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We apply the QCD sum rule method to systematically study the fully strange
tetraquark states with the quantum number JPC = 2++. We construct both the
diquark–antidiquark and mesonic–mesonic currents and calculate both their
diagonal and off-diagonal correlation functions. Based on the obtained results,
we further construct three mixing currents that are nearly non-correlated. We use
one mixing current to extract the mass of the lowest-lying state to be 2.03+0.16−0.15
GeV, which can be used to explain f2(2010) as a fully strange tetraquark state of
JPC = 2++. This state was observed by BESIII in the ϕϕ channel, and we propose to
confirm it in the η(′)η(′) channel.
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1 Introduction

Many exotic hadrons were observed in particle experiments during the past 20 years [1],
some of which are good candidates for the fully strange tetraquark states [2–22]. Especially
the BESIII collaboration performed a partial wave analysis of the J/ψ → γϕϕ decay in
2016 [23]. They observed three tensor resonances, namely, f2(2010), f2(2300), and f2(2340) in
the ϕϕ invariant mass spectrum, whose masses and widths were measured to be

f2 2010( ): M ≈ 2011 MeV, (1)
Γ ≈ 202 MeV;

f2 2300( ): M ≈ 2297 MeV, (2)
Γ ≈ 149 MeV;

f2 2340( ): M ≈ 2339 MeV, (3)
Γ ≈ 319 MeV.

These three resonances contain many strangeness components, so they are possible fully
strange tetraquark states of JPC = 2++. With a large amount of the J/ψ sample, BESIII
collaborations are still examining the physics happening in this energy region, and more
rich-strangeness signals are expected in the coming future. Similar experiments can also be
performed by Belle-II, COMPASS, GlueX, and PANDA, etc.

The fully strange tetraquark states are interesting from two aspects. Experimentally, their
widths are possibly not very broad [possibly at the order ofO(100 MeV)], so they are capable
of being observed. Theoretically, their internal structures are simpler than other tetraquark
states due to the Pauli principle’s restriction on identical strangeness quarks and antiquarks,
which limits their potential number and makes them easier to be observed. In the past
15 years, we have applied the QCD sum rule method to study the fully strange tetraquark
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states with quantum numbers JPC = 0−+/1±±/4+− [24–32]. More
theoretical studies can be found in [33–42].

In this paper, we shall study the fully strange tetraquark states
with the quantum number JPC = 2++. We shall systematically
construct both the diquark–antidiquark and mesonic–mesonic
currents. We shall apply the method of QCD sum rules to study
these currents as a whole, and extract the mass of the lowest-lying
state to be 2.03+0.16−0.15 GeV. Our results suggest that the f2(2010) can be
explained as the fully strange tetraquark state of JPC = 2++, while it is
not easy to interpret the f2(2300) and f2(2340) as such states.

This paper is organized as follows. In Section 2, we
systematically construct the fully strange tetraquark states with
the quantum number JPC = 2++. We use these currents to
perform QCD sum rule analyses in Section 3, where we calculate
both their diagonal and off-diagonal correlation functions. Based on
the obtained results, we use the diquark–antidiquark currents to
perform numerical analyses in Section 4, and we use their mixing
currents to perform numerical analyses in Section 5. The obtained
results are summarized and discussed in Section 6.

2 Interpolating currents

The fully strange tetraquark currents with quantum numbers
JPC = 0−+/1±±/4+− have been systematically constructed in [24–30, 43].
In this section, we follow the same approach to construct the fully
strange tetraquark currents with the quantum number JPC = 2++. We
observe three independent diquark–antidiquark currents.

