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Scoring functions are ubiquitous in structure-based drug design as an aid to
predicting binding modes and estimating binding affinities. Ideally, a scoring
function should be broadly applicable, obviating the need to recalibrate and
refit its parameters for every new target and class of ligands. Traditionally,
drugs have been small molecules, but in recent years biologics, particularly
antibodies, have become an increasingly important if not dominant class of
therapeutics. This makes the goal of having a transferable scoring function,
i.e., one that spans the range of small-molecule to protein ligands, even more
challenging. One such broadly applicable scoring function is the Solvated
Interaction Energy (SIE), which has been developed and applied in our lab for
the last 15 years, leading to several important applications. This physics-based
method arose from efforts to understand the physics governing binding events,
with particular care given to the role played by solvation. SIE has been used by us
andmany independent labs worldwide for virtual screening and discovery of novel
small-molecule binders or optimization of known drugs. Moreover, without any
retraining, it is found to be transferrable to predictions of antibody-antigen relative
binding affinities and as accurate as functions trained on protein-protein binding
affinities. SIE has been incorporated in conjunction with other scoring functions
into ADAPT (Assisted Design of Antibody and Protein Therapeutics), our platform
for affinity modulation of antibodies. Application of ADAPT resulted in the
optimization of several antibodies with 10-to-100-fold improvements in
binding affinity. Further applications included broadening the specificity of a
single-domain antibody to be cross-reactive with virus variants of both SARS-
CoV-1 and SARS-CoV-2, and the design of safer antibodies by engineering of a
pH switch to make them more selective towards acidic tumors while sparing
normal tissues at physiological pH.
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1 Introduction

Structure-based drug design depends on computational methods for predicting binding
modes and estimating binding affinities. These typically rely on scoring functions that can be
classified into four categories: empirical, knowledge-based, physics-based and, more
recently, artificial intelligence-based, encompassing descriptor-based machine learning to
deep learning approaches (Gohlke and Klebe, 2002; Gilson and Zhou, 2007; Liu and Wang,
2015; Geng et al., 2019; Dhakal et al., 2022). For the last 15 years, our group has been
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developing and applying Solvated Interaction Energy (SIE), a
structure-based scoring function for predicting intermolecular
binding affinities in aqueous solution (Naim et al., 2007; Cui
et al., 2008; Sulea et al., 2011; Sulea and Purisima, 2012b; Sulea
et al., 2016; Vivcharuk et al., 2017). Falling within the physics-based
category, scoring functions such as SIE continue to be attractive as
their results are more readily interpretable due to the connection to
the underlying physics enabling a rationally-driven modulation of
binding affinities. As its name suggests, solvation is an important
component of SIE given its major role in binding and is captured
through a continuum solvation model.

In this overview, we describe the development of the SIE scoring
function and its applications. A notable characteristic of this scoring
function is its versatility. Although initially developed in the context
of predicting binding affinities for protein-ligand interactions
involving small molecules, SIE has found much broader
applicability. We give examples of this versatility as we survey
applications to docking and virtual screening for both small-
molecule ligands and biologics. A demanding test of the
usefulness and performance of any scoring function is its
application to a wide variety of biological systems as well as its
use in the hands of users from other laboratories aside from that of
the developers. To assess those, we analyzed the usage and
performance of SIE as reported in close to 400 publications.

2 The SIE scoring function approach

2.1 Original calibration of SIE

The overarching theme for the development of the SIE scoring
function was to leverage existing work in force fields while keeping the
number of fitted parameters to a minimum to guard against
overfitting. Leveraging the works of AMBER (Case et al., 2005;
Hornak et al., 2006) and GAFF (Wang et al., 2004) for the van
der Waals and electrostatics interactions allowed SIE to use well-
established sets of basic parameters for these terms. In addition,
solvation terms from a continuum solvation model were
supplemented. The linear combination of these terms gave rise to
a functional form of SIE with five parameters that were fitted to
reproduce experimental binding affinities (Eq. 1) (Naim et al., 2007).
It should be noted that only 3 parameters (ρ, Din and γ) affect the
actual correlation with experiment, e.g., the relative ranking of
affinities.

ΔGbind ρ, Din, α, γ, C( ) � α EvdW + Ecoul Din( ) + ΔGR
bind ρ, Din( )[

+γΔMSA ρ( )] + C (1)
EvdW and Ecoul are the intermolecular van der Waals and Coulomb
energies using the AMBER/GAFF force field. The Coulomb energy
depends on the parameterDin, the solute interior dielectric constant,
as does the change in solvation reaction field energy, ΔGR

bind. The
ΔMSA term is the change in molecular surface area, and its
contribution to the nonpolar solvation energy is proportional to
area with a coefficient of γ. Both ΔGR

bind and ΔMSA depend on the
choice of radii used to define the solute-solvent dielectric boundary.
These are set to the AMBER/GAFF Lennard-Jones radii linearly
scaled by a factor ρ, one of the fitting parameters. The coefficient α is
a global scaling factor and C a translation constant to bring the SIE

score to the same magnitude as the experimental values of a
training set.

