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Strain-based forward modeling
and inversion of seismic moment
tensors using distributed acoustic
sensing (DAS) observations

Jean Lecoulant*, Yuanyuan Ma, Jan Dettmer and David Eaton

Department of Geosciences, University of Calgary, Calgary, AB, Canada

This study used a waveform inversion of distributed acoustic sensing (DAS)
data, acquired in two horizontal monitoring wells, to estimate the moment
tensor (MT) of two induced microearthquakes. An analytical forward model was
developed to simulate far-field tangential strain generated by an MT source
in a homogeneous and anisotropic medium, averaged over the gauge length
along a fiber of arbitrary orientation. To prepare the data for inversion, secondary
scattered waves were removed from the field observations, using f-k filtering
and time-windowing. The modeled and observed primary arrivals were aligned
using a cut-and-paste approach. The MT parameters were inverted via a least-
squares approach, and their uncertainties were determined through bootstrap
analysis. Using simulated data with additive noise derived from the field data
and the same fiber configuration as the monitoring wells, the inversion method
adequately resolved the MT. Despite the assumption of Gaussian noise, which
underlies the least-squares inversion approach, the method was robust in the
presence of heavy-tailed noise observed in field data. When the inversion was
applied to field data, independent inversion results using P-waves, S-waves, and
bothwaves together yielded results that were consistent between the two events
and for different wave types. The agreement of the inversion results for two
events resulting from the same stress field illustrated the reliability of themethod.
The uncertainties of theMT parameters were small enough tomake the inversion
method useful for geophysical interpretation. The variance reduction obtained
from the data predicted for the most probable MT was satisfying, even though
the polarity of the P-waves was not always correctly reproduced.

KEYWORDS

distributed acoustic sensing, moment tensor inversion, strain, forward modeling,
bootstrap analysis, uncertainties, magnitude, induced seismicity

1 Introduction

Anthropogenic earthquakes are a worldwide phenomenon associated with oil and
gas production, geothermal projects, carbon capture and storage, and other industrial
processes (Ellsworth, 2013; Atkinson et al., 2016). In Canada, induced earthquakes have
been associated with a small fraction of hydraulic fracturing operations, including those in
the Duvernay and Montney plays. In the Montney of northern British Columbia, significant
numbers and magnitudes (Mw) of events have been observed, including an Mw > 4
earthquake sequence in 2018. The occurrence of these events has caused many challenges
to regulators, operators, and residents in the area. Nonetheless, the physical processes that
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lead to the activation of existing faults due to hydraulic fracturing
remain poorly understood in this area.This lack of knowledgemakes
it difficult to implement a meaningful regulatory framework.

Distributed acoustic sensing (DAS) systems consist of optical
fiber connected to an interrogator unit, which emits a laser
pulse into the fiber and records Rayleigh-backscattered light on
a photonic sensor (Parker et al., 2014). Changes in phase due
to the fiber undergoing deformation under seismic strain make
this strain measurable. Thus, DAS gives access to a different
observable quantity to characterize the seismic wavefield compared
to displacement or particle velocity provided by more traditional
methods. It also offers an almost continuous sampling in space
and time, measuring strain over kilometers with a resolution of
a few meters and with a large frequency band, from ∼1 Hz
to ∼10 kHz (Daley et al., 2013). In addition, the sensor only
consists in a commercial optic fiber, making it cost-effective
and easy to deploy without modifying existing boreholes and
taking advantage of previous installations. All these advantages
have led to a large variety of applications, including CO2
storage surveys (Daley et al., 2013), ambient noise interferometry
(Dou et al., 2017), regional seismometry (Lindsey et al., 2017),
microseismics (Karrenbach et al., 2017), and induced seismicity
(Lellouch et al., 2021). In the last context, DAS deployed near
the injection well provides closer proximity to the source than
surface geophones. The main limitation of DAS is that instead
of providing a three-component measurement, as seismometers,
it only measures strain coaxial to the optic fiber, which is one
component.

The seismic source can be described as a dislocation propagating
at a finite speed over an extended surface (e.g., Burridge and
Knopoff, 1964). However, in the far field, the source can be
approximated by a point whose energy is released by six force-
couples following an unknown function of time. This source
parametrization is known as the centroid moment tensor (CMT)
and can be simplified into the moment tensor (MT) if the position
and depth of the point source are assumed to be known. The
inversion of the MT is a linear problem that can be solved using
a linear least-squares approach in either the time or in frequency
domains (Jost and Herrmann, 1989). Once the position of the
source and the MT are separately inverted, they can be used
as initial solutions that are perturbated together in an iterative
procedure to solve the non-linear problem of the CMT inversion
(Dziewonski et al., 1981). This method has been automated and is
routinely used to create the Global CMT catalog (Ekström et al.,
2012). The non-linear problem of CMT inversion can also be solved
using Bayesian inference (Wéber, 2006; Stähler and Sigloch, 2014),
which is an efficient way to obtain the uncertainty of the inverted
parameters and the covariance of the data. This method has led
to the development of the ISOLA software (Vackář et al., 2017),
based on waveform inversion, and BEAT (Vasyura-Bathke et al.,
2020), which can take advantage of seismic and geodetic
data.