ημ]1 � S sTaCγ
μsb �saγ

]C�sTb[ ], (4)
ημ]2 � S sTaCγ

μγ5sb �saγ
]γ5C�s

T
b[ ], (5)

ημ]3 � gρσS sTaCσ
μρsb �saσ

]σC�sTb[ ], (6)
where a and b are color indices, C = iγ2γ0 is the charge-conjugation
operator, and the symbol S represents symmetrizing and
subtracting trace terms in the set {μ]}. Among these currents, ημ]1
and ημ]3 have the antisymmetric color structure [ss]3C[�s�s]3C, and ημ]2
has the symmetric color structure [ss]6C[�s�s]6C, so the internal
structure of ημ]1 and ημ]3 is more stable than that of ημ]2 .
Moreover, the first current ημ]1 only contains the S-wave diquark
field sTaCγ

μsb and the S-wave antidiquark field �saγ]C�sTb , so it has a
more stable internal structure that may lead to a better sum rule
result. In addition, the diquark field sTaCσ

μ]sb of JP = 1± contains both
S- and P-wave components, so the third current ημ]3 may also lead to
a good sum rule result; the second current ημ]2 contains the P-wave
diquark field sTaCγ

μγ5sb, so its predicted mass is probably larger. In
the present study, we only consider tetraquark currents without
derivatives, and more JPC = 2++ currents can be constructed when
using derivatives. However, their internal structures are not so
stable, and their predicted masses are probably also larger.

In addition to the aforementioned diquark–antidiquark
currents, we find six mesonic–mesonic currents.

ξμ]1 � S �saγ
μsa �sbγ

]sb[ ], (7)
ξμ]2 � S �saγ

μγ5sa �sbγ
]γ5sb[ ], (8)

ξμ]3 � gρσS �saσ
μρsa �sbσ

]σsb[ ], (9)
ξμ]4 � λabn λ

cd
n S �saγ

μsb �scγ
]sd[ ], (10)

ξμ]5 � λabn λ
cd
n S �saγ

μγ5sb �scγ
]γ5sd[ ], (11)

ξμ]6 � λabn λ
cd
n gρσS �saσ

μρsb �scσ
]σsd[ ]. (12)

We can verify the following relations through the Fierz
rearrangement, so the number of independent mesonic–mesonic
currents is also three.

ξμ]4
ξμ]5
ξμ]6

⎛⎜⎜⎝ ⎞⎟⎟⎠ �

−5
3

−1 +1

−1 −5
3

−1

+2 −2 −2
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ξμ]1
ξμ]2
ξμ]3

⎛⎜⎜⎝ ⎞⎟⎟⎠. (13)

Moreover, we can use the Fierz rearrangement to relate the
diquark–antidiquark and mesonic–mesonic currents.

ημ]1
ημ]2
ημ]3

⎛⎜⎜⎝ ⎞⎟⎟⎠ �
−1
2

+1
2

+1
2

+1
2

−1
2

+1
2

+1 +1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξμ]1
ξμ]2
ξμ]3

⎛⎜⎜⎝ ⎞⎟⎟⎠. (14)

Therefore, the diquark–antidiquark and mesonic–mesonic
constructions are equivalent to each other, when the local
currents are investigated. We shall use this Fierz identity to study
the decay behaviors at the end of this paper.

3 QCD sum rule analysis

The QCD sum rule method is a powerful and successful non-
perturbative method [44, 45]. In this section, we apply it to study the
currents ημ]1,2,3 and calculate their two-point correlation functions

Πμ],μ′]′
ij q2( ) ≡ i∫ d4xeiqx〈0|T ημ]i x( )ημ′]′,†j 0( )[ ]|0〉

� Πij q2( ) × S′ ~gμμ′ ~g]]′[ ], (15)

at both the hadron and quark–gluon levels. Here, ~gμ] � gμ] − qμq]/q2,
and the symbol S′ denotes symmetrizing and subtracting trace terms in
the two sets {μ]} and {μ′]′}, respectively.

