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Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder

characterized by an increase in pulmonary vascular resistance and pulmonary

arterial pressure. The detailed molecular mechanisms remain unclear. In recent

decades, increasing evidence shows that altered immune microenvironment,

comprised of immune cells, mesenchymal cells, extra-cellular matrix and

signaling molecules, might induce the development of PH. Myeloid-derived

suppressor cells (MDSCs) have been proposed over 30 years, and the

functional importance of MDSCs in the immune system is appreciated

recently. MDSCs are a heterogeneous group of cells that expand during

cancer, chronic inflammation and infection, which have a remarkable ability to

suppress T-cell responses and may exacerbate the development of diseases.

Thus, targeting MDSCs has become a novel strategy to overcome immune

evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted

as a cancer-like disease, and MDSCs are closely related to the development and

prognosis of PH. Here, we review the relationship between MDSCs and PH with

respect to immune cells, cytokines, chemokines and metabolism, hoping that

the key therapeutic targets of MDSCs can be identified in the treatment of PH,

especially in severe PH.
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Introduction

Pulmonary hypertension (PH) is a rare but severe vascular

disorder, with a mean pulmonary arterial pressure (mPAP) ≥ 20

mmHg at rest (1). Pathologically, PH is characterized by pulmonary

vascular remodeling (PVR) (2, 3). PVR involves proliferation and

endothelial-mesenchymal transition of endothelial cells (ECs),

phenotypic transformation and proliferation of pulmonary

arterial smooth muscle cells (PASMCs), and proliferation,

migration and excellular cell matrix (ECM) deposition of

adventitial fibroblasts (AFs), as well as infi ltration of

inflammatory cells (4–8). In clinical practice, PH is classified into

5 groups based on etiology, pathophysiology and treatment,

including group 1 [pulmonary arterial hypertension (PAH)],

group 2 (PH associated with left heart disease), group 3 (PH

associated with lung diseases and/or hypoxia), group 4 (PH

associated with pulmonary artery obstructions) and group 5 (PH

with unclear and/or multifactorial mechanisms) (1). Treatment of

PH typically begins with primary therapy aimed at the underlying

causes, and patients always die due to right heart failure. For nearly

two decades, novel therapeutic agents, such as sotatercept and

riociguat, have made progressions in the treatment of patients

with PH (9, 10). However, the drugs only target to pulmonary

vascular tone, and it is still difficult to reverse PVR. Therefore, to

explore a new effective therapy for PVR is urgent. Recently,

increasing evidence shows that immune microenvironment in

adventitia of pulmonary arteriole plays an important role in PH

development (11, 12). In healthy organisms, the immune system

could balance the persistent equilibrium state between injury and

repair by many sophisticated mechanisms, and distinct

immunosuppressive cells could protect against excessive tissue

damages (13). However, in chronic diseases like tumors, chronic

infections and autoimmune diseases, inflammatory cells may

establish a strong immunosuppressive microenvironment that

suppresses anti-tumor and inflammatory immune responses, and

promotes disease progression (14–16). Myeloid-derived suppressor

cells (MDSCs) are a group of immunosuppressive cells that play an

important role in PH development (17), and MDSCs may serve as a

new therapeutic target for reversing PVR. Therefore, this review

focuses on the relationship between PH and MDSCs, including

cancer-like proliferation and immune microenvironment in PH, the

phenotype of MDSCs, and the links between MDSCs and PH.
Immune microenvironment and cancer-
like process in severe PH

Severe PH is an incurable disease. Plexiform lesion, also called

angiomatous malignant proliferation, is a morphologic hallmark of

severe PH (18–20), which is a complex and disorganized pulmonary

arterial proliferative lesion, consisted of vascular channels lined by a

continuously proliferating endothelium and separated by core cells.