Although the measurement of a single component of strain
(rate) rather than 3C particle velocity or displacement introduces
some complications, progress has been made toward full MT
inversion of DAS data. With field data from a single linear fiber,
a microseismic source cannot be localized with a unique position;
nevertheless, a classification based on amplitude analysis and

polarity can be applied to obtain information on the nodal planes
(Cole et al., 2018). Using simulated data produced by an analytical
model, the resolvability of the MT for compressional waves (P-
waves), shear waves (S-waves), and a variable number of non-
coplanar wells has been studied (Vera Rodriguez and Wuestefeld,
2020). In simulated data produced by ray tracing, the characteristics
of S-waves measured by a single fiber provide additional constraints
on the position of the source, whereas the polarity reversals in
P- and S-waves help constrain the fault plans (Baird et al., 2020).
In data produced by a one-component sensor in a laboratory
experiment, machine learning and waveform fitting MT solutions
showed discrepancies mainly localized in the azimuthal direction
(Vera Rodriguez and Myklebust, 2022), which cannot be resolved
with only one fiber.Most of these studies focused on the information
that could be extracted from a single fiber. This is probably
the most widely applicable case in an industrial context, since
operational constraints do not necessarily allow for multiple fibers;
however, a full inversion of the MT is not achievable in this
configuration.

This paper illustrated the fullMT inversion of field data acquired
by twoDAS fibers deployed in theMontney Formation. Ourmethod
was applied to two induced seismic events that occurred within 1 h
and 100 m away from each other. For the calculation of the Green
functions used in the inversion, while avoiding the inaccuracies
linked to the conversion of strain data into displacement data,
and those associated with the spatial differentiation of simulated
displacement to obtain strain, we designed an analytical forward
model to predict the far-field terms of the strain generated in
a homogeneous isotropic medium by an MT along a fiber of
arbitrary geometry (Section 2.1). The field data were filtered
to remove reflections and time-windowed to remove secondary
arrivals (Section 2.3). Only the first arrivals of the P- and S-
waves were kept, as they best compared with the arrivals predicted
by the forward model, with very simplified assumptions. The
difference in arrival times between field data and simulated data
was measured using cross-correlation, and the latter was time-
shifted to the arrival time of the field data. This procedure was
applied to produce the Green functions for the six independent
components of the MT, for the two centroid solutions for the two
events of interest. With the assumption of no volume change, the
least-squares solution provided the linear combination of Green
functions that best approximated the field data. The uncertainties of
the inverted parameterswere determined through bootstrap analysis
(Section 2.4). This method was first validated using synthetic data
produced with the forward model. It is possible to resolve the MT,
even if the data are polluted with the non-Gaussian noise observed
in field data. The MT error increased with the decreasing signal-to-
noise ratio (SNR) but remained reasonable for the SNR of the events
of interest.

The inversion method was then applied to the field data.
Small differences were observed between the inversion of P-
waves and the inversion of S-waves, with the inversion of both
P- and S-waves almost identical to the last. The three types
of inversion, however, remained in relatively good agreement.
The important similarity between the MT inverted for the two
events of interest justified our confidence in the method. The
uncertainties were small enough to encourage future geological
interpretation.
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FIGURE 1
Geometry of wells H (blue), J (green), and M (cyan) and the position of the source of Events 1 (red) and 2 (black). The channels of wells H and J used in
the inversion are emphasized (thick lines).

2 Materials and methods

2.1 Forward modeling of strain

The far-field terms (i.e., terms with an amplitude that decays
as 1/r) of the displacement generated along the direction i in an
isotropic homogeneous medium of density ρ, P-wave velocity α,
an S-wave velocity β, at a distance r from a seismic point source
characterized by moment tensor M, is given at any time t by uPj for
P-waves and uSj for S-waves (Aki and Richards, 2009):

uPi =
1

4πρα3

mγi
r

st (t− r/α) ,

and uSj = −
1

4πρβ3

mγi − γ
′
i

r
st (t− r/β) ,

(1)

where st is the far-field source time function, γi is the ith component
of the unit vector pointing from the source to the point where
strain is measured,m = γpMpqγq, and γ′i = γpMpi. Note that Einstein
summation over p and q is applied.

Equation 1 is used to derive the far-field terms of the strain
generated by a seismic source in a homogeneous medium (Eaid,
2022). The contribution of P-waves to the strain exerted over
direction i by direction j is

ϵPij = −
1

4πρ

mγiγj
α4r
̇st (t− r/α) . (2)

Similarly, the contribution ϵSij for S-waves is

ϵSij =
1

4πρ

mγiγj − Γij
β4r
̇st (t− r/β) , (3)

where Γij = (γiγ
′
j + γ
′
i γj)/2. Once the components ϵij of the strain

tensor are obtained by summing the contributions of P- and S-
waves, the tangential strain ϵtt(s) measured by DAS along a fiber at
an arclength s can be derived as follows. Assuming a constant strain

over the gauge length GL (Eaid, 2022) gives

ϵtt (s) =
1
GL
(ϵxx∫

GL/2

−GL/2
Tx(u)2du+ 2ϵxy∫

GL/2

−GL/2
Tx × (u)Ty (u)du

+ 2ϵxz∫
GL/2

−GL/2
Tx (u)Tz (u)du+ ϵyy∫

GL/2

−GL/2
Ty(u)2du

+ 2ϵyz∫
GL/2

−GL/2
Ty (u)Tz (u)du +ϵzz∫

GL/2

−GL/2
Tz(u)2du), (4)

where Tx, Ty, and Tz are the three components of the unit vector T̂
tangential to the fiber. A fiber whose position is known with finite
precision can be approximated by multiple linear segments. If the
lengths of these segments are larger than half the gauge length, it is
convenient to break the integrals in Equation (4) into twohalves: one
between −GL/2 and 0 and one between 0 and GL/2. Over these two
halves, T̂ can be considered constant, and for the strain ϵitt measured
at the ith point along the fiber, Equation 4 simplifies to