The five parameters were fitted by minimizing the mean
absolute deviation of the predicted versus experimental binding
free energies for 11 targets comprising 99 protein-ligand complexes
(Naim et al., 2007). These targets had six or more representative
protein-ligand crystal structures with corresponding published
binding affinity data. The published fitted parameters in use
since 2008 are α = 0.1048, Din = 2.25, ρ = 1.1, γ = 0.0129 kcal/
(mol·Å2) and C = −2.89 kcal/mol (Cui et al., 2008). Note that these
are slightly modified from the original 2007 fitted parameters (Naim
et al., 2007). Overall, the correlation yielded a mean absolute
deviation of about 1.4 kcal/mol in binding free energy for the
99 complexes.

We noted that the global proportionality coefficient α
significantly scales down the sum of the various energy terms.
We interpreted this as roughly capturing entropy-enthalpy
compensation (Sharp, 2001; Reynolds and Holloway, 2011),
i.e., the more negative ΔH is, the greater the −TΔS cost of
binding will be. Gilson and coworkers have also observed a
strong correlation between changes in computed configurational
entropy, ΔS, and changes in potential energy plus solvation, Δ(U +
W), upon binding in their studies of host-guest complexes (Chang
and Gilson, 2004; Chen et al., 2004). One can roughly think of this as
the tendency of stronger interactions to narrow the energy well of
the complex, increasing the entropic cost of binding. In their study,
Gilson and coworkers found that the entropic cost, −TΔS, cancels
out about 90% of Δ(U + W). That degree of compensation is similar
to the scaling by α of the interaction energy plus solvation in SIE.
Thus, although SIE does not explicitly include an entropy term
(aside from the solvation entropy included in the nonpolar surface
area term), some of the entropic effects are implicitly contained in
the α scaling factor.

2.2 Incorporation of solvation models

The solvation contribution is a critical term in the SIE score.
This is incorporated using a continuum solvation model with the
electrostatic component calculated using a boundary element
solution (Purisima and Nilar, 1995; Purisima, 1998) of the
Poisson equation. Our implementation of the boundary
element method (BEM) for continuum electrostatics was
noteworthy in that it was one of the earliest implementations
of BEM that was computationally efficient enough to be applied
to macromolecular systems (Purisima and Nilar, 1995). The
nonpolar contribution was proportional to the molecular
surface area. Over time it was realized that the usual
continuum solvation model based on a table of atomic radii
for a set of atom types and the use of just a surface area term for
all of the nonpolar contributions had serious deficiencies. In
particular, it could not capture the observed charge asymmetry of
reaction field energies (Purisima and Sulea, 2009). In addition,
the simple surface area model missed some of the nuances of
solute-solvent van der Waals interactions. To address these
deficiencies, the FiSH (First Shell Hydration) solvation model
was developed (Corbeil et al., 2010). This makes the Born radii
dependent not just on the atom type but also on the local
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electrostatic potential felt at the dielectric boundary. In addition,
a continuum van der Waals model was incorporated that had two
terms, one for the interaction with the first shell of water around
the solute, and a second one for the interaction with more distant
water molecules. Both the standard and FiSH solvation models
are available within the SIE program.

2.3 Single-structure and MD-trajectory
modes

SIE can be applied to a single conformation of a complex or it
can be applied to snapshots of a molecular dynamics (MD)
simulation from which SIE averages are calculated (Cui et al.,
2008). A software package, sietraj, consisting of scripts and
executables used to process a single conformation or an AMBER-
generated MD trajectory is downloadable from https://mm.nrc-
cnrc.gc.ca/sietraj/ (Sulea and Purisima, 2012b). Virtual alanine
scanning of selected residues using an MD trajectory can be done
as well. Calculating an average SIE from snapshots of an MD
trajectory allows sampling conformations around an energy
minimum and has the potential advantage of reducing the bias
that may come from a single static conformation. However, for
virtual screening applications, scoring a single conformation from a
well-prepared energy-minimized structure can give satisfactory
results and sufficient enrichment.

2.4 Relation to other physics-based
methods

The different physics-based scoring functions in use vary in
terms of the van der Waals parameters, partial charges, treatment
of solvation and conformational sampling. Most have a simplified
solvation term for computational speed. Of the more commonly
used ones, MM-PBSA (Massova and Kollman, 2000; Rastelli
et al., 2010) is the most similar to SIE. In fact, the two
methods are sometimes used side by side to corroborate the
results of each method. Just like SIE, it uses the AMBER/GAFF
force field for van der Waals parameters and partial charges. It
also models solvation effects with a high-quality continuum
solvation model. MM-PBSA does have the further ability to
incorporate ionic strength, which SIE does not have. Another
difference between the two methods is that MM-PBSA has an
explicit entropic term based on a normal mode calculation,
i.e., the curvature at the bottom of the multi-dimensional
potential energy well of an energy-minimized snapshot.
However, this can make it significantly more expensive than
SIE when analyzing an MD trajectory. Interestingly, although
MM-PBSA has a more detailed accounting of entropy, MM-
PBSA greatly over-estimates the magnitude of the absolute
binding free energy while SIE scores are typically closer in
magnitude to the measured binding affinities.

