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In this work, a new model is described for the case of interference between
thermal, plasma and elastic waves in a non-local excited semiconductor medium.
The governing equations have been put under the influence of moisture diffusion
in one dimension (1D) when the moisture thermal conductivity of the non-local
medium is taken in variable form. Linear transformationswere used to describe the
dimensionless model. The photo-thermoelasticity theory according to moisture
diffusivity was applied to describe the governing equations using Laplace
transforms to obtain analytical solutions. In the time domain, complete
solutions are obtained linearly when the conditions are applied (thermal ramp
type and non-Gaussian plasma shock) to the surface through numerical methods
of inverse Laplace transforms. Numerical simulation is used to display the basic
physical quantities under study graphically. The current research has yielded
several specific examples of great significance. Many comparisons are made
under the influence of fundamental physical variables such as relaxation times,
variable thermal conductivity, non-local parameters, and reference moisture
parameters through graphing and describing them theoretically.
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1 Introduction

The combination of the “electronic deformation” in the semiconducting medium, based
on the photogeneration theory in the crystal lattice, and the “thermoelastic mechanism”

owing to the integral photothermal process characterizes an important thermoelastic fact.
When atoms are perturbed, they migrate from a high-density to a low-density area. The
mechanical defects and internal strains make this form of transportation conceivable. When
temperatures climb to the point where materials begin to melt, atomic spacing increases. In a
similar vein, moisture transfer takes place when an existing concentration gradient forms as a
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result of the presence of unequal amounts of moisture. Temperature
and humidity levels of the substance change depending on location
and time. In this respect, the theories of heat transmission and
moisture transfer are essentially identical. Mechanically applied
stressors have the potential to significantly alter the distribution
of temperature and moisture. That’s why it is important to
determine exactly how mechanical deformation relates to
diffusion due to changes in humidity and temperature. Many
practical engineering problems involve the interplay of moisture,
heat, and deformation. When heat and moisture act on solids, a
phenomenon known as hygrothermoelasticity takes place. Szekeres
(2000); Szekeres (2012) examined how generalized heat
transmission is affected by moisture. It has been suggested by
Gasch et al. (2016) that changes in humidity and temperature
could do more damage than mechanical loadings. Using a
fundamental comparison between heat and moisture, (Szekeres
and Engelbrecht, 2000) formulated equations governing coupled
hygrothermoelasticity.

Photothermal (PT) analysis of semiconductor materials’ thermal
and electrical properties has grown in popularity. Semiconductors,
used in sensors, solar cells, and advanced medical devices, have been
extensively studied. Most renewable energy generation requires
semiconductor knowledge. Semiconductors are dielectric and
non-conductive. When optical energy activates semiconductor
surface holes and electrons, electronic deformation occurs. The
optical energy of light accelerates excited electrons to the surface,
creating an electron cloud-like convective density or plasma waves.
Photo-excitation and heat effect cause thermoelastic deformation.
Thus, semiconductors are studied using thermoelasticity and
photothermal theories. Numerous authors have developed novel
methods to study photoacoustic spectroscopy’s sensitivity when a
laser beam hits a semiconductor sample (Gordon et al., 1964;
Kreuzer, 1971). Photothermal approaches in several physical tests
verified the nano-composite semiconductor materials’ real
temperatures, inner displacements, thermal diffusion, and other
electrical properties (Tam, 1983; Tam, 1986; Tam, 1989;
Todorovic et al., 1999; Song et al., 2010). Photo-excitation
directly affects electronic deformation by causing elastic
oscillations in the material’s internal structures. Hobiny and
Abbas (2016) studied photothermal waves in an unbounded
medium using a semiconductor-filled cylindrical cavity. Two-
temperature theory and strain-stresses in a semiconducting
material under photothermal waves with hydrostatic starting
stress are problematic (Abo-dahab and Lotfy, 2017; Lotfy, 2017).
Lotfy (2016) applied the photo-thermoelasticity hypothesis to
semiconductor media thermal-plasma-elastic waves under a
magnetic field and rotation.

Alterations to a material’s mechanical and thermal
characteristics are often seen after a temperature change. The
influence of the temperature gradient has been taken into
consideration by several researchers after being ignored in
previous studies of the expanded theory of thermoelasticity
(Hasselman and Heller, 1980a; Youssef and Abbas, 2007a;
Abouelregal and Marin, 2020; Marin et al., 2020). It is crucial to
consider how temperature affects material characteristics (Marin
et al., 2015) because the qualities of a material cannot be considered
to have constant values under the effect of temperature change. The
thermoelasticity theory emerged from discussions of coupled and

uncoupled theories, both of which conflict with physical
experiments. Biot (1956) introduced the unique hypothesis of
linked thermoelasticity, which explained the anomaly. Infinite-
speed thermal wave propagation was investigated using the CD
theory. Lord and Shulman (1967) (LS) introduced a new concept
when the heat equation was still in its infancy, by adding one
relaxation period. Two relaxation periods were included in the
heat conduction equation by Green and Lindsay (1972) (GL).
The generalized thermoelasticity theory (GL) has been used by
several writers (Chandrasekharaiah, 1986; Hosseini et al., 2013).
Applications of the extended thermoelasticity theory including the
interaction of thermal waves, electromagnetic fields, and mechanical
waves in a thermoelastic solid medium are many.

