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This review provides insight into the complex network of signaling pathways

and mechanisms involved in stroke pathophysiology. It summarizes the historical

progress of stroke-related signaling pathways, identifying potential interactions

between them and emphasizing that stroke is a complex network disease. Of

particular interest are the Hippo signaling pathway and ferroptosis signaling

pathway, which remain understudied areas of research, and are therefore

a focus of the review. The involvement of multiple signaling pathways,

including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2

(Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-

1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as

oxidative stress and apoptosis, highlights the complexity of stroke. The review also

delves into the details of traditional Chinese medicine (TCM) therapies such as

Rehmanniae and Astragalus, providing an analysis of the recent status of western

medicine in the treatment of stroke and the advantages and disadvantages of TCM

and western medicine in stroke treatment. The review proposes that since stroke

is a network disease, TCM has the potential and advantages of a multi-target

and multi-pathway mechanism of action in the treatment of stroke. Therefore,

it is suggested that future research should explore more treasures of TCM and

develop new therapies from the perspective of stroke as a network disease.
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1. Introduction

Stroke is a serious medical condition that occurs when brain tissue is damaged due
to cerebrovascular accidents. Different types of stroke include ischemic stroke, cerebral
hemorrhage, and subarachnoid hemorrhage, which are classified based on their causes
and symptoms. Ischemic stroke, the most common type, occurs when brain tissue is
damaged due to a lack of oxygen and nutrients caused by thrombosis, embolism, or
systemic under perfusion. In contrast, a cerebral hemorrhage occurs when a blood vessel
ruptures in the brain, resulting in tissue underperfusion. About fifteen percent of cerebral
hemorrhages result from ruptured blood vessels, structural abnormalities of blood vessels,
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or post-hypertensive small vessel abnormalities. Subarachnoid
hemorrhage, which accounts for about 5% of strokes, is primarily
caused by ruptured saccular aneurysms (Dirnagl et al., 1999;
Donnan et al., 2008).

Stroke, along with severe conditions such as ischemic heart
disease, chronic obstructive pulmonary disease, and Coronavirus
Disease 2019 (COVID-19), is a significant cause of mortality
worldwide. The pathophysiology of stroke comprises multiple
mechanisms, including inflammatory response, oxidative stress,
apoptosis, angiogenesis, and autophagy (Krupinski et al., 1994;
Dirnagl et al., 1999; Allen and Bayraktutan, 2009). The Global
Burden of Disease study data indicates that the number of stroke
cases increased to 12.2 million in 2019, which is a substantial rise of
70.0% in comparison to the total number of stroke cases recorded
in 1990 (GBD 2019 Stroke Collaborators, 2021) In low-income
countries, the age-standardized mortality rate for stroke is 3.6 times
higher compared to high-income countries, and stroke also poses a
greater burden in low-income countries. Moreover, the incidence of
stroke exhibits regional disparities, as well as variations in age and
gender distribution (GBD 2019 Stroke Collaborators, 2021; Vyas
et al., 2021). Stroke can be treated with a variety of interventions
such as anticoagulation, antiplatelet medication, blood pressure
control, lipid reduction, thrombolysis, carotid endarterectomy, and
stem cell transplantation, all of which can help reduce the risk
of stroke and provide some relief to patients (O’Rourke et al.,
2004; Donnan et al., 2008; Barthels and Das, 2020). Research
on epidemiology and preventive medicine has suggested that
maintaining appropriate levels of metal elements in plasma is
crucial for reducing the risk of stroke. Studies have identified high
concentrations of iron, copper, and selenium in plasma as risk
factors for stroke development (Alim et al., 2019; Mirończuk et al.,
2021; Shi et al., 2021; Zhang et al., 2021). Further research has
confirmed that stroke occurrence, progression, and prognosis can
be significantly affected by cell death resulting from iron-related
mechanisms (Zhou et al., 2021). Selenium (Se) therapy has been

Abbreviations: TCM, traditional Chinese medicine; Hippo,
Salvador/Warts/Hippo (SWH); SHH, Sonic Hedgehog (SHH) signaling
pathway; Nrf2/ARE, nuclear factor erythroid 2-related factor 2/antioxidant
response element; HIF-1α, hypoxia-inducible factor 1 alpha; PI3K/AKT,
phosphatidylinositol 3-kinase/protein kinase B; JAK/STAT, Janus
kinase/signal transducer and activator of transcription; AMPK,
AMP-activated protein kinase; COVID-19, coronavirus disease 2019; MAPK,
mitogen-activated protein kinase; ROS, reactive oxygen species; PCD,
programmed cell death; YAP/TAZ, yes-associated protein/transcriptional
co-activator with PDZ-binding motif; TEAD 1-4, TEA domain family
members 1-4; LATS1/2, the hippo pathway is a key kinase that relays
phosphorylation signals to effector molecules; MST1/2, the mammalian
homolog of the core kinase Hippo protein; BBB, blood-brain barrier;
IL-1β, interleukin-1β; IL-6, interleukin-6; TCF4, transcription Factor 4;
GSK-3β, glycogen synthase kinase 3 beta; β-catenin, a protein that
plays a key role in the Wnt signaling pathway; TXB5, thromboxane
B5; b-TrCP E3, beta-transducin repeat-containing protein E3; GPX4,
glutathione peroxidase 4; FSP1, ferroptosis inhibitor protein 1; RSL3,
reactive species-generating compound 3; xCT/SCL7A11, xCT, also
known as SLC7A11, stands for cystine/glutamate transporter; OGD/R,
oxygen-glucose deprivation/reperfusion; ASCL4, acyl-CoA synthetase
long-chain family member 4; tMCAO, transient middle cerebral artery
occlusion; pMCAO, permanent middle cerebral artery occlusion; SAH,
subarachnoid hemorrhage; BECN1, Beclin 1 is a protein that plays a key role
in the regulation of autophagy; NOX4, NADPH Oxidase 4; VEGF, vascular
endothelial growth factor; TNF-α, tumor necrosis factor alpha; ICAM-1,
intercellular adhesion molecule 1; BDNF, brain-derived neurotrophic factor;
TrKB, tropomyosin receptor kinase B; ICH, intracerebral hemorrhage;
rt-PA, recombinant tissue plasminogen activator; PPAR-γ, peroxisome
proliferator-activated receptor gamma; TNK-tPA, tenecteplase.

found to mitigate the detrimental effects of stroke by targeting the
three primary factors involved in iron-related cell death, namely
lipid peroxidation, generation of reactive oxygen species, and iron
metabolism (Alim et al., 2019).

The signaling pathways associated with stroke are intricate,
comprehensive, and interconnected systems. The year 2011
witnessed the emergence of a new field of study known as
cyber medicine (Barabási et al., 2011). Stroke rarely results from
abnormalities in the product of a single gene target, but rather
is a multifaceted outcome of complex network interactions (Qin
et al., 2022). The main focus of this paper is the concept of
"network disease", which seeks to provide novel insights into the
exploration of better drug targets. Stroke is a complex network
disease that involves multiple signaling pathways, and relying solely
on single-target Western drugs may not be effective in treating
it or have side effects. The benefit of TCM and its formulations
lies in their ability to provide a synergistic effect on multiple
pathways and targets, making them effective in acting on various
signaling pathways involved in stroke (Lou et al., 2022). This
paper aims to explore the molecular mechanisms of stroke-related
signaling pathways, provide an overview of the historical process,
development, and relationship between each signaling pathway and
stroke, and highlight the intricate and interconnected relationships
among them. In addition, we will review the current status of
TCM in improving and treating stroke through various molecular
mechanisms such as angiogenesis, inflammatory response, and
oxidative stress. TCM holds great potential for pharmacological
studies of network diseases such as stroke.

