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Background: Renal clear cell carcinoma (ccRCC) is one of the most prevalent

cancersworldwide. Accumulating evidence revealed that copper-induced cell death

played a vital role in various tumors. However, the underlying mechanism of

cuproptosis with molecular heterogeneity and tumor microenvironment (TME) in

ccRCC remains to be elucidated. The present study aimed to discover the biological

function of cuproptosis regulators with the potential to guide clinical therapy.

Methods: Using Single-cell RNA-seq, bulk transcriptome and other multi-omics

datasets, we identify essential cuproptosis-related hub gene PDHB for further

study. The dysregulation of PDHB in ccRCC was characterized, together with

survival outcomes, pathway enrichment and immune infiltration among tumor

microenvironments. The functional significance and clinical association of PDHB

was validated with loss of function experiments and surgical removal specimens.

Results: PDHB mRNA and protein expression level was significantly

downregulated in ccRCC tissues compared with normal and paired normal

tissues. Clinicopathological parameters and tissue microarray (TMA) indicated

that PDHB was identified as a prognostic factor for survival outcomes among

ccRCC patients. Additionally, low PDHB was negatively correlated with Treg

cells, indicating an immunosuppressive microenvironment. Mechanistically,

knockdown PDHB appeared to promote the RCC cells proliferation, migration,

and invasion potentials. Subsequent studies showed that copper-induced cell

death activation could overcome sunitinib resistance in RCC cells.

Conclusion: This research illustrated a cuproptosis-related hub gene PDHB

which could serve as a potential prognostic marker and provide therapeutic

benefits for clinical treatment of ccRCC patients.

KEYWORDS

cuproptosis, PDHB, tumor microenvironment, sunitinib, renal clear cell carcinoma,
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Introduction

Renal cell carcinoma was one of top ten malignant cancer

subtypes worldwide, which approximately affected 79000

individuals in 2022 (1, 2). There are several subvariants of RCC,

including clear cell RCC (ccRCC), papillary RCC (pRCC), and

chromophobe RCC (chRCC) (3). Among them, ccRCC was the

most common pathological subtype accounting for 70% patients

(4). Although increasing diagnosis strategies in early stage and

progressive development of surgical management help to improve

the level of efficacy, around 1/3 cases will eventually present local

recurrence or distant metastasis (5, 6). Targeted drugs, including

vascular endothelial growth factor (VEGF) inhibitors and

mammalian targets of mTOR pathway, have been widely used as

first-line treatment for metastatic renal cell carcinoma, which

exhibited curative effectiveness (7–9). However, intolerance to

TKIs treatment and poor drug response was still a major

challenge (10–12). Even more, numerous patients developed

unavoidable resistance towards TKIs like sunitinib and typically

progress over time (13–17). Therefore, exploring potential drug

targets and combination therapeutic strategies are increasingly

crucial for optimizing survival outcomes.

Copper is one of essential metal nutrient for human body within

the appropriate concentration range (18). Excessive accumulation

of copper could trigger cell death and disease, such as Wilson’s

disease and Menke’s disease (19). Accumulated evidence has proved

that copper can induce apoptosis and autophagy through multiple

mechanisms, including reaction to oxidative stress and proteasome

inhibition (20, 21). According to recent research, Todd et al.

investigated that copper ionophores induced a distinct form of

regulated cell death (22). In contrast to traditional cell death

pathways that we were familiar with, copper ionophore–induced

cell death is nonapoptotic, non-ferroptotic, and non-necroptotic,

and is dependent on copper and mitochondrial respiration (23).

Performing genomic-wide CRISPR-Cas9 screens, several genes

were filtered that could protect against copper-induced cell killing

(24). Mechanistically, researchers reported that abnormal copper

promotes the aggregation of lipoylated proteins and links

mitochondrial metabolism to copper-dependent death (24).

Elesclomol is a copper-binding compound, which could induce

ROS, apoptosis and cuproptosis, which is characterized as a novel

copper-dependent cell death mechanism (18, 20, 22, 24, 25).

Nevertheless, the particular function of cuproptosis in tumor

microenvironment during the development and progression of

ccRCC remained to be further elucidated.

In this research, we utilized multiple algorithms to identify

essential cuproptosis-related hub gene PDHB methodologically.

The dysregulation of PDHB in ccRCC was associated with

survival outcomes, pathway activation and immune infiltration

among tumor microenvironments. The functional significance

and clinical association of PDHB was validated with loss of

function experiments and clinical samples. Collectively, we
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provided new insights and discovered potential mechanisms for

using copper ionophores to overwhelm ccRCC.
Materials and methods

Data collection and processing

For single-cell RNA-seq, we collected three datasets of ccRCC

patients and normal kidney tissues were downloaded from GEO

database, including GSE131685, GSE152938 and GSE156632 (26,

27). We integrated all these scRNA through “Harmony” algorithm

and gathered total 9 ccRCC and 9 normal kidney samples (28, 29).