Eringen (1972); Eringen and Edelen (1972) found that strain is
defined as the gradient of the inner products of non-local
deformations on non-local and local continuum components.
This is a logical conclusion of the continuum theory of physics.
Non-local thermoelastic theory (Eringen and Edelen, 1972) bridges
the theoretical gap between the lattice-building theory and the
classical continuum hypothesis. The classical continuum
hypothesis allows for the investigation of constitutive relations
between the atomic structure of lattices and the propagation of
phonons. According to photomechanical waves and a moisture
diffusivity process, (Alhashash et al., 2022) investigated the two-
temperature thermoelasticity theory of a semiconductor model.

Physical characteristics of materials have been shown to depend
on the temperature in recent studies. Deformation and thermo-
mechanical behavior are both affected by the temperature
dependency of these materials. The temperature-dependent
thermal conductivity has a greater impact on thermal and
mechanical behavior. Therefore, the thermal stress analysis is
affected by the varying thermal conductivity. A thermoelastic
hollow cylinder was an issue that Suhara investigated around the
turn of the last century. Since then, several elastic and inelastic media
issues have included the medium’s temperature-dependent physical
features (Hasselman and Heller, 1980b). Youssef (2005) used the
state-space technique to the solution of the generalized
thermoelasticity issue involving a spherical cavity where the
thermal conductivity is temperature-dependent under ramp-type
heating. Youssef and El-Bary (2006) have included variable thermal
conductivity in the generalized thermoelasticity with thermal shock
layers. Youssef and Abbas (2007b) have solved the generalized
thermoelasticity issue for an infinitely long annular cylinder with
variable thermal conductivity. Nano-energy uses rely heavily on the
effects of size. For the first time, a new gradient theory is presented to
characterize the nonlocal equation of motion (elastic nonlocality) in
nano-scale materials during the coupled between electrons and
thermoelastic fields (Allen, 2014; Khamis et al., 2021). On the
other hand, the nanoscale systems are very complex, therefore,
we contented ourselves with studying the non-local equation of
motion only.

In this research, the moisture diffusivity property is used to
study the wave propagation in a non-local semiconductor medium
with photo-thermoelasticity. The work is investigated in one
dimension (1D) while a photothermal transport process is going
on, affected by specific mechanical forces and the diffusivity upon
being hit by a non-Gaussian laser pulse. The problem has been
addressed at the free surface of a non-local semiconducting material
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when the thermal conductivity of the medium depends on the heat.
By applying Laplace transforms to the time variable, the governing
equations for the most important fundamental physical quantities
may be solved analytically. Numerical inversion is carried out on a
computer using powerful and efficient software. As a final step,
normal force stress, normal displacement, carrier density,
temperature distribution, and moisture concentration were all
calculated numerically with the different values of thermal
memory, thermal conductivity, moisture reference and
nonlocality parameters.

2 The main equations

The carrier density N(rk, t) (optoelectronic), moisture
concentration m(rk, t), temperature change T(rk, t), and
displacement distribution u(rk, t) are all used to describe the
novel model developed in this study (rk is the position and t
represents the time). The non-local medium’s plasma-thermal-
elastic wave equations interact with the moisture diffusion
equations when the thermal conductivity is variable in the
following tensor form (Sladek et al., 2020):

zN ri, t( )
zt

� DEN,ii ri, t( ) − N ri, t( )
τ

+ κ

τ
T ri, t( ) (1)

DT 1 + τθ
z

zt
( ) KmT,i( ),i +Dm

T Kmm,i( ),i �
1 + τq

z

zt
( ) ρCe

zT ri, t( )
zt

+ γtT0
zui,j ri, t( )

zt
( ) − Eg

τ
N ri, t( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2)

Dm Kmm,i( ),i +DT
m KmT,i( ),i � z

zt
Kmm ri, t( )( ) − Eg

τ
N ri, t( )

+ γmm0Dm
zuj,j ri, t( )

zt
(3)

The non-local motion equation for diffusivity semiconductor
medium may be written as:

ρ 1 − ξ2∇2( ) z2ui ri, t( )
zt2

� σ ij,j
′ (4)

The nonlocal elastic parameter in length is denoted by ξ. The
strain in terms of displacement takes the form:

εij � 1
2

ui,j + uj,i( ) (5)

The stress equation in terms of plasma, temperature, strain and
moisture concentration can be written as follows:

1 − ξ2∇2( )σ ij � σ ij
′ � Cijklεkl − βij αt 1 + τθ

z

zt
( )T + dnN( )

−βmijm, i, j, k, l � 1, 2, 3 (6)

In all equations in this work a “comma” before an index implies
space-differentiation and a “dot” above a symbol refers to the time-
differentiation.

