-

treatment with adenosine or EHNA + adenosine. Then, cells were

stained with 200nM Mitotracker red dye in OptiMEM 30 mins at

37°C, protected from light. After washing with PBS 1x cells were

fixed with 4% formaldehyde fixative solution for 15 min at room

temperature and mounted in a mounting media containing DAPI

to stain the nucleus. Images were obtained in 63x immersion oil

objective lens in a Leica Stellaris Confocal microscope (Leica).

Quantitation of MitoTracker Red was derived from confocal

images using Fiji Software.
Mitochondrial DNA copy
number quantification

Total mitochondrial and nuclear genomic DNA was collected

using PureLink Genomic DNAMini Kit (Thermo Fisher Scientific),

according to the manufacturer’s instructions. The purified total

genomic DNA was quantified by quantitative real-time PCR, and

the mtDNA level was normalized to that of nuclear DNA using the

Human Mitochondrial DNA Copy Kit (Detroit R&D, Inc),

according to the manufacturer’s instructions.
ATP quantification

The amount of intracellular ATP was quantified using

Cel lTiter-Glo 2.0 Assay (Promega) according to the

manufacturer’s instructions.
Statistical analysis

Statistical analysis was conducted for three independent

experiments using the GraphPad Prism v9 software (GraphPad,

San Diego, CA, USA) using ANOVA followed by multiple

comparison tests. Data are presented as mean ± S.D. The cell

number per well was chosen based on cell density optimization

experiments for the specific assay. The significance level of p is

indicated in each graph and in figure legends (*p <0.05; **p <0.01;

*** p <0.001; ****p<0.0001).
Results

Extracellular adenosine dampens IL-1b-
induced CXCL8 with a timely activation of
A2AR/AMPK and in a mitochondrial-
dependent fashion

In a previous study, we have shown that IL-1b-induced CXCL8

secretion in gingival fibroblasts was dampened by the hydrolysis of

extracellular ATP to adenosine through the activation of adenosine
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receptors (17). Furthermore, we demonstrated the involvement of

AMPK activation in the adenosine anti-inflammatory effects in

HGF (17). Here, we dissected the time-course dynamics of AMPK

activation in the presence of adenosine (Figure 1). Our results show

a time-dependent activation of AMPK when HGF were exposed to

adenosine prior to IL-1b activation, resulting in decreased mRNA

expression of CXCL1 and CXCL8 in early time points of 1h and 3h

(Figures 1D, E) corroborating a decreased CXCL8 protein secretion

in 6h and 24h (Figures 1I, J). We show that this occurs with the

adenosine receptor A2A highest expression at the early time point

of 3h, and with the maximum p-AMPK activation after 24h of

adenosine exposure (Figures 1A, F, K). We also confirmed these

results by pre-treating the cells with erythro-9-(2-Hydroxy-3-

nonyl) adenine hydrochloride (EHNA), adenosine deaminase

inhibitor, to prevent adenosine degradation in the media and

allow it for more stability and sustained effects. When we shut

down mitochondrion function by treating the cells with

trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), a

potent mitochondria uncoupler we could see adenosine lost its

ability to downregulate IL-1b-induced CXCL8 (Figure 1N). These

results demonstrate adenosine anti-inflammatory effects on gingival

fibroblasts involves A2AR/AMPK axis and depends on

mitochondrion function, which strongly supports the interplay
Frontiers in Immunology 05
between stromal cell mitochondrial metabolism and purinergic

adenosine modulation of inflammation.
Adenosine leads IL-1b-stimulated HGF to a
metabolic switch towards an upregulated
mitochondrial oxidative phosphorylation

