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To optimize the utilization of rural biomass waste resources (e.g., straw and solid
waste), biomass waste energy conversion (BWEC) and carbon cycle utilization
(CCU) are integrated into a traditional virtual power plant, i.e., a rural BWEC-CCU-
based virtual power plant. Furthermore, a fuzzy robust two-stage dispatching
optimal model for the BWEC-CCU-based virtual power plant is established
considering the non-determinacy from a wind power plant (WPP) and
photovoltaic (PV) power. The scheduling model includes the day-ahead
deterministic dispatching model and real-time uncertainty dispatching model.
Among them, in the day-ahead dispatching phase, the dispatching plan is
formulated with minimum operating cost and carbon emission targets. In the
real-time dispatching phase, the optimal dispatching strategy is formulated aiming
at minimum deviation adjustment cost by applying the Latin hypercube sampling
method. The robust stochastic theory is used to describe the uncertainty. Third, in
order to achieve optimal distribution of multi-agent cooperation benefits, a
benefit distribution strategy based on Nash negotiation is designed considering
the three-dimensional interfering factor of the marginal benefit contribution,
carbon emission contribution, and deviation risk. Finally, a rural distribution
network in Jiangsu province, China, is selected for case analysis, and the
results show that 1) the synergistic optimal effect of BWEC and CCU is
obvious, and the operation cost and deviation adjustment cost could decrease
by 26.21% and 39.78%, respectively. While the capacity ratio of WPP + PV, BWEC,
and CCU is 5:3:2, the dispatching scheme is optimum. 2) This scheduling model
can be used to formulate the optimal scheduling scheme. Compared with the
robust coefficient Γ = 0, when Γ = 1, the WPP and PV output decreased by 15.72%
and 15.12%, and the output of BWEC and CCU increased by 30.7% and 188.19%,
respectively. When Γ∈ (0.3, 0.9), the growth of Γ has the most direct impact on the
dispatching scheme. 3) The proposed benefit equilibrium allocation strategy can
formulate the most reasonable benefit allocation plan. Compared with the
traditional benefit allocation strategy, when the proposed method is used, the
benefit share of the WPP and PV reduces by 5.2%, and the benefit share of a small
hydropower station, BWEC, and CCU increases by 1.7%, 9.7%, and 3.8%,
respectively. Overall, the proposed optimal dispatching and benefit allocation
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strategy could improve the aggregated utilization of rural biomass waste resources
and distributed energy resources while balancing the benefit appeal of different
agents.

KEYWORDS

virtual power plant, robust dispatching, benefit allocation, biomass waste energy, two-
stage optimal

1 Introduction

1.1 Research background

There is a large amount of biomass waste resources in the rural
areas in China, such as straw, waste, and domestic sewage. The total
biomass waste resources in 2021 were 1.2 × 109 tons (Yang et al.,
2022). The traditional extensive utilization method causes great
ecological damage and has low economic efficiency. Biomass waste
energy conversion (BWEC) could improve the environmental
protection and economy of resource utilization, which will
become a new way of utilizing biomass waste resources (Ning
and You, 2019). At the same time, the lower population density
provides abundant space resources for the rural distributed power
generation sources. The rooftop-distributed photovoltaics pilot
program in the whole county (city and district) has already been
carried out in China. It has greatly promoted the development of
rural-distributed photovoltaics (National Energy Administration,
2021). Energy consumption in the agricultural sector is significant,
reaching 20% of the total energy consumption in China (Fu and Niu,
2022). However, because the interconnection foundation is weak
and the interconnection foundation is low, the decentralized energy
resources are hardly directly connected to the power network. To
solve the aforementioned problem, the concept of the virtual power
plant (VPP) is proposed with the development of the advanced
communication technology and software architecture (Daniel and
Juan, 2023). Therefore, how to apply the VPP to realize the
aggregation management of the geographically distributed
resources in rural areas is important.

In 2021, China proposed a “double-carbon” target of “peak
carbon emissions by 2030 and 2060 carbon neutralization” and
launched the national carbon trading market (Zhang et al., 2021).
The deployment of rural energy projects is an effective way to
achieve dual-carbon goals and accelerate agricultural
modernization in rural areas (Fu and Zhou, 2023). Rural areas
have low energy consumption density and strong environmental
bearing space. If the carbon emissions produced by BWEC can be
handled properly, the environmental advantages of rural areas
will be turned into economic benefits (Bokde et al., 2020). In fact,
BWEC mainly includes pyrolysis power generation (PG),
anaerobic biogas (AB), sewage treatment (ST), and biogas to
gas (B2G). During the energy conversion process of biomass
waste, the energy cascade utilization could be realized by
coordinately providing electricity, heating, and gas output.
However, the energy conversion process will also lead to
carbon emission, and the gas-power plant carbon capture
(GPPCC) could be used to capture CO2, which could be
converted into CH4 by the power-to-gas (P2G) conversion (Ju
et al., 2022). Therefore, this study proposes a new concept of a

BWEC-CCU-based VPP (BECU-VPP) for rural areas, which
could control carbon emissions while fully converting and
utilizing rural biomass waste resources.