Most of the computational time of SIE is spent on the boundary
element solution (BEM) of the Poisson equation for the continuum
electrostatics solvation model. The SIE score requires three
calculations–the solvation free energy of the complex and of each
partner in the free state. As an example of computational cost, for a

complex of two proteins each about 120 residues, these three
calculations altogether take about 8 CPU seconds on a single
core (Intel Xeon Silver 4116).

More detailed but computationally expensive physics-based
methods are alchemical free energy methods (Chodera et al.,
2011; Mey et al., 2020). These methods calculate the relative free
energy change by gradually transforming one molecular entity into
another and require extensive molecular dynamics sampling.
Although in principle more rigorous than end-point methods
such as SIE, in the blind tests (Skillman, 2012; Muddana et al.,
2014; Gaieb et al., 2018) of predicting binding affinities mentioned in
Section 3.2, they have not shown a clear advantage over the simpler
end-point methods in terms of accuracy.

3 Small-molecule drug design

Intended for applications in small-molecule drug design, the
original training of the SIE function was carried on small-
molecule–protein binding data. The robustness of the trained SIE
function in terms of accuracy and transferability was demonstrated
by its many prospective and retrospective applications in
laboratories worldwide, compiled and analyzed in Section 5. We
also unbiasedly tested and benchmarked SIE during the past 15 years
in community-wide challenges, including SAMPL (Statistical
Assessment of the Modeling of Proteins and Ligands; https://
www.samplchallenges.org/), CSAR (Community Structure-
Activity Resource; http://www.csardock.org/) and D3R-GR (Drug
Design Data Resource–Grand Challenge; https://drugdesigndata.
org/about/grand-challenge) (Table 1). We not only tested SIE’s
accuracy to predict binding affinities, but also its underlying
solvation models as well as its derivative applications to ligand
docking and virtual screening.

3.1 Solvation free energy

The prediction accuracy and transferability of the BEM and
FiSH solvation models underpinning SIE was tested early on. The
first stringent test was predicting hydration free energies on the
challenging drug-like SAMPL-1 blind data set of 63 highly
polyfunctional organic compounds (Sulea et al., 2009).
Surprisingly, we found that the BEM electrostatic-only solvation
model afforded smaller absolute errors and was more transferable
than a more complex continuum electrostatics-dispersion (CED)
solvation model that added continuum nonpolar solvation terms
parametrized by atom types. Indeed, even if the prospective
predictions of the more complex CED model were highly
correlated to experiment (R2 = 0.82), they had systematic errors,
mainly associated to compounds with multiple hydrogen bonds.
This apparent shortcoming prompted the evolution of the CED
solvation model into the FiSH solvation model, by separating the
first shell of hydration and parametrizing both electrostatic and non-
electrostatic terms based on explicit-solvent simulation data
(Corbeil et al., 2010; Sulea et al., 2010). Testing of the FiSH
model on the obscured set of 23 highly diverse and
polyfunctional compounds of the SAMPL-2 challenge indicated
improved accuracy and transferability relative to its CED
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predecessor model, with mean unsigned errors (MUE) more
consistently below 2 kcal/mol (Purisima et al., 2010). However,
accuracy was still varied across functional classes, calling for
more detailed parametrization zooming on particular chemical
classes and polyfunctional compounds. This was demonstrated in
SAMPL-3, which challenged solvation predictors with 36 poly-
chlorinated analogs (Sulea and Purisima, 2012a). A stark
difference was observed between the accuracies of FiSH solvation
predictions for aliphatic poly-Cl (R2 = 0.52; MUE = 0.66 kcal/mol)
and aromatic poly-Cl (R2 = 0.05; MUE = 3.43 kcal/mol) compounds.
Recalibration of the aromatic Cl parameters on explicit-solvent
simulation data improved FiSH model predictions.

3.2 Binding affinity

Most prospective testing of SIE was dedicated to binding affinity
predictions. In its first blind test (SAMPL-1), the original standard
SIE parametrization achieved reasonable predictions (R2 = 0.36;
MUE = 0.92 kcal/mol) on the JNK3 data set consisting of 49 diverse
ligands, each with its own co-crystal structure with the kinase, in
addition to 10 docked models of known inactive analogs (Sulea et al.,
2012). Absolute binding affinities were also predicted within the
actual range while the inactives were separated reasonably well from
the actives, indicating applicability to virtual screening.