To facilitate a better understanding of how metabolic regulation

interferes with cellular responses and the interplay between

mitochondrial bioenergetics with inflammatory and immune

reactions, we examined how adenosine regulates mitochondrial

function in real time using seahorse analysis. Alterations in

stromal cell metabolism are necessary to support the need for

cellular homeostasis during inflammatory processes, cell injury or

stressful cellular environment. In this context, metabolic

reprogramming is thought to play a role as a critical event toward

the transition of fibroblasts from quiescent to activated and

aggressive cells, as in rheumatoid arthritis and cancer (33). Here,

for the first time we observed a clear different metabolic profile of

fibroblasts in the presence of adenosine or EHNA+adenosine when

we submitted the cells to the mitochondrial stress test through a

real-time seahorse analysis (Figure 2). A more in-depth analysis of
B C D E

F
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I J

K
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L M

N

FIGURE 1

Adenosine dampens IL-1b-induced CXCL8 in a time-course activation of A2AR/AMPK and in a mitochondrial-dependent manner. Protein expression
with the respective densitometry analysis of A2AR, pAMPK, AMPK and Tubulin in HGF stimulated with 1ng/mL IL-1b with or without 100µM
adenosine (ADO) or 10µM EHNA+100µM ADO for (A, B, C) 3h; (F, G, H) 6h; or (K, L, M) 24h. (D) CXCL1 and (E) CXCL8 mRNA expression relative to
RPL13A as a reference gene by RT-qPCR after 1h or 3h. (I) CXCL8 protein levels after 6h or (J) 24h of HGF stimulated with 1ng/mL IL-1b with or
without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO. (N) CXCL8 protein levels were measured in HGF supernatants after 24h of cells
stimulated with 1ng/mL IL-1b with or without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO in the presence or absence of pre-treatment
with 1 µM FCCP. Data are presented as mean ± S.D. (*p <0.05; **p <0.01; ***p <0.001; ****p<0.0001). ns, not significant.
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the mitochondrial oxidative phosphorylation in gingival fibroblasts

identified a higher oxygen consumption rate (OCR) (Figure 2B)

when adenosine or EHNA+adenosine was added to the medium

prior to IL-1b stimulation, reflected in a higher ATP production

(Figure 2C), basal respiration (Figure 2D) and Proton leak

(Figure 2E). We also evaluated the glycolytic metabolism of HGF

in the presence of extracellular adenosine or EHNA+adenosine

through the Glycolysis stress test (Agilent technology). Our data

show adenosine and EHNA+adenosine do not affect the IL-1b-
induced glycolysis (Figure 2G), glycolytic capacity (Figure 2H) or

the non-glycolytic acidification (Figure 2I) which are all indicative

of measurements of the Extracellular Acidification Rate (ECAR)

(Figure 2F) higher in IL-1b-stimulated HGF. Additionally, we

checked whether adenosine would change the rate of oxidation of

each mitochondrial fuel by measuring mitochondrial respiration [or

the OCR] of cells in the presence of fuel pathway inhibitors.

Therefore, we measured the dependency, capacity and flexibility

of cells to oxidize three mitochondrial fuels: Glucose (pyruvate),

Glutamine (glutamate) and long-chain fatty acids (Supplementary

Figure 1). Our data show no differences in dependency or capacity

of HGF to oxidize any of these fuels in the presence or absence of

adenosine (Supplementary Figure 1). Therefore, our results are

indicative of an upregulated mitochondrial oxidative

phosphorylation in HGF in the presence of adenosine, regardless

of the mitochondrial fuel to maintain the higher OCR. We have also

confirmed higher ATP concentration in adenosine-stimulated cells
Frontiers in Immunology 06
when compared with IL-1b only by quantifying intracellular ATP

concentration by luminescence (Figure 2J).
Adenosine increases mitochondrial
biogenesis markers SIRT-1, PGC1a and
upregulates PFKFB3 with no effect in other
glycolysis-related markers

Our next step was to estimate whether markers associated with

increased mitochondrial function and markers related to glycolytic

pathway would be altered after adenosine exposure. The

peroxisome proliferator‐activated receptor‐g coactivator (PGC)‐

1a, has been extensively described as a master regulator of

mitochondrial biogenesis (34). However, PGC-1a activity can be

finely tuned in response to different metabolic situations. From this

point of view, PGC-1a could be described as a mediator of the

transcriptional outputs triggered by metabolic sensors, providing

the idea that these sensors, together with PGC-1a, might be

weaving a network controlling cellular energy expenditure (26).