Take into account the moisture thermal conductivity, which is
variable and may be chosen as a linear function of temperature.
Non-local semiconductor material’s changing moisture thermal
conductivity under the effect of a light heat source is represented

as a function of temperature as shown in (Hasselman and Heller,
1980b; Alhashash et al., 2022):

Km � K0 1 + πT( ) (7)
When the medium is independent of temperature, the constant

thermal conductivity (reference) is K0 and π represents a negative
small parameter. The integral form of thermal conductivity may be
derived using the Kirchhoff transform to convert the nonlinear
temperature components into linear ones (Hasselman and Heller,
1980b; Alhashash et al., 2022):

ϑ � 1
K0

∫
T

0

Km z( )dz (8)

Considering that the values of all physical quantities are
unrelated to the yz-coordinates, all studies are performed along
the x-axis (the direction of wave propagation is along the x-axis).
The main Eqs. 1, 4 involving the physical variables may be recast in
1D as follows (Hasselman and Heller, 1980a):

zN

zt
� DE

z2N

zx2
− N

τ
+ κ

τ
T (9)

The motion Eq. 4 has the following structure (Hasselman and
Heller, 1980b):

ρ 1 − ξ2
z2

zx2
( ) z2u

zt2
� 2μ + λ( ) z2u

zx2
− γt 1 + τθ

z

zt
( ) zT

zx
− δn

zN

zx

− γm
zm

zx
(10)

Where γt,m � β αm,T and δn � βdn, β � 3μ + 2λ.
Several methods of differentiation provide Eqs. 7, 8 for the map

transform, which may be used to the fundamental equations to
derive the thermal conductivity, which is a variable in the original
computations, as:

K0ϑ,i � KmT,i,
K0ϑ,ii � KmT,i( ),i,
K0/Km( )ϑ,i � T,i.

⎫⎪⎬⎪⎭ (11)

Using the same technique, the time-differentiating from the first
order for diffusivity is:

K0
zΜ

zt
� Km

zm

zt
(12)

As a result applying the map transform to Eq. 1, which z
zxi

may
act on both sides, yields:

z

zt

zN

zxj
� DE

zN,ii

zxj
− 1
τ

zN

zxj
+ κ

τ

zT

zxj
,

z

zt

zN

zxj
� DE

zN,ii

zxj
− 1
τ

zN

zxj
+ κK0

τKm

zϑ

zxj
,

z

zt

zN

zxj
� DE

zN,ii

zxj
− 1
τ

zN

zxj
+ κ

τ

zϑ

zxj
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

The last term in the first half of Eq. 13 in the preceding equation
may be extended as follows if the non-linear components are
disregarded:
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κK0

τKm

zϑ

zx
� κK0

K0 1 + πT( )
zϑ

zx
� κ 1 + πT( )−1zϑ

zx
� κ

τ
1 − πT + πT( )( 2 − .......) zϑ

zx
�

κ

τ

zϑ

zx
− κ

τ
πT

zϑ

zx
+ κ

τ
πT( )2zϑ

zx
− ....... � κ

τ

zϑ

zx

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(14)

Leibniz integral rule is applied to Eq. 13, which yields:

zN

zt
� DEN,ii − 1

τ
N + κ

τ
ϑ. (15)

Rewriting the heat Eq. 2 and moisture diffusion Eq. 3 after using
the map transform yields the following:

DT 1 + τθ
z

zt
( )ϑ,ii +Dm

TM,ii � 1 + τq
z

zt
( ) 1

k

zϑ

zt
+ γtT0

K0

zui,j

zt
( )

− Eg

K0τ
N (16)

DmM,ii +DT
mϑ,ii �

zM

zt
− Eg

K0τ
N + γmm0Dm

K0

zui,j

zt
(17)

According to the map transform, the equation of motion (4)
takes the form:

ρ 1 − ξ2
z2

zx2
( ) z2u

zt2
� 2μ + λ( ) z2u

zx2
− γt 1 + τθ

z

zt
( ) K0

Km

zϑ

zx
− δn

zN

zx

− γm
K0

Km

zM

zx

(18)
With neglecting the non-linear term, yields:

K0

Km

zϑ

zx
� K0

K0 1 + πT( )
zϑ

zx
� 1 + πT( )−1zϑ

zx

� 1 − πT + πT( )( 2 − .......) zϑ
zx

� zϑ

zx
(19)

According to relation (19), the mapped motion Eq. 18 can be
rewritten as:

ρ 1 − ξ2
z2

zx2
( ) z2u

zt2
� 2μ + λ( ) z2u

zx2
− γt 1 + τθ

z

zt
( ) zϑ

zx
− δn

zN

zx

− γm
zM

zx
(20)

On the other hand, the constitutive equation for the non-local
medium can be rewritten in 1D as:

1 − ξ2
z2

zx2
( )σxx � 2μ + λ( ) zu

zx
− β αtϑ + dnN( ) − γmM � σ (21)

3 Mathematical formulation

The following are additional non-dimensional values we may
provide for use in simplifying expressions:

x′, ξ′, u′( ) � x, ξ, u( )
CTt*

, t′, τ′q, τ′θ( ) � t, τq, τθ( )
t*

, ϑ′, N′( )
� γtϑ, δnN( )

2μ + λ
, σ′ � σ

μ
,M′ � M (22)

Using the dimensionless Eq. 22, the mapped Eqs. 15–17 and Eqs.
20, 21 can be reduced in the following form:

z2

zx2
− q1 − q2

z

zt
( )N + ε3 ϑ � 0 (23)

1 + τθ
z

zt
( ) z2

zx2
− a1 1 + τq

z

zt
( ) z

zt
( )ϑ + a2

z2M

zx2
+ a3 N

−ε1 1 + τq
z

zt
( ) z2u

ztzx
� 0 (24)

z2

zx2
− a4

z

zt
( )M + a5

z2ϑ

zx2
+ a6 N − a7

z2u

ztzx
� 0 (25)

z2

zx2
− 1 − ξ2

z2

zx2
( ) z2

zt2
( )u − 1 + τθ

z

zt
( ) zϑ

zx

−zN
zx

− a8
zM

zx
� 0 (26)

σ � a9
zu

zx
− ϑ +N( )( ) − a10M (27)

Where

q1 � kt*
DEρτCe

, q2 � k

DEρCe
, a1 � C2

Tt*
kDT

, a2 � Dm
T γt

DT 2μ + λ( ),
ε2 � αTEgt*

τdnρCe
, a3 � ε2a1ε1 � γ2t T0t*

K0ρ
, a4 � C2

Tt*
Dm

,

a5 � DT
m 2μ + λ( )
Dmγt

, a6 � Eg 2μ + λ( )t*a4
K0δnτ

, a7 � γmm0C2
Tt*

K0
,

a8 � γm
2μ + λ

ε3 � dnK0κt*
αTρτCeDE

, a9 � 2μ + λ

μ
,

a10 � γm
μ
C2

T � 2μ + λ

ρ
, δn � 2μ + 3λ( )dn, DT � k

ρCe
,

t* � k

ρCeC2
T

To aid in finding a mathematical solution when the system is
initially at rest, below are the initial conditions:

u x, t( )|t�0 � zu x,t( )
zt

∣∣∣∣t�0 � 0, T x, t( )|t�0 � zT x,t( ) |
zt

∣∣∣∣t�0 � 0,

m x, t( )|t�0 � zm x, t( )
zt

∣∣∣∣∣∣∣t�0� 0

σ x, t( )|t�0 � zσ x, t( )
zt

∣∣∣∣∣∣∣t�0 � 0,

N x, t( )|t�0 � zN x, t( )
zt

∣∣∣∣∣∣∣t�0 � 0 (28)

4 The solution to the problem

To simplify the definition of partial differential equations, the
Laplace transform is used, which is defined as:

L Χ x, t( )( ) � �Χ x, s( ) � ∫
∞

0

exp −st( )Χ x, t( ) d t (29)

Eq. 29 is used to convert Eqs. 23–27 as follows:

D2 − α1( ) �N + ε3 �ϑ � 0 (30)
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D2 − α2( ) �ϑ + a2
′D2 �M + a3

′ �N − α3 D�u � 0 (31)
D2 − α4( ) �M + a5D

2�ϑ + a6 �N − α5 D�u � 0 (32)
D2 −Q( )�u − ZD(℘�ϑ +N − RD �M � 0 (33)

�σ � a9 D�u − �ϑ + �N( )( ) − a10 �M (34)
where, D � d

dx, R � a8
1+ξ2s2 , Z � 1

1+ξ2s2, α1 � q1 + q2s, Q � s2

(1+ξ2s2),
α2 � a1(1+τqs)s

(1+τθs) , a2′ � a2
(1+τθs), α4 � a4s, ℘ � 1 + τθs, α5 � a7s, α3 �

ε1
(1+τqs)s
(1+τθs) a3

′ � a3
(1+τθs).