At the hadron level, we generally assume that the currents ημ]i
(i = 1/3) couple to the states Xn (n = 1/N) through

〈0|ημ]i |Xn〉 � finϵμ], (16)
where fin is the decay constant and ϵμ] is the symmetric and traceless
polarization tensor. Then, we use the dispersion relation to express
Πij(q

2) as

Πij q2( ) � ∫∞

s<

ρphenij s( )
s − q2 − iε

ds, (17)

where s< � 16m2
s is the physical threshold and ρphenij (s) is the

phenomenological spectral density. We parameterize it for the
states Xn and a continuum contribution as

ρphenij s( ) × S′ ~gμμ′ ~g]]′[ ]
� ∑

n

δ s −M2
n( )〈0|ημ]i |Xn〉〈Xn|ημ′]′,†j |0〉 +/

� ∑
n

finfjnδ s −M2
n( ) × S′ ~gμμ′ ~g]]′[ ] +/ ,

(18)

Frontiers in Physics frontiersin.org02

Dong et al. 10.3389/fphy.2023.1184103

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1184103


whereMn is the mass of Xn and/ is contributed by the continuum.
It should be noted that the widths of Xn are not taken into account in
the present study, and the two-meson thresholds are also not taken
into account, such as the ϕϕ threshold. The Fierz rearrangement
given in Eq. 13 indicates that the tetraquark currents ημ]1,2,3 can easily
couple to two mesons, which causes some difficulties in extracting
the correct information about the resonance when the two-meson
thresholds contribute significantly. The authors of [46] suggest that
the four-quark diagrams with no singularity at s � (∑4

i�1mi)2 (mi is
the quark mass) are relevant to two free mesons but not relevant to
the four-quark state. However, the validity of this criterion is still not
clear.

At the quark–gluon level, we apply the method of the operator
product expansion (OPE) to calculate Eq. 15 and extract the OPE
spectral density ρij(s) ≡ ρOPEij (s). In this study, we take into account
the Feynman diagrams shown in Figure 1 and perform the
calculations up to the twelfth dimension, where we consider the
perturbative term, the strange quark mass ms, the quark condensate
〈�ss〉, the double-gluon condensate 〈g2

sGG〉, the quark–gluon mixed
condensate 〈gs�sσGs〉, and their combinations. We do not consider
some other condensates, such as 〈gs�sDμGμ]γ]s〉 and the diagrams
with up/down quark loops, since their calculations are difficult. The
vacuum saturation is assumed for higher-dimensional operators, i.e.,
〈�ss�ss〉 ≈ 〈�ss〉2 and 〈�ssgs�sσGs〉 ≈ 〈�ss〉〈gs�sσGs〉. We calculate all

the diagrams proportional to gN�0
s and gN�1

s , where we find the D =
6 term 〈�ss〉2 and the D = 8 term 〈�ss〉〈gs�sσGs〉 to be important. We
partly calculate the diagrams proportional to gN≥2

s , and we find their
contributions to be small.

Finally, we perform the Borel transformation at both the
hadron and quark–gluon levels. After approximating the
continuum using ρij(s) above the threshold value s0, we arrive
at the sum rule equation

Πij s0,M
2
B( ) � ∑

n

finfjne
−M2

n/M2
B

� ∫s0

s<
e−s/M2

Bρij s( )ds.
(19)

The explicit sum rule equations extracted from the currents ημ]1,2,3
are as follows:

Π11 � ∫s0

16m2
s
e−s/M2

B ds ×
s4

86016π6 −
m2

s s
3

2880π6 + −11〈g
2
s GG〉

122880π6 − 3ms〈�ss〉
320π4( )s2[

+ 5〈g2
sGG〉m2

s

9216π6 − 7ms〈gs�sσGs〉
288π4 + 〈�ss〉2

18π2( )s
+ 11〈g2

sGG〉ms〈�ss〉
6912π4 + 5m2

s〈�ss〉2
24π2 + 7〈�ss〉〈gs�sσGs〉

144π2 ]
+ −〈g

2
sGG〉〈�ss〉2
432π2 − 4ms〈�ss〉3

9
+ 〈g2

s GG〉ms〈gs�sσGs〉
1152π4 + m2

s〈�ss〉〈gs�sσGs〉
4π2( )

+ 1
M2

B

5〈g2
sGG〉m2

s〈�ss〉2
3456π2 + 5m2

s〈gs�sσGs〉2
288π2 + 5ms〈�ss〉2〈gs�sσGs〉

54
( ),

(20)

FIGURE 1
Feynman diagrams for the fully strange tetraquark currents of JPC =2++.
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Π22 � ∫s0