1.2 Literature review

At present, domestic and foreign scholars have put forward
some research studies on the integration of BWEC and CCU with
the power system. For instance, the combination of BWEC and
combined heating and power (CHP) can solve the problem of
“following the thermal load” of CHP units (Wang and Duan,
2020). Middelhoff et al. (2022 established hybrid concentrated
solar biomass systems for cogeneration. Chen et al. (2022)
studied the mathematical model of energy supply for waste
incineration power plants. On the other hand, CCU is mainly
used to capture CO2 of gas-fired generator sets and convert it
into CH4 for power generation. China’s first GPPCC industrial-
scale demonstration plant has been put into operation in Datang
International Beijing Gaojing Thermal Power Plant successfully
(Panah et al., 2020). Rahimi et al. (2022) proposed a stochastic
optimal dispatching model incorporating a carbon capture power
plant. Budny et al. (2015) proposed a coordinated model for peak
shaving and valley filling through P2G and gas turbines. BWEC and
CCU have been proved to be feasible in urban power systems.
However, the distribution of rural energy resources is significant,
and the traditional network-centralized control mode is difficult to
achieve. It is necessary to perform aggregation control from the
communication level by using a VPP (Cavazzini et al., 2021). This
brings a new challenge of how to integrate BWEC and CCU into the
conventional VPP. Therefore, this study focuses on the optimal
dispatching and benefit equilibrium allocation strategy of the rural
BECU-VPP.

The research of VPP optimal dispatching mainly focuses on how
to deal with uncertain factors and the introduction of specific
optimization methods, such as a wind power plant (WPP),
photovoltaic (PV) power, and load, and construct the optimal
uncertainty dispatching scheme (Ju et al., 2016). Fu (2022)
introduced statistical machine learning (SML) techniques to carry
out multi-scenario-based probabilistic power flow calculations. Cao
et al. (2022) proposed an equivalent mixed-integer linear
programming reformulation method to cope with the original
non-linear partial differential optimization problem for
computational tractability improvements. Generally speaking, the
uncertainty could be handled by the probabilistic planning method
or the robust optimization theory. The former mainly describes
system constraints as chance constraints based on the probability
distribution of the uncertainty variables (Ahmad, 2022). For
example, Tan et al. (2017)and Ahn and Han (2018) described the
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uncertainty risk by using the Latin hypercube sampling method and
stochastic programming approach, respectively. However, this
method depends on the information of probability distribution,
and it is difficult to obtain the probability distribution accurately.
This method depends on the information of probability distribution,
and it is difficult to obtain the probability distribution accurately.
The latter mainly uses the parameter interval to describe the
uncertainty and only requires little parameter information. For
example, Ju et al. (2016) and Kong et al. (2020) discussed the
impact of uncertainty factors on the VPP’s dispatching strategy.
The development of the uncertainty analysis methods has been
promoted as a scheme to satisfy the scheduling requirements.
However, the proposed method can only be used for single-time-
scale uncertainty analysis. In reality, rural BECU-VPP scheduling is
a multi-time-scale optimization problem, dispatching, and real-time
deviation adjustment (Rahimi et al., 2022). Therefore, how to
integrate the robust stochastic optimal methods into multi-time-
scale dispatching is a key issue. This study constructs a robust two-
stage optimal dispatching method by dividing the dispatching phase
into the day-ahead stage and real-time stage.

In addition, the BECU-VPP mainly includes three modules:
BWEC, CCU, and VPP. There are multiple unit agents in each
module, and how to establish the optimal cooperative operation
benefit allocation method is the key premise for the mutual
cooperation of different agents (Li et al., 2022). The existing
research studies mainly use the Shapley value algorithm to carry
out the allocation of cooperation benefits. For example, Sui et al.
(2019)and Voswinkel et al. (2022) applied this concept, and the cost
of congestion management can be shared among grid elements and
the revenue of the building-integrated-photovoltaics community. As
can be seen, the development of the Shapley value method has been
promoted as an available benefit allocation strategy of the virtual
power plant. The aforementioned research mainly measures the
contribution of different agents to incremental costs or benefits from
the perspective of cost or benefit. However, the VPP needs to balance
multidimensional objectives such as economy, environment, and
risk, rather than a single-dimensional benefit allocation problem (Ju
et al., 2019). In fact, from the perspective of the optimal process of
the BECU-VPP, different agents are adjusting their output plans
according to their own operating demands to achieve the overall
optimal goal. This process is similar to the negotiation process, and
the Nash negotiation theory can just reflect the multidimensional
negotiation needs. The aforementioned multidimensional benefit
allocation problem can be solved by applying Nash negotiation to
benefit allocation. Therefore, this study introduces the Nash
negotiation theory to form an operation benefit allocation
strategy combining three factors: marginal benefit contribution,
carbon emission contribution, and deviation risk factor.