The core cells could be myofibroblasts, PASMCs, ECs and

undifferentiated cells (21). In 2008, Rai et al. (22) formally

introduced the concept of cancer-like features in severe PH. Until
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now, accumulating evidence have supported that ECs, PASMCs and

AFs involved in PVR demonstrate a hyperproliferative and

apopotosis-resistant phenotype, and those cells are characterized

by abnormally cancer-like growth characteristics (23–26). The

cancer-like proliferative characteristics of vascular cells lead to

irreversible changes in severe PH, but on the plus side, they also

provide a new framework for antiproliferative and antiangiogenic

therapy in severe PH. For the treatment of PH, especially severe PH,

as Cool et al. (27) suggest, future treatment strategies will target

immune mechanisms. If we want to re-open occluded pulmonary

arterioles or halt disease progression, we might get some inspiration

from cancer research data and concepts. In recent years, tumor

immunotherapy has been effectively applied in clinical practice by

the virtue of its targeting specificity (28, 29). Investigations of

immune microenvironment and new targets for immunotherapy

have become a hot topic in the field of tumor treatment, thus

leading a new direction for exploring the targets of cancer-like PH.

Pulmonary vascular remodeling and cancer-like growth are

summarized in Figure 1.

Pathological histology in patients and animal models of PH

shows various degrees of inflammatory infiltration around the

pulmonary vasculature. Inflammatory cells like T cells,

macrophages, dendritic cells (DCs) and natural killer (NK) cells

are observed around small pulmonary arteries. Abnormally high

levels of circulating cytokines and chemokines are detected in

peripheral blood (11, 30–32). In the past, most studies focus on

macrophages, neutrophils, and DCs, to explore inflammatory

microenvironment (33–35). Nowadays, more and more studies

suggest that MDSCs could also play an important role in

inflammatory microenvironment (17, 36–38). Under physiological

conditions, MDSCs are important immune cells for hematopoietic

stem cells to maintain homeostasis (39). Under pathological

conditions, recruitment of MDSCs from circulating blood to the

outer membrane of pulmonary artery may be an important

mechanism for PVR and PH progression (17, 38). Thus, there is

an imperative need to explore MDSCs in PH, and targeting MDSCs

may provide clinical guidance for the treatment of PH.
Myeloid-derived suppressor cells

MDSCs are a heterogeneous population of immature cells derived

from myeloid progenitors with potent immunosuppressive activity

(40, 41). In healthy mice, MDSCs constitute 20-30% of normal bone

marrow (BM) cells and 2-4% of all nucleated splenocytes (42, 43). In

normal myelopoiesis, immature myeloid cells differentiate into

neutrophils and monocytes (44, 45). However, in pathological and

chronic inflammatory conditions, such as tumors, chronic infections,

and autoimmune diseases, a block in the normal myeloid

differentiation occurs, and the persistent stimulation of myelopoiesis

results in the expansion of MDSCs (41, 46). Thus, MDSCs in the BM

are increased and released into the peripheral blood, and thenmigrate

into various tissues of the body, especially around the lesions, to exert

immunosuppressive functions.
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Although MDSCs have been recognized for almost 30 years

(47), the functional importance of MDSCs in the immune system is

appreciated recently. MDSCs have been shown to be a potentially

promising and well-tolerated therapeutic approach in tumor (48–

50). The role of MDSCs in the PH process has not been fully

illustrated yet. Elucidation of the immunosuppressive function and

manipulation of the MDSCs phenotypes are therefore essential to

fully understand.
Phenotype of MDSCs

There are two subgroups of MDSCs according to their cell

origins: polymorphonuclear MDSCs (PMN-MDSCs) and

monocytic MDSCs (M-MDSCs). In human, CD11b and CD33

are used as pan markers for MDSCs (41). However, CD11b and

CD33 are expressed not only in PMN-MDSCs and M-MDSCs but

also in neutrophils and monocytes, so further studies on surface

markers are required to distinguish specific cell populations of

MDSCs (51, 52). The accepted markers of PMN-MDSCs in human

are CD33+CD11b+CD14-CD15+/CD66b+ (41). In 2016,

Condamine reported that LOX-1 was practically undetectable in

neutrophils in the peripheral blood of healthy donors, whereas 5-

15% of total neutrophils in patients with cancer and 15-50% of

neutrophils in tumor tissues were LOX-1(+) (53). LOX-1 is a class E

scavenger receptor expressed on macrophages, chondrocytes, ECs

and smooth muscle cells (54). LOX-1(+) neutrophils have potent

immunosuppressive activity, up-regulation of ER stress and other

biochemical characteristics of PMN-MDSCs, so LOX-1(+) is
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proposed as a specific marker for human PMN-MDSCs (53).