ϵitt =
1
2
[(T2

i−1,x +T
2
i,x) ϵxx + (T

2
i−1,y +T

2
i,y) ϵyy +(T

2
i−1,z +T

2
i,z) ϵzz]

+ (Ti−1,xTi−1,y +Ti,xTi,y) ϵxy + (Ti−1,xTi−1,z +Ti,xTi,z) ϵxz
+ (Ti−1,yTi−1,z +Ti,yTi,z) ϵyz, (5)

where Ti,x, Ti,y, and Ti,z are the three components of the unit vector
pointing from the ith to the (i+ 1)th point of the fiber.

To calculate the strain at the ith point of the fiber, Equations 2,
3 are applied to obtain the six components of the strain field. By
means of the vector pointing from the ith to the (i+ 1)th point of
the fiber and of the vector pointing from the (i− 1)th to the ith point
of the fiber, the six components of the strain field can be projected
to create the tangential strain at the ith point of the fiber, according
to Equation 5.

2.2 Data provenance

The DAS data considered in this study were acquired on three
fibers with a 4 m gauge length and a 2000 Hz sampling frequency
located in two horizontal wells (referred to as H and J) and one
vertical well (referred to as M) within the Montney Formation,
British Columbia, Canada. The three wells are shown in Figure 1,
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FIGURE 2
Strain measured during Event 1 along well H: pre-processed data (A), data after filtering in the wavenumber–frequency domain (B), and data after
time-windowing and muting of channels with poor SNR (C).

in addition to the location of the two events of interest, Event 1
and Event 2. These microseismic events occurred at 1 h intervals
within a radius of ∼100 m after stimulation in an adjacent well (not
shown). The sources are located based on the DAS data, ray tracing,
and grid search (Ma et al., 2023). A downhole three-component
geophone array in well H, operating concurrently with the DAS
acquisition system was utilized to estimate magnitudes based on
the Brune model (Brune, 1970). The estimated moment magnitudes
were −0.8 (Event 1) and −0.5 (Event 2). Data from the three wells
were used to locate the source with an uncertainty of ±20 m, but
only data from the two horizontal wells H and J were used in MT
inversion. It would have been impossible to approximate the data
from a vertical well with a forward model assuming a homogeneous
medium.

2.3 Data processing

The simple forward model presented in Section 2.1 can
only predict strain propagating in isotropic homogeneous media.
However, the Montney Formation shows numerous reflections
from lithographic boundaries and fractures (Ma et al., 2022).
Therefore, we applied data processing to select the direct arrivals
of the P- and S-waves, enabling the quantitative comparison
between observed and predicted data, which is crucial for the
inversion.

After conversion from phase to strain, we removed constant
bias, spikes, and system noise. Then, data were bandpass-filtered
between 10 and 150 Hz. Figure 2A shows the strain measured
for Event 1 along well H after this pre-processing. The successive
arrivals of the P- and S-waves are clearly visible but are followed
by secondary arrivals due to reflections from the horizontal layers
of the Montney Formation (Karrenbach et al., 2017). In addition,
where the primary and secondary arrivals cross fault planes, they
generate reflected waves that propagate in a direction opposite
to that of the direct waves, which makes them noticeable in a
time–distance diagram (Ma et al., 2022; Staněk et al., 2022). To the
right of the apex, the first arrivals propagated rightward and leftward
to the left of the apex. Hence, it was straightforward to remove

reflected waves by using filtering in the wavenumber–frequency
domain to filter out waves propagating leftward on the right of the
apex and rightward on the left of the apex. In this process, the
position of the apex was defined manually. Noise with wavelengths
<24 m was also filtered out. Figure 2B shows the data after filtering
in the wavenumber–frequency domain. Secondary arrivals were
removed by time-windowing, zero-padding the data above and
below hyperbolas parallel to the direct arrivals. Finally, channels
with a poor SNR, particularly around and at a large distance from
the apex, were muted. Figure 2C shows the final data used for
inversion.

To illustrate the ability of the forward model to predict useful
data, we simulated the strain generated along wells H, in a medium
with a density ρ = 2,650 kg m−3, P-wave velocity α = 5.1 km s−1,
and S-wave velocity β = 3.5 km s−1 by a source at the location
predicted for Event 1. The environmental parameters were based on
observations in the Montney Formation at the depth of the wells.
The source is characterized by a double-couple moment tensor

M = 1
√2
(

−M0 0 0

0 M0 0

0 0 0

), (6)

with M0 = 7.08× 107 Nm to mimic the moment magnitude of Mw
= −0.8 for Event 1. To match the observed data, we used the first
derivative of a Gaussian as a far-field source time function

̇st (t− r/c) = (t− r/c)e−π
2 f2(t−r/c)2 , (7)

where c = α or β, depending on the consideration of P- or S-
waves, and f is the dominant frequency of the signal. We used
this source time function for the remainder of the present study.
The frequency f was chosen for each event, well, and type of wave
by generating simulated data for various frequencies between 75
and 115 Hz. In the frequency–wavenumber domain, the simulated
data were then summed along the wavenumber axis to create
an aggregated spectrum. The coefficient of determination for this
aggregated spectrum and the coefficient of determination created
fromobserved datawere finally computed (Figure 3).The frequency
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FIGURE 3
Coefficients of determination of the regression between the aggregated spectra of the observed and simulated data for various frequencies. Blue:
P-waves; red: S-waves.