The standard workflow of cell clustering in Seurat was utilized to

identify distinct groups of cells based on the integrated data. In

brief, PCA was performed on the scaled data, and the top 20 PCs

were used for graph-based clustering to identify cell clusters.

Cluster marker genes were identified using “FindAllMarkers”

function in Seurat (https://satijalab.org/seurat/) based on the

“RNA” assay (30, 31). Next, respective reduction of cell

clustering, including UMAP and PCA were performed, and cell

cluster was obtained through the UMAP method. Finally, we used

the “singleR” package to get the cell type for cell population

annotation (32).

Then, for bulk RNA-seq, we integrated the normalized RNA-

seq profiles (TPM), matched clinical characteristics and survival

information of ccRCC samples and normal kidney samples from

The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov)

and GTEx database were downloaded (33). Meanwhile, GEO

dataset GSE40435 was also applied to analyze (34). Differentially

expressed cuproptosis regulators between tumor and normal tissue

samples were screened out with the Wilcoxon test and “Limma” R

package. Additionally, proteogenomic expression profiles of ccRCC

patients was downloaded and pre-processed from CPTAC database

and the supplemental materials of Ding’s research (35, 36).

Genes or proteins with false discovery rate (FDR) adjusted P <

0.05 and | log2FC (fold-change) | > 0.5 were considered as DEGs.
Biological functional enrichment analysis

We conducted Gene Ontology (GO) enrichment analysis,

which including biological process (BP), cellular components

(CC), molecular function (MF), together with Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways to explore the biological

functions and underlying signaling pathways. Subsequently, gene

set enrichment analysis (GSEA) and gene set variation analysis

(GSVA) were performed to evaluate the pathways enriched among

“h.all.v7.5.1.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” gene

sets from the molecular signature database (37, 38). We applied

“AddModuleScore” algorithm to calculate the copper-induced cell

death score in our scRNA datasets.
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Evaluating extent of immune cell
infiltration abundance in tumor
immune microenvironment

To exhibit the comprehensive landscape of immune cell

infiltration in different subgroups, we conducted several

deconvolution algorithm algorithms, including XCELL (39, 40),

TIMER (41, 42), QUANTISEQ (43, 44), MCPCOUNT (45), EPIC

(46), CIBERSORT (42, 47) and CIBERSORT-ABS (48) to estimate

the subpopulations of immunity infiltration scores. Differences

between two risk groups were analyzed by the Wilcoxon signed-

rank test and the results were obtained according to p-value< 0.05.

Subsequently, we used correlation analysis when exploring the

relationship between the risk score and immune infiltrated cells.
Clinical samples collection, tissue
microarray and immunohistochemistry

Renal clear cell carcinoma and adjacent noncancerous renal

samples were obtained by radical nephrectomy from the First

Affiliated Hospital of Nanjing Medical University (Jiangsu

Province Hospital) between 2005 and 2018. All diagnoses were

confirmed by senior pathologists independently. Informed consent

from all patients was acquired in the study. The study design and

protocol were approved by the ethics committee of the First

Affiliated Hospital of Nanjing Medical University (Jiangsu

Province Hospital). IHC assays were performed as previously

described (49, 50). Briefly, the primary antibody was diluted as

follows: anti-PDHB (1:100, Abcam, USA).
Cell culture, cell proliferation, migration,
and invasion assays

RCC cell lines (786-O, 769-P, A498, Caki-1) and human renal

tubular epithelial cell line (HK-2) were purchased from ATCC and

cultured in RPMI 1640 (786-O, 769-P), McCoy’s 5A (Caki-1),

DMEM (A498) and DMEM/F12 (HK-2) (Gibco, Thermo Fisher

Scientific, USA) containing 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin (Gibco, Thermo Fisher Scientific, USA).

Small interfering RNA targeting PDHB (si-PDHB), and negative

control (shNC) were constructed and transfected. Elesclomol

(Selleck, China), a specific copper-induced cell death activator,

was also applied. Cells were transfected with si-PDHB and si-NC

using Lipofectamine 3000 (Invitrogen, Thermo Fisher

Scientific, USA).

Pretreated RCC cells were counted and seeded into a 96-well

plate at a density of 1.0x103 cells/well. Cell proliferation was

detected after 24h, 48h, 72h, and 96h using the CCK-8 Cell

Counting Kit (Vazyme, China). The absorbance was measured at

450 nm with a microplate reader following incubation at 37°C for

1h according to the manufacturer’s protocols. For the colony

formation assay, pretreated cells were seeded into 6-well plates

(1000 cells/well). The cells were incubated for 10 days. Colonies
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were fixed in 4% paraformaldehyde for 20 min, washed with PBS

twice, and stained with 0.1% crystal violet for further analysis.