Eliminating technique is used for the quantities �ϑ, �u, �N and �M
using Mathematica softwear; yields

D8 − Θ1D
6 + Θ2D

4 − Θ3D
2 − Θ4( ) �M, �N, �ϑ, �u{ } x, s( ) � 0 (35)

By conducting calculations using computer programs such as
Mathematica, the basic coefficients can be calculated in Eq. 35,
whose values are deduced as follows:

Θ1 � − −Qa2a5 − a2′a5α1 − a5Rα3 +Q − a2α5 + Rα5 + Z℘α1 + α2 + α3 + α4{ }
a3′a2′ − 1( ) ,

Θ2 �

Qa2′a5α1 + a5Rα1α3 −Q α1 + α2 + α4( ) − a2′a7ε3 + a2′α1α5+
a2α5ε3 − R α1α5 + α2α5( ) + Za3ε3 − α1α2 − α1α3 − Z℘α1α4−

α2α4 − α3α4 − α3ε3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

a3′a2′ − 1( ) ,

Θ3 � −

Q a2′a7ε3 − a3′ε3 + Zα1α2 + α1α4 + α2α4( ) − a3′Rα5ε3

+a7Rα3ε3 + Rα1α2α5 − a3′α4ε3 + α1α2α4 + Z℘α1α3α4 + α3α4ε3

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

a3′a2′ − 1( ) ,

Θ4 � Q
a3′α4ε3 − Z℘α1α2α4{ }

a3′a2′ − 1( ) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(36)

Eq. 35 can be solved using the factorization method, which
yields:

D2 −m2
1( ) D2 −m2

2( ) D2 −m2
3( ) D2 −m2

4( ) �ϑ, �u, �N, �M{ } x, s( ) � 0

(37)
To acquire roots in the positive real part at x → ∞, substitute

m2
i (i � 1, 2, 3, 4). Since this is a linear problem, the solution to Eq. 37

takes the form below.

�ϑ x, s( ) � ∑4
i�1
Di s( ) e−mix (38)

It is possible to express the solutions in terms of the other
variables as follows:

�N x, s( ) � ∑4
i�1
D′

i s( ) e−mix � ∑4
i�1
H1iDi s( ) e−mix (39)

�u x, s( ) � ∑4
i�1
Di″ s( ) exp −mix( ) � ∑4

i�1
H2i Di s( ) exp −mix( ) (40)

�M x, s( ) � ∑4
i�1
D‴

i s( ) exp −mix( ) � ∑4
i�1
H3i Di s( ) exp −mix( ) (41)

�σ x, s( ) � ∑4
i�1
D 4( )

i s( ) exp −mix( ) � ∑4
i�1
H4i Di s( ) exp −mix( ) (42)

The quantities Di, D′
i , D

″
i , and Di‴ (i � 1..4) are the unknown

parameters. The following relationship exists between the unknown
parameters and may be determined using the basic Eqs 30–34:

H1i � −ε3
mi

2 − α1
,

H2i �
a2 − R( )m4

i + −a2′α1 − Za2′ε3 + R α1 + α2( )( )m2
i + R a3′ε3 − α1α2( )

mi(m4
i a2′ + −Qa2′ − Za2′α1 − Rα3( )m2

i +Qa2′α1 + Rα1α3
,

H3i � −
m6

i + −Q − Zα1 − α2 − α3( )m4
i + (Q α1 + α2( )−(

a3′ε3 + Zα1α2 + α3 α1 + ε3( ))m2
i +Q a3′ε3 − α1α2( )( )

m2
i − α1( ) m2

i a2′ −Qa2′ − Rα3( )m2
i( ) ,

H4i � a9 miH2i − 1 +H1i( )( ) − a10H3i

5 Boundary conditions

Assume that the elastic non-local semiconductor medium is
exposed to thermal loads of the thermal ramp type under conditions
of heat, plasma, and mechanical loading. These conditions are
applied to the free outside surface of the non-local medium. In
every scenario, Laplace transformations are used (Vlase et al., 2017;
Sladek et al., 2020).