Two metabolic sensors, AMPK and SIRT1 have been described to

directly affect PGC-1a activity and because we saw an upregulation

of pAMPK earlier, we then checked the levels of PGC-1a and

SIRT1, to confirm whether adenosine would be promoting

mitochondrial biogenesis and thus maintaining mitochondrial

function (35). We confirmed our hypothesis as we observed a
A

B D E

F G IH

J

C

FIGURE 2

Adenosine leads IL-1b-stimulated HGF to a metabolic switch towards an upregulated mitochondrial oxidative phosphorylation. (A) HGF in vitro
experimental model. (B–E) Oxygen Consumption Rate (OCR) of HGF during Seahorse Mito Stress Test in HGF stimulated with 1ng/mL IL-1b with or
without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO for 24h. (F–I) Extracellular acidification rate (ECAR) of HGF during Seahorse Glyco
Stress test in HGF stimulated with 1ng/mL IL-1b with or without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO for 24h. (J) ATP
concentration (nM) measured by luminescence. Data are presented as mean ± S.D. (*p <0.05; **p <0.01; ***p <0.001; ****p<0.0001).
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higher PGC-1a expression in early 6h (Figure 3A) accompanied by

a slightly higher SIRT1 in 24h (Figure 3B). We also saw a

significantly higher expression of PFKFB3 in the presence of

adenosine or EHNA+adenosine with 6h, but no change in other

glycolytic molecules such as HK2 or PKM2 when compared to non-

stimulated cells. Densitometry analysis of all immunoblots is shown

in Figures 3C–L. These results confirmed adenosine stimulated

mitochondrial biogenesis and fueled the need for more experiments

to validate this hypothesis.
Frontiers in Immunology 07
Extracellular adenosine increases
mitochondrial mass with preserved
membrane potential

We then investigated the mitochondrion mass with preserved

membrane potential by staining HGF with Mitotracker Red

(Figure 4) in the presence of FCCP, a well-known mitochondrial

oxidative phosphorylation uncoupler (Figures 4E–H). In parallel, we

also treated cells with SR-18292, a PGC-1 a inhibitor (Figures 4I–L).
A B

D E F G

IH J K L

C

FIGURE 3

Adenosine increases mitochondrial biogenesis markers SIRT-1, PGC1a and upregulates PFKFB3 with no effect in other glycolysis-related markers.
Protein expression with the respective densitometry analysis of oxidative phosphorylation or glycolysis markers after (A, C–G) 6h or (B, H–L) 24h of
HGF stimulated with 1ng/mL IL-1b with or without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO. Data are presented as mean ± S.D. (*p
<0.05; **p <0.01).
FIGURE 4

Extracellular adenosine increases mitochondrial mass with preserved membrane potential. Fluorescence microscopy of Mitotracker Red and DAPI
staining of HGF stimulated with 1ng/mL IL-1b with or without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO. (A–D) control non-treated
cells. (E–H) pre-treated with 1µM FCCP 1h prior to subsequent stimulation. (I–L) pre-treated with 10µM SR-18292 1h prior to subsequent
stimulation. Confocal images obtained at 63x immersion oil objective lens. Scale bar: 50µm.
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We analyzed mitochondrial staining in cells stimulated with IL-1b and

pre-treated or not with adenosine or EHNA+adenosine under coupled

(control) and uncoupled respiration conditions, wherein FCCP

mitochondrial uncoupler was used to induce maximal respiration.

FCCP treatment promotes mitochondrial depolarization, subsequently

resulting in the fragmentation of mitochondrial networks (36),

although mitochondrial fragmentation may require much higher

concentrations. We confirmed adenosine and EHNA+adenosine

boosted the mitochondrial staining in control non-stimulated cells,

demonstrating a substantial increase in mitochondrial mass

throughout the cell cytoplasm (Figures 4C, D). Our results showed

less prominent mitotracker red staining of mitochondria from FCCP-

treated cells, corroborating previously reported reduced mitochondrial

mass (37). Furthermore, HGF treated with PGC-1 a inhibitor (SR-

18292) dramatically decreased mitochondrial mass or demonstrated to

have fewer actively respiring mitochondria, confirming the PGC-1a-
dependent mitochondrial biogenesis elicited by adenosine.