SIE underwent stringent testing in SAMPL-3/4 (Skillman, 2012;
Muddana et al., 2014), which blindly challenged the SIE’s
applicability domain with three extreme scenarios: i) weak-
affinity fragment-sized ligands binding to a protein target
(trypsin); ii) high-affinity guest ligands binding to small targets
(hosts or cages); and iii) ligands exhibiting a very narrow dynamic
range below 2 kcal/mol for binding to a protein target (HIV-I) (Sulea
et al., 2012; Hogues et al., 2014). Importantly, affinity predictions
were made on computationally docked ligands, for which the
Wilma-SIE method (Section 3.3) was employed. SIE provided

affinity predictions with an MUE of 2.24 kcal/mol for the
trypsin–fragments set, which were significantly improved by
incorporating the newer FiSH solvation model (MUE 0.98 kcal/
mol). This was also found on in the HIV-I set. SIE predictions in the
host-guest systems were acceptable (R2 0.5–0.7) but suffered from an
overestimation in absolute terms, which was corrected by rescaling
the entropy-related factor, α, which may depend on the rigidity of
the target molecule. Even with experimentally solved binding
modes, SIE predictions lacked correlation with experimental
affinities in the HIV-I set having binding affinities within 2 kcal/
mol range; nonetheless, SIE was able to correctly signal the
narrowness of the data range. Another conclusion from the HIV-
I test set was that using a common protein structure for all ligands
can reduce the noise.

SIE testing in the CSAR-2013/14 (Carlson, 2016) and D3R-
GC2 (Gaieb et al., 2018) blind challenges allowed assessment of
performance and transferability across a wider range of protein
systems representative of real-life applications (Hogues et al.,
2016; Hogues et al., 2018b). Affinity ranking of congeneric
ligands after cross-docking was reasonably achieved in the
SBP, Syk and TrmD systems, with Spearman rank-order
correlation coefficients (S) ~0.6. Poor ranking of FXA ligands
was possibly due to protein domains not included in the
calculations. Ligand preparation in the Syk set underscored
the critical role of correct assignment of protonation states to
the SIE performance. Including the FiSH model improved cross-
docking but worsened affinity predictions, which pointed to a
need for further fine-tuning of this newer solvation model. The
FRX set from the D3R-GC2 blind challenge posed the formidable
task of predicting ligand binding affinity to a highly flexible
receptor. A possible cause for the difficulty of SIE function to
predict binding affinities in this scenario is the internal energy
strain arising from conformational differences in the receptor
across complexes, which may need to be properly incorporated
into SIE for flexible targets.

TABLE 1 Testing of SIE and related methods in community-wide challenges.

Challenge Scope of SIE prediction evaluation Small-molecule binding target

SAMPL-1
Solvation(a)

c-Jun N-terminal kinase 3 (JNK3)
Binding affinity(b)

SAMPL-2 Solvation(c) N/A

SAMPL-3

Solvation(d)

TrypsinBinding affinity(b)
Cucurbit [n]uril hosts

Virtual screening(b)

SAMPL-4

Binding affinity(e); ;
HIV-integrase (HIV-I)Docking(e)

Cucurbit [n]uril and OctaAcid hostsVirtual screening(e)

CSAR-2010 Binding affinity(f) >200 different proteins

CSAR-2013/14 Binding affinity(g)
Steroid-binding protein (SBP)

Docking(g)
Factor Xa (FXA)

Spleen tyrosine kinase (Syk)

tRNA guanine-methyltransferase (TrmD)

D3R-GC2
Binding affinity(h)

Farnesoid X receptor (FXR)
Docking(h)

(a) Sulea et al. (2009), (b) Sulea et al. (2012), (c) Purisima et al. (2010), (d) Sulea and Purisima (2012a), (e) Hogues et al. (2014), (f) Sulea et al. (2011), (g) Hogues et al. (2016), (h) Hogues et al.

(2018b).
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The most extensive testing of SIE purely for affinity prediction
was done on the CSAR-2010 scoring set (Dunbar et al., 2011)
consisting of high-resolution co-crystal structures for
343 protein-ligand complexes with high-quality binding affinity
data spanning 18 kcal/mol and highly diverse protein targets
(Sulea et al., 2011). SIE predicted binding affinities for the
curated CSAR-NRC-HiQ dataset that were well in the range of
experimental values (MUE = 1.98 kcal/mol; R2 = 0.38). Predictions
were found to be very sensitive to the assignment of protonation and
tautomeric states in the complex, and to the treatment of metal ions
near the protein-ligand interface. Retraining of the SIE function on
this large and diverse set gave marginal improvements with small
changes in optimal parameters and was not warranted.

3.3 Docking

A natural extension of the SIE function is docking, i.e., ranking
binding modes (poses) of a ligand to a protein target. To this end,
SIE was integrated into the exhaustive docking program Wilma
(Sulea et al., 2012; Hogues et al., 2014; Hogues et al., 2016). Briefly,
Wilma uses a brute-force, exhaustive searching approach where
interaction modes with the rigid protein of all the discrete rotational
and translational states of ligand conformations are enumerated,
scored, clustered and ranked using a simple fast-scoring function. A
few hundreds top-ranked poses produced by Wilma are then
energy-minimized and rescored by SIE. The goal is to provide an
accurate docking solution as the top-1 SIE-scored pose. The same
SIE parametrization used for affinity prediction is also employed for
docking, allowing consistency between pose ranking for each ligand
and affinity ranking between different ligands.