TABLE 1 Frequencies used to calculate the simulated data for two seismic
events, two wells, and P- and S-waves.

Well H Well J

P-wave S-wave P-wave S-wave

Event 1 93 92 97 80

Event 2 111 99 108 90

with the highest coefficient of determination for each event, well, and
type of wave was kept as the frequency for producing simulated data
thereafter (Table 1).The chosen frequencies were higher for P-waves
than for S-waves, which may reflect higher inelastic attenuation on
S-waves than on P-waves. For this first example, f = 100 Hz.

Figure 4A shows the strain simulated along well H with the
forward model using the previous environmental parameters. The
first obvious difference compared to the observed data (Figure 2) is
the polarity of the signals. The double-couple source in equation 6
likely differs from the actual moment tensor, but only inversion
can provide a better approximation. Another difference is that the
strain amplitudes were up to 3.70× 10−10 for the predicted data,
but only 1.51× 10−10 for the observed data. This result indicated
that the magnitude estimated from geophone data was likely too
high. Despite these differences in polarity and amplitudes, the
predicted data correctly represented the direct arrivals of the P- and
S-waves as two successive parabolas and their general appearance
in the time–distance diagram. However, small differences
remained in the arrival times, which are likely due to errors in
the source position, inhomogeneity, and/or anisotropy in the
medium.

These arrival-time differences can cause erroneous inversion
results. To overcome this issue, we shifted the predicted traces
(Figure 4A) based on the maximum cross-correlation between the
absolute values of the predicted and the processed observed data,
where only primary arrivals of the P- and S-waves were conserved
(Figure 2A). The lags used in this procedure are shown in Figure 5
for the two events and two wells. This approach was similar to
the well-known cut-and-paste method used in waveform inversion
(Zhu andHelmberger, 1996). Its advantage is that it makes inversion
insensitive to inaccuracies in arrival times when applying a forward
model with homogeneous velocities to the multi-layered Montney
Formation. Previously muted channels were also muted in the
predicted data.

FIGURE 4
Strain along well H simulated for Event 1 using the forward model:
output of the simulation (A) and after time-shift to match the observed
arrivals (B). The color scale is saturated to help visualize the P-waves.

2.4 Inversion method

Herein, we present the results for the inversion of the
strain data measured along wells H and J for moment
tensors of the two events. The forward model (Section 2.1)
generated the six independent Green functions for the
inversion. The Green functions were calculated in the same way
as the predicted data in Section 2.3 with identical environmental
parameters and source time function. However, the six independent
components of the moment tensor were chosen instead of the
moment tensor shown in Equation 6. In addition, the centroids were
the two event locations. Run on one core of an AMD Ryzen 7 5800X
8-Core 4.4 GHz processor, the calculation of the six Green functions
along onewell required 0.37 s to complete.TheGreen functionswere
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FIGURE 5
Lags between the arrivals of simulated and observed P-waves (blue) and S-waves (red).

time-shifted according to Section 2.3. Our hypothesis was that the
simplified forward model presented in Section 2.1 could correctly
predict the polarity and amplitude of the primary arrivals of the P-
and S-waves, although it was unable to reproduce their arrival times
or the complex secondary arrivals. This approach also supposed
that the paths between the seismic sources and the fibers were short
enough for ignoring the effects of inelastic attenuation and wave
dispersion.

Once the Green functions are computed, themoment tensor can
be inverted, taking the least-squares solution of the linear matrix
equation Am = d, where d is a vector of observation data of length
N, A is a 6×N matrix that contains the Green functions, and m is a
vector of length 6 containing the moment tensor parameters.

To quantify parameter uncertainties, we applied the bootstrap
method (Efron and Tibshirani, 1986; Tichelaar and Ruff, 1989).
For this purpose, 225 of the 300 channels available after data
processing were selected randomly, and the least-squares solution
was computed. This process was repeated 10,000 times through a
sampling scheme with replacement where each of the 300 channels
had the same probability of being sampled. Taking statistical
inferences from the 10,000 samples provided uncertainty estimates.
Run on one core of an AMD Ryzen 7 5800X 8-Core 4.4 GHz
processor, the bootstrap analysis required 150 s to complete.

We present the results in terms of the moment tensor
parametrization proposed by Tape and Tape (2012). In this
Lune representation, the moment tensor of unit magnitude is
characterized by the five parameters of strike angle, slip angle, dip
angle, latitude u that gives the amount of volume change, and
longitude v that describes the mechanism on a scale from double-
couple to positive or negative compensated linear vector dipole
(CLVD). A pure isotropic explosion yields u = 0, and an absence of
volume change corresponds to u = 3π/8 ≃ 1.178. The longitude v is
equal to 0 for a pure double-couple, equal to −1/3 for a pure negative
CLVD, and equal to +1/3 for a pure positive CLVD.