2. Historical progression of stroke’s
classical signaling pathways

2.1. Stroke related signaling pathways:
historical progress and current research

Given the complex pathogenesis of stroke, this paper provides
a macroscopic overview of its pathophysiological basis. The
pathophysiological mechanisms that contribute to stroke include
angiogenesis, oxidative stress, autophagy formation, inflammatory
response, and apoptosis (as summarized in Supplementary
Table 1). Next, we provide a summary and elaboration of stroke-
related signaling pathways from various molecular mechanisms
such as angiogenesis, oxidative stress, autophagy behavior,
inflammatory response, cell proliferation, and apoptosis (as
summarized in Supplementary Table 2). A summary diagram
of stroke-related signaling pathways is shown in Figure 1.
Supplementary Table 2 summarizes the historical process and
research progress of signaling pathways related to different
pathophysiological mechanisms of stroke.Understanding the
historical development process of each signaling pathway related to
stroke can enhance our comprehension of the research process and
development status of a particular signaling pathway. Currently,
scientific research tends to explore the correlation between two
signaling pathways, as the signal axis can impact the occurrence,
development, and treatment of stroke (Zhan et al., 2022). In recent
years, due to the network disease characteristics of stroke, the
potential crosstalk between a signaling pathway and other signaling
pathways has been gradually uncovered (Lou et al., 2022).
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2.2. From the historical process: the
Hippo signaling pathway and iron death
signaling pathway in stroke should be
focused

Previously, we summarized Supplementary Table 2, which
summarized the historical course of stroke-related signaling
pathways. Since its discovery in 2017, ferroptosis, a newly identified
programmed cell death (PCD) pathway, has shown a potential
relationship with stroke (Dixon et al., 2012; Zille et al., 2017).
The signaling pathways involved in ferroptosis mainly include
lipid peroxidation, iron metabolism, and amino acid metabolism,
which can affect the generation of reactive oxygen species (ROS).
Ferroptosis has gained significant attention in the fields of
neuroscience and medicine, and it is now considered an important
area of research (Hirschhorn and Stockwell, 2019). Ferroptosis has
been implicated in the development and progression of a range
of diseases, including stroke. Inhibition of ferroptosis, a newly
identified form of cell death, has been shown to reduce lesion
damage to some extent and even improve prognosis. However, the
existing research on ferroptosis, particularly in relation to stroke,
is limited. Therefore, we highlight the significance of ferroptosis
and draw attention to its importance in stroke-related signaling
pathways.

The Hippo signaling pathway is known to play a crucial
role in regulating cell behavior, growth, proliferation, and tissue
homeostasis (Meng et al., 2016). The historical studies on this
pathway are mainly focused on cancer, and it regulates organ
regeneration and cell plasticity (Harvey et al., 2013). Regeneration
is also very important for the prognosis of stroke, affecting tissue
recovery and cell regeneration after stroke injury. Therefore, it
is very important to study the role of this signaling pathway in
stroke. Recently, the important role of Sonic Hedgehog signaling
pathway in brain repair and functional recovery after stroke
suggests that the regulation of Sonic Hedgehog signaling pathway
is a potential strategy to extend the therapeutic window after
stroke. The molecular mechanism of regulating the Hippo signaling
pathway can affect ischemia-reperfusion injury (Jin et al., 2017;
Gong et al., 2019, 2021). Therefore, we take it out of the historical
process of stroke and emphasize the potential of this pathway in
stroke with a lot of pen and ink, suggesting that new and more
research should be carried out.

It is crucial to consider the aforementioned pathways, however,
there is limited strong historical research on their specific
mechanisms and effects in the treatment of stroke. Additionally,
it has been revealed that ferroptosis has crosstalk with other
pathways such as necroptosis and oxidative stres (Yan et al.,
2021). Furthermore, there is a potential crosstalk between the
Hippo signaling pathway and the ferroptosis signaling pathway

FIGURE 1

Summary diagram of stroke-related signaling pathways. We have categorized the important signaling pathways involved in stroke into two major
groups: the "STAR" signaling pathway and other signaling pathways. Additionally, based on the pathophysiological mechanisms of stroke, we have
divided the other signaling pathways into six aspects: angiogenesis, oxidative stress, autophagy, inflammatory response, apoptosis, and new cell
death. The STAR signaling pathways include JAK/STAT, AMPK, mitogen-activated protein kinase (MAPK), and PI3K/AKT. These pathways can affect
several pathophysiological mechanisms of stroke and are listed separately for emphasis.
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(He et al., 2022). Therefore, in the following sections, we will
provide a summary of the historical progression of the Hippo
signaling pathway and the ferroptosis signaling pathway, their
underlying mechanisms, the interplay between pathways, and their
relationship to stroke.

2.3. Hippo signaling pathway and stroke:
regeneration potential

2.3.1. Research history of Hippo signaling
pathway

The Hippo signaling pathway, also referred to as the
Salvador/Warts/Hippo (SWH) pathway, has gained attention as a
research area in recent years. It was initially discovered in tissues
of the fruit fly Drosophila melanogaster. The research history of
Hippo signaling pathway is shown in Figure 2. The first crucial
gene of the Hippo signaling pathway, known as Warts (Wts or Lats),
was identified through genetic screening in 1995 in Drosophila.
This gene encodes a protein serine/threonine kinase and acts as a
newly identified tumor suppressor gene. Inhibition of its expression
can lead to excessive proliferation and abnormal differentiation
(Justice et al., 1995; Xu et al., 1995). Subsequently, in 2002, the
Hariharan and Halder labs identified the second gene of the Hippo
pathway, Sav. This gene contains two domains associated with
the Wts gene and promotes apoptosis. Mutations in the Sav gene
are associated with abnormal proliferation and cancer (Kango-
Singh et al., 2002; Tapon et al., 2002). Since then, there have been
several discoveries in the Hippo signaling pathway. For instance,
the tumor suppressor Mat was found to interact with the Wts gene
to enhance Wts kinase activity (Lai et al., 2005). Additionally, the

Hpo gene encodes a Ste-20 family protein that links the Wts gene
with the Sav gene to control growth (Harvey et al., 2003; Udan
et al., 2003; Wu et al., 2003). Among them, the Sav gene can be
phosphorylated by the Hpo gene to promote the interaction with
the Wts gene (Pantalacci et al., 2003). Furthermore, the Yap gene
was found in yeast hybridization, which makes up for the missing
link of downstream transduction of the Wts gene to regulate
the cell cycle and activate cell death regulators (Huang et al.,
2005). The identification of Mat, Hpo, Yap, and other genes has
enabled the linkage of previously identified pathway components,
resulting in the discovery of the Hippo signaling pathway, which
regulates organ size by controlling cell number. The pathway
was first identified in Drosophila tissues, and more than 30
components have been identified through various studies. Research
has advanced from the initial studies in Drosophila to studies in
mammals, with the pathway being evolutionarily conserved, as the
key molecules identified in Drosophila have homologous genes
in mammals (Meng et al., 2016). The Hippo signaling pathway
is crucial for maintaining the balance between cell apoptosis
and proliferation (Harvey et al., 2003). Furthermore, the Hippo
signaling pathway is involved in embryonic development, tissue
regeneration, and the regulation of organ size (Grijalva et al., 2014;
Elbediwy et al., 2016; Moya and Halder, 2019). The Hippo signaling
pathway has been implicated in a wide range of diseases, including
cancer and cardiovascular diseases, due to its important function
(Moroishi et al., 2015; Zanconato et al., 2016; Zheng and Pan, 2019).

2.3.2. The key regulatory mechanisms of Hippo
signaling pathway

The Hippo signaling pathway is regulated through a series
of steps. In mammals, the pathway is activated by upstream

FIGURE 2

The historical process of the Hippo signaling pathway. The discovery of the Hippo signaling pathway began with the identification of the Wts gene in
1995, which was followed by the discovery of other genes such as Sav, YAP, and Mst. These findings helped to improve our understanding of the
composition and function of the Hippo signaling pathway. Over the years, the Hippo signaling pathway has been found to regulate a range of
biological processes, including cell proliferation, apoptosis, tissue development, and more (2004–2010). More recently, it has been implicated in
cardiovascular disease, cancer (2011–2016), and its potential role in stroke treatment has been discovered (2018–2022).
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membrane protein receptors in response to extracellular signals.
These receptors are subsequently phosphorylated by a sequence
of conserved kinases, which ultimately regulate the activity of
downstream effectors, namely Yes-associated protein (YAP)/PDZ-
binding motif (TAZ) (Meng et al., 2016). Upon activation,
YAP/TAZ may relocate to the nucleus and engage with TEA
domain family members (TEAD) 1-4, triggering the activation of
downstream transcription factors and consequent transcriptional
activation (Lian et al., 2010; Meng et al., 2016; Pobbati and Hong,
2020).

The regulatory mechanism of Hippo signaling is shown in
Figure 3. The Hippo signaling pathway is stimulated by various
upstream signals, including mechanical signals originating from
cell contact (predominantly from the extracellular matrix or ECM),
G protein-coupled receptors (GPCRs), stress signals, as well as
signals linked to cell cycle, polarity, and structure (Yu et al., 2012;
Meng et al., 2016; Zheng and Pan, 2019). A kinase phosphorylation
cascade constitutes the core of the pathway through which these
inputs are transmitted.