Extensive testing of Wilma-SIE indicated that ligand docking
can be achieved with high accuracy and is an easier task than binding
affinity scoring. The power of Wilma-SIE in pose selection and
cross-docking against multiple targets and ligand classes was
unequivocally demonstrated in the CSAR-2013/14 blind challenge
(Hogues et al., 2016). In all 24 pose-selection tests on 4 different
protein targets, Wilma-SIE ranked the native pose as best among
carefully generated sets of decoy conformations. Large score
separations of native poses indicated robustness in pose scoring.
Cross-dockings were also accomplished with high accuracies for
various systems, with ligand median RMSD (mRMSD) values
around 1 Å from the crystal structures. Both Wilma-SIE and
Wilma-SIE + FiSH generated docking predictions among the
best-performing submissions. In terms of consistency and system
transferability, they were the only submissions with mRMSDs below
1.5 Å on every system. This level of performance was for top-1 poses
ranked by SIE or SIE + FiSH over multiple target conformations.
Using SIE + FiSH for pose scoring lead to somewhat better docking
accuracy overall as well as for individual targets, with mRMSD of
0.6 Å by Wilma-SIE + FiSH in the Syk set.

Although the optimal regime of Wilma-SIE is for high-affinity
ligands with low-to-moderate flexibility, the SAMPL-4 blind test on
the HIV-I set demonstrated that Wilma-SIE can sometimes dock
accurately even weak-affinity ligands (KD > 0.1 mM) with high
flexibility (>8 rotatable bonds) (Hogues et al., 2014). In D3R-
GC2, the rigid-protein docking method Wilma-SIE faced the
FXR target that exhibits significant backbone movement in

response to ligand binding (Hogues et al., 2018b). Use of the
conformational ensembles from publicly available structures of
FXR allowed Wilma-SIE to predict poses with mRMSD of 1.4 Å
on the set of 36 FXR diverse ligands, and rank amongst the best
pose-prediction methods of the challenge. However, the success rate
would have been much lower if only a single structure were used.

3.4 Virtual screening

With excellent scoring abilities for both binding affinity and
pose selection, one of the most practical applications of SIE is virtual
screening of compound libraries against a given target protein
structure. Typical libraries of available multi-million drug-like
compounds, e.g., ZINC (Sterling and Irwin, 2015), can be
efficiently processed by Wilma-SIE, which is fully scalable and
parallelizable on available computational resources. The first
assessment of the SIE performance in virtual screening indicated
excellent enrichments of true actives within decoy sets for estrogen
receptor and thymidine kinase as screening targets, particularly in
the latter more challenging system having weak binding affinities for
the true binders (Naim et al., 2007). Wilma-SIE can be used for
screening of not only drug-like but also fragment-like ligands, as
demonstrated in the SAMPL-3 blind challenge on trypsin screening,
where it achieved a good enrichment of the 20 true actives amongst
500 fragment-like ligand library with an AUC-ROC of ~0.7 (Sulea
et al., 2012). The early enrichment performance was particularly
good, with 50% of true actives recovered with false-positive rates of
15% for Wilma-SIE and 3% for Wilma-SIE + FiSH. The SAMPL-4
blind test showed that Wilma-SIE is not suited for detection of
promiscuous weak and flexible ligands, although even in such
difficult cases it can lead to better-than-random virtual screening
results (Hogues et al., 2014).

4 Biotherapeutics design

4.1 Antibody-antigen affinity ranking

With the rise of monoclonal antibodies (mAbs) as a promising
class of biotherapeutics, the SIE function was evaluated for its ability
to predict protein-protein binding affinities. An immediate
application is antibody optimization, with a long-term goal
towards de novo protein engineering. A first study assessed the
transferability of the original SIE parametrization to predict changes
in antibody-antigen binding affinities (Sulea et al., 2016). To this
end, we assembled Single-Point Mutant Antibody Binding
(SiPMAB), a dataset of 212 antibody mutants from 7 systems
having high-resolution crystal structures of parental antibodies
and high-quality binding affinity measurements. The SIE
function coupled with a protocol limited to sampling only the
mutated side chain was able to reasonably predict relative
binding affinities (S ~0.6) without any reparameterization of the
original SIE function trained on small-molecule binding. Binding
affinity ranking performance was maintained for each of the
7 systems and other subsets including non-alanine and charge-
altering mutations. Performance was further enhanced using
consensus ranking over multiple scoring functions alongside SIE,
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such as FoldX (Guerois et al., 2002) and Rosetta (Kortemme and
Baker, 2002; Ó Conchúir et al., 2015). The consensus scores were
obtained by converting the scores from the various scoring functions
into normalized z-scores and producing an average z-score for each
mutant. This facilitated combining the disparate magnitudes and
scales of the different scoring functions.