16m2
s
e−s/M2

B ds ×
s4

43008π6 −
m2

s s
3

360π6 + −19〈g
2
sGG〉

122880π6 + 7ms〈�ss〉
160π4( )s2[

+ −〈�ss〉
2

9π2 + 17ms〈gs�sσGs〉
288π4 + 11〈g2

sGG〉m2
s

9216π6( )s
− 17〈�ss〉〈gs�sσGs〉

144π2 + 7〈g2
s GG〉ms〈�ss〉
6912π4 + 7m2

s〈�ss〉2
4π2 ]

+ ⎛⎝m2
s〈�ss〉〈gs�sσGs〉2

2π2 − 〈g2
s GG〉〈�ss〉2
432π2

+ 〈g2
s GG〉ms〈gs�sσGs〉

1152π4 − 8ms〈�ss〉3
9

⎞⎠
+ 1
M2

B

7〈g2
sGG〉m2

s〈�ss〉2
3456π2 + 65ms〈�ss〉2〈gs�sσGs〉

54
− 13m2

s〈gs�sσGs〉2
72π2( ),

(21)

Π33 � ∫s0

16m2
s
e−s/M2

B ds ×
s4

43008π6 −
m2

s s
3

576π6 +
ms〈�ss〉
80π4 − 〈g2

sGG〉
6144π6( )s2 + m2

s〈g2
s GG〉

576π6 s[
+ 13m2

s〈�ss〉2
12π2 − 〈g2

sGG〉ms〈�ss〉
576π4 ] + m2

s〈�ss〉〈gs�sσGs〉2
2π2 − 8ms〈�ss〉3

9
( )

+ 1
M2

B

〈g2
sGG〉m2

s〈�ss〉2
432π2 + 2ms〈�ss〉2〈gs�sσGs〉

3
− m2

s〈gs�sσGs〉2
16π2( ),

(22)

Π12 � ∫s0

16m2
s
e−s/M2

Bds ×
〈g2

sGG〉
40960π6s

2 − m2
s〈g2

sGG〉
3072π6 s + 〈g2

sGG〉ms〈�ss〉
2304π4[ ]

+ 1
M2

B

−〈g
2
sGG〉m2

s〈�ss〉2
1152π2( ),

(23)

Π13 � ∫s0

16m2
s
e−s/M2

Bds × − m2
s

960π6s
3 + ms〈�ss〉

32π4 s2[
+ 5ms〈gs�sσGs〉

96π4 + 〈g2
sGG〉m2

s

2304π6 − 〈�ss〉2
9π2( )s

− 〈g2
sGG〉ms〈�ss〉
384π4 + 2m2

s〈�ss〉2
3π2 − 5〈�ss〉〈gs�sσGs〉

48π2 ],
+ 〈g2

sGG〉〈�ss〉2
432π2 − 〈g2

sGG〉ms〈gs�sσGs〉
1152π4( )

+ 1
M2

B

〈�ss〉2ms〈gs�sσGs〉
2

− 5m2
s〈gs�sσGs〉2
48π2( ), (24)

Π23 � ∫s0

16m2
s
e−s/M2

Bds × ⎡⎢⎣ ms〈gs�sσGs〉
96π4 − 〈g2

sGG〉m2
s

768π6( )s
+〈g

2
sGG〉ms〈�ss〉
128π4 − 〈�ss〉〈gs�sσGs〉

48π2
⎤⎥⎦

+ 〈g2
sGG〉ms〈gs�sσGs〉

384π4 − 〈g2
sGG〉〈�ss〉2
144π2( )

+ 1
M2

B

〈�ss〉2ms〈gs�sσGs〉
18

− m2
s〈gs�sσGs〉2
48π2( ). (25)

For completeness, we have calculated both the diagonal and off-
diagonal correlation functions. We shall investigate them using two
steps, the single-channel analysis and the multi-channel analysis, in
the following sections.