CD13hi neutrophil-like MDSCs are found to be more

immunosuppressive-active than CD13lo neutrophil-like MDSCs in

human pancreatic cancer, and CD13hi is associated with poor

prognosis, suggesting CD13hi may be a new marker for PMN-

MDSCs ( 55 ) . Human M-MDSCs a r e d e s c r i b ed a s

CD33+CD11b+CD14+CD15-HLA-DR-/lo (41). Monocytes,

macrophages and DCs are mononuclear phagocytes that express

major histocompatibility complex (MHC) class II molecules,

whereas M-MDSCs usually lack MHC class II (56, 57). S100A9 is

a newmarker for monocytic humanMDSCs (58). In humans, CD84

is expressed in both M-MDSCs and PMN-MDSCs, and CD84 has

been identified as a marker of MDSCs in human cancer (40)

In mice, CD11b+ and Gr-1+ are used as pan markers, and the

marker of PMN-MDSCs is CD11b+Ly6G+Ly6Clow, whereas that of

M-MDSCs is CD11b+Ly6G-Ly6Chi (40, 41). In models of

inflammatory bowel diseases and tumor-bearing mice, the

CD49d+ subset of MDSCs is mainly monocytic and strongly

suppress proliferation of antigen-specific T cells via a nitric

oxide-dependent mechanism, which are similar to Gr-1(dull/int.)

MDSCs. Thus, CD49d may potentially be a new marker to replace

Gr-1 (59). Secreted protein acidic and rich in cysteine (SPARC) is a

matrix protein, which can specifically control MDSCs suppressive

activity, and SPARC is proposed as a new potential marker of MDSCs

(60). CD84hiMDSCs exhibit T cell-suppressive capacity and increased

reactive oxygen species (ROS) production, thus CD84 has also been

identified as a marker of MDSCs in cancer of mice (40).

The human and mouse MDSCs phenotypes are presented

in Table 1.
FIGURE 1

Pulmonary vascular remodeling and cancer-like growth. Pulmonary vascular remodeling causes endothelial cells apoptosis resistance, smooth
muscle cells proliferation and adventitial fibroblasts proliferation. Without effective intervention, these processes lead to plexiform lesions and severe
PH. PH, pulmonary hypertension.
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In rats, CD11b/c and His48 are used as pan-MDSC markers

(61). Literature on rat MDSCs is limited and MDSCs are not

uniformly labeled. We find that approximately 13 papers report

MDSCs in rats by searching PubMed and Web of Science (61–73).