Quantification of the Mitotracker fluorescence intensity is provided

in Supplementary Figure 2.
Extracellular adenosine increases HGF
mitochondrial biogenesis and decreases
PINK-1 mediated mitophagy

To further confirm the effect of adenosine exposure on the

mitochondrial dynamics and to understand whether the adenosine-

dependent effects in HGF were indeed affecting mitochondrial
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biogenesis, a MitoBiogenesis™ western blotting cocktail (Abcam)

was used. The two main components of the cocktail target two

proteins, which are each subunits of a different oxidative

phosphorylation enzyme complex, one 37kDa subunit I of

Complex IV (COX-I), which is mtDNA-encoded, and the 70kDa

subunit of Complex II (SDH-A), which is nDNA-encoded

(Figures 5A, B). Complex IV includes several proteins, which are

encoded in the mitochondrion, while the proteins of Complex II are

entirely encoded in the nucleus. After both 6h (Figures 5A, E, I) or

24h (Figures 5B, F, J) of exposure to our experimental conditions,

we detected an increase of SDHA and MT-COX1, which was

significant with EHNA+adenosine in the expression of mtDNA

COX-1 subunit after 6h (Figures 5A, I). On the flip side, we also

checked the time-course expression of PTEN-induced kinase 1 (p-

PINK1), a molecular receptor of mitochondrial damage, which is

particularly sensitive to depolarization of mitochondrial membrane

potential and can recruit and phosphorylate ubiquitin-protein

ligases to induce mitophagy (38). It has been previously reported

p-PINK1 accumulates on dysfunctional mitochondria and its kinase

activity is required for mitophagy (39). HGF stimulated fibroblasts

treated with adenosine or EHNA+adenosine showed a clear

decrease in p-PINK1 with 6h (Figures 5C, G) that was stabilized

and not significant after 24h of exposure (Figures 5D, H).

Additionally, we have quantified the mitochondrial DNA relative

to the nuclear DNA content by quantitative real time PCR and our

results confirmed increased DNA copy number in adenosine-

stimulated cells compared to IL-1b only (Figure 5K). These

results demonstrate adenosine not only stimulates stromal
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FIGURE 5

Extracellular adenosine increases HGF mitochondrial biogenesis and decreases PINK-1 mediated mitophagy. Protein expression with the respective
densitometry analysis of mitochondrial biogenesis markers SDHA and MT-COX1 after (A, E, I) 6h or (B, F, J) 24h of HGF stimulated with 1ng/mL IL-
1b with or without 100µM adenosine (ADO) or 10µM EHNA+100µM ADO. Protein expression with the respective densitometry analysis of p-PINK1
mitophagy marker after (C, G) 6h or (D, H) 24h. (K) Relative quantification of mtDNA/nDNA content by quantitative real time PCR. Data are
presented as mean ± S.D. (*p <0.05; **p <0.01).
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mitochondrial biogenesis but also dampens the dynamics of

mitophagy, reprogramming cell bioenergetics towards

mitochondrial function.
Discussion

In this study we demonstrated for the first time that the anti-

inflammatory effects of adenosine on IL-1b-induced CXCL8,

reflecting modulation of hyper-inflammatory state of HGF, are

driven by metabolic reprogramming. The role of the mitochondrial

metabolism is this particular setting was through an increased

mitochondrial mass and mtDNA, increased mitochondrial

biogenesis and decreased expression of mitophagy-related marker

in adenosine-exposed cells, ultimately affecting the underlying

stromal inflammatory response. Furthermore, we demonstrated

these effects involved upregulation of the AMPK/SIRT-1/PGC-

1a-pathway.
Purinergic signaling has emerged as a key metabolic pathway

that regulates immunity and inflammation (40) during chronic

inflammatory conditions. The relevance of adenosine in the

immune system has been established based on mounting scientific

evidence showing that the nucleoside represents a paracrine

inhibitor of inflammation, regulating the onset, extension, and

termination of the inflammatory process and acting through

adenosine receptors (41). Under conditions of cellular stress,

inflammatory cells often shift to glycolytic production of ATP,

which decreases the ATP-AMP ratio to activate AMPK and thus

activates genes upregulating mitochondrial metabolism and

oxidative phosphorylation, leading to reduced oxidative stress and

inflammation (42). Studies have shown that the activation of AMPK

is linked to anti-inflammatory effects, such as in mouse and human

obesity models (42), and reduced oxidative stress in periodontitis

models (43).