Two critical proteins, MST1 and its interacting protein
LATS1/2, are involved in the kinase phosphorylation cascade that
forms the central part of the Hippo signaling pathway (Lian
et al., 2010; Meng et al., 2016). By interacting with LATS1/2, the
MST1/2 protein contributes to the inhibition of cell proliferation
and differentiation. The C-terminal SAV (Sav/Rassf/Hpo) domain
of MST1/2, a serine/threonine kinase, can boost its activity when it
forms a complex with the scaffold protein SAV1. Upon activation
by specific molecules in cells, the MST1 protein forms a complex
with LATS1/2, leading to the suppression of cell proliferation
and differentiation and ensuring the continuity of the kinase
phosphorylation cascade (Grijalva et al., 2014; Meng et al., 2016).
The modulation of the MST1 and LATS1/2 proteins’ activities by
the Hippo signaling pathway is pivotal in regulating cell growth
and differentiation.The transcriptional coactivators Yes-associated
protein (YAP) and PDZ-binding motif (TAZ) are the downstream
effectors of the Hippo signaling pathway (Moya and Halder,
2019). YAP/TAZ have the ability to move back and forth between
the nucleus and cytoplasm. In the absence of Hippo signaling
pathway activity, YAP/TAZ relocate to the nucleus and serve as
transcriptional coactivators by binding to DNA with TEAD 1-4.
On the other hand, upon Hippo pathway activation, YAP/TAZ
become phosphorylated and are prevented from entering the
nucleus, which in turn promotes their function as transcriptional
corepressors (Meng et al., 2016). The activation of the Hippo
pathway leads to the suppression of YAP/TAZ function due to
phosphorylation mediated by LATS1/2. Conversely, in the absence
of Hippo pathway activity, YAP/TAZ become dephosphorylated
and move to the nucleus, where they can engage with the
transcription factors TEAD1-4 to trigger gene expression (Meng
et al., 2016).

Normally, the Hippo signaling pathway proficiently manages
cell growth and averts uncontrolled proliferation. Nevertheless, in
specific instances, the pathway may lose its functionality, triggering
abnormal growth and tumor formation. Various research studies
have uncovered that the Hippo signaling pathway is frequently
deactivated in tumor tissues, which facilitates cell proliferation
and ultimately results in tumor advancement (Zheng and Pan,
2019). Enhancing our comprehension of the Hippo signaling
pathway’s regulatory mechanisms could pave the way for innovative

approaches to treat tumors (Lian et al., 2010; Elbediwy et al., 2016;
Pobbati and Hong, 2020).

2.3.3. Molecular mechanisms of Hippo signaling
pathway in stroke

The relationship between the Hippo signaling pathway and
stroke is primarily centered around the two core targets of
YAP/TAZ and MST1. While previous research has primarily
focused on the role of the Hippo signaling pathway in regulating
cell proliferation and differentiation in cancer, there is growing
interested in its potential involvement in stroke (Zanconato et al.,
2016). Recently, its therapeutic potential in cardiovascular diseases
has been discovered (Dey et al., 2020). Microglial activation in the
infarcted area following a stroke is a critical factor that can mediate
oxidative stress-induced cell death (Davalos et al., 2005). After
being recognized as a crucial pro-apoptotic factor in neuronal death
triggered by oxidative stress, the emerging evidence of MST1’s
potential participation in ischemia-reperfusion injury implies that
it could be a potential therapeutic target for the treatment of
neurodegenerative disorders (Li D. et al., 2018).

Siqi Zhao et al. established a correlation between cerebral
ischemia-induced microglial activation and the Hippo/MST1
signaling pathway. They discovered that Src kinase functions as
an upstream factor that facilitates this association (Zhao et al.,
2016). Furthermore, YAP/TAZ, which is another key site within
the Hippo signaling pathway, also appears to play an important
role following a stroke (Zhao et al., 2016). Activation of YAP/TAZ
by dexamethasone has been shown to reduce brain damage, and
infarct size, improve neurological function and decrease blood-
brain barrier permeability following a stroke (Gong et al., 2019).
In a study by Luping Huang et al., it was found that XMU-MP-1
could induce the nuclear localization of YAP in astrocytes, resulting
in reduced brain damage, decreased release of inflammatory
factors such as Interleukin-1β (IL-1β) and Interleukin-6 (IL-
6), and a decrease in astrogliosis (Huang et al., 2020). Other
studies have demonstrated that verteporfin, a drug used in
photodynamic therapy, can reduce Blood-Brain Barrier (BBB)
permeability after stroke by inhibiting the nuclear expression of
YAP. This helps to maintain BBB integrity and reduce brain damage
(Gong et al., 2021).

2.3.4. Crosstalk between Hippo signaling and
other signaling pathways

There is likely a crosstalk between the Hippo signaling pathway
and other signaling pathways, such as the Wnt, Notch, and SHH
pathways. Some of the most notable examples of pathway crosstalk
are summarized below.

2.3.4.1. Crosstalk between Hippo signaling and Wnt
signaling

The regulation of cell proliferation, differentiation, migration,
and apoptosis relies significantly on Wnt signaling (Varelas et al.,
2010). Wnt proteins serve as signaling molecules in this pathway,
and the critical proteins and receptors involved include β-catenin,
Dishevelled (Dvl), and Frizzled (Fzd) (Mccrea et al., 1991; Siegfried
et al., 1994; Bhanot et al., 1996). The extranuclear negative regulator
YAP can limit the activity of the Wnt/β-catenin signaling pathway
by interacting with Dvl, modulating Glycogen Synthase Kinase
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FIGURE 3

Mechanistic diagram of the Hippo signaling pathway. The Hippo signaling pathway is activated by a variety of upstream signals, such as mechanical
signals from cell contacts and G protein-coupled receptor (GPCR) signaling, among others. Two key proteins, MST1/2 and LATS1/2, form the core of
the kinase phosphorylation cascade in the Hippo signaling pathway. Various signals that stimulate the Hippo signaling pathway can affect the
localization of YAP/TAZ within the cell, leading to changes in their binding to TEAD and regulation of downstream Hippo signaling pathway targets.

3 beta (GSK-3β) activity, and binding to β-catenin, affecting
its nuclear translocation (Varelas et al., 2010; Tsai et al., 2012;
Wang Y. et al., 2017). However, upon activation of the Wnt/β-
catenin signaling pathway, β-catenin can evade degradation and
inhibit TAZ degradation outside the nucleus, resulting in the
co-accumulation of TAZ and β-catenin (Azzolin et al., 2012).
Furthermore, through binding to the DNA enhancer located in the
first intron of the YAP gene, the β-catenin / Transcription Factor 4
(TCF4) complex can trigger the expression of YAP, its downstream
factor, in cells (Konsavage et al., 2012; Park et al., 2015). A study
published in Cell has confirmed that YAP interacts with the
Wnt/β-catenin signaling pathway, involving the transcription
factor Thromboxane B5 (TXB5) and the beta-transducin repeat-
containing protein E3 (b-TrCP E3) ligase (Azzolin et al., 2012, 2014;
Tsai et al., 2012; Park et al., 2015).

2.3.4.2. Crosstalk between Hippo signaling and Notch
signaling

The Notch signaling pathway is a crucial mechanism that
governs cell differentiation and proliferation. This pathway holds
immense significance in the field of biology, as it is responsible
for regulating cell fate decisions and influencing embryonic
development and stem cell differentiation (Andersson and Lendahl,
2014). By acting as a critical regulator of cellular differentiation,
the Notch signaling pathway helps to ensure that cells develop

into the correct types and that tissues and organs form correctly
(Totaro et al., 2018). Several investigations have verified the
substantial involvement of YAP1 in controlling the Notch signaling
pathway in liver cancer. In particular, YAP1’s activation of Jag-1,
the ligand responsible for instigating the Notch signaling cascade,
has been demonstrated (Tschaharganeh et al., 2013). In addition,
the conjugate of YAP and TEAD has also been found to exert
regulatory effects on Notch signaling and other genes within the
Notch signaling pathways (Yimlamai et al., 2014; Hansen et al.,
2015).

Recent studies have shown that the activation of YAP/TAZ
through mechanical cues, in conjunction with distant enhancers,
can stimulate the expression of delta ligands and promote
epidermal differentiation through the Notch signaling pathway.
This process has a direct impact on the properties of somatic
stem cells (SC), influencing their ability to differentiate and self-
renew (Totaro et al., 2017). The interplay between YAP/TAZ
and the Notch signaling pathway’s downstream effector is
crucial in multiple biological processes, such as the development
of hepatobiliary ducts, epidermis, and the pathogenesis of
cancer (Totaro et al., 2018). Through its interaction with
the Notch signaling pathway, YAP/TAZ influences cell fate
decisions and regulates cellular proliferation, differentiation, and
apoptosis, highlighting the complex interplay between different
signaling pathways in various biological contexts. The emerging
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FIGURE 4

Potential crosstalk diagram between Hippo signaling pathway and Wnt, Notch, and SHH signaling pathways. In the Hippo signaling pathway,
YAP/TAZ can influence several other pathways through crosstalk. For example, it can affect Dvl and β-catenin signaling in the Wnt pathway, JAP-1
receptor and downstream gene transduction in the SHH pathway, and the Notch pathway through binding to TEAD. This complex network of
crosstalk represents a potential, albeit unproven, mechanism for stroke. There are many other points of crosstalk involving the Hippo signaling
pathway in stroke, and we have highlighted some of the most significant ones.

understanding of the role of YAP/TAZ and the Notch signaling
pathway in various cellular processes underscores the need for
further research into their mechanisms of action and potential
therapeutic implications.