CD11b/c+ and His48+ cells were first used as markers of MDSCs in

T9 glioma rats in 2002 (61). Among the 13 studies, four use CD11b/

c+ and His48+ as markers of MDSCs (61, 63, 64, 67), and one use

CD11b/cint and His48hi (69). However, CD11b/c and His48 are

expressed not only on MDSCs, but on neutrophils, monocytes,

macrophages and DCs. Some studies use CD172a as a myeloid cell

marker instead of CD11b/c (68), and some use CD161 as an

alternative indicator of His48 in MDSCs (71). The phenotypes of

rat MDSCs are summarized in Table 2. The studies on MDSCs in

rat models are limited, and there are almost no specific markers to

distinguish PMN-MDSCs and M-MDSCs. Therefore, further

studies are needed to identify the cell markers of PMN-MDSCs

and M-MDSCs in rats.
Immunomodulatory functions of MDSCs
in PH

The presence of MDSCs is confirmed in clinical patient samples

and mouse models of PH (17, 36). MDSCs are significantly

increased and positively correlated with mean pulmonary artery

pressure in the PH patients group compared to the control group

(36). In addition, pulmonary vascular muscularization, right

ventricular remodeling and the worsening of PH are associated

with the increase in pulmonary MDSCs, particularly PMN-MDSC

(37). PMN-MDSCs mediate immunosuppressive effects through

upregulation of arginase 1(Arg 1), ROS and prostaglandin E2,

whereas M-MDSCs mediate the capacity through increasing

expression of nitric oxide (NO), immunosuppressive cytokines

including interleukin-10 (IL-10) and transforming growth factor-

b (TGF-b), and immune regulatory molecules like programmed

death-ligand 1 (PD-L1) (40). Increased levels of Arg 1, ROS,

inducible nitric oxide synthase (iNOS) and TGF-b exacerbate the

progression of PH (74–78). Group 3 PH is associated with lung

diseases and/or hypoxia, and it is found the MDSCs are dominated

by PMN-MDSCs, which exert the immune suppressive function

through Arg1 and ROS (36, 37, 40). It is suggested that MDSCs are

important constituents of immune microenvironment with a
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pivotal role in PH progression (38). Next, we focus on the

chemokines, cytokines, T cells, NK cells and molecular

mechanisms to explore the immune-regulatory functions of

MDSCs in PH, which may provide us with new strategy for

treatment of PH.
MDSCs recruitment and activation:
Cytokines and chemokines

Chemokines and cytokines play a pivotal role on MDSCs

recruitment and activation during PH progression, which are

summarized in Figure 2. High levels of CXCL12 and CXCR4 are

found in the lung tissues of PH patients, and PI3K/Akt signaling

mediates CXCL12/CXCR4 regulation of proliferation and cell

cycle progression in PASMCs, thus leading to PVR (79).

Concurrently, the CCL2/CCR2 and CCL5/CCR5 pathways are

necessary for cooperation between macrophages and PASMCs to

initiate and expand PASMCs in migration and proliferation

during PH development (80, 81). MDSCs express a wide range

of chemokine receptors, including CCR2, CXCR2 and CXCR4

(82). In PH, the migration of MDSCs from BM to lesions may

mediate by chemokines receptor/chemokine signaling, such as

CXCL12/CXCR4, CXCL2/CXCR2 and CCL2/CCR2. In PH mice

models, Bryant et al. find that PMN-MDSCs are transported to the

lung through the chemokine receptor CXCR2, and promote the

disease development (17). Deletion of CXCR2 in myeloid cells

attenuates the recruitment of PMN-MDSCs to the lung

microenvironment, and therefore inhibits PVR, and protects

against PH (17, 83). In tumors, CXCR4 overexpression

promotes infiltration of MDSCs in lung tissues. It will accelerate

lung cancer progression and promote lung metastasis from other

primary tumors (84–86). Recently, it has been suggested that

targeting pulmonary tumor microenvironment with CXCR4-

inhibiting nanocomplex enhances anti-PD-L1 immunotherapy

(84). Cytokines are significantly increased in patients with PH.

IL-6, IL-1b and IL-18 can induce the proliferation, migration, and

differentiation of pulmonary vascular cells, thereby promoting

PVR (11, 87–89). Meanwhile, cytokines may promote the

recruitment of MDSCs, exacerbate the inflammatory response in

the blood vessels, and aggravate the disease. Thus, cytokines,

chemokines and MDSCs contribute to the formation of the
TABLE 1 Human and mouse phenotypes of MDSCs.

Species Standard
phenotypical markers
of MDSCs

Standard
phenotypical markers of
PMN-MDSCs

Standard
phenotypical markers
of M-MDSCs

Novel markers of
PMN-MDSCs

Novel markers of
M-MDSCs

Human CD11b+CD33+ CD33+CD11b+CD14-CD15+/
CD66b+

CD33+CD11b+CD14+CD15-

HLA-DR-/lo
CD15+/CD66b+ CD14-

LOX1+;
CD15+/CD66b+ CD14-

CD84+;
CD13hiCD11b+ CD33+

CD14-CD15+

CD14+/CD66b-CD84+

S100A9

Mouse CD11b+Gr-1+ CD11b+Ly6G+Ly6Clow CD11b+Ly6G-Ly6Chi CD11b+ Ly6G+ CD84+ CD11b+Ly6G-

Ly6ChiCD84+
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immune microenvironment of PH and play a key role in the

pathogenesis of PH. Targeting cytokines and chemokines to

inhibit MDSCs infiltration in PH is little studied. Fortunately,

there are more and deeper studies in tumors. Targeting CXCR4 or

CXCR2 can reduce MDSCs infiltration, which contributes to the
Frontiers in Immunology 05
inhibition of tumor growth and metastasis (90, 91). Targeting IL-6

or IL-6 receptors for tumor immunotherapy can block MDSCs-

mediated immunosuppression (92). Therefore, targeting

chemokines and cytokines might be a potential new method for

reversing PVR in PH.
TABLE 2 Rat phenotypes of MDSCs.