Macrophages have been classified into M1 phenotype (pro-

inflammatory) or M2 phenotype (immunosuppressive) under

different physiological conditions. LPS for example polarizes

macrophages into M1, which are expected to produce high levels

of pro-inflammatory mediators such as IL-1b. In contrast, M2

macrophages express high levels of IL-10 (44). These shifts are

explained by metabolic shifts between oxidative phosphorylation

and glycolysis (45). Our initial hypothesis was that the metabolic

state of the ATP production, via preference of oxidative

phosphorylation in the presence of adenosine, would be an

important connection to the fibroblast capacity to influence

periodontal homeostasis. This would involve mediation of a

gradient of inflammatory chemokines such as CXCL8 under the

influence of adenosine/AMPK signaling. So, it was interesting to see

that in the presence of uncoupler agent FCCP, which increases

respiration rate adenosine-anti-inflammatory effect on dampening

CXCL8 was cancelled. This effect was accompanied by an aspect of

mitochondrial reduced mass when we stained the cells with

Mitotracker red. A recent report suggested treatment with FCCP

resulted in mitochondrial fragmentation and reduced

mitochondrial mass in healthy and diseased cell lines (37). In this

study, although we have not shown mitochondrial fragmentation/
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fission, FCCP was used as a tool to test mitochondrial function and

to mimic a physiological “energy demand” by stimulating the

respiratory chain to operate at maximum capacity, which causes

rapid oxidation of substrates (sugars, fats, and amino acids) to meet

this metabolic challenge (46).

We hypothesized that similar to what was described for

macrophages, the metabolic shift from glycolysis to oxidative

phosphorylation of fibroblasts could directly influence their

phenotype (from inflammatory to anti-inflammatory) in the

presence of adenosine, and that this involved mitochondrial

function. Nonetheless, our results show the adenosine-induced

upregulation in mitochondrial oxidative phosphorylation

(demonstrated by higher OCR values in our mito stress test) was

not necessarily accompanied by decreased glycolysis in these cells

according to our seahorse bioenergetic readouts. Our results show

no change of the IL-1b-increased glycolysis in the presence of

adenosine. In fact, our immunoblotting data confirms no change in

markers of the glycolytic pathway such as HK2 and PKM2. The

only upregulated marker was PFKFB3, which besides being a

glycolytic activator has been linked to AMPK activation,

mechanisms of regeneration and repair following injury and

promotion of oxidative phosphorylation (47), which we believe

might be the case here. We believe PFKFB3 might have additional

roles not related to the regulation of glycolysis and we show here it

can be directly influenced by purinergic adenosine signaling. These

results prompted our attention to further investigate whether

adenosine could possibly be inducing a differential modulation of

the mitochondrial fuel, such as dependency or preference of

oxidation for one of the three mitochondrial fuels (glucose,

glutamine or fatty acid), which was revealed not to be the case as

demonstrated here.

Our data show the increase of the mitochondrial biogenesis

marker PGC-1a and decrease in mitophagy marker p-PINK1,

which was the main piece of evidence that adenosine was directly

modulating mitochondrial dynamics by favoring biogenesis over

mitophagy and therefore sustaining its anti-inflammatory effects. It

is important to highlight there are other pro-fission proteins

regulating mitophagy machinery such as Dynamin-related protein

1 (DRP-1), for example. Thus, future studies are needed to further

validate the mechanisms of adenosine in regulating pro-fission or

anti-fission activity which can be highly dependent on differences in

DRP-1 phosphorylation (48).

An upregulation in PCG-1a via AMPK activation leads to

increase in mitochondrial oxidative respiration, and this gradual

overexpression of PCG-1a leads to decreased NF-kB activity (49).

In models of skeletal muscle during exercise, SIRT1 is activated and

upregulates PCG-1a activity through deacetylation to stimulate

genes for fat oxidation; however, this energy depletion through

exercise also activates AMPK, which further activates PCG-1a. In a

reciprocal positive regulation mechanism, AMPK upregulates

SIRT1 activity and SIRT1 activates AMPK by deacetylating liver

kinase B1 (LKB1) (50).

Though complex, the relationship between these proteins is

important in the regulation of mitochondrial biogenesis and

inhibition of inflammatory pathways. SIRT1 and AMPK can

inhibit NF-kB activity separately and through mutual activation.
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SIRT1 deacetylates Lys310 on the p65 subunit of NF-kB to inhibit

it, while AMPK can inhibit NF-kB activity through activation of

SIRT1 and Forkhead box O 3a (FoxO3a) transcription factor that

led to the expression of kB-Ras1 which also inhibits NF-kB (49).