4.2 Affinity maturation of antibodies

Traditional experimental approaches such as library display
and screening are incapable of thoroughly exploring the vast
mutational space available to a typical antibody complementarity
determining region (CDR; ~60 residues). One meaningful way to
systematically explore and prioritize this space is to examine
single-point mutants first and then combine validated hot spots
into multiple-point mutants. A cost-effective protocol is to
leverage the speed of in silico screening followed by
experimental validation of only a small number of predicted
hits in each mutation round. To this end, we developed Assisted
Design of Antibody and Protein Therapeutics (ADAPT), a
platform that interleaves structure-based virtual screening
mutagenesis with experimental testing in order to optimize the
binding affinity of a biologic (antibody) to its target (antigen)
(Vivcharuk et al., 2017). The ADAPT-based affinity maturation
eliminates false-positive predictions in two ways: i) early
experimental validation of top-scored virtual hits, mainly at
the single mutation stage, and ii) consensus affinity scoring
over SIE and other popular scoring functions like FoldX and
Rosetta. The platform is also designed to preserve protein folding
upon mutation by using a computational filter.

Prospective applications of ADAPT affinitymaturation in real-life
projects (Table 2) led to 10–100-fold improvements in the
dissociation constant (KD) for several Fab fragments of mAbs that
originally bound their antigens with 0.05–50 nM affinities (Vivcharuk
et al., 2017). ADAPT has also been applied successfully to improve the
binding affinity of a single-domain antibody (sdAb) against
Clostridium difficile toxin A by 10-fold, which led to improved
functional efficacy and thermal stability of the optimized sdAb
(Sulea et al., 2018). To achieve affinity improvements via ADAPT,

only about 30–50 single to triple mutants need to be recombinantly
produced and tested, a significant reduction of the aforementioned
available mutational space.

The utility of the consensus score is highlighted in Table 2 of
Vivcharuk et al. (2017). For the bH1-VEGF system, only SIE had
a good z-score for the G99D mutation. FoldX and Rosetta scored
it poorly and ranked it 522 and 725, respectively. Due to SIE, the
consensus z-score of this single mutant brought it within the top
50 consensus z-scores, making it to the list for experimental
validation. In the bH1-HER2 system, only FoldX scored the I29R
mutant well. SIE and Rosetta z-scores had them at ranks 107 and
153, respectively. However, the consensus z-score made it within
the top 50 cutoff. In the Herceptin-HER2 system, only Rosetta
had a good z-score for D102F, while the FoldX and SIE z-scores
ranked it at 88 and 51, respectively. Again, the consensus z-score
brought it within the cutoff for experimental consideration. All
of these single mutants turned out to be components of the best
triple mutants for their respective systems. They would have
been missed for one or more systems had we relied on a single
scoring function. The consensus scoring approach was also
shown to be superior to each individual component scoring
function on the SiPMAB data set in terms of AUC-ROC (Sulea
et al., 2016).

In certain cases, it is beneficial to controllably weaken binding
affinity, for example, to reduce toxicity of antibody-drug
conjugates (ADCs) used in oncology. This approach takes
advantage of the bivalency of mAbs and higher expression of
antigens on tumor versus normal cells. ADAPT and SIE were
employed to design a set of antibody mutants that evenly
modulate binding affinity within a 4 kcal/mol range leading to
identification of optimal ADCs with improved therapeutic
windows (Zwaagstra et al., 2019).

ADAPT was used to broaden the specificity of an anti-SARS-
CoV-1 sdAb that had only weak cross-reactivity with SARS-CoV-2
(Sulea et al., 2022). By applying ADAPT with the constraint of dual-
affinity optimization simultaneously against coronaviruses from
distinct phylogenetic clades, optimized sdAbs were found that
neutralized the major variants of concern within the SARS-CoV-
2 clade with superior pan-specificity and potency relative to the
parental antibody.

TABLE 2 Prospective applications of SIE via ADAPT to antibody engineering.

Disease Antigen Binding modulation Functional outcome

Cancer Her2 10-fold KD improvement(a) Increased tumor growth inhibition; increased cellular internalization(b)

1000-fold KD range modulation(b) Increased therapeutic window for cytotoxic ADCs(b)

25-fold selectivity improvement towards
acidic pH(c)

Inhibition of tumor spheroid growth only at acidic pH; widened therapeutic
index(c)

VEGF-A 100-fold KD improvement(a) —

CD47 100-fold KD improvement(d) —

Infection C. difficile Toxin A 10-fold KD improvement(e) Increased neutralization of cytotoxicity in cell culture(e)

SARS-CoV-2 Spike
variants

20–1000-fold koff improvement for bivalent
constructs(f)

Increased neutralization of infection in cell culture and in animal model(f)

(a) Vivcharuk et al. (2017), (b) Zwaagstra et al. (2019), (c) Sulea et al. (2020), (d) Cheng et al. (2019), (e) Sulea et al. (2018), (f) Sulea et al. (2022).
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A requirement for ADAPT is the availability of 3D structural
data for the protein-protein interface subjected to affinity
optimization, ideally from crystallographic experiments.
Encouragingly, a recent study reports ADAPT-based affinity
maturation of a weak-affinity anti-CD47 sdAb (KD of 278 nM)
by 87-fold based on an antigen-bound sdAb structure derived by
homology modeling, molecular dynamics and protein-protein
docking (Cheng et al., 2019).