Study
Autor(ref.), time

Makers of MDSCs Test specimen Reference

Prins RM, 2002 CD11b/c+ His48+ spleen, glioma (61)

Dugast AS, 2008 CD3-CD11b+CD80/86+ blood (62)

Jia WT, 2010 CD11b/c+His48+ glioma (63)

Zhang C, 2012 CD11b/c+His48+ bronchoalveolar lavage fluids (64)

Dilek N, 2012 CD3-MHC class II-CD80/86+ blood (65)

Lu YQ, 2013 CD11b/c+Gra+ blood, bone-marrow, spleen (66)

Lin wy, 2014 CD11b/c+ His48hi blood (67)

Dolen Y, 2015 CD172a+His48+ Rp-1-/+ blood, spleen (68)

Huaux F, 2016 CD11b/cint His48hi peritoneal lavage fluids (69)

Azuma H, 2017 CD11b/c+MHC class II- spleen (70)

Hamdani S, 2017 CD11b/c+CD161intMCH class II- spleen (71)

Zhang FT, 2020 CD11b+Gr-1+ blood, spleen, bone-marrow (72)

Liu JY 2021 CD11b+ His48+ blood (73)
f

FIGURE 2

MDSCs recruitment and activation during PH progression. Perivascular immune cells constantly release inflammatory mediators, and the persistent
stimulation of myelopoiesis results in the expansion of MDSCs in the BM. The MDSCs migrate to the pulmonary vascular site through the interaction
between CCR,CXCR and respective chemokines (CCL,CXCL). In the PH microenvironment, MDSCs are activated and strongly inhibit an anti-
inflammation reactivity of T cells and NK cells via various mechanisms. which in turn cause proliferation of endothelial cells, smooth muscle cells
and adventitial fibroblasts, inducing pulmonary vascular remodeling. MDSCs, myeloid-derived suppressor cells; PMN-MDSCs, polymorphonuclear
MDSCs; M-MDSCs, monocytic MDSCs; PD-1/PD-L1, programmed death 1 and programmed death-ligand 1; PI3K-Akt, phosphatidylinositol 3-kinase/
Akt. Arg1, arginase 1; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase; HIF1a, hypoxia-inducible factor 1a; PPaRg, peroxisome
proliferator-activated receptor g; FAO, fatty acid oxidation; TGF-b, transforming growth factor-b; IL-10, interleukin-10; NK cell, natural killer cells.
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Target cells of MDSCs: T cells and NK cells

The T-cell immune response has a protective effect in PH, and

an intact T-cell immune system is important in protecting against

pulmonary angioproliferation (93). Athymic nude rats treated

with the vascular endothelial growth factor (VEGF) receptor

blocker SU5416 developed severe PH and PVR under normoxic

conditions, whereas normal rats may not develop severe PH

under normoxic conditions (94). Similarly, the reduction and

deficiency of CD8+ cytotoxic T cells exacerbate the risk of death

in PH patients (95). Regulatory T cells (Tregs) are a naturally

occurring subpopulation of T cells with immunosuppressive

functions, and Tregs primarily maintain autoantigenic immune

tolerance and effect ively control the exacerbation of

inflammatory responses (96–98). Normally, Tregs regulate

immune cells by controlling IL-2 availability, inhibitory

receptors, and secretion of cytokines such as IL-10 and TGF-b,
which may maintain immune homeostasis and suppress

autoimmune damage (99). Tregs are dysfunctional in human

patients and animal models of PH and may contribute to the

development and progression of the disease (100). In chronic

inflammatory diseases of the lungs, MDSCs can attenuate the role

of helper T cells and cytotoxic T cells and exacerbate

inflammatory cel l infi l t rat ion around the pulmonary

vasculature (101). MDSCs can likewise induce Tregs

amplification, but the amplified Tregs exert a negative

regulation of immunity (102), which promotes immune escape

in tumors and autoimmune diseases. These factors may

cont r i bu te to the pos s ib i l i t y tha t MDSCs promote

PH development.