For transwell cell migration and invasion assay, 1.5×105 cells

RCC cells were seeded into the 8mm PET membranes 24-well

Transwell (Corning, USA) upper chambers with serum-free

medium for the migration assays. Medium containing 15% FBS

was added to the bottom chamber. After incubation at 37°C for

24 h, the cells were fixed in 4% paraformaldehyde for 20 min and

stained with 0.1% crystal violet for 20 min. Cells were captured on a

microscope in five randomly selected fields and repeated

three times.
RNA isolation and quantitative real‐time
PCR assay

Total RNA was isolated using Trizol (Invitrogen, Thermo

Fisher Scientific, USA). HiScript III All-in-one RT SuperMix

(Vazyme, China) was used for cDNA synthesis. qRT-PCR was

performed with SYBR qPCR Master Mix (Vazyme, China) using

StepOne Plus (Applied Biosystems, USA) and LightCycler 480 PCR

instrument (Roche Diagnostics, Switzerland) according to the

manufacturer’s instructions. The primers and siRNA Oligo used

were listed in Table S1.
Tumor in vivo assays

All mice involved in this research were approved by the

Institutional Animal Care and Use Committee (IACUC) of

Nanjing Medical University. Briefly, total 2.5 × 107 786-O cells

with knockdown-PDHB (shPDHB) and negative control cells

were collected and suspended with PBS and Matrigel (1:1,

Corning, USA), then subcutaneously injected into 4-week-old

female BALB/c nude mice. The formula of tumor volume was

calculated as follows: Tumor volume= (length*width)2/2.
Statistical analysis

All analyses were performed using GraphPad Prism software

and R 4.2.2. All statistical tests were two-sided, and P-value <0.05

was considered statistically significant unless otherwise noted.

Continuous variables in normal distribution were between-group

compared through the independent Student’s two-tailed t-test,

while continuous variables in skewed distribution through the

Mann-Whitney U test. Spearman order correlation analysis was

used to determine the relationship between different subgroups. The

differences in clinical outcomes were calculated with the Log-rank

test through the Kaplan-Meier method. The univariate regression

model was constructed to analyze the effect of each variable on the

survival. All experiments were repeated independently three times.

Data are shown as the mean ± standard deviation (SD). The P-

value < 0.05 was considered to be statistically significant.
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Results

Dysregulation and survival outcomes
of cuproptosis regulators across
pan-cancer types

Firstly, after summary copper-induced cell death regulators by

genomic-wide CRISPR-Cas9 loss of function screening results, total

10 copper-induced cell death regulators were categorized into two

groups: cuproptosis resistances (FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1, and PDHB) and cuproptosis sensitizers (MTF1, GLS, and

CDKN2A). For investigating the activity of copper-induced cell

death across human cancers, single sample gene set enrichment

(ssGSEA) algorithm was applied to calculate the cuproptosis score

(CPS) based on the gene expression from the TCGA database. We
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found that CPS is significantly downregulated in the majority

cancers (Figure 1A). Consistently, CPS was dramatically

decreased in paired samples among human cancers (Figure 1B).

These results confirmed that CPS based on different approaches or

cancer subtypes is robust. We observed the aberrant expression

patterns of these cuproptosis regulators (Figure 1C). Meanwhile, we

visualized somatic copy number alterations (SCNA) frequency and

the expression of these cuproptosis regulators in TCGA pan-cancer

cohort (Figure 1D). Additionally, we analyzed the association

between these cuproptosis regulators and overall survival

outcomes by log-rank test and Cox regression. Interestingly, high

expression of these cuproptosis resistances revealed favorable

overall survival (Figure 1E). Functional enrichment further

demonstrated that these intersecting genes were mainly enriched

in glyoxylate metabolism and glycine degradation, metabolic
B

C D

E

F

A

FIGURE 1

Landscape of expression level and survival outcomes of across human pan-cancer. (A) The cuproptosis score based on the gene expression from
the TCGA database calculated by ssGSEA algorithm. (B) Cuproptosis score was significantly downregulated in multiple cancers. (C) The expression
patterns of these cuproptosis regulators among TCGA pan-cancer dataset. (D) Somatic copy number alterations (SCNA) frequency of these
cuproptosis regulators. (E) The association between cuproptosis resistances and overall survival outcomes. (F) Functional enrichment analysis of
these cuproptosis regulators genes. *: p<0.05; ***: p<0.001; ****: p<0.0001.
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reprogramming, and biosynthesis of cofactors (Figure 1F). These

suggested that transcriptional alternations and genetic mutation of

cuproptosis regulators are probably the underlying mechanisms

leading to perturbations in copper-induced cell death.
Distinct landscape of cuproptosis regulator
genes in ccRCC

Based on above results, we discovered that ccRCC tissues had

significantly lower copper-induced cell death index compared to

adjacent normal tissues. Moreover, these cuproptosis regulators are

abnormally expressed and associate with clinical outcome in

ccRCC. Accordingly, we chose ccRCC for further research. First,

we applied renal cancer cell lines to elesclomol exposure, a specific

copper-dependent cell death activator. The cell viability of 786-O,

Caki-1, A498 and 769-P cells decreased significantly after

elesclomol treatment, which exhibited a concentration-dependent

effect (Figure 2A). To further investigate the expression pattern of

these cuproptosis-related genes in ccRCC, we quired TCGA-KIRC

cohort to compare the transcriptional alternations, which was

illustrated in a heatmap (Figure 2B). In addition, we analyzed the

correlation between the expression of different genes and survival

outcomes in ccRCC patients, which revealed strong associations.