3 Results

3.1 Results for the simulated data

First, we present inversion results for noisy simulated data
generated using the forward model and a known moment tensor.
The noise was taken from DAS observations in the two wells
during a period of relative quiescence. The observed distribution

of the absolute value of the seismic noise along well H is shown in
Figure 6A. It is clearly heavy-tailed, as the best fit obtained with a
Gaussian distribution underestimates the probability of the largest
events. A heavier-tailed distribution is the Student’s t-distribution

f (x) =
Γ ((ν+ 1)/2)
√πνΓ (ν/2)

(1+ (x/b)2/ν)−(ν+1)/2, (8)

where Γ is the gamma function, ν is the number of degrees
of freedom, and b is the scale parameter. We obtained a better
agreement between the noise and the Student’s t distribution
with parameters ν = 6.54 and b = 5.1× 10−11 than for a Gaussian
distribution. For a sample of the length used for the inversion (0.5 s
long, sampled at 2000 Hz, and for 300 channels, resulting in 3× 105

data), the Kolmogorov–Smirnov test with a threshold p-value of 0.05
failed to reject the Student’s t-distribution (p = 0.833). The p-value
started dropping below 0.05 for samples >6× 106 data points. For a
sample of 3.6× 107 data points (1 of data), the observed distribution
appeared less heavy-tailed than the best t-Student’s fit (Figure 6B).
Nonetheless, the Student’s t-distribution was a closer match than a
Gaussian distribution.

The noise distribution was not the same along the two wells,
nor was it stable over time. The latter explains why Event 1, despite
causing strain one order of magnitude lower than that for Event
2, still showed a similar SNR. The best fits with a Student’s t for
the last 0.5 s of noise before each event occurred showed the same
one order of magnitude difference in the b parameter. For Event
1, we obtained {ν = 6.89,b = 3.49× 10−12,p = 0.051} along well H,
and {ν = 10.83,b = 4.46× 10−12,p = 0.550} along well J. For Event
2, we obtained {ν = 6.45,b = 5.23× 10−11,p = 0.542} along well H,
and {ν = 9.88,b = 6.70× 10−11,p = 0.881} alongwell J. ν looked stable
over time but the scale parameter b was 15 times larger before Event
2 that before Event 1, which explains the similar SNR between both
events, despite the observed strain being ten times larger in Event 2
than in Event 1. This lack of stability over time can account for the
difficulty in fitting a long noise sample with a Student’s t.

The moment tensor used for generating the simulated data can
be expressed in the Lune representation as u = 3π/8, v = −0.2, with
a strike of 105°, a slip of 40°, a dip of 12°, and an amplitude of
M0 = 7.08× 10

8 Nm. The simulated data were contaminated with
noise for various SNRs ranging from 0.1 to 10 (two orders of
magnitude). The SNR was defined as the ratio of the maximum
amplitude of the signal over the maximum amplitude of the noise.
The noise was normalized to obtain the same SNR in the data
acquired along the two wells, even if the seismic source was located
at different distances from the wells.
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FIGURE 6
(A) Distribution of the absolute value of the seismic noise along well H for 3× 105 data points (gray histogram) where no events were present. The best
fits with a Student t-distribution (black) and a Gaussian distribution (black dash line) are shown. (B) Distribution of the seismic noise for 3.6× 107 data
points and best fits. (C) Normalized errors versus SNR when inverted from P-waves (blue), S-waves (red), or both P- and S-waves (black). Results with
identical SNR along the two wells are shown as dots and results with the observed SNR (different along each well) are given by pluses for Event 1 and
crosses for Event 2. The black dashed line is the e−1 threshold of the acceptable error.

Another case was considered with the SNR measured for the
observed data. For Event 1, the SNR was 0.59 for the P-waves and
3.52 for the S-waves along well H, and 0.83 for the P-waves and 5.24
for the S-waves along well J. For Event 2, the SNR was 0.55 for the P-
waves and 5.3 for the S-waves along well H, and 0.70 for the P-waves
and 2.92 for the S-waves along well J. In a manner similar to that of
Eaton and Forouhideh (2011), the inversion method was applied to
the noisy simulated data, and the normalized error was computed as

follows:

E = 1
9
[

3

∑
i=1

3

∑
j=1
(M̂ij −Mij)]

1/2

, (9)

whereMij are the elements of themoment tensor used for generating
simulated data and M̂ij are the elements of the inverted moment
tensor. Both moment tensors were normalized to unity to compute
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FIGURE 7
Histograms of the distributions of the source parameters for Event 1 (A) and Event 2 (B) sampled by bootstrapping and inverted using S-waves (red),
P-waves (blue), and both P- and S-waves (black). From left to right, the vertical lines show the lower bound of the 95% uncertainty, the most probable
value, and the upper bound of the 95% uncertainty for source parameters inverted using S-waves (dotted line), P-waves (dash line), and both P- and
S-waves (solid line).

the normalized error. Consequently, the normalized error did not
account for the error in the inversion of the magnitude.

Figure 6C shows the normalized errors versus SNR, when
inverting using different types of waves.When the SNRwas the same
along both wells, and at a given SNR, inversion of the P-waves gave
the smallest normalized errors. Inversion of only the S-waves and
inversion of both P- and S-waves gave similar errors.Thenormalized
errors decreased with increasing SNR, following a logarithmic
trend.