NK cells are cytotoxic lymphocytes that are critical to the

innate immune system and can recognize and rapidly kill target

cells (103, 104). Emerging evidence indicates that MDSCs can

interact with NK cells and regulate their functions (105). MDSCs

can strongly inhibit anti-tumor immune responses of NK cells and

promote the progression of tumors (106, 107). MDSCs suppress

NK cells activation by inducing Tregs (108). In a mouse model of

orthotopic liver cancer-bearing, it is shown that downregulation

of NK cells function is inversely correlated with the marked

increase in MDSCs in the liver and spleen, and MDSCs inhibit

cytotoxicity, NKG2D expression and IFN-g production of NK

cells through membrane-bound TGF-b (109). Alternatively, co-

culture of MDSCs and NK cells from hepatocellular carcinoma

patients reveals that MDSCs-mediated inhibition of NK cell

function is dependent mainly on the NKp30 on NK cells (110).

MDSCs have an inhibitory effect on NK cells, mainly promoted by

TGF-b or Tregs. NK cells impairment is a feature of PH and

contributes to PVR in animal models of the disease (111). A

prospective survival study of PH patients has confirmed a positive

correlation between the number of NK cells and short-term

survival in PH patients, suggesting that deficiencies in NK cells

might be associated with an increased risk of death in PH patients

(95). However, the cell interaction of MDSCs, NK cells and its

molecular mechanisms have not been reported in PH yet, which

needs further researches.
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Molecular mechanisms of MDSCs:
Arginine, iNOS and metabolic mechanisms

It is well known that MDSCs regulate immune response

through a variety of mechanisms, such as arginase, iNOS

activation and energy metabolic dysregulation (112). MDSCs

highly express the immunosuppressive molecule Arg 1. L-Arg

depletion by MDSCs blocked the re-expression of CD3zeta in

stimulated T cells and inhibited antigen-specific proliferation of

OT-1CD8+ and OT-2 CD4+ T cells, which will impair T-cell

functions and affect T-cell-mediated immune responses (113).

MDSCs are detected in the peripheral circulation of patients with

PH, and active MDSCs expression increases transcripts for Arg 1

(36). Arginase activity and alterations in arginine metabolic

pathways have been implicated in the pathophysiology of PH

(114). Arginase activity is elevated almost two-fold (p=0.07) in

patients with PH (74). Dysregulation of arginine metabolism

contributes to endothelial dysfunction and PH in sickle cell

disease and is strongly associated with prospective patient

mortality (115). Arginase inhibitors can reduce PVR and collagen

deposition, and then prevent bleomycin-induced neonatal PH in

rats, and may prevent inflammation and remodeling in a guinea pig

model of chronic obstructive pulmonary disease (116, 117).

Arginase catalyzes the degradation of L-arginine to L-ornithine

and urea. The decrease of L-arginine will impair T-cell functions

and decrease NO production, and may exacerbate PVR and

accelerate PH development.