Among them, FDX1, DLAT, DLD, LIAS and PDHB showed

positive correlation in cuproptosis resistances subgroup

(Figure 2C). We also observed PDHA1, PDHB, FDX1, GLS, DLD,

DLAT, LIAS and LIPT1 were down-regulated in ccRCC tumor

tissues, while CDKN2A exhibited higher protein expression among

tumor samples in CPTAC-ccRCC database (Figure 2D).
Single-cell RNA sequencing revealed the
distribution and expression of copper-
induced cell death in ccRCC

In consideration of the heterogeneity of ccRCC, we applied

single-cell RNA sequence (GSE) for further validation. Firstly, we

after using “Harmony” to remove batch effects, we gathered a total of

33 clusters by UMAP algorithm (Figure S1A). Then, we explored the

distribution of copper-induced cell death scores by single-cell

signature scorer and found that overwhelming majority copper-

induced cell death signature was enriched in normal samples

compared with ccRCC tumors by “AddModuleScore” algorithm

(P<0.001; Figures 2E, F). Marker genes between each cluster were

calculated and illustrated in Figure S1C. ccRCC and normal kidney

samples could mainly be divided into epithelial cells (Malignant

tumor cells), endothelial cells, Myeloid cells, Mast cells, T cells,

Fibroblast cells and Fibroblast_Endothelial_like cells (Figures S1B,

S2E). Finally, we tried to explore the exact distribution of cuproptosis

regulator genes in ccRCC tissues. Specifically, we conducted single-

cell analysis to demonstrate and validate the detail changes of

immune composition alternations and found that higher

proportion of T and Myeloid cells among patients with high

expression of PDHB, especially in patient sample T1, T6 and T9.
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In contrast, among low PDHB expression patients, we observed lower

immune cell infiltration, such as T cells andmyeloid cells (Figure 2G).

The results showed that cuproptosis regulator genes were mainly

concentrated in hepatocytes and epithelial cells, indicating their vital

role in immune cell infiltration among tumor microenvironments.
Identification of essential cuproptosis
regulator PDHB in ccRCC

To further identify the essential cuproptosis regulators in

ccRCC, we combined expression and prognostic analysis to detect

these candidates (Figure 3A). We gathered four differently

expressed cuproptosis regulators (FDX1, PDHB, PDHA1 and

CDKN2A) among TCGA-KIRC cohort and two regulators among

GSE40435 cohort (Figures 3C, D). Meanwhile, the prognostic value

of these cuproptosis-related genes was calculated by the ROC curve,

which illustrated the AUC value of CDKN2A was 0.991 (95%CI:

0.982-1.000); FDX1 was 0.965 (95%CI: 0.946-0.983), and the AUC

value of PDHB was 0.956 (95%CI: 0.933-0.979) (Figure 3B). Next,

we conducted univariate Cox regression analysis and identified total

9 prognostic genes (Figure 3E). Taken together, the multi-omics

analyses confirmed that PDHB might be the key gene involved in

copper-induced cell death. (Figure 3F).
PDHB is significantly downregulated in
ccRCC patients

We first analyzed the transcriptional profiles of PDHB in ccRCC

through TCGA and GTEx databases. PDHB expression was

significantly lower in ccRCC tumor tissues compared with normal

kidney tissues both in TCGA-ccRCC and TCGA+GTEx ccRCC

cohorts (P<0.001; Figures 4A, B). This result was also validated in

both TCGA paired samples and (P<0.001; Figure 4E). ccRCC samples

of our NJMU cohorts, (Figure 4F). The ROC curve was also applied

to assess the prognostic of PDHB. The AUC value of PDHB in

TCGA-ccRCC cohort was 0.956 (95% CI: 0.933-0.979) and 0.844

(95% CI: 0.784-0.903) in TGCA+GTEx database (Figures 4C, D).

Moreover, PDHB protein expression level was significantly

downregulated in ccRCC tissues from CPTAC and Chinese

FUSCC cohort (Figures 4G,H). Ultimately, its tissue abundance

was measured using IHC both in HPA database and our clinical

samples, which achieved consistent results from above achieved

(Figures 4I, J). We also evaluated the association between PDHB

expression and clinicopathological features. As shown in Figure 4K,

the expression of PDHB in patients with lower stage (Stage I-II) was

found significantly higher compared to patients who were highe stage

(Stage III-IV) level (P<0.05; Figure S2A). The distribution of PDHB

showed a significant difference among the T classification. PDHBwas

highly expressed in T1-2 patient compared with T3-4 patient

(P<0.05; Figure S2B). Similarly, PDHB was decreased with

advanced M classification (Figure S2C). We also performed qRT-

PCR experiments to detect the expression level of PDHB in ccRCC or

normal kidney cell lines and found that PDHB was down-regulated
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in ccRCC cell lines (P<0.05; 786-O, 769-P, Caki-1 and A498)

compared with normal kidney cell line HK2 (Figure 4L).