2.3.4.3. Crosstalk between Hippo signaling and SHH
signaling

The SHH signaling pathway is accountable for specifying
the body axis, arranging tissues and organs, and sustaining
appropriate cell proliferation in tissues. By serving as a vital
modulator of embryonic development, the SHH signaling pathway
helps ensure the accurate differentiation of cells and the proper
formation of tissues and organs (Varjosalo and Taipale, 2008).
Recent studies have demonstrated that Yes-associated protein
(YAP) is a target of oncogenic activation induced by the Sonic
hedgehog (SHH) pathway (Fernandez et al., 2009). In cerebellar
granule neuron precursors (CGNP), SHH signaling prompts the
nuclear translocation of YAP1, which stimulates their proliferation
(Fernandez et al., 2009) FoxO6−/− mouse studies have shown that
the loss of SHH is associated with Hippo signaling (Sun et al., 2018).
Furthermore, YAP has been shown to upregulate the expression
of SHH, thereby contributing to bronchial morphogenesis (Isago
et al., 2020). The exploration of the complex interplay between the

Hippo signaling pathway and other signaling pathways in stroke
remains incomplete. Our research builds upon prior studies to
scrutinize plausible mechanisms of crosstalk between the Hippo
signaling pathway and other pathways in the context of stroke.
We provide a map below illustrating potential crosstalk between
the Hippo signaling pathway and Wnt, Notch, and SHH signaling
pathways (Figure 4):

2.4. Ferroptosis signaling pathway and
stroke: regulating cell death

2.4.1. Research progress on ferroptosis of new
cell death

In 1980, Bannai et al. made a groundbreaking discovery by
identifying the antiporter protein cystine/glutamate transporter
(xCT/SCL7A11), commonly known as system xC− (Bannai and
Kitamura, 1980). Later on, Murphy’s research revealed that system
xC- also has the potential to induce glutamate toxicity, a condition
that damages brain cells and can lead to neurological disorders
(Hirschhorn and Stockwell, 2019). Descriptions of the unique
cell death caused by cystine deprivation, which is now known as
ferroptosis, existed before its official naming. These descriptions
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included the role of reduced glutathione (Ratan et al., 1994),
ceramide-induced non-apoptotic ROS-dependent cell death
(D’Autréaux and Toledano, 2007), and the involvement of
polyunsaturated fatty acids in glutathione peroxidase 4 (GPX4)
knockdown-mediated cell death (Seiler et al., 2008). In 2003,
Dolma et al. discovered that Erastin induces iron-dependent
cell death (Dolma et al., 2003). In 2012, Dixon et al. officially
identified ferroptosis as a distinct mode of cell death with unique
mechanisms that differentiate it from traditional apoptosis (Dixon
et al., 2012). Subsequently, Yang et al. identified GPX4 as a crucial
target of ferroptosis (Yang et al., 2014). Acyl-CoA synthetase
long-chain family member 4 (ACSL4) is recognized as a pivotal
regulator of ferroptosis and is responsible for mediating sensitivity
to this process (Doll et al., 2017). In 2019, James A. Olzmann,
Marcus Conrad, and Jose Pedro Friedmann Angeli identified a
new repressor of ferroptosis, Ferroptosis inhibitor protein 1 (FSP1)
(Doll et al., 2019). Ferroptosis is thought to have a considerable
impact on numerous diseases, such as neurodegenerative diseases,
cardiovascular diseases, and cancer. As a result, scientists are
investigating approaches to impede ferroptosis with the aim of
creating potent therapeutic interventions. The research progress
on ferroptosis of new cell death is shown in Figure 5.

2.4.2. Regulatory mechanisms of ferroptosis
siganling pathway

Ferroptosis is an orchestrated process of cell death that
encompasses various mechanisms and pathways, including iron
metabolism, lipid peroxidation, and amino acid metabolism (Li J.
et al., 2020; Zhang et al., 2021). The buildup of intracellular iron
ions (Fe2+) can activate ferroptosis, underscoring its significance
in the regulation of this process. Transferrin (TFRC) is a pivotal
protein that facilitates the translocation of iron from extracellular
to intracellular compartments and plays a crucial role in regulating
iron-induced cell death (Yang and Stockwell, 2016; Li J. et al., 2020).

The cystine/glutamate antiporter xC- operates by exchanging
glutamate with cystine in a 1:1 proportion. Nevertheless, excessive
levels of glutamate can impede xC-’s function, inducing ferroptosis
(Yang and Stockwell, 2016). Cystine is an indispensable component
necessary for the biosynthesis of glutathione (GSH), a process
catalyzed by glutamate-cysteine ligase (GCL) and glutathione
synthetase (GSS). Nevertheless, curtailing xC-’s activity can
diminish the uptake of cystine, ultimately impairing GSH synthesis
(Yang and Stockwell, 2016; Zhang et al., 2021). As a consequence,
the decrease in cystine uptake leads to a reduction in the activity
of GPX4, an enzyme responsible for membrane lipid repair, as
well as a decrease in the antioxidant capacity of cells. Ultimately,
these effects promote the onset of ferroptosis (Zhang et al., 2021).
Reactive Species-Generating Compound 3 (RSL3) is an influential
ferroptosis elicitor that directly hinders the activity of GPX4,
culminating in the diminished cellular antioxidant capability and
buildup of reactive oxygen species (ROS), eventually instigating
ferroptosis (Yang et al., 2014; Yang and Stockwell, 2016; Hirschhorn
and Stockwell, 2019).

The quantity and distribution of polyunsaturated fatty acids
(PUFAs) in a cell determine the degree of lipid oxidation and
influence the occurrence of ferroptosis. Free PUFAs play a role in
synthesizing lipid signaling molecules and are incorporated
into membrane phospholipids. Following lipid oxidation,

PUFAs transmit ferroptosis signals that induce cellular death
(Hirschhorn and Stockwell, 2019; Li J. et al., 2020; Chen et al.,
2021a). ACSL4 and lysophosphatidylcholine acyltransferase 3
(LPCAT3) are two critical enzymes involved in the synthesis
and restructuring of PUFAs in membrane phospholipids (Doll
et al., 2017; Chen et al., 2021a). These enzymes facilitate the
incorporation of PUFAs into phospholipids, resulting in the
formation of polyunsaturated fatty acid phospholipids (PUFA-
PLs). PUFA-PLs are highly susceptible to free radical-induced
oxidation, which is mediated by lipoxygenases (ALOXs). The
oxidation of PUFA-PLs eventually leads to the breakdown of
the lipid bilayer and disrupts membrane function, ultimately
promoting ferroptosis (Hirschhorn and Stockwell, 2019; Li J. et al.,
2020; Chen et al., 2021a).

2.4.3. Research progress on ferroptosis signaling
pathway in stroke

Ferroptosis has gained significant attention in neuroscience and
medicine and is now an important area of research (Hirschhorn
and Stockwell, 2019). Research has indicated that ferroptosis
inhibitors possess the potential to shield against degenerative brain
illnesses such as Parkinson’s disease (PD), Huntington’s disease
(HD), and Alzheimer’s disease (AD), alongside other types of
neurodegenerative diseases and traumatic and hemorrhagic brain
injuries (Stockwell et al., 2017; Hirschhorn and Stockwell, 2019;
Zhang et al., 2021). Recently, there has been growing interest in
the therapeutic potential of ferroptosis in treating heart disease and
cancer (Chen et al., 2021a; Li N. et al., 2021).

Ferroptosis has been suggested to be linked to stroke, as
the reduced blood supply to the brain during a stroke can
lead to a depletion of intracellular iron ions (Fe2+), which may
ultimately promote ferroptosis (Zhang et al., 2021). Additionally,
The accumulation of intracellular reactive oxygen species (ROS)
can be caused by a stroke, which can further promote ferroptosis.
While the precise role of ferroptosis in stroke remains unclear,
recent studies have suggested that inhibiting ferroptosis may help
reduce stroke-related damage (Zille et al., 2017; Li Q. et al., 2017).