Three distinct genes encode three NOS isoforms: neuronal

nitric oxide synthase (nNOS), endothelial nitric oxide synthase

(eNOS), and iNOS (118, 119). MDSCs exerted their inhibitory

function on T cells in an iNOS-dependent manner (120). iNOS is an

enzyme that catalyzes the formation of NO and citrulline from L-

arginine, which can lead to the block of T-cell synthesis by reducing

L-arginine, and can also inhibit the functions of T cells by

producing excessive NO (121, 122). In hypoxic PH, the iNOS is

found to be upregulated and involved in the formation of PH (123,

124). Mice lacking iNOS are protected against emphysema and PH

(125). In a smoke-exposed mice study, iNOS expression in BM-

derived cells drives pulmonary vascular remodeling (125). iNOS

deletion in myeloid cells confers protection against PH and provides

evidence for an iNOS-dependent communication between M2-like

macrophages and PASMCs in underlying pulmonary vascular

remodeling (126). Treatment of wild-type mice with the iNOS

inhibitor N (6)- (1-iminoethyl)-L-lysine (L-NIL) prevents

structural and functional alterations in the lung vasculature and

alveoli and reverses emphysema and PH (127). In hypoxia-induced

PH, iNOS may release large amounts of NO and damage the

vascular endothelium, and the endothelial damage will diminish

NO bioavailability (75, 128, 129). MDSCs can promote immune

suppression by the production of ROS (40). In PH, the

ove rp roduc t i on o f ROS con t r i bu t e s t o pu lmona ry

vasoconstriction, muscularization of pulmonary arterioles,

perivascular fibrosis and PVR (130). MDSCs highly express iNOS

and produce ROS that may exacerbate PVR through either a direct

or an indirect mechanism.
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Metabolic dysregulation has emerged as a major area of

research in the pathobiology of PH (131). Compared to that of

healthy individuals, the microenvironment of PH has different

metabolic features, such as excessive intracellular glucose uptake,

increased glycolytic metabolism, insulin resistance, and alterations

in high-density lipoprotein (HDL), cholesterol and leptin (24, 132).

The metabolism of MDSCs, such as glycolysis, fatty acid oxidation

and amino acid metabolism, is reprogrammed in the tumor

microenvironment (40). In tumor, the MDSCs metabolic

reprogramming enhances the immunosuppressive activity of Arg1

and iNOS, which will lead to apoptosis of effector T cells and

suppression of cell proliferation, and promote tumor proliferation

and metastasis (133, 134). Under hypoxic conditions, the activation

of hypoxia- inducible factor 1a (HIF-1a) induces the switch from

oxidative phosphorylation to glycolysis in MDSCs (40). The

activation of the HIF-1a pathway promotes the immune

suppressive activity of MDSCs (135). Blocking lactate production

in tumor cells or deleting HIF-1a in MDSCs reverse anti-tumor T-

cell responses and effectively inhibite tumor progression after

radiotherapy for pancreatic cancer patients (136). Lipid

metabolism plays a key role in the differentiation and functions of

MDSCs. MDSCs exhibit fatty acid uptake and increase fatty acid

oxidation (FAO), which support the immunosuppressive functions

of MDSCs (137). Tumor-infiltrating MDSCs in mice may prefer

fatty acid oxidation (FAO) as a primary energy source, while

treatment with FAO inhibitors improves anti-tumor immunity

(138). Mouse and human PMN-MDSCs upregulate fatty acid

transport protein 2 (FATP2), and the selective pharmacological

inhibition of FATP2 abrogates the activity of PMN-MDSCs and

substantially delays tumor progression (139). MDSCs can regulate

T cells functions by depriving the essential metabolites, such as

arginine, tryptophan and cysteine from the microenvironment (40).

MDSCs can deplete arginine through upregulation ofArg1 and reduce

tryptophan through upregulation of indoleamine 2,3-dioxygenase,

which suppress T-cell proliferation and activation (140, 141). In a

triple-negative breast cancer immunotherapy-resistant model,

targeting glutamine metabolism also significantly inhibites the

production and recruitment of MDSCs and suppresses tumor

growth (142). Thus, MDSCs may also promote disease development

by suppressing T-cell functions through metabolic pathways in PH.
Conclusion

The complex changes in cytokines, chemokines, and immune

cells in PH and their association with PVR suggest that immune

mechanisms play an important role in PH. The cancer-like growth

characteristic is one of the important features of severe PH. The

prognosis of severe PH is even worse than most of the cancers in
Frontiers in Immunology 07
children. Hence, it is urgent to find a novel therapeutic strategy for

the cancer-like PH. Tumor immunotherapy has been effectively

applied in clinical practice by virtue of its specificity and targeting.

Recently, there is ample evidence to demonstrate that tumor

immunotherapy can be effectively improved by targeting MDSCs.

Just as in tumors, MDSCs play a crucial role in development and

progression of PH. Therefore, targeting MDSCs may be a potential

protocol in the treatment of PH to arrest PVR, including blocking

the migration, recruitment, activity and metabolism, and promoting

the maturation of MDSCs to restore immune homeostasis. We

believe that the MDSCs‐targeting treatment can provide a first-line

survival opportunity for patients with PH, especially severe PH.
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