Additionally, about the subsequent analyses, median cut was used

to dichotomize 539 individuals into high-PDHB (n=270) and low-

PDHB (n=269) subgroup based on mRNA expression level. As

shown in Table 1, PDHB was significantly correlated with the

pathologic stage and T classification (P<0.001). Furthermore,

logistic regression analysis was adopted to describe the exact

correlativity between PDHB expression and clinicopathological
Frontiers in Immunology 06
characteristics (Table 2). Taken together, above results suggested

that PDHB played a vital role in ccRCC.
Low expression of PDHB revealed
unfavorable survival outcomes

From TCGA-ccRCC database, we found that the patients with low

level of PDHB displayed poor prognosis in overall survival (OS),
B

C D

E F

G

A

FIGURE 2

Single-cell and bulk RNA-seq revealed the distinct landscape of cuproptosis regulator genes in ccRCC. (A) The cell viability of 786-O, Caki-1, A498
and 769-P cells decreased significantly after cuproptosis activator (elesclomol) treatment. (B) The expression pattern of these cuproptosis-related
genes in ccRCC and adjacent normal tissues. (C) Correlation analysis of these cuproptosis-related genes. (D) The protein expression level of these
cuproptosis regulators in CPTAC-ccRCC database. (E) Single-cell RNA-seq illustrated the distribution of copper-induced cell death scores by
“AddModuleScore” algorithm. (F) Copper-induced cell death signature was significantly down-regulated in ccRCC tumors tissues compared with
normal samples both in all cells and tumor cells. (G) The cell proportion among different patients and correlations of PDHB expression level.
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disease-specific survival (DSS) and progression free interval (PFI)

(Figures 5A–C). In addition, conducting univariate and multivariate

cox regression, PDHB could serve as an independent predictive marker

for ccRCC patients’ overall survival (Univariate: HR=0.553, 95%

CI=0.407−0.751, P<0.001; Multivariate: HR=0.696, 95% CI=0.503-

0.963, P=0.029), revealing that low levels of PDHB expression were

correlated with shorter OS (Figure 5D). Moreover, a nomogram based

on age, gender, pathologic stage, and PDHB was developed to predict

the 1-, 3-, and 5-year OS for individual ccRCC patients. (Figure 5E).

Additionally, by analyzing PDHB expression from IHC tissue

microarray staining from our NJMU ccRCC cohort (N=90), we

divided patients into PDHB-high and PDHB-low subgroups

(Figure 5F). Kaplan-Meier survival curves demonstrated that low

expression of PDHB were correlated with shorter overall survival

(P=0.022; Figure 5G). Therefore, these findings suggested that PDHB

might serve as an indicator for the clinical prognosis of ccRCC patients.
Frontiers in Immunology 07
Functional enrichment and pathway
annotation of PDHB

PPI network was constructed and illustrated in ComPPI

database (Figure 6A). We next investigated the difference among

biological function, hallmarks and pathways involved. GSVA

analysis demonstrated that oxidative phosphorylation,

adipogenesis, mTORC1 signaling and fatty acid metabolism

pathway was significantly enriched in PDHB low subgroup

(Figure 6B). GSEA analysis also acquired similar enrichment of

Hallmark bile acid metabolism and apical surface signature in

PDHB-low subgroup (Figures 6C, S3A, B). By calculating PDHB

co-expressed genes (Figures S3A, B), we found that co-expressed

genes were involved in tRNA processing and GDP binding

pathway. These findings confirmed that down-regulated PDHB

was mainly participated in metabolism-related pathway.
B

C
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F

A

FIGURE 3

Identification of essential cuproptosis regulator PDHB in ccRCC. (A) The expression level of these cuproptosis regulator candidates in TCGA-ccRCC
cohort. (B) The prognostic value of these cuproptosis-related genes calculated by the ROC curve and AUC value in TCGA-ccRCC cohort. (C, D)
Differently expression analysis of cuproptosis regulators among TCGA-KIRC cohort (C) and two regulators among GSE40435 cohort (D). (E)
Univariate Cox regression analysis and identified prognostic cuproptosis regulators in TCGA-ccRCC cohort. (F) Venn diagram of above analysis
revealed PDHB was the essential regulators among ccRCC patients.
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Correlation between PDHB and
characteristics of tumor microenvironment

We applied ssGSEA algorithm to evaluate 24 types of immune

cell infiltration level among tumor microenvironment (TME).