(I) Type ramp heating is used for the thermal boundary condition at
x � 0, which may be expressed according to the thermal
excitation function F(t) :

ϑ 0, t( ) �
0 t≤ 0
t

t0
0< t≤ t0

1 t> t0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(43)

The time of pulse heat flux is t0 � 0.001, Equation 43 is solved by
the use of Laplace transforms and the attribute of being
dimensionless, whereby:

∑4
n�1

Di s( ) � �F s( ) 1 − e−st0( )
t0s2

(44)

(II) Amechanical load is applied to the surface at x � 0. This means
that for a generalized non-local photo-thermoelastic medium
with an orthotropic boundary, the boundary conditions are
provided according to a given hydrostatic initial stress
function q(t) by:

σ x, t( ) � q t( ) (45)
Laplace transformation is used, which yields:

∑4
i�1

a9 miH2i − 1 +H1i( )( ) − a10H3i{ } Di( ) � �q s( ) (46)

(III) During the diffusion phase, the carriers’ plasma density,
which can be quantified with the help of the plasma excitation
functionN*, may reach the sample’s surface at x � 0 due to the low
chance of recombination. In this case, it is assumed that a laser
excitation is supplied to a non-local semiconductor surface in the
form of a non-Gaussian plasma shock loading as:

N x, s( ) � N* � N0
*t exp − t

tp
( ) (47)

Maximum plasma shock loading caused by a laser pulse occurs
at a time tp � t, denoted by N0

*. According to Laplace transform,
yields:
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�N 0, s( ) � ∑4
i�1
H1iDi 0, s( ) � N0

*

s + 1/tp( )2 (48)

(Ⅳ) The boundary condition for displacement on the free
surface at x � 0 is:

�u 0, s( ) � 0 (49)
Or:

∑4
i�1
H2iDi x, s( ) � 0 (50)

To obtain the relation between the temperature T and the
mapped temperature ϑ, using the map and integral Eqs. 7, 8, yields:

ϑ � 1
K0

∫
T

0

K0 1 + πT( )dT � T + π

2
T2 � π

2
T + 1

π
( )2

− 1
2π

(51)

T � 1
π

�������
1 + 2πϑ

√ − 1[ ] (52)

In the same way, moisture diffusivity can be obtained.

6 Inversion of the laplace transforms

The inverse Laplace-transform is calculated using the
Riemann-sum approximation method; [see ref. (Honig and

Hirdes, 1984)] for additional information. Therefore, the
following expressions may be used to derive the field’s time-
domain variables based on Fourier series expansion. For a
Laplace-domain function �ζ(x, s), the transfer to the time
domain looks like this:

ζ x, t′( ) � L−1 �ζ x, s( ){ } � 1
2πi

∫n+i∞

n−i ∞
exp st′( )�ζ x, s( )ds (53)

where s � n + iΜ (n,Μ ∈ R). Consequently, the equation with its
variables changed around may be expressed as:

ζ x, t′( ) � exp nt′( )
2π

∫∞

−∞
exp iβt( )�ζ x, n + iβ( )dβ (54)

The following relationship may be found by expanding for the
function ζ(x, t′) in the closed interval [0, 2t′] using the Fourier
series:

ζ x, t′( ) � ent′

t′
1
2
�ζ x, n( ) + Re∑R

k�1
�ζ x, n + ikπ

t′( ) −1( )n⎡⎣ ⎤⎦ (55)

Where i and Re indicate the imaginary number unit and the real
component, respectively, adequateR stands for the number of terms
in the equation. The value of the parameter n may be determined
based on the instructions in (Honig and Hirdes, 1984). Because of
this, a method known as numerical inversion of the Laplace
transform (NILT) is used (Brancik, 1999). This approach is based
on the quick Fourier transform.

TABLE 1 physical constants of Si material.

Name (unit) Symbol Value

Lamé’s constants (N/m2) λ μ 6.4 × 1010, 6.5 × 1010

Density (kg/m3) ρ 2330

Absolute temperature (K) T0 800

The photogenerated Carrier lifetime (s) τ 5x 10−5

The carrier diffusion coefficient (m2/s) DE 2.5 × 10−3

the coefficient of electronic deformation (m3) dn −9 x 10−31

The energy gap (eV) Eg 1.11

The coefficient of linear thermal expansion (K−1) αt 4.14x 10−6

The thermal conductivity of the sample (Wm−1K−1) k 150

Specific heat at constant strain (J/(kgK)) Ce 695

The recombination velocities (m/s) s 2

Temperature diffusivity DT
k

ρCe

The coupled diffusivities
m2 %H2O( )/s K( )( ),
m2s K( )/ %H2O( )( ) Dm

T 2.1 × 10−7

DT
m 0.648 × 10−6

References moisture m0 10%

The diffusion constants of moisture (m2s−1) Dm 0.35 × 10−2

The moisture thermodiffusion constant (cm/cm(%H2o)) αm 2.68 × 10−3

The moisture diffusivity (kg/msM) km 2.2 × 10−8
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7 Numerical results and discussions

To further demonstrate the theoretical findings from the
preceding part, we will now provide numerical data. Numerical
values of physical characteristics such as thermal, displacement,
plasma, moisture concentration, and the normal distribution of
stress obtained from this problem under the impact of variable
thermal conductivity over a short time may now be graphically
represented in MATLAB for the researched physical fields. In the
theoretical investigation, n-type silicon (Si) acts as the non-local
semiconductor solid material in the device. Table 1 uses SI units for
the following Si physical parameters: (Lotfy et al., 2017; Ezzat, 2020;
Mondal and Sur, 2021; Zhao et al., 2022a; Zhao et al., 2022b).