The threshold of acceptable errors of e−1 (∼0.3679)was exceeded
for SNR ≤0.23 for the inversion of the S-waves and the inversion of
both P- and S-waves. Similarly, for an SNR of ≤0.1 for the inversion
of P-waves.When the SNR values based on observed data were used,
the lower SNR for P-waves resulted in the inversions of the different

types of waves not having significantly different normalized errors.
For Event 1, the normalized errors were 0.022 for P-waves, 0.013 for
S-waves, and 0.013 for the joint inversion of the P- and S-waves.
For Event 2, the normalized errors were 0.031 for P-waves, 0.022
for S-waves, and 0.025 for the joint inversion of the P- and S-waves.
In Figure 6C, these normalized errors appear consistent with the
others when plotted with the SNR of the well with the lower SNR.

These results showed that in a case with no theoretical error,
our method produced reliable results, even for non-Gaussian noise.
This is important since the least-squares method makes assumes
Gaussian-distributed noise in the data. With the SNR measured
from the observed data, the inversion of the P- and S-waves appeared
to be as reliable as the inversion of S-waves alone and the largest error
appeared in the inversion of the P-waves.
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TABLE 2 Most probable values with the bounds of the 95% uncertainty of
the source parameters inverted using S-waves, P-waves, and both P- and
S-waves.

P-waves S-waves P- and S-waves

Event 1

u 0.996 1.178 1.19

[+0.008,−0.016] ±0 [+0.17,−0.06]

v −0.10 −0.29 −0.29

[+0.01,−0.03] [+0.06,−0.03] [+0.03,−0.07]

Strike (°) −20.1 8 7

[+1.3,−0.5] [+29,−11] [+30,−11]

Slip (°) −87.8 −60 −62

[+0.5,−0.3] [+52,−14] [+54,−13]

Dip (°) 31.8 40 40

[+0.8,−0.5] [+36,−6] [+37,−6]

Mw −0.30 −1.0 −1.0

[+0.09,−0.16] [+0.1,−0.2] [+0.1,−0.2]

Event 2

u 0.932 1.178 0.962

±0.002 ±0 [+0.035,−0.007]

v −0.098 −0.21 −0.19

[+0.001,−0.002] [+0.003,−0.002] [+0.01,−0.03]

Strike (°) −21.66 159.2 157.8

[+0.07,−0.05] [+0.6,−1.4] [+1.3,−0.3]

Slip (°) −88.19 −87.8 −89.3

[+0.08,−0.05] ±1 [+1.5,−0.7]

Dip (°) 36.81 51.7 52.0

±0.05 [+0.3,−0.4] [+0.2,−0.6]

Mw 0.82 0.07 0.13

±0.02 [+0.09,−0.04] [+0.04,−0.08]

3.2 Results for the observed data from
wells J and H

This section presents the inversion results for the field
observations made on two wells (J and H). We carried out three
types of inversions and compared the results for these cases: S-waves
only, P-waves only, and the joint inversion of P- and S-waves. The
uncertainty estimates for the inverted source parameters, obtained
by bootstrapping are shown in Figure 7. Table 2 gives the most
probable values of the inverted parameters and the bounds of the
95% uncertainty interval.

The three types of inversion exhibited unimodal distributions
for both events. The inversion of the u parameter using S-
waves naturally gave the theoretical value for no volume change:
u = 3π/8 ≃ 1.178. The inversion of this parameter using P-waves
points toward a small positive isotropic component. The inversion
using P- and S-waves was consistent with an absence of a volume

change for Event 1 and suggested a small positive isotropic
component for Event 2. The inverted explosive component was not
necessarily linked to fluid injection. It can, in fact, account for the
complexity of the source; for example, if the rupture propagates
along a curved fault plane.

For the five other parameters, the inversion results obtained
from S-waves alone were nearly identical to those for both P- and
S-waves together. Both of these types of inversion point toward
a large negative CLVD component for Event 1 (v = −0.29) and
a slightly smaller one for Event 2 (v = −0.21 from S-waves and
v = −0.19 from P- and S-waves). By contrast, the inversion of the
P-waves appears more biased toward a smaller CLVD component,
with v ≃ 0.1 for both events. The inversion of P-waves also exhibited
smaller uncertainties for the v parameter. A CLVD component is not
unexpected for an induced earthquake resulting from fluid injection
(Baig and Urbancic, 2010).

For the three angle parameters, the inversion of the P-waves
always yielded the smallest uncertainties. This probably occurred
due to the polarity reversal visible in the P-wave data, but not in
the S-wave data, which helped to resolve the nodal planes. The three
inversion types gave close values for Event 1, even if the uncertainties
did not overlap.The uncertainties obtained by the inversion of the S-
waves or P- and S-waves were large, several tens of degrees, while the
uncertainties for the inversion of P-waves were below 2°. For Event
2, a difference of 180° was observed between the strikes inverted
using P-waves and S-waves or P- and S-waves, corresponding
to a classical ambiguity of the employed parametrization. The
inversion of the dip also gave two disjoint values, with a difference
of 18°, whereas the uncertainties of the slip values given by
the three inversion types overlapped. All the uncertainties were
below 2°.

For both events, the inversion of P-waves yielded the largest
magnitude. For Event 1, the magnitude estimate from geophone
data (Mw = −0.8) was within the uncertainties of the magnitude
derived from the S-waves or P- and S-waves (Mw = −1.0). For
Event 2, the magnitude estimate from geophone data (Mw = −0.5)
was well below the value inverted from S-waves (Mw = −0.07),
P- and S-waves (Mw = −0.13), and P-waves (Mw = 0.82). The
different values obtained from the different waves can reflect
differences in the transmission coefficients between the layers
of the Montney Formation. This effect is expected to be more
noticeable for Event 2 than for Event 1, since its sources are buried
deeper.