Several studies have shown the role and therapeutic potential
of ferroptosis in stroke. For instance, ZILLE, M et al. demonstrated
that both ferroptosis and necrosis markers were increased following
in vitro and in vivo stroke, and the inhibition of these pathways
led to increased cell survival (Zille et al., 2017). In their study, Yu
Cui et al. showed that protecting against cerebral ischemia-induced
ferroptosis can be achieved by knocking down ACSL4, a crucial
enzyme that regulates the synthesis of PUFA. Conversely, the risk of
cerebral ischemia was observed to increase with the overexpression
of ACSL4 (Cui et al., 2021). The inhibitory effect of baicalein on
ferroptosis has been demonstrated in two models—an in vitro
model of oxygen-glucose deprivation/reperfusion (OGD/R) in
HT22 cells, and a rat model of transient middle cerebral artery
occlusion (tMCAO) induced by RSL3. Baicalein achieves this
effect primarily by regulating the expression levels of GPX4,
ACSL4, and ASCL3, which are key enzymes involved in ferroptosis
(Duan et al., 2021). Astragaloside IV has demonstrated potential
neuroprotective effects against ferroptosis induced brain injury
after subarachnoid hemorrhage (SAH) by activating the Nrf2/HO-
1 signaling pathway. This pathway reduces lipid peroxidation
and increases antioxidant enzyme levels, including glutathione
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peroxidase 4 (GPX4). As a result, the reduction of lipid
peroxidation can prevent ferroptosis from occurring (Liu Z. et al.,
2022). Sikai Zhan et al. showed that Danhong injection has the
potential to alleviate nerve cell ferroptosis after ischemic stroke
in permanent middle cerebral artery occlusion (pMCAO) mice by
activating the SLC7A11/HO-1 pathway (Zhan et al., 2022). The
findings of these studies indicate that the targeting of ferroptosis
may hold promise as a therapeutic strategy for treating stroke in
the future.

2.4.4. Crosstalk between ferroptosis siganling
pathway and other signaling pathways

Several cellular pathways, such as the AMPK, Wnt, and Hippo
signaling pathways, may interact with ferroptosis, indicating a
possibility of crosstalk between them.

2.4.4.1. Crosstalk between ferroptosis siganling and Wnt
signaling

Currently, the connection between ferroptosis and Wnt
signaling is not yet fully understood by researchers. However,
studies suggest that there could potentially be an association
between Wnt signaling and cell death, indicating a possible
relationship between the two pathways. Specifically, research has
shown that β-catenin may bind to the TCF4 transcription factor
and activate the expression of GPX4 by binding to the promoter
region of GPX4. This activation can then inhibit ferroptosis (Wang
H. et al., 2022).

2.4.4.2. Crosstalk between ferroptosis siganling and AMPK
signaling

The crosstalk between ferroptosis and the AMP-activated
protein kinase (AMPK) signaling pathway has been extensively
studied and established. Ferroptosis requires the phosphorylation
of Beclin 1 (BECN1), and AMPK facilitates this process by directly
activating the activity of BECN1. This activation leads to the
initiation of autophagy, which subsequently inhibits ferroptosis by
removing iron from the cell (Kang et al., 2018; Song et al., 2018).

In a mouse model of renal ischemia/reperfusion injury, it was
observed that activating AMPK during energy stress could reduce
the pathological damage caused by ferroptosis and lower the levels
of polyunsaturated fatty acids. Conversely, inactivating AMPK
increased cell sensitivity to ferroptosis, suggesting the potential
therapeutic significance of targeting the AMPK pathway in diseases
related to ferroptosis (Lee et al., 2020; Li C. et al., 2020).

2.4.4.3. Crosstalk between ferroptosis siganling and Hippo
signaling

YAP, a protein involved in the Hippo signaling pathway, plays
a role in regulating the lipid peroxidation process of ferroptosis. It
does so by acting on the ASCL4 target in the ferroptosis pathway,
as well as through its action on NADPH Oxidase 4 (NOX4) (Yang
W. H. et al., 2019; He et al., 2022). Although the intricate crosstalk
mechanisms between ferroptosis and other signaling pathways in
stroke have been sparsely investigated, our study delves into this
area based on prior research. Our objective is to explore potential
crosstalk mechanisms between ferroptosis and other signaling
pathways in the context of stroke. The following is a map of
potential crosstalk of signaling pathways between ferroptosis and
Wnt, AMPK, and Hippo signaling pathways (Figure 6).

2.5. Stroke is supposed to be a network
disease: a complex network of pathways

Stroke is a complex network disease. The relationship and
crosstalk among the signaling pathways involved in stroke are
intricate and multifaceted. Apart from the Hippo signaling pathway
and ferroptosis, pathways such as Wnt, AMPK, and Notch also
contribute to stroke pathology. Upon scrutinizing the interplay
between ferroptosis, Hippo signaling, and stroke, it is clear that
the stroke signaling pathway encompasses a complex network of
signaling pathways that interact and cross-talk with each other.
This phenomenon of crosstalk is also evident in the historical

FIGURE 5

The historical course of ferroptosis. Ferroptosis, a novel form of cell death, was named in 2012, and since then, some conduits in the ferroptosis
signaling pathway, such as the xC- system and GPX4, have been described. Further discoveries of key targets, such as Acyl-CoA synthetase
long-chain family member 4 (ASCL4) and FSP1, have improved our understanding of the ferroptosis signaling pathway and elevated its importance.
More recently, ferroptosis and its associated signaling pathways have been found to play a role in cancer, cardiovascular disease, and other fields.
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FIGURE 6

Potential crosstalk diagram between ferroptosis signaling pathway and Wnt, AMPK, and Hippo signaling pathways. The crosstalk between ferroptosis
and other signaling pathways involves several components. One aspect involves β-catenin in the Wnt signaling pathway, which participates in the
dialogue with ferroptosis signaling. Additionally, AMPK kinase affects glutamate transduction in ferroptosis signaling, while YAP/TAZ, key targets of
the Hippo signaling pathway, impact the ASCL4 target in the ferroptosis signaling pathway.

evolution of stroke signaling pathways (Huang et al., 2013).
Individual signaling pathways in stroke are involved in multiple
pathophysiologies. For example, the Rho/Rock, Wnt/β-catenin,
NO, and Vascular Endothelial Growth Factor (VEGF) signaling
pathways, which contribute to angiogenesis, also play a role in
neurogenesis, cell proliferation, and cell apoptosis (Menet et al.,
2020; Lu et al., 2021; Hu Y. et al., 2022; Wang H. et al., 2022).
Similarly, the SHH signaling pathway, which is associated with
oxidative stress, affects anti-oxidation, anti-apoptosis, and the
promotion of neurogenesis and angiogenesis (Huang et al., 2013).
The Nrf2/ARE signaling pathway, which is involved in oxidative
stress, is also associated with the inflammatory response and
exhibits cross-talk with the NF-κB signaling pathway (Ahmed et al.,
2017). The signaling pathway of HIF-1α plays a role in stroke-
related processes such as inflammatory response, angiogenesis, and
neuroprotection (Cheng et al., 2014; He et al., 2021). Peroxisome
proliferator-activated receptor gamma (PPAR-α) agonists have the
potential to protect against excessive oxidative stress, inflammation,
and apoptosis following stroke (Collino et al., 2006; Luo et al., 2006;
Fong et al., 2010). The signaling pathway of NF-κB plays a role in
processes related to the inflammatory and immune response, as well
as apoptosis (Brand et al., 1996; Pahl, 1999). The Notch signaling
pathway, commonly associated with cell apoptosis, has been found
to be increasingly associated with organogenesis and angiogenesis
(Campos et al., 2002; Ito et al., 2002). The Hippo signaling
pathway regulates organ volume and affects tissue regeneration
by controlling apoptosis (Moya and Halder, 2019). The signaling
pathway of TGF-β1/Smad3 serves a dual purpose of regulating both
cell proliferation and apoptosis. In addition, it also holds significant

importance in several physiological processes, including but not
limited to inflammation, tissue repair, and the onset of cancer
(Kang et al., 2009; Gough et al., 2021). The star signaling pathways
in stroke, including the PI3K/AKT, JAK/STAT, AMPK, and MAPK
pathways, play a role in angiogenesis, apoptosis, inflammation,
autophagy, and oxidative stress (Jiang S. et al., 2018; Shariati and
Meric-Bernstam, 2019; Arnold et al., 2021; Li N. et al., 2021). These
pathways have multiple downstream targets and crosstalk with
other pathways, contributing to various functions in stroke. Hence,
exploring the mechanisms of these signaling pathways in stroke is
crucial as they hold potential for treating stroke.