4 Single-channel analysis

In this section, we perform the single-channel analysis. To
perform this, we simply neglect the off-diagonal correlation
functions; i.e., we assume ρij(s)|i≠j = 0 so that only ρii(s) ≠ 0.
Under this assumption, any two of the three currents ημ]1,2,3
cannot mainly couple to the same state X; otherwise,

ρij s( ) × S′ ~gμμ′ ~g]]′[ ]
� ∑

n

δ s −M2
n( )〈0|ημ]i |Xn〉〈Xn|ημ′]′,†j |0〉 +/

≈ δ s −M2
X( )〈0|ημ]i |X〉〈X|ημ′]′,†j |0〉 +/

≠ 0.

(26)

This allows us to further assume that the three currents ημ]1,2,3
couple separately to the three states X1,2,3 through

〈0|ημ]i |Xj〉 � fijϵμ], (27)
with fii ≠ 0 and fij = 0 for i, j = 1/3 and i ≠ j.

Now, we can parameterize the diagonal spectral density ρii(s) as
one-pole dominance for the state Xi and a continuum contribution.
This simplifies Eq. 19 to be

Πii s0,M
2
B( ) � f2

iie
−M2

i /M2
B � ∫s0

s<
e−s/M2

Bρii s( )ds. (28)

It can be used to calculate Mi through

M2
i s0,MB( ) �

∫s0

s<
e−s/M2

B sρii s( )ds
∫s0

s<
e−s/M2

Bρii s( )ds
. (29)

We use the spectral density ρ11(s) given in Eq. 20 as an example
to perform the single-channel numerical analysis. We take the
following values for various sum rule parameters [1, 47–53]:

ms 2 GeV( ) � 93+11− 5 MeV,
〈g2

sGG〉 � 0.48 ± 0.14( ) GeV4,
〈�ss〉 � − 0.8 ± 0.1( ) × 0.240GeV( )3,

〈gs�sσGs〉 � −M2
0 ×〈�ss〉,

M2
0 � 0.8 ± 0.2( ) GeV2.

(30)

Equation 29 states that mass M1 depends on two free
parameters, the threshold value s0, and the Borel mass MB. We
consider three aspects to determine their working regions: a) the
convergence of OPE, b) the sufficient amount of pole contribution,
and c) the stability of the mass dependence on these two parameters.

FIGURE 2
CVG12/10/8 and PC with respect to the Borel mass MB. These
curves are obtained using the spectral density ρ11(s) given in Eq. 20,
when setting s0=6.5 GeV2.
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First, we investigate the convergence of OPE, which is the
cornerstone of a reliable QCD sum rule analysis. We require the
D = 12/10/8 terms to be less than 5%/10%/20%, respectively.

CVG12 � ΠD�12
11 ∞,M2

B( )
Π11 ∞,M2

B( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣≤ 5%, (31)

CVG10 � ΠD�10
11 ∞,M2

B( )
Π11 ∞,M2

B( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣≤ 10%, (32)

CVG8 � ΠD�8
11 ∞,M2

B( )
Π11 ∞,M2

B( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣≤ 20%. (33)

Figure 2 shows that through the dashed curves, the lower bound
of the Borel mass is determined to be M2

B ≥ 1.53 GeV2.
Second, we investigate the one-pole-dominance assumption by

requiring the pole contribution to be larger than 40%:

Pole Contribution PC( ) � Π11 s0,M
2
B( )

Π11 ∞,M2
B( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣≥ 40%. (34)

Figure 2 shows that through the solid curve, the upper bound of
the Borel mass is determined to beM2

B ≤ 1.77 GeV2 when setting s0 =
6.5 GeV2. Altogether, we determine the Borel window to be
1.53 GeV2 ≤M2

B ≤ 1.77 GeV2 for s0 = 6.5 GeV2. We redo the
same procedures and find that there are non-vanishing Borel
windows when s0 ≥ smin

0 � 5.4 GeV2.
Third, we investigate the stability of the mass dependence on s0

andMB. As shown in Figure 3, we find a mass minimum around s0 ≈
3 GeV2, and the mass dependence on s0 is moderate inside the region
5.5 GeV2 ≤ s0 ≤ 7.5 GeV2. As shown in Figure 4, the mass
dependence on MB is rather weak inside the Borel window
1.53 GeV2 ≤M2