Figure 8 presents the results in terms of lower-hemisphere
projections of the moment tensor, often referred to as beachballs,
and using the north-west-up coordinate system. To visualize
the uncertainty of the moment-tensor parameters, we use fuzzy
beachballs, where the gray-scale represents the uncertainty (the
probability density of the ensemble of solutions from bootstrapping
in the lower-hemisphere projection). Magnitudes are ignored in
Figure 8.

The inverted mechanisms were generally consistent between the
two events and the three types of inversion. For both events, the
moment tensors inversions of S-waves and of both P- and S-waves
gave very similar results. Event 2 showed a difference in the greater
closeness between the black areas of the fuzzy beachball for the
moment tensor inverted from P- and S-waves, which illustrated
its greater similarity to a double-couple. With v = 0, the two black

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2023.1176921
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lecoulant et al. 10.3389/feart.2023.1176921

FIGURE 8
Fuzzy beachballs showing the moment tensors and their uncertainties inverted for Event 1 (A) and Event 2 (B) using, from left to right: S-waves;
P-waves; both P- and S-waves. The red lines show the most probable moment tensor for each case. The scatter plot shows the projection on the
beachballs of the 300 channels of well H (magenta) and well J (green) used in the inversion. Channels that are not muted in the P-wave data are
magnified.

areas indeed intersected at the two poles of the beachball. The
similarity between the moment tensors inverted using S-waves and
both P- and S-waves was mainly due to the significantly larger
amplitude of S-waves compared to P-waves in the data. Their
agreement should not necessarily lead to the conclusion that their
results are more reliable than the one obtained using P-waves
only.

Themost probablemoment tensor inverted based on S-waves, P-
waves, and both P- and S-waves was used to generate simulated data
using a linear combination of the Green functions. The agreement
of these simulated data with field data made it possible to evaluate
the accuracy of our inversion method. A first qualitative assessment
can be carried out by comparing the time–distance diagrams of
simulated and field data (Figure 9). For both events, the polarity
of the S-wave arrival was correctly reproduced in simulated data,
with a negative strain followed by a positive strain. The polarity
of the P-wave arrival was also correctly reproduced along well
J. Along well H, the P-wave on the right of the apex showed
a polarity reversed with respect to the left of the apex. In the
simulated data, only the channels closest to the apex showed the
correct positive polarity while a polarity reversal appeared further
on the right. In the simulated data based on the inversion of the
P-waves, a significant number of channels showed correct polarity;
however, in simulated data based on the inversion of both P-
and S-waves, only a few channels showed positive polarity. The
amplitude of the strain measured for Event 1 along well H was
correctly reproduced in simulated data; however, the simulated
strain was almost twice as weak as the observed strain in all the

other cases, which suggested that the magnitude of both events was
undervalued.

For a quantitative evaluation of the data fit of the inversions, we
used variance reduction

VR = 1−
(xi − di)

2

d2
i
, (10)

where i is the channel, xi is the simulated strain, and di is the
observed strain. The variance reduction takes the value 1 when
the simulated and observed strains are identical. Along with this
variance reduction, Figure 10 gives the variance reduction obtained
when the observed and simulated data were normalized to their
maximums, which removed the effect of the amplitude of the strain
for focusing on its polarity and the shape of the signal. Note that for
noisy data, a variance reduction of unity implies over-fitting of the
data.

In both events, the best variance reductions occurred relatively
close to the apex and decreased far from the apex. This could
be due to the inelastic attenuation not being considered in the
forward model, especially since the decreased variance reduction
was moderated when looking at normalized signals. The paths
between the seismic sources were indeed shorter close to the apex.
Another possible explanation is the limited azimuthal coverage
of the DAS. The difficulty in reproducing the polarity of the P-
waves along well H was responsible for a clear drop in the variance
reduction, which did not appear when the two types of waves were
taken together, due to the larger amplitude of S-waves. For Event
2, the variance reduction for S-waves dropped below 0.5 along
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FIGURE 9
Simulated data for Event 1 (rows 1 and 2) and Event 2 (rows 3 and 4) at wells H (rows 1 and 3) and J (rows 2 and 4) based on the most probable moment
tensors inverted using S-waves (column 1), P-waves (column 2), and both P- and S-waves (column 3). Field data are given for comparison (column 4).
The color scale is saturated to help visualize the P-waves.

well J for channels 218 to 299 (x ≳ 1.7 km, Figure 10A, right), which
was linked to a sudden drop in the measured strain in the observed
data (Figure 2). This was probably a path effect, perhaps due to a
region of the ground with higher inelastic attenuation. In any case,
the polarity of the strain or the shape of the signal were unaffected,
and the variance reduction calculated for data normalized to their
maximum was, therefore, quite good (>0.5).

The difference between field data and the simulated data based
on the most probable moment tensors and the signification of
the variance reduction could be better understood using direct
comparisons of signals (Figure 11). Despite the relatively good
variance reductions (VR > 0.5) obtained on channel 191 of well
H for both events, the two problems already described are made
very clear: the polarity of the P-waves was not correctly reproduced
when inverting from both P- and S-waves and the amplitude of
the simulated data was smaller than the amplitude of the field
data. Unexpectedly, for Event 1, the difference in amplitude was
slightly smaller when inverted from both P- and S-waves, which
probably explains the better variance reduction than when inverting
from S-waves alone, despite the incorrect polarity predicted for the
P-waves.