Detailed characteristics of immune cell proportion and differences

between PDHB expression subgroup was further identified. The

results revealed that regulatory T cells (Treg) cells were dramatically
Frontiers in Immunology 08
increased in low-PDHB patients, which demonstrated a suppressive

tumor immune microenvironment (Figure 6D). Then, we

investigated the component of immune cell and stromal cell using

ESTIMATE algorithm. As shown in Figure 6E, high-PDHB

expression subgroup tend to illustrate more immune and stromal

cell infiltration phenomenon. Additionally, correlation analysis

indicated that Treg, cytotoxic cells, NK CD56bright cells and T

cells was negatively correlated with PDHB expression level, while
B C D

E F G H

I J

K L

A

FIGURE 4

The expression pattern of PDHB in ccRCC tissues and clinical characteristics. (A) The expression level of the PDHB in distinct tumors or specific
tumor subtypes. (B) The expression level of PDHB in TCGA-ccRCC and GTEx database. (C, D) ROC curve showed the efficiency of PDHB to
distinguishing ccRCC tissue from normal tissue in TCGA (C) and TCGA+GTEx cohort (D) (E) The expression level of PDHB in TCGA-ccRCC paired
samples. (F) The expression level of PDHB in our NJMU-ccRCC clinical samples. (G, H) The protein expression level of PDHB among FUSCC-ccRCC
and CPTAC-ccRCC proteome cohorts. (I) IHC staining of ccRCC samples in HPA database. (J) IHC staining of our clinical ccRCC samples confirmed
the down-regulated expression level in ccRCC samples compared with normal renal samples. (K) The correlation between expression level of PDHB
and different clinicopathologic characteristics. (L) qRT-PCR experiments to detect the expression level of PDHB in ccRCC or normal kidney cell lines.
*: p<0.05; **: p<0.01; ***: p<0.001; ns, no significant.
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TABLE 2 Logistic regression analysis of PDHB and clinical information among TCGA-ccRCC cohort.

Clinical Characteristics Total (N) Odds Ratio (OR) P-value

T stage (T2-4 vs. T1) 539 0.505 (0.358-0.711) <0.001

N stage (N1 vs. N0) 257 0.771 (0.268-2.136) 0.618

M stage (M1 vs. M0) 506 0.629 (0.382-1.024) 0.065

Pathologic stage (Stage III-IV vs. Stage I-II) 536 0.441 (0.308-0.629) <0.001

Age (>60 vs. <=60) 539 0.856 (0.610-1.199) 0.366

Gender (Male vs. Female) 539 0.773 (0.541-1.103) 0.156

Histologic grade (G3-4 vs. G1-2) 531 0.630 (0.446-0.887) 0.008
F
rontiers in Immunology
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TABLE 1 Baseline information of clinicopathology characteristics and PDHB expression level among TCGA-ccRCC cohort.

Characteristic Low expression of PDHB High expression of PDHB P-value

Total 269 270

Age, n (%) 0.413

<=60 129 (23.9%) 140 (26%)

>60 140 (26%) 130 (24.1%)

Gender, n (%) 0.184

Female 85 (15.8%) 101 (18.7%)

Male 184 (34.1%) 169 (31.4%)

Histologic grade, n (%) 0.057

G1 5 (0.9%) 9 (1.7%)

G2 105 (19.8%) 130 (24.5%)

G3 114 (21.5%) 93 (17.5%)

G4 43 (8.1%) 32 (6%)

Pathologic stage, n (%) < 0.001

Stage I 113 (21.1%) 159 (29.7%)

Stage II 27 (5%) 32 (6%)

Stage III 79 (14.7%) 44 (8.2%)

Stage IV 49 (9.1%) 33 (6.2%)

T stage, n (%) < 0.001

T1 116 (21.5%) 162 (30.1%)

T2 34 (6.3%) 37 (6.9%)

T3 114 (21.2%) 65 (12.1%)

T4 5 (0.9%) 6 (1.1%)

N stage, n (%) 0.809

N0 120 (46.7%) 121 (47.1%)

N1 9 (3.5%) 7 (2.7%)

M stage, n (%) 0.083

M0 209 (41.3%) 219 (43.3%)

M1 47 (9.3%) 31 (6.1%)
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mast cells, Tgd, DC, eosinophils and Tfh cells has a significant

positive correlation with PDHB (Figure 6F). Additionally, we found

negative association between the expression level of PDHB and

Treg cell marker FOXP3 in TCGA-ccRCC cohort. Ultimately, we

performed IHC assays to detect the expression level of PDHB and

Treg cell marker FOXP3, which found a negative correlation

between PDHB and Treg cells in our NJMU ccRCC cohort

(Figure 6I). Above results suggested that low expression of PDHB

plays a vital role in regulating suppressive tumor immune

microenvironment mainly via up-regulating Treg cells by ssGSEA

and CIBERSOFT algorithms (Figure 6G). We assessed the IPS score

among different PDHB expression level patients, which could

predict the response to immunotherapy. Among them, IPS score

of CTLA-4 block therapy and CTLA4+PD-1 combined block

therapy was significantly increased in high-PDHB group

(Figure 6H). These results illustrated low-PDHB expression
Frontiers in Immunology 10
patients are more likely to benefit from CTLA-4 block therapy

and CTLA4+PD-1 combined block immunotherapy.
Knockdown PDHB promoted proliferation
and migration of ccRCC in vitro and in vivo

To further determine the biological oncogenic role of PDHB in

ccRCC, PDHB-was knocked down in 786-O and Caki-1 cell models

and validated by qRT-PCR and western blotting (Figure 7A,

P< 0.05). Cell counting kit-8 (CCK-8) assay indicated that PDHB

knockdown significantly increased cell proliferation ability

(Figure 7B). Colony formation assay was also employed to

determine the long-term impact of PDHB on cells proliferation.