Secondly, taking individual signaling pathways as examples, it
is also shown that there is a complex crosstalk relationship between
stroke-related signaling pathways. The PI3K/AKT signaling
pathway, considered a star pathway, participates in multiple
functions such as oxidative stress, apoptosis, inflammation, and
angiogenesis (Shariati and Meric-Bernstam, 2019). The mechanism
of action is complex and involves a wide range of signaling
pathways. Moreover, there are connections and crosstalk among
the PI3K/AKT signaling pathway, HIF signaling pathway, and
angiogenic NO signaling pathway (Ho et al., 2012; Szabo, 2017).
Additionally, activated AKT has been found to protect against
oxidative damage after stroke through the Nrf2/ARE pathway
(Chan, 2005). The PI3K/AKT signaling pathway activation can
inhibit the expression of pro-inflammatory factors stimulated
by NF-κB, thereby reducing the inflammatory response (Xian
et al., 2021). Studies have demonstrated that the PI3K/AKT
signaling pathway promotes VEGF production, which induces
angiogenesis after a stroke. Additionally, the activation of mTOR,
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FIGURE 7

The historical process of key western medical methods in the treatment of stroke. Between 1978 and 2015, several intravenous thrombolytic
therapies were discovered, including urokinase, alteplase, and tenecteplase. Concurrently, endovascular therapy emerged as a potential treatment
for stroke, but lacked high-quality evidence to be confirmed by clinical trials.

a downstream target of PI3K/AKT, inhibits autophagy via the
PI3K/AKT/mTOR signaling pathway (Chen J. et al., 2019; Yang
et al., 2021). The Nrf2 signaling pathway, involved in oxidative
stress, exhibits possible crosstalk with the MAPK and PI3K/AKT
signaling pathways (Alfieri et al., 2011). The Notch signaling
pathway has the potential for crosstalk with various other signaling
pathways, including but not limited to Wnt, TGF-β/BMP, GSK-
3β, Ras/MAPK, and autophagy signaling pathways (Hansson et al.,
2004; Andersson et al., 2011; Sarin and Marcel, 2017). Stroke-
related signaling pathways can affect other pathways through
various axes, suggesting that stroke is a network disease with
complex cellular signaling mechanisms.

Finally, the complex crosstalk relationship between signaling
pathways forms a network of stroke signaling pathways.
For example, in stroke, taurine can reduce ferroptosis after
subarachnoid hemorrhage by affecting the crosstalk between the
GABA/AKT/GSK3β/β-catenin axis and the Wnt and ferroptosis
signaling pathways (Liu C. et al., 2022). Additionally, artesunate
can inhibit the inflammatory response after ICH through the
AMPK/mTORC1/GPX4 pathway by affecting the crosstalk
between the AMPK signaling pathway and the ferroptosis signaling
pathway (Xie et al., 2023). However, few experimental studies
have investigated the crosstalk of the Hippo signaling pathway in
stroke, which is a potential area of crosstalk that requires further
investigation. Meanwhile, even though the crosstalk study of
other signaling pathways has not been conducted in stroke, it
demonstrates the complexity of signaling pathways in the human
body. For example, the PI3K/AKT signaling pathway affects

stroke through various pathophysiological mechanisms, such as
oxidative stress, apoptosis, inflammation, and angiogenesis, and
these pathways are not affected alone but overlap with each other
(Shariati and Meric-Bernstam, 2019). When western drugs are used
to treat stroke, they often target a single signaling pathway, which
can lead to crosstalk between multiple pathways and affect only one
aspect of stroke, such as inflammatory response or angiogenesis,
without addressing the various pathophysiological mechanisms of
stroke (Rikitake et al., 2005; Zacharek et al., 2009). This can result
in poor therapeutic outcomes and potential side effects. In contrast,
TCM has the characteristics of targeting multiple pathways and
can act on stroke from multiple angles (Lou et al., 2022). Therefore,
in proposing that stroke should be viewed as a network disease,
new therapies need to be explored. Traditional Chinese medicine
has the potential to play a multi-effect role in the treatment and
improvement of stroke due to its multi-target and multi-pathway
action. Research has shown that Compound Tongluo Decoction
can inhibit endoplasmic reticulum stress and blepharoptosis,
activate the SHH signaling pathway, and promote angiogenesis.
This suggests that there may be potential crosstalk between the
ferroptosis signaling pathway and the SHH signaling pathway in
stroke (Hui et al., 2022). Although some scholars have proposed
the network disease perspective for stroke, feasible evidence is still
lacking (Lehnertz et al., 2023). Therefore, we have summarized
the current status, advantages, and limitations of Western and
traditional Chinese medicine in treating stroke, as well as the
potential for combining these two approaches. Using the network
disease perspective to view stroke can facilitate the development
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of new therapies, the discovery of the vast potential of traditional
Chinese medicine, and the exploration of new possibilities for
integrating traditional Chinese and Western medicine in stroke
treatment.

3. Recent western medicine key
treatment and trials of stroke

We summarize and outline the recent mature methods of
western medicine in the treatment of stroke and the methods
in the research stage. The prevention and treatment of ischemic
stroke remains a challenging issue in the field of neurology.
Advancing our understanding of the disease’s pathogenesis,
developing effective treatment methods, and discovering novel
drugs hold significant economic value and practical importance.
Current clinical treatment options for stroke mainly focus
on thrombolysis, antiplatelet and anticoagulant therapies, lipid-
lowering medications, and non-surgical treatments such as
alteplase and tissue plasminogen (tPA) administration, as well
as surgical interventions like craniotomy thrombectomy and
ventricular drainage (Donnan et al., 2008; Powers et al., 2019).
Despite this, the existing western medicine treatment options still
primarily rely on thrombolysis and vascular intervention.

3.1. Current existing clinical treatment
methods of western medicine

Supplementary Table 3 summarizes the current clinical
treatment methods for stroke, which primarily include intravenous
thrombolysis, endovascular therapy, and drug therapy. Intravenous
thrombolysis typically involves the use of alteplase, urokinase, and
tirofiban. This method helps to reduce the incidence of stroke and
increase blood perfusion in the ischemic area, but it carries a serious
risk of bleeding. Additionally, the treatment time window for stroke
is crucial in intravenous thrombolysis, as appropriate treatment
timing plays a significant role in neurological recovery following a
stroke (Wardlaw et al., 2014; Powers et al., 2019). The emergence of
the third-generation thrombolytic enzyme, tirofiban, with a faster
injection time and improved efficacy, poses a challenge to the
primary clinical use of alteplase. However, its clinical application
remains controversial due to a lack of sufficient clinical evidence
to support its use (Singh et al., 2023). Mechanical thrombectomy
is considered the preferred option for endovascular treatment,
though the clinical effectiveness of arterial thrombectomy requires
further evaluation (Hlavica et al., 2015). Drug therapy for stroke
mainly consists of antiplatelet and neuroprotective medications.
Aspirin and other antiplatelet drugs are limited in their efficacy
due to the risk of bleeding, while the clinical effectiveness of
neuroprotective drugs needs to be further evaluated in larger
clinical trials (Greer, 2010; Martí-Carvajal et al., 2020). However,
it is challenging to avoid the toxic side effects associated with drug
therapy. For instance, edaravone is known to cause kidney and
liver toxicity (Lapchak, 2010). Other treatments, such as oxygen
therapy, anticoagulation, volume expansion, vascular dilation, and
defibrination, have minimal evidence of effectiveness in treating
stroke and are considered marginal treatments in clinical practice.

Due to their limitations, these treatments are rarely used in clinical
practice (Sandercock et al., 2008; Chang and Jensen, 2014; Powers
et al., 2019). Figure 7 presents a summary of the historical evolution
of key Western medical treatment approaches.

3.2. Current western drug treatment in
the research and development stage

Supplementary Table 4 provides a summary of various western
drugs for the treatment of stroke that are currently undergoing
animal experiments or clinical trials. Among them, Fasudil, a Rock
inhibitor, has shown promising results in reducing the area of
cerebral infarction and is used to treat subarachnoid hemorrhage
by targeting the Rho/Rock signaling pathway of angiogenesis in
stroke (Rikitake et al., 2005; Shibuya et al., 2005; Shimokawa
and Takeshita, 2005). Another drug, rosiglitazone (RSG), has
demonstrated the ability to reduce the release of inflammatory
factors and decrease the damage of recurrent stroke by activating
PPAR-γ, but its clinical use is limited (Culman et al., 2007; Li et al.,
2019). Metformin has demonstrated potential to reduce the risk
of stroke by activating AMPK phosphorylation, suppressing NF-
κB activation, and decreasing the levels of inflammatory factors
such as IL-6, IL-1β, Tumor Necrosis Factor alpha (TNF-α), and
Intercellular Adhesion Molecule 1 (ICAM-1) (Liu et al., 2014).
Clinical drugs with specific pharmacological effects can have
additional targets and sites of action, highlighting the importance of
careful monitoring during clinical use to discover new applications
that may improve therapeutic outcomes for patients with multiple
diseases and reduce drug development costs. While Western
medicine is frequently utilized for ischemic stroke treatment, it
typically targets only one aspect of the disease and may have
significant adverse effects. Despite the emergence of new drugs,
few have been proven to be effective, and many Western drug
trials focus predominantly on animal studies rather than clinical
translation. Western medicine’s efficacy in treating stroke is limited,
and it faces obstacles such as high research and development
expenses, lengthy clinical trial periods, and restricted therapeutic
benefits (Liu et al., 2018). Stroke is a multifaceted neurological
disorder that involves numerous signaling pathways. As a result,
Western drugs that target a single aspect of stroke have limited
efficacy and often cause unwanted side effects.