Therefore, through all these possible mechanisms we could link the

impaired NF-kB activation to the decreased CXCL8 levels elicited

by adenosine. While AMPK has been implicated in the activation of

PCG1-a via SIRT1 upregulation (50), AMPK can also activate

PCG-1a through the p38 mitogen-activated protein kinase

(MAPK) and Histone deacetylase (HDAC) pathways (25),

indicating a complex relationship between these proteins.

An important implication of these findings would be to see the

impact of adenosine-associated modulation of stromal mitochondrial

biogenesis in aging-related sustained inflammatory diseases such as

periodontitis. PGC-1a expression is reduced with aging (51) and

mitochondrial dysfunction has become a key hallmark among the

factors that contribute to aging, being associated with the

development of numerous age-related diseases (52). In addition,

fibroblasts are essential stromal cells for gingival architecture and

function and in other tissues, such as skin these cells lose their

functional specialization and change their phenotype with aging (53).

We (1, 54) and others (55) have shown that fibroblasts respond

differently to inflammatory st imuli such as bacterial

lipopolysaccharide and TLR ligands depending upon their site of

origin. In other models such as arthritis, Croft AP et al. (56)

described functionally distinct fibroblast subsets that do not

overlap in function in regards to modulation of tissue damage.

Regarding human gingiva, recent study by Caetano AJ et al. (57)

demonstrated a spatial localization of pro-inflammatory CXCL8-
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hyper secreting fibroblasts in human gingiva using single-cell

technology. The findings of the present study reveal a new

mechanism linking adenosine anti-inflammatory effects through

mitochondrial activity with regards to CXCL8 chemokine which is

highly relevant for periodontal pathogenesis. Whether the findings

of this study will be extended to other gingival fibroblast states or

subtypes remains unclear and our follow up studies will help to

understand this. We summarize our findings in Figure 6.

Besides the intricacy of these pathways, this study brings novel

perspective to the effects of purine metabolism in metabolic

reprogramming of fibroblasts, namely the role of mitochondrial

biogenesis in the underlying inflammatory phenotype of fibroblasts.

It also enlightens the therapeutic possibility of targeting pathways of

energy metabolism in gingival stromal cells, with particular

emphasis on the intersection between inflammation, purinergic

signaling and its relationship with mitochondrial metabolism.
Conclusions

Our study reveals a novel perspective for understanding the

interplay between stromal cell biology, purinergic signaling and

mitochondrial bioenergetics in regulation of IL1b-mediated

inflammation. Stromal hyper-inflammatory response typified by

CXCL8 secretion is modulated by the adenosine/AMPK/SIRT-1/

PGC-1a axis through mitochondrial biogenesis. Therapeutically

targeting this pathway in gingival fibroblasts might be a promising

future strategy to control stromal-mediated sustained hyper-

inflammatory responses.
FIGURE 6

Metabolic reprogramming through mitochondrial biogenesis drives adenosine anti-inflammatory effects in gingival stromal cells. This figure
summarizes our findings regarding metabolic effects of Il-1b-activated fibroblast response in the presence or absence of adenosine. Created in
Biorender.com.
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SUPPLEMENTARY FIGURE 1

Adenosine does not change mitochondrial fuel dependency or capacity to
maintain the Oxygen Consumption Rate (OCR). HGF stimulated with or

without 10µM EHNA + 100µM ADO for 24h were submitted to a fuel
oxidation test through seahorse analysis. Measurement of fuel dependency

was determined on the reliance of cells in a particular fuel (glucose, glutamine

or fatty acid) to maintain baseline OCR. Capacity was measured based on the
ability of cell mitochondria to oxidize a fuel when others are inhibited. Data

are presented as mean ± S.D and represent the percentage of each fuel
oxidation in the presence or absence of ADO.

SUPPLEMENTARY FIGURE 2

Quantification of Cell Fluorescence Intensity for the Mitotracker Red confocal

images presented in Figure 4. Data are presented as mean ± S.D and
represent the average of 3 independent experiments. (*p <0.05; **p <0.01).
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