7.1 The impact of thermal relaxation times

Three thermoelasticity models with various relaxation times are
analyzed in Figure 1A–D (the first group). When τθ � τq � 0, the
first model illustrates coupled thermoelasticity (CT) theory. It would
seem that the Lord and Shulman (LS) model enters the central
equations at τθ � 0. Lastly, when we put
0≤ τθ � 0.0002< τq � 0.0003 = 0, we see the dual phase lag
(DPL) model. The principal physical fields are shown against the
horizontal distance in the range 0≤ x≤ 10 in this figure, with the
effect of moisture diffusivity at a reference moisture of m0 � 30%,
variable thermal conductivity when π � −0.06 and laser pulses for Si
material at a non-local parameter value of ξ � 0.5 (Scutaru et al.,

FIGURE 1
(A–D) The wave propagation of the physical fields distribution against the distance according to the variation of thermal relaxation times under the
effect of variable thermal conductivity and moisture field for non-local Si material.
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2020). Because of photo-excitation according to the ramp type
heating, laser shock, and moisture diffusivity, both the
temperature (thermal wave) and carrier density (plasma wave)
distributions begin with positive values near the surface and
steadily grow in the first range, reaching their highest values
close to the surface. This is because, when subjected to laser
pulses, they meet the necessary temperature and recombination
conditions. At greater distances from the surface, however, both
distributions (thermal and plasma waves) gradually decrease with
exponential behavior to approach the minimum value. Each
distribution eventually converges on the zero line, attaining a
steady state, as the distance between them grows with increasing

depth into the semiconductor material. The temperature and
plasma distributions shown here are in agreement with the
experimental data from Liu et al. (2022). Distance-dependent
moisture concentration (moisture wave m) is seen in the second
subfigure. The surface requirement is met and the distribution of
moisture concentration starts at zero in all three model
circumstances. However, due to the influence of laser pulses
and thermal shock ramp type on the surface, the distribution of
moisture exhibits wavelike behavior, beginning with a very
gradual rise near the surface and reaching a maximum value
before beginning to fall until reaching an absolute minimum
value. As the distribution moves deeper from the surface, it

FIGURE 2
(A–D) The wave propagation of the physical fields distribution against the distance according to the different values the reference moisture m0

under the influence of the DPL model and variable thermal conductivity for the non-local Si material.
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alternates between periods of growth and decay until the wave
dies out deep inside the non-local semiconducting material and
equilibrium is reached. The third subfigure demonstrates,
following different thermoelastic models, how the mechanical
load creates the amplitude of the mechanical force σ (stress
distribution) with an increase in the value of the distance. By
applying a mechanical load to the surface, the mechanical
distribution begins with a maximum positive value, as shown
in this subfigure, and then declines progressively until it
approaches the absolute minimum value. In response to the
nonlocality effect, the wave propagation initially increases as one
moves away from the surface, reaching a maximum value before

gradually decreasing and increasing cyclically, taking on a wave
behavior, and eventually disappearing altogether as one furthers
from the surface to achieve mechanical equilibrium (Alhashash
et al., 2022).

7.2 Impact of reference moisture

Figure 2A–D (the second category) presents a representation
of the physical quantities plotted against a horizontal distance
and accompanied by several reference moisture constant values.
Under the impact of laser pulses and variable thermal

FIGURE 3
(A–D) The wave propagation of the physical fields distribution against the distance according to the variation of thermal conductivity under the
effect of moisture field for non-local Si material using the DPL model.
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conductivity π � −0.06, all computations are carried out using
the DPL model for non-local silicon (Si) material. Figure 2 (the
second category) illustrates the variation of the physical fields
associated with the distance about three different scenarios of
reference moisture m0: (� 10% , � 20% and � 30%). This graphic
makes it clear how the behavior of wave propagation varies
depending on factors such as the concentration of moisture, the
stress force, the temperature distributions, and the carrier
density distribution. The wave distribution of the major
quantities follows essentially the same behavior as shown in
Figure 1, as seen in this figure; however, the distribution varies
depending on the value of the reference moisture. This is
something that we notice after looking at this figure.