4 Discussion

The inversion of geophysical data relies on fast and accurate
forward modeling, used for generating the predicted data that
are compared to observed data. In this study, we choose a

forward model able to simulate strain, which avoids the sources
of uncertainty linked to the conversion of the observed strain
data into displacement data. We did not retain the possibility of
employing a state-of-the-art forward model written for predicting
displacement before applying spatial differentiation to approximate
the strain, which may introduce artifacts in the simulated data.
Therefore, the strain was obtained by analytically calculating the far-
field components of the strain in a homogeneous and anisotropic
medium before projecting those components on the fiber of interest
and averaging the tangential strain on the gauge length of the DAS
sensor.

The field data acquired in the Montney Formation showed
secondary arrivals and numerous reflections from lithographic
boundaries and fractures and must be prepared for inversion. The
reflections were removed using f-k filtering, and only the primary
arrivals were kept using time-windowing.The channels with too low
an SNR were muted. The simulated data were shifted to the arrival
times of the observed primary arrivals, using cross-correlation
of both signals at each channel, in an approach similar to the
cut-and-paste method. The method was made insensitive to the
inaccuracies in the prediction of the arrival times. However, our
inversion method expected that the polarity and amplitude of the
first arrivals of the P- and S-waves were correctly predicted by the
forward model. Thus, we supposed that the amplitude was mainly
affected by geometrical attenuation. Indeed, our method does not
account for inelastic attenuation or the effects of heterogeneities,
such as layers with different velocities and transmission coefficients
in the Montney Formation. For the two events of interest, the short
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FIGURE 10
Variance reduction for Event 1 (A) and Event 2 (B) with the simulated data (columns 1 and 3) and normalized simulated data (columns 2 and 4) at well H
(columns 1 and 2) and well J (columns 3 and 4), based on the most probable moment tensors inverted using S-waves (red), P-waves (blue), and both P-
and S-waves (black). The value VR =0 is arbitrarily assigned to channels with no data.

FIGURE 11
Field (black) and simulated (red) data from channel 191 of well H for Event 1 (A) and Event 2 (B). Simulated data are based on the most probable
moment tensors inverted using S-waves (left), P-waves (center), and both P- and S-waves (right).

distances between the sources and the fibers (180 m for Event 1 and
210 m for Event 2) made these assumptions reasonable.

The linear problem of MT inversion (six dimensions) was
solved with the least-squares method, using the processed data
and the Green functions calculated by the forward model and
time-shifted to the arrival times of the field data. However, the
least-squares inversion relied on the assumption of Gaussian noise,
and the observed noise was better approximated by a heavy-
tailed Student’s t distribution. The uncertainties in the inverted
parameters were provided by bootstrap analysis. We checked the
robustness of our inversion method under heavy-tailed noise by
applying it to data predicted by the forward model and polluted

with different levels of real noise. Measured by normalized errors,
the performances of the inversion method for this case without
theoretical error appeared satisfying with the SNR found in real
data.

The inversionmethod was applied to field data from two seismic
events that occurred within 1 h with sources located approximately
100 m from each other. Magnitude aside, the inversion results
were consistent between the two events for a given type of wave,
which was expected since they both resulted from the same stress
field. For a given event, the inversion results were consistent
between the three types of inversion: using P-waves alone, S-
waves alone, and both P- and S-waves together. The uncertainties

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2023.1176921
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lecoulant et al. 10.3389/feart.2023.1176921

in the inverted parameters were small enough to make possible
future geological interpretations. The accuracy of the inversion
method was evaluated by comparing the observed data to the
data predicted for the most probable MT. The polarity of the S-
waves was correctly reproduced for both fibers and both events;
however, a polarity change in the P-waves along well H did not
appear in predicted data for the joint inversion of the P- and S-
waves. Thus, our assumption of no path effect on the polarity
may be incorrect for P-waves. The evaluation can be refined using
variance reduction. This shows the possible effect of inelastic
attenuation on the amplitude of the measured strain. Comparisons
of the observed and predicted signals for a single location
highlighted a possible underestimation of the magnitudes for both
events.

This paper provides encouraging results supporting a new
method for inverting MT from DAS data. However, this method
should be validated by comparison to a state-of-the-art inversion
method, for example, in a dataset where both DAS data and
abundant seismometer data are available. Then, the inversion
method must be systematized and applied to a large number
of events to improve our understanding of the local geology
and fault activation under hydraulic fracturing in the Montney
Formation. The forward model must be improved to reduce
the theoretical errors that arise from simplifying assumptions.
While keeping the hypothesis of a homogeneous and isotropic
medium, the terms of the intermediate and near field could easily
be considered, which is expected to improve the resolvability of
the MT in events where the source is close enough to the wells
(e.g.,Vera Rodriguez and Wuestefeld, 2020). The resolvability of
the moment tensor using strain-simulated and field data was
studied by Luo et al. (2021). It would be crucial to work with
a forward model able to consider more complex environments,
such as layered or anisotropic mediums. Finally, the inversion
procedure itself should be improved to invert for source
location, source time function, or more complex parametrizations
of the source, which would force the use of non-linear
methods.
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