4.3 Engineering pH-sensitive antibodies

For therapeutic applications in oncology, specific binding under
the slightly acidic pH of solid tumors can reduce off-tumor binding
and toxicity on normal cells living under physiological pH. Given
that the average pKa of histidine in proteins is ~6.4, virtual His
screening of antibody CDR appears as a suitable approach to achieve
pH-selective antigen engagement. To do this in ADAPT, SIE
calculations are performed twice for each His mutant, in the
protonated and neutral states, and then referenced the parental
complex in both pHs. This approach was successfully applied to
introduce pH-dependent binding in a variant of trastuzumab
(Herceptin) binding the Her2 antigen overexpressed in breast
cancer (Sulea et al., 2020). Designed antibody His mutants bound

stronger to acidic cancer cells than to normal cells under
physiological pH, and inhibited cell growth under acidic pH but
not under physiological pH. In contrast, the parental antibody
impacted tumor and normal cells similarly. In a larger-scale
application, ADAPT and SIE could be used to retrofit the entire
anticancer pipeline of antibodies with available 3D structures in
complex with their onco-antigens (Wei et al., 2022). ADAPT could
be similarly employed to engineer pH selectivity in the opposite
direction for the design of recycling antibodies. In this scenario,
overexpressed targets captured under physiological pH can be
degraded more readily if they disengage from recycling
antibodies in the slightly acidic endosomes inside the cells.

5 SIE in the wild

A literature analysis involving manual inspection of 377 distinct
citations of 15 key methodological papers on SIE (Naim et al., 2007;
Cui et al., 2008; Sulea et al., 2011; Sulea and Purisima, 2012b;
Purisima and Hogues, 2012; Sulea et al., 2012; Hogues et al.,
2014; Henry et al., 2016; Hogues et al., 2016; Sulea et al., 2016;
Vivcharuk et al., 2017; Hogues et al., 2018a; Hogues et al., 2018b;
Sulea et al., 2018; Sulea et al., 2020) (as of 21 December 2021) was
undertaken (Supplementary Table S1). Only 36 of those citations are

FIGURE 1
Predicted versus experimental absolute binding affinities for small-molecules. Data from external articles (colored symbols) and community-wide
challenges (gray symbols). The “Small Molecules” set combines all data from external articles. Number of compounds (N), Spearman rank-order
correlation coefficient (S), Pearson correlation coefficient (R2) and mean unsigned error (MUE, kcal/mol) are listed for each set.
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self-citations (10%). 50 of the 377 citations (13%) are for a different
scoring function, called GBVI/WSA (Corbeil et al., 2012), calibrated
on the SIE training dataset (Supplementary Table S2) and having a
formalism similar to SIE but differing in its surface area calculations
and force-field used. SIE has been used by hundreds of scientific
groups around the globe (Supplementary Figure S1) with nearly 29%
of citations from North-America, 31% from Asia, and 26% from
Europe.

This literaturewas scrutinized to determine the use of SIE in research.
In almost half of citations, SIE was used either prospectively (40 articles)
to design new molecules or retrospectively (146 articles) to rationalize
binding or a biological process. Predicted binding affinities were collected
for instances in which experimental binding affinities were also reported.
In total, two subsets of 275 and 150 data points for small-molecule and
antibody complexes were collected from 65 to 5 articles, respectively
(Supplementary Tables S3-S4). The small-molecule subset combines both
prospective and retrospective data given the difficulty of discerning the
two in some articles. The antibody subset combines all prospective data
from internal studies in which SIE was applied to design novel mutants.
As described earlier, SIE has also been tested extensively in community
studies for small-molecule binding [SAMPL-1/3/4 (Sulea et al., 2012;
Hogues et al., 2014), CSAR-2010/13/14 (Sulea et al., 2011; Hogues et al.,
2016), D3R-GC2 (Hogues et al., 2018b)] as well as in-house studies of
relative binding affinities for antibodies [SiPMAB (Sulea et al., 2016)].
From these studies, 975 and 212 data points were supplemented for small

molecules and antibodies, respectively (Supplementary Tables S5-S6). To
avoid skewing analyses towards these benchmark studies, these large
datasets were treated separately.

Predicted binding affinities were plotted against experimental data
for small molecules (Figure 1) and biologics (Figure 2). Overall, SIE
performs well on the published data for 275 small molecules, achieving
good ranking (S of 0.76) and MUE of 1.49 kcal/mol. Both values are
close to the published results for SIE on the training set (S of 0.79; MUE
of 1.38 kcal/mol). Out of the 65 articles, only 10 of them contained
targets present in the SIE training set (Supplementary Table S7).
Individual correlations in most systems are reasonable,
demonstrating transferability of SIE across multiple targets, even for
those not part of the training set.