We observed higher colony-formation efficiency in PDHB

knockdown group than control group both in 786-O and Caki-1
B C

D E

F G

A

FIGURE 5

Survival analysis of PDHB and construction of nomogram (A-C) Kaplan–Meier curve showed the prognostic value of HNRNPC in OS, DSS, and PFI.
(D) Univariate and multivariate Cox regression analysis in overall survival (OS). (E) Construction of a nomogram for estimation of survival rates for
ccRCC patients. (F) Representative images of IHC staining of low and high PDHB expression in tissue microarray (N=90). (G) Kaplan–Meier survival
analysis revealed low expression of PDHB revealed unfavorable clinical outcomes among our NJMU-ccRCC cohort.
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cell lines accordingly (Figures 7C, D). Ultimately, in vivo

experiment confirmed that knocking down PDHB dramatically

accelerated tumor growth (Figure 7E). In addition, Transwell

migration assay and wound healing assay demonstrated that

knockdown PDHB increased the migration ability of RCC cells

(Figures 7F–I). These findings corroborated that PDHB was

essential for ccRCC proliferation and metastasis in vitro and in vivo.
Frontiers in Immunology 11
Copper-induced cell death activation
overcomes sunitinib resistance in
ccRCC cells

Currently, sunitinib is a first line recommended clinical treatment

drug that targets multiple RTKs, such as VEGFR2 (Flk-1) and

PDGFRb (51, 52). Considering that sunitinib resistance is still a
B C

D E

F G H

I

A

FIGURE 6

Functional enrichment analysis and Relationship of immune infiltration among tumor microenvironments. (A) ComPPI database for constructing a
cellular compartment-specific protein-protein interaction network of PDHB. (B) GSVA analysis illustrated that PDHB participated in several Hallmark
pathways. (C) GO and KEGG pathway enrichment of PDHB related genes. (D-F) the difference and correlation between PDHB expression and various
immune cells and ESTIMATE score. (G) The correlation analysis between PDHB expression and Treg cells. (H) Assessment of IPS score among
different PDHB expression level patients (I) IHC experiments among NJMU-ccRCC tissue microarray cohort to detect the expression level of Treg
cell marker FOXP3. *: p<0.05; **: p<0.01; ***: p<0.001; ns, no significant.
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common challenge for targeted therapies among renal cell carcinoma

(53), we sought to investigate the combined therapeutic strategies to

overcome sunitinib resistance in RCC cells. Importantly, the

combination therapy of elesclomol and sunitinib profoundly

suppressed the proliferation ability of ccRCC cells in a synergistic

manner, as demonstrated by the HSA and Bliss synergy scores (786-
Frontiers in Immunology 12
O: ZIP-score: 17.89, Bliss-score: 17.79; Caki-1: ZIP-score: 11.93, Bliss-

score: 11.88; Figures 7J, K). Ultimately, among the most synergistic

area score also demonstrated that elesclomol and sunitinib could

suppress ccRCC cells proliferation synergistically (Most synergistic

area score: 786-O: ZIP-score: 26.75, Bliss-score: 27.31; Caki-1: ZIP-

score: 21.05, Bliss-score: 20.27; Figures 7J, K).
B
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FIGURE 7

Silencing essential cuproptosis regulator PDHB promoted ccRCC proliferation, migration and sunitinib resistance. (A) qRT-PCR to confirm the
performance of siRNA targeting PDHB among 786-O and Caki-1 RCC cells. (B) CCK-8 assay results indicated that PDHB knockdown increased cell
proliferation. (C, D) Colony-formation efficiency of knockdown PDHB in 786-O and Caki-1 cells. (E) Knocking down PDHB dramatically accelerated
tumor growth in vivo. (F, G) Transwell migration assay of knockdown PDHB and control group. (H, I) Wound healing assay of knockdown PDHB and
control group. (J, K) Colony formation assays for the assessment of inhibition rate 786-O and Caki-1 cells treated with sunitinib and elesclomol for
10 days, while the synergy score plot based on ZIP and Bliss models.
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Discussion

Clear cell renal cell carcinoma is the most common and lethal

histological subtype of RCC (2, 54). About 15% of RCC patients are

metastatic while detected (55). Interest in investigating the possible

targeting of particular immune-related biomarkers for

immunotherapy has increased as a result of the efficacy of

immune checkpoint inhibitors in treating ccRCC (56).

Nevertheless, there are currently no clinically applicable markers

to assess heterogeneous molecular subgroups and reliably predict

their prognostic outcome in clinic treatment (4, 57, 58).