B ≤ 1.77 GeV2.
Altogether, we determine our working regions to be 5.5 GeV2 ≤

s0 ≤ 7.5 GeV2 and 1.53 GeV2 ≤M2
B ≤ 1.77 GeV2, where the mass of

X1 is calculated to be

M1 � 2.09+0.19−0.22 GeV. (35)
Its central value is obtained by setting s0 = 6.5 GeV2 and M2

B �
1.65 GeV2, and its uncertainty is due to the Borel mass MB, the
threshold value s0, and various sum rule parameters listed in Eq. 30.

We follow the same procedures to study the other two currents,
ημ]2 and ημ]3 , separately. The obtained results are shown in Table 1.
We shall further study the three currents ημ]1,2,3 as a whole and
perform the multi-channel analysis in the next section.

5 Multi-channel analyses

In this section, we perform the multi-channel analyses. To
perform this, we do not neglect the off-diagonal correlation
functions any more, i.e., ρij(s)|i≠j ≠ 0. When setting s0 = 6.0 GeV2

and M2
B � 1.76 GeV2, the 3 × 3 matrix Πij(s0,M2

B) becomes

Πij s0,M
2
B( ) � 2.16 0.08 −3.20

0.08 −1.85 0.45
−3.20 0.45 1.02

⎛⎜⎝ ⎞⎟⎠ × 10−6 GeV14. (36)

FIGURE 3
Mass M1 of the state X1 with respect to the threshold value s0.
Short-dashed/solid/long-dashed curves are obtained by setting M2

B �
1.53/1.65/1.77 GeV2, respectively. These curves are obtained using the
spectral density ρ11(s) given in Eq. 20.

FIGURE 4
MassM1 of the state X1 with respect to the Borel massMB. Short-
dashed/solid/long-dashed curves are obtained by setting s0=5.5/6.5/
7.5 GeV2, respectively. These curves are obtained using the spectral
density ρ11(s) given in Eq. 20.

TABLE 1 QCD sum rule results for the fully strange tetraquark states with the
quantum number JPC =2++, extracted from the diquark–antidiquark currents
ημν1,2,3 and their mixing currents Jμν1,2,3.

Current smin
0

[GeV2]
Working regions Pole

[%]
Mass
[GeV]

M2
B [GeV2] s0

[GeV2]

ημ]1 5.4 1.53–1.77 6.5 ± 1.0 40–53 2.09+0.19−0.22

ημ]2 12.4 2.19–2.65 13.5 ± 3.0 40–52 3.49+0.36−0.22

ημ]3 6.2 1.24–1.43 7.0 ± 1.0 40–53 2.19+0.20−0.28

Jμ]1 5.6 1.71–1.81 6.0 ± 1.0 40–45 2.03+0.16−0.15

Jμ]2 12.7 2.16–2.78 14.0 ± 3.0 40–55 3.58+0.39−0.23

Jμ]3 12.2 2.19–2.69 13.5 ± 3.0 40–53 3.44+0.32−0.24
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Therefore, ημ]1 and ημ]3 are strongly correlated with each other,
and the off-diagonal terms are indeed non-negligible.

In order to diagonalize the 3 × 3 matrix Πij(s0,M2
B), we

construct three mixing currents Jμ]1,2,3

Jμ]1
Jμ]2
Jμ]3

⎛⎜⎜⎝ ⎞⎟⎟⎠ � T3×3

ημ]1
ημ]2
ημ]3

⎛⎜⎜⎝ ⎞⎟⎟⎠, (37)

where T3×3 is the transition matrix.
We use Πij′ (s0,M2

B) to denote the correlation functions
extracted from the mixing currents Jμ]1,2,3. This 3 × 3 matrix becomes