4. Current TCM treatment improves
and treats stroke through multiple
targets and pathways

Ischemic stroke, from the perspective of TCM, falls under the
category of "stroke". It is considered a syndrome of deficiency
of essence and standard, where the accumulation of phlegm
and blood stasis and the obstruction of brain vessels are the
main pathogenesis. Therefore, promoting blood circulation and
removing stasis is the main treatment approach. TCM is known
for its multi-target and multi-pathway treatment approach. By
acting on multiple targets of stroke signaling pathways and affecting
various pathophysiological mechanisms, it can exert multi-
angle treatment and improvement effects (Chen S. et al., 2022;
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FIGURE 8

Treatment of stroke with key TCM and its active ingredients. We summarize the signaling pathways and pathophysiological mechanisms involved in
the treatment of stroke with the active ingredients of Astragalus, Scutellaria, and Rehmanniae. Baicalein and baicalin, two active components, impact
the pathophysiological mechanisms of stroke, including ferroptosis, oxidative stress, inflammation, and apoptosis. Meanwhile, Astragalus’ active
ingredient, astragaloside IV, plays a neuroprotective role by affecting ferroptosis and angiogenesis in stroke.

Lou et al., 2022). Chinese patent drugs like Danhong injection and
Danqi capsule have shown promising results in the prevention
and treatment of ischemic stroke. Acupuncture, another TCM
treatment, has also shown potential in the treatment of ischemic
stroke (Liu et al., 2018; Chen S. et al., 2022). TCM is gaining
wide recognition and acceptance globally (Liu et al., 2018).
During the outbreak of COVID-19, TCM played a significant
role in epidemic prevention, treatment, and rehabilitation. The
unique benefits of TCM in preventing and treating chronic and
complex multifactorial conditions, especially in cardiovascular and
cerebrovascular diseases such as stroke, have gained significant
attention. With a mature theoretical foundation, TCM has shown
promising clinical outcomes in the prevention and treatment of
these diseases (Liu et al., 2018; Zhan et al., 2022). Supplementary
Table 5 summarizes TCM, and their active components for the
treatment and improvement of stroke. The following provides an
overview of the research status of key TCM, such as Scutellaria
baicalensis, Astragalus membranaceus, Rehmanniae radix, and
their active components in the treatment of stroke. The treatment
of stroke with key TCM and its active ingredients is shown in
Figure 8.

4.1. Scutellaria baicalensis

Scutellaria baicalensis, also known as Scutellaria Baicalensis, is
a Chinese medicine used for clearing heat and drying dampness.
According to the Compendium of Materia Medica, it is used to
treat various conditions, such as wind and heat, dampness and
heat, headache, heat pain of running the dolphin, asthenia of lung,
fishy throat, and blood loss. The plant contains baicalin, baicalein,
astragaloside iv, and other compounds that have hemostatic and

fetal safety properties. Baicalein, a flavonoid with the highest
content in Scutellaria baicalensis, has been found to improve
blood-cerebral circulation and possess anticoagulant properties.
Studies by Li, M. et al. and Yang, S. et al. have demonstrated
that baicalein can inhibit ferroptosis and neuronal apoptosis,
reduce cerebral infarction area, and regulate signaling pathways
such as GPX4/ACSL4/ACSL3 and NF-κB (Yang S. et al., 2019; Li
et al., 2022). Baicalin, another flavonoid in Scutellaria baicalensis,
has anti-thrombotic and anti-inflammatory activities. Research
conducted by Huang, Z. et al. and Duan, L. et al. has demonstrated
that baicalin has the ability to activate the Nrf2-HO-1 signaling
pathway, reduce reactive oxygen species, and inhibit ferroptosis,
resulting in a reduction of brain injury (Duan et al., 2021; Huang
et al., 2021a). Baicalin has also been found to activate the PI3K/AKT
signaling pathway, up-regulate glutamate transporter 1, increase
the release of Brain-Derived Neurotrophic Factor (BDNF) and
Tropomyosin Receptor Kinase B (TrKB), and exert antioxidant,
anti-inflammatory, and neuroprotective effects during OGD/R,
according to studies by Zhou et al. (2017) and Li C. et al. (2020).

4.2. Astragalus mongholicus

"Qi is the beauty of blood, and blood is the mother of
qi" is a TCM theory that emphasizes the interdependence of
qi and blood. To activate blood circulation, it is necessary to
first promote the movement of qi. Astragalus membranaceus,
known for its qi-promoting properties, can tonify qi, discharge
pus, and benefit water, which indirectly helps to promote blood
circulation and remove blood stasis. Its main component is
astragaloside IV. Sun et al. conducted a study where they found
that Astragaloside IV promoted neurogenesis and neural stem
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cell proliferation after stroke in a photochemical ischemia model
(Sun et al., 2020). Liang, C. et al. discovered that Astragaloside
IV can significantly reduce infarct size in the MACO/R model
by activating the HIF/VEGF/Notch signaling pathway, increasing
miRNA-210 expression, and promoting angiogenesis and cell
proliferation (Liang et al., 2020). In a study by Liu et al., it was
discovered that Astragaloside IV could activate the Nrf2/HO-1
signaling pathway, which in turn increased the levels of SLC7A11,
GPX4, and ROS. This activation led to an enhanced antioxidant
capacity and inhibition of lipid peroxidation in an ICH model
with intravascular perforation (Liu Z. et al., 2022). Chen, X.
et al. discovered that Astragaloside VI has the ability to target
the MAPK signaling pathway that is EGF-mediated. Through
activation of the EGFR/MAPK cascade, this promotes functional
repair, neurogenesis, and nerve cell proliferation in MCAO models
(Chen J. et al., 2019).

4.3. Rehmannia glutinosa

Rehmanniae is a form of TCM available in raw and processed
forms that provides benefits such as improved blood circulation,
elimination of blood stagnation, and nourishing Yin while
promoting body fluids. Studies by Wang, H et al. have found
that Catalpol, a compound extracted from Rehmanniae, exhibits
neuroprotective properties by reducing brain damage in both
in vivo MCAO/R models and in vitro OGD/R models, while also
encouraging the growth, movement, and formation of blood vessels
in brain microvascular endothelial cells (Wang et al., 2020). Fu,
Y. et al. found that Rehmannioside A, in the MCAO/R model,
can reduce cognitive dysfunction, nerve damage, and suppress
ferroptosis by activating the PI3K/AKT/Nrf2 and SLC7A11/GPX4
signaling pathways (Fu et al., 2022). Astragalus membranaceus,
Scutellaria baicalensis, and Rehmanniae rehmanniae are important
Chinese herbs that have been used to treat cardiovascular and
cerebrovascular diseases. Studies have shown that the active
ingredients in these herbs have multiple therapeutic effects on
stroke by targeting various pathways, including angiogenesis,
inflammatory response, apoptosis, and oxidative stress. The
treatment of stroke with TCM and its active components
involves multiple signaling pathways, including the widely-acting
PI3K/AKT and ferroptosis signaling pathways. This suggests that
the treatment of stroke with TCM and its active components
involves overlapping effects on multiple signaling pathways, rather
than targeting a single pathway.

5. The difference and combination
of traditional Chinese and Western
medicine in the treatment of stroke

In the treatment of stroke, there are differences, advantages,
disadvantages, and similarities between the pharmacological
mechanisms of traditional Chinese medicine and Western
medicine. Integrated traditional Chinese and Western medicine is
becoming more common in the treatment of stroke. It is important
to continue exploring the potential of traditional Chinese medicine

and discovering new possibilities for combining traditional Chinese
and Western medicine to provide better treatment options for
stroke patients.

Western medicine utilizes drug therapy (such as intravenous
thrombolysis and antiplatelets) and surgical treatments (like
mechanical thrombectomy) in the treatment of stroke. These
methods can help improve blood circulation and lower
blood pressure, thus reducing the risk of stroke. For example,
thrombolytic agents can dissolve clots, restore blood flow, and
reduce the risk of ischemia. Antihypertensive drugs can lower
blood pressure and reduce the risk of brain hemorrhage. However,
drug therapy may also lead to adverse reactions, such as bleeding
caused by thrombolytic agents (Wardlaw et al., 2014; Powers
et al., 2019). Some drugs used in the treatment of stroke require
long-term use, which can lead to drug resistance and dependence.
In addition, surgical treatment is also an option, which can help
reduce the risk of stroke by removing vascular stenosis or repairing
aneurysms. For example, aneurysm surgery can prevent rupture
and thus reduce the risk of intracerebral hemorrhage. However,
surgical treatment may also carry surgical risks and complications,
such as postoperative infection and bleeding (Powers et al., 2019;
Krishnan et al., 2021). Surgical treatment may also require a longer
period of rehabilitation compared to drug therapy. Additionally,
Western medicine generally follows a single-target, single-pathway
approach in the treatment of stroke, such as the use of intravenous
thrombolytic drugs (Powers et al., 2019).