Recently, accumulating studies revealed that intracellular

copper (Cu) induces a novel form of regulated cell death that is

different from oxidative stress-related cell death (apoptosis,

ferroptosis, and necroptosis), which has been termed

“cuproptosis” (22–25). Understanding how cuproptosis is

initiated, propagated, and ultimately executed may presented a

new perspective on therapeutic interventions and possible

combination treatments (59–61). However, the role and

underlying mechanism of cooper-induced cell death in ccRCC

remained unclear. To determine the specific regulator of copper-

mediated cytotoxicity in ccRCC, we first obtained ten essential

cuproptosis regulators by genome-wide CRISPR-Cas9 loss-of-

function screens. Then, combined with multi-omics analysis,

PDHB was selected as the essential cooper-induced cell

death regulator.

Localized in the mitochondria, pyruvate dehydrogenase B

(PDHB) is the enzyme that catalyzes the glucose-derived pyruvate

to the acetyl-CoA and plays important role in oxidative

phosphorylation (62). Zhu et al. showed that miR-146b-5p could

regulate colorectal cancer proliferation, invasion and glycolysis

directly targeting PDHB (63). Similarly, other researchers found

that PDHB was involved in circadian clock and could regulates

metabolic phenotype in colorectal cancer, which influenced tumor

progression and drug response (64). However, the mechanism and

biological function of PDHB in ccRCC is still poorly understood.

Our study first illustrated the landscape of dysregulation of

cuproptosis regulators across human cancer and found distinct

expression pattern of cuproptosis regulators in ccRCC. In order to

discover the most important cuproptosis regulators in ccRCC, we

performed multi-omics screens and confirmed PDHB as an

essential component regulating in ccRCC progression. qRT-PCR

and IHC was further validated in our NJMU-ccRCC cohort.

Moreover, our research revealed high PDHB expression level was

associated with favorable survival outcomes in both TCGA database

and our clinical cohort. Functional enrichment and pathway

annotation demonstrated that PDHB was involved in oxidative

phosphorylation and fatty acid metabolism pathway, which was

corresponding with the feature of cuproptosis: lipoylated TCA cycle

proteins-mediated novel cell death pathway (65, 66). Furthermore,

cuproptosis-related gene PDHB might inhibit the progression of

ccRCC by mediating immune-active tumor microenvironment

associated with cell death and immune responses.
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Ultimately, we analyzed the correlation between immune

characteristics among tumor microenvironment and PDHB

expression level. Our finding revealed Treg, cytotoxic cells, NK

CD56bright cells and T cells was negatively correlated with PDHB,

indicating low PDHB may contribute immune suppressive

microenvironment. Recent research provided that Tregs are one

mechanism of tumor-driven immune evasion that provide

prototypical targets for testing novel anticancer strategies within

the newer paradigm (67). The dysfunction of Tregs may

contributed to immune dysfunction, immune suppression and

sunitinib resistance (68–70). Based on above evidence, we

provided an innovative combination strategy for treating ccRCC

populations. Our findings demonstrated that copper-induced cell

death activation overcomes sunitinib resistance in ccRCC cells.

However, the mechanisms underlying PDHB’s tumorigenic actions

are still not entirely clarified. Before we can target this protein in

patients safely and effectively, further research is required to

describe the comprehensive molecular mechanisms of PDHB.
Conclusions

In summary, our research illustrated the dysregulation of

cuproptosis regulators across human cancer and revealed its

expression pattern, survival outcomes and biological function n

ccRCC. As a hub cuprotosis-related regulators, low PDHB

expression closely associated with immune suppressive

microenvironment and sunitinib resistance, which mainly via

regulating Tregs. Therefore, PDHB could serve as a potential

prognostic biomarker and immune-regulation factor for ccRCC.
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SUPPLEMENTARY FIGURE 1

Single-cell RNA-seq quality control and pretreatment. (A) “Harmony” and
UMAP algorithm to remove batch effects and gathered a total of 33 clusters.

(B) Detailed cell annotation of single-cell RNA-seq. (C) Dotplot illustrated the
marker genes between each cluster.

SUPPLEMENTARY FIGURE 2

The expression level of PDHB and clinical characteristics. (A-C) The

expression level of PDHB was analyzed by different clinicopathologic
characteristics. (A) Stage I-II versus Stage III-IV. (B) T1-T2 versus T3-T4. (C).
M0 versus M1.

SUPPLEMENTARY FIGURE 3

GSEA analysis and functional enrichment of PDHB. (A) GSEA analysis

enrichment demonstrated that Hallmark bile acid metabolism and apical

surface signature in PDHB-low subgroup. (B) GSEA analysis illustrated that
PDHB participated in several KEGG metabolism-related pathways. (C)
Heatmap showed the co-expressed genes of PDHB.

SUPPLEMENTARY FIGURE 4

Correlation analysis between PDHB and Treg cells. (A) Correlation analysis

between PDHB and Treg cells by “CIBERSORT” algorithm. (B) Correlation
analysis between PDHB and Treg cell marker gene FOXP3 in TCGA-
ccRCC cohort.
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