7.3 The effect of the variable thermal
conductivity

According to the kind of thermal ramp and the three constant
values of π, Figure 3A–D depicts the changes in the thermal,
moisture, stress, and plasma distributions with distance for
dimensionless time constants (t � 0.004) and moisture
reference m0�30%. These three numbers π � 0, π � −0.03 and
π � −0.06, are constants. On the non-local model, we are now
attempting to explain physical domain variables. According to
DPL theory, the principal physical fields of the constant value of
π � 0 being investigated, but the other two values π � −0.03 and
π � −0.06 are entirely differently described (when the non-local

FIGURE 4
(A–D) The wave propagation of the physical field distribution against the distance according to the local and non-local parameters under the effect
of variable thermal conductivity and moisture field for Si material.
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medium is temperature dependent). Under the impact of various
values of the variable thermal conductivity, the fluctuation of the
physical field variables varies. We may therefore conclude that
changes in the variable thermal conductivity, particularly when it
is heat dependent, have an impact on the characteristics of all
physical field variables (Lotfy and Tantawi, 2020; Huang et al.,
2021).

7.4 The comparison according to the
nonlocallty paramter

At a constant value of time (t � 0.004), π � −0.06, m0 � 30%
and the two fixed values of nonlocal parameters (ξ � 0 and ξ � 0.5),
the distributions of physical field variables such as temperature,
moisture, mechanical, and plasma are shown in Figure 4A–D. At
ξ � 0.5, the basic physical wave distributions have been well-defined.
In virtually all cases, the absolute value of these field variables is close
to zero. At this value of the non-local parameter, the bending of
these field variables becomes quite large. To be more specific, the
nonlocality parameter has a profound impact on the primary
physical distributions.

8 Conclusion

In this study, we investigate how several external conditions,
such as ramp-type heating, laser shock, moisture, and mechanical
forces, might affect the propagation of photothermal-elastic
waves in a solid non-local semiconducting medium. Electron-
elastic deformations ignite elastic waves inside the non-local
semiconductor, resulting in a fluctuating deformation
potential. One may get the 1D case now. There is hope that
the photo-thermoelasticity theories may focus attention on the
peculiarities of wave motion in non-local semiconductor media.
Considerable graphical analysis has been performed to
investigate the significance of thermal memory, the variable
thermal conductivity effect, nonlocality, and the moisture
reference. As a result of its clarity and precision, the
photothermal theory may be used to explain de-excitation in
materials and the absorption of light. The plots show that the
thermal memory, thermal conductivity, moisture content, and
nonlocality of the medium have a major impact on all the
considered domains. The research might help scientists learn
more about how waves behave in a wide range of environments
and temperatures. There is a clear correlation between the
thermal conductivity, moisture content, and nonlocality of the
field quantities, as the amplitude of these values varies (increasing
or decreasing) with the thermal memory. Recent research has
shown that semiconductors may be utilized to convert solar
energy into electricity while also withstanding exposure to
laser pulses, demonstrating the vital role that semiconductors
play in today’s cutting-edge technologies. Modern technology
relies heavily on semiconductors in a variety of devices, such as

solar cells, displays, and transistors. Several fields of mechanical
and electrical engineering employ them as nanomaterials.
Thermomechanical, sensor, resonator, medical, and
accelerometer researchers should all be able to make use of
the study’s findings in their own ongoing and future
investigations. At the opposite end of the spectrum,
microwave and radio frequency emitters make it possible for
people to communicate wirelessly. Visible and infrared diode
lasers are at the center of the information technology industry.
The method presented here has potential application to a wide
range of photo-thermoelasticity and thermodynamic issues.
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Nomenclature

λ, μ Lame’s elastic parameters

δn � (3λ + 2μ)dn The deformation potential difference

T0 Reference temperature in its natural state

γt � (3λ + 2μ)αT The volume thermal expansion

N0 The equilibrium carrier concentration

ρ The density of the non-local medium

αT Coefficients of linear thermal expansion

Ce Specific heat of the microelongated material at constant strain

DE The carrier diffusion coefficient

τ The carrier lifetime

Eg The energy gap

dn The coefficients of electronic deformation

βij , β
m
ij The isothermal and elastic coupling coefficients of moisture

εkl The strain tensor

Cijkl The isothermal parameters tensor

τ0 , ν0 Thermal relaxation times

DT The temperature diffusivity

Dm The diffusion coefficient of moisture

σij The stress tensor

δik Kronecker delta

Dm
T , D

T
m The coupled diffusivities

m0 The reference moisture

Km The moisture thermal conductivity

1
k � ρCE

K0
The thermal diffusivity
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