Traditional Chinese Medicine (TCM) can treat stroke through
multiple targets and pathways with less risk of adverse reactions.
TCM can act on various signaling pathways, such as the PI3K/AKT
and SLC7A11/GPX4 pathways, which are involved in ferroptosis,
angiogenesis, and neuroprotection. This multi-target approach
may lead to more comprehensive and effective treatment of stroke
(Fu et al., 2022). However, due to the individualized nature of
TCM intervention and the lack of feasible blinding methods, it
can be difficult to conduct randomized controlled trials, leading
to a limited number of high-quality clinical trials for TCM in the
treatment of stroke (Yang et al., 2016; Feng et al., 2022). Despite
these challenges, acupuncture, a traditional Chinese medicine
treatment, has gained recognition and has been shown to effectively
treat stroke (Yang et al., 2016).

In the practice of integrated traditional Chinese and Western
medicine for the treatment of stroke, traditional Chinese medicine,
acupuncture, massage, and other TCM therapies are often
combined with conventional Western medicine and surgical
methods. When used in stroke rehabilitation, the combination
of TCM and Western medicine has been shown to be more
effective than Western medicine alone, as it can improve
neurological deficits, reduce adverse reactions, and lead to better
patient outcomes. This also highlights the superior efficacy of
acupuncture when combined with Western medicine (Zhong
L. L. et al., 2022; Hao et al., 2023). Traditional Chinese herbal
medicine (TCHM) has been used as a single or adjuvant
treatment for stroke, working through a variety of mechanisms
such as anti-inflammation, anti-oxidative stress, anti-apoptosis,
regulation of BBB, inhibition of platelet activation, and promotion
of neurogenesis and angiogenesis. TCHM provides a valuable
resource for the development of therapeutic drugs to treat stroke
and for the discovery of more effective and safer combination
therapy or individual treatment methods (Hao et al., 2023).
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6. Problems and prospects

A variety of signaling pathways are associated with stroke,
including angiogenesis (such as the Rho/Rock, Wnt/β-catenin, and
NO signaling pathways), oxidative stress (including the Nrf2/ARE
and SHH signaling pathways), immune inflammation (such as
the NF-κB and TLRs signaling pathways), autophagy (including
the Bnip3 signaling pathways), apoptosis (including the Notch
and Hippo signaling pathways), ferroptosis, cuproptosis, and
others such as the PI3K/AKT, MAPK, AMPK, and JAK/STAT
signaling pathways. All of these pathways are interconnected,
creating a complex network of signaling pathways involved in the
pathophysiology of stroke. Stroke is a complex network disease
that involves a diverse range of pathophysiological mechanisms
and signaling pathways. As a result, investigating stroke requires
thorough examination of various cross-talk issues.

Western medicines typically treat stroke through a single
target, but due to differences in genotype and phenotype among
patients, there can be poor effectiveness and significant variation
in the treatment’s effects. Moreover, some drugs can cause liver
damage, renal toxicity, and other side effects (O’Rourke et al.,
2004). Currently, thrombolytic therapy and intravascular therapy,
such asrecombinant tissue plasminogen activato (rt-PA), are still
the most widely recognized treatments for stroke, often combined
with auxiliary measures that have a broad range of indications
(Herpich and Rincon, 2020). However, the bleeding risk to patients
and the time window for thrombolysis are significant issues that
cannot be ignored. Therefore, stroke centers have been established,
and basic and complete pre-hospital management of stroke has
been introduced in many countries (Barthels and Das, 2020).
The opening of "stroke green channels" and the use of internet
technology to assist with hospital admissions have also been
implemented. However, these measures can be challenging to
implement in developing countries, such as those in Asia and
Africa, where there is limited investment and insufficient technical
support. Therefore, reducing the onset symptoms of patients and
extending the time window for treatment could provide significant
support for the diagnosis, treatment, and prognosis of stroke
(Powers et al., 2019). Due to the network nature of stroke, Western
drugs that target a single pathway or target may have limitations
and potential side effects.

TCM compounds or preparations and their effective
ingredients have the advantage of targeting multiple pathways
and targets simultaneously, including PI3K/AKT, NF-κB, and
iron death pathways, and regulating various pathophysiological
mechanisms such as apoptosis, oxidative stress, and inflammation
in stroke (Liu et al., 2018). However, the mechanism of action
of TCM remains unclear and involves effects that are multi-
component, involve multiple pathways, and target multiple
aspects, which is a bottleneck for the modernization and
internationalization of TCM (Liu et al., 2018; Zhu et al., 2022). To
overcome this, modern scientific and technological means such as
network pharmacology, metabolomics, and proteomics can be used
to study the effect and mechanism of TCM in stroke treatment
(Kibble et al., 2015). Researchers need to clarify the signaling
pathway network of stroke, identify the active ingredients in TCM,
and strengthen pharmacodynamic and pharmacokinetic studies
to clarify their pharmacological and toxic effects. Compound

Chinese medicines have shown neuroprotective and damage-
reducing effects on stroke in animal experiments, but their regional
promotion is limited to clinical trials in China. Therefore, it
is crucial to develop these compound Chinese medicines and
promote them globally (Liu et al., 2018; Lou et al., 2022). TCM
has shown to have fewer side effects and can be widely promoted
in developing countries, especially in Asia and Africa, for the
prevention and treatment of stroke. Moreover, TCM can also be
used to assist the diagnosis, treatment, and recovery of stroke in
developed countries (Sarfo et al., 2023). It is crucial to develop
TCM suitable for stroke treatment, as it can be used as a means
to extend the time window of stroke, retard the advancement
of the ailment, and improve the prognosis and rehabilitation
(Liu et al., 2018; Zhu et al., 2022). Therefore, the multi-target
and multi-pathway treatment approach of TCM aligns with the
complex network nature of stroke as a disease.

Network pharmacology has emerged for drug target discovery,
experimental design, mechanism study, and efficacy evaluation in
the exploration of TCM treatment strategies for stroke (Kibble
et al., 2015; Zheng et al., 2022). It is a necessary, conditional,
directional, and innovative approach. However, while network
pharmacology is a hot topic, the credibility and professionalism
of the network pharmacology databases need to be improved,
and some network pharmacology articles remain limited to
data mining. Although network pharmacology combined with
experimental verification is reliable for TCM treatment of stroke,
research on TCM in stroke models is still limited to preliminary
experimental research and lacks clinical translation (Zheng et al.,
2022).

In summary, stroke is a complex disease involved with
numerous signal pathways, which makes it difficult to treat.
Some western drugs like tissue plasminase (tPA) and aspirin
have been used clinically, they have limited effects and side
effects. TCM possesses significant potential in the treatment
of stroke and is a valuable resource in this regard. However,
stroke treatment research has been mostly limited to animal
experiments and lacks clinical transformation (Liu et al., 2018;
Powers et al., 2019; Zhu et al., 2022). It is essential to explore
the potential therapy of integrated traditional Chinese and western
medicine in the treatment of stroke. By combining the advantages
of both approaches, this therapy can complement each other’s
shortcomings, add high-quality evidence, reduce adverse reactions,
and increase drug efficacy. TCM is a vast treasure trove, and there
are many potential drugs that can be developed from it. Therefore,
in the future, efforts should be directed towards excavating and
developing the TCM treasure trove (Duan T. et al., 2022; Feng
et al., 2022; Zhong L. L. et al., 2022; Hao et al., 2023). Additionally,
it is essential to focus on the development of TCM placebo and
randomized controlled trials to improve the credibility of TCM
for stroke treatment. Network pharmacology and metabolomics
can be used to mine data and conduct theoretical research in
combination with Chinese traditional medical codes to find strong
evidence to support the potential therapeutic effect of TCM. It
is crucial to carry out clinical practice of TCM and its effective
ingredients and to discover the possibility of treating stroke with
integrated Chinese and western medicine. Multi-mode treatment of
stroke can be explored to improve the possible direction of stroke
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treatment (Yang et al., 2016; Liu et al., 2018; Duan T. et al., 2022;
Zhu et al., 2022). In conclusion, we propose embracing a network
disease perspective when considering stroke, as it highlights
the significance of acknowledging the multifaceted nature of
stroke, including its multiple targets, pathways, and channels. By
adopting this approach, we can facilitate the development of novel
therapeutic strategies to effectively treat stroke.
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