Πij′ s0,M
2
B( ) � 4.85 0 0

0 −2.17 0
0 0 −1.35

⎛⎜⎝ ⎞⎟⎠ × 10−6 GeV14, (38)

when setting

T3×3 �
0.76 −0.03 −0.64
−0.38 0.79 −0.49
0.52 0.61 0.59

⎛⎜⎝ ⎞⎟⎠, (39)

as well as s0 = 6.0 GeV2 and M2
B � 1.76 GeV2. Therefore, the off-

diagonal terms of Πij′ (s0, M2
B) are negligible, and the three

mixing currents Jμ]1,2,3 are nearly non-correlated around here.
Moreover, the two correlation functions, Π22′ (s0, M2

B) and
Π33′ (s0, M2

B), are both negative around s ≈ 6.0 GeV2. This
suggests that they are both non-physical around here, and the
masses extracted from them should be significantly larger than   
6.0

√
GeV ≈ 2.5 GeV.

Now, we can use the procedures applied in the previous section
on the currents ημ]1,2,3 to study their mixing currents Jμ]1,2,3. The
obtained results are shown in Table 1. Particularly, the mass
extracted from the current Jμ]1 is

M1′ � 2.03+0.16−0.15 GeV, (40)

as shown in Figures 5, 6 with respect to the threshold value s0 and the
Borel mass MB.

6 Summary and discussions

In this paper, we use the QCD sum rule method to study the fully
strange tetraquark states with the quantum number JPC = 2++. We
systematically construct their interpolating currents and find three
independent diquark–antidiquark currents, denoted as ημ]1,2,3. We
calculate both their diagonal and off-diagonal correlation functions.
Based on the obtained results, we construct three mixing currents that
are nearly non-correlated and denoted as Jμ]1,2,3. We use both the
diquark–antidiquark currents ημ]1,2,3 and the mixing currents Jμ]1,2,3 to
perform QCD sum rule analyses. The obtained results are shown in
Table 1.

Particularly, we use the mixing current Jμ]1 to evaluate the mass of
the lowest-lying state to be 2.03+0.16−0.15 GeV, while the masses extracted
from the other two mixing currents, Jμ]2 and Jμ]3 , are significantly larger
than 3.0 GeV. The fully strange tetraquark states of JPC = 2++ naturally
decay into the ϕϕ channel, where the BESIII collaboration observed three
tensor resonances, namely, f2(2010), f2(2300), and f2(2340) [23].
Accordingly, our results suggest that the f2(2010) can be explained as
the fully strange tetraquark state of JPC = 2++, while it is not easy to
interpret the f2(2300) and f2(2340) as such states.

In this paper, we also systematically construct the fully strange
mesonic–mesonic currents of JPC = 2++, which can be related to the
diquark–antidiquark currents through the Fierz rearrangement. In
particular, we can apply Eqs. 37 and 39, and Eq. 14 to transform the
mixing current Jμ]1 to be

Jμ]1 � −1.04 ξμ]1 − 0.25 ξμ]2 + 0.37 ξμ]3 . (41)
This Fierz identity suggests that the lowest-lying state dominantly

decays into the S-wave ϕ(1020)ϕ(1020) channel through the
mesonic–mesonic current ξμ]1 , while it can also decay into the D-
wave η(′)η(′) channel through ξμ]2 . Accordingly, we propose to
confirm the f2(2010) in the η(′)η(′) channel in the future Belle-II,
BESIII, COMPASS, GlueX, and PANDA experiments. In addition,
more possible decay patterns can be obtained by annihilating an s�s
pair into a gluon, which then transits into the final states with a pair of
strange mesons, such as K �K.

FIGURE 5
Mass M1′ of the state X1′ with respect to the threshold value s0.
Short-dashed/solid/long-dashed curves are obtained by setting M2

B �
1.71/1.76/1.81 GeV2, respectively. These curves are obtained using the
spectral density ρ11′ (s) extracted from the mixing current Jμ]1 .

FIGURE 6
MassM1′ of the state X1′with respect to the Borel massMB. Short-
dashed/solid/long-dashed curves are obtained by setting s0=5.0/6.0/
7.0 GeV2, respectively. These curves are obtained using the spectral
density ρ11′ (s) extracted from the mixing current Jμ]1 .
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