Aside from the overall binding affinities, analysis of the individual
components of the SIE score can provide insights into the nature of the
binding interactions. In a study of a Pan-BCR-ABL kinase inhibitor, the
SIE components of the interaction of the inhibitor with the native and
fourteen mutant BCR-ABL kinases revealed the relative importance of
the electrostatic and van der Waals contributions to binding for the
various mutants (Tanneeru and Guruprasad, 2013). SIE has also been
used for virtual alanine scanning, systematically replacing selected
residues with alanine and recomputing the predicted binding affinity.
For example, it was used to identify which residues contribute themost to
the binding of a peptide inhibitor to the MurA enzyme of Pseudomonas
aeruginosa (Lima et al., 2017). Another application of SIE is in structural

FIGURE 2
Predicted versus experimental relative binding affinities for biologics. Data from prospective studies (colored symbols) and in-house SiPMAB set
(gray symbols). The “Biologics” set combines all data from literature. Statistical parameters as in Figure 1.
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studies. In a study of putative binding modes of inhibitors to
acetylcholinesterase, the SIE score in conjunction with qualitative
structural analysis of the modeled structures was used to predict
which binding mode was the most likely one (Galdeano et al., 2012).
Drug resistance is a major concern in therapeutics. In a study of the drug
resistance arising from HIV-Protease mutants, both SIE and MM-PBSA
showed that the decrease in van der Waals interactions between the
inhibitors and the protein was the driving force in conferring resistance
(Wang et al., 2020). Polar interactions hardly contributed to drug
resistance.

For biologics, 5 internal publications yielded 150 antibody mutants
with both predicted and experimental binding affinities relative to the
respective parental antibodies (Vivcharuk et al., 2017; Sulea et al., 2018;
Zwaagstra et al., 2019; Sulea et al., 2020; Corbeil et al., 2021). When
compared to the published results for small molecules, the quantitative
prediction of relative binding affinity for antibodies is not as successful
(S = 0.58,MUE= 0.90 kcal/mol). The overall correlation is mainly driven
by three studies, Vivcharuk et al. (2017); Sulea et al. (2018); Zwaagstra
et al. (2019) in which SIE was used to predict binding affinity changes
mostly for single mutants relative to a parental antibody. They are similar
in spirit to the SIE benchmark study on the SiPMAB set (Sulea et al.,
2016), hence their comparable performances (Figure 2). The other two
studies required introduction of additional degrees of freedom in the
modeling approach, whichmay explain their poorer correlations. In Sulea
et al. (2020) SIE was used to design mutants that selectively bound in the
acidic tumor microenvironment, which necessitated predicting binding
affinities for both neutral and acidic pH, which may have compounded
prediction errors. Despite the low correlation observed, these predictions
still proved useful (Section 4.3). In Corbeil et al. (2021) a mutational
engineering endeavor was undertaken by attempting to redesign the
entire CDR H3 loop of an antibody. The requirement of predicting the
protein loop backbone conformation significantly increased affinity
prediction errors. Protein flexibility and solvation are some of the
areas which may require further development for improving
predictions of relative protein-protein binding affinities.

6 Perspectives and conclusion

As with any scoring function, there is room for further
improvement. A key component of the SIE scoring function is its
solvation model, which has evolved in sophistication over time.
Further refinement of the FiSH solvation model continues to be an
active area of development. The original FiSH model was
parameterized on small organic molecules. A possible refinement
for applications to protein-protein interactions would be fine-tuning
the parameters such as the born radii using molecular dynamics
simulations of amino acids and short peptides with explicit water
molecules as a reference. The scoring function also lacks an explicit
conformational entropy term. Currently, an overall scaling factor is
meant to capture entropy-enthalpy compensation, which can
account for overall trends but is incapable of reproducing more
granular details of entropic contributions to the binding free energy.
Empirical entropic terms such as found, for example, in the FoldEF
scoring function could be added. The conformational sampling as a
by-product of the different methods used in the consensus approach
does address flexibility to some extent, which may explain some of
its improved performance.

Applications of machine learning and AI have exploded across
almost all disciplines. The use of AI together with physics-based
methods is a powerful combination. As discussed above, consensus
scoring has been key in enhancing the robustness of ADAPT in
antibody design. The incorporation of one or more AI-derived
scoring functions (Li et al., 2021) as part of the consensus score could
provide complementary information not well captured in the current
physics-based functions. AI tools could also improve the SIE scoring
function itself by optimizing the parameters in its solvation model.
Moreover, since SIE is dependent on a 3D structure of the systems of
interest, the increasing capability of AI structure prediction methods
(Jumper et al., 2021; Akdel et al., 2022; Bryant et al., 2022) will have a
collateral benefit in broadening the scope of molecular targets that SIE
and other physics-based scoring functions can be applied to.

Despite its present limitations, SIE has been successfully applied
across multiple systems by various research groups. Although initially
developed for small-molecule affinity prediction, the literature we have
surveyed highlighted its versatility as demonstrated in the variety of
applications through the years that have ranged from small-molecule
docking and virtual screening to the design of biologics. This wide
applicability is remarkable given the parsimonious number of fitting
parameters in the original calibration of the SIE scoring function aswell as
being relatively computationally inexpensive.
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