1.3 Main contributions and novelty

On the basis of the aforementioned analysis, optimal dispatching
of the rural BECU-VPP has been studied. Most of these studies have
already discussed the feasibility of the integration of BWEC and
CCU with the power system, while existing studies rarely consider
the distribution features of rural energy resources and the weak
interconnection foundation. The aforementioned work has also

made some progress in the optimal dispatching model and
benefit allocation method, especially the application of the
Shapley value on the allocation of cooperation benefits. However,
through the comparison of relevant research results, it is found that
there are some prominent problems in the optimal dispatching of
the rural BECU-VPP, which are as follows:

1 The existing studies have discussed the impact of BWEC and
CCU on urban energy systems. However, the features of rural
energy distribution are significant, and the traditional network-
centralized control mode is difficult to achieve. This brings a new
challenge of how to integrate BWEC and CCU into the
conventional VPP, i.e., the rural BECU-VPP.
2 The existing research is more restricted to optimal scheduling
on a single time scale, although it is proven that robust stochastic
optimal methods can better describe the uncertainty. In fact, the
scheduling of the BECU-VPP is a two-stage decision problem,
and the combination of two-stage optimization and robust
stochastic optimization is the key issue.
3 The optimal scheduling of the BECU-VPP depends on the
cooperative operation of multiple agents. The Shapley value
method can only consider the cost or benefit of a single
dimension and cannot integrate multidimensional influences,
although the method has been validated for cooperative benefit
allocation.

In a word, all the aforementioned analyses prompt us to try to
integrate BWEC and CCU into a traditional VPP. Then, a robust
two-stage optimal dispatching method is developed with embedded
day-ahead deterministic scheduling and real-time uncertainty
scheduling. Then, a cooperation benefit allocation strategy
considering marginal benefit contribution, carbon emission
contribution, and deviation risk factors is prepossessed on the
basis of the Nash negotiation method. The main innovations of
this study are summarized as follows.

• Different from the traditional configuration strategy of the
VPP (Panah et al., 2020; Chen et al., 2022; Middelhoff et al.,
2022), which only discussed the feasibility of BWEC and CCU
in an urban power system, a novel rural BECU-VPP is
designed by integrating BWEC and CCU into a traditional
VPP. BWEC can classify and treat rural biomass waste
resources and provide electricity, heating, and gas output.
CCU includes a GPPCC, P2G, and carbon storage (CS). The
GPPCC captures CO2 produced by BWEC and performs
methanation with H2 produced by P2G to generate CH4.

• Unlike some studies (Budny et al., 2015; Ju et al., 2016; Tan
et al., 2017; Cavazzini et al., 2021; Ahmad, 2022; Cao et al.,
2022; Fu, 2022), which are limited to the uncertainty analysis
of a single time scale, this study discussed the multi-time-scale
optimal scheduling problem and constructs a fuzzy robust
two-stage optimal scheduling model. In the day-ahead
scheduling phase, the dispatching plan is formulated with
minimize operating costs and carbon emissions. In the real-
time dispatching phase, the optimal dispatching strategy is
formulated aiming at the minimum deviation adjustment cost
by applying the Latin hypercube sampling method and the
robust stochastic theory to describe the uncertainty.
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• Compared with previous studies (Ju et al., 2019; Sui et al.,
2019; Wang et al., 2021; Voswinkel et al., 2022), carbon
emission contribution and deviation risk factors are also
introduced into the tradition cooperation benefit allocation.
To achieve the reasonable benefit allocation strategy, this
study proposes a BECU-VPP benefit distribution strategy
based on Nash negotiation considering the contribution of
the marginal income, carbon emission, and deviation risk
factor. The utility functions of risk preference, risk neutrality,
and risk aversion for different types of unit agents are set to
calculate the contribution to the marginal benefit, carbon
emissions, and deviation risk. The comprehensive
negotiation score and the final share of cooperation benefit
obtained by different agents could be obtained.

1.4 Main structure of the paper

The remaining parts of this paper are as follows. Section 2
designs a rural BECU-VPP. Then, Section 3 constructs a fuzzy
robust two-stage optimal scheduling model, including a day-ahead
deterministic dispatching model, real-time uncertainty dispatching
model, and fuzzy robust two-stage dispatching model solution.
Furthermore, Section 4 proposes a benefit equilibrium

distribution strategy based on Nash negotiation considering
marginal income contribution and the deviation risk factor.
Finally, Section 5 selects a rural distribution network in Jiangsu
province, China, as the simulation example. Section 6 emphasizes
the conclusions of the study.

2 Rural BECU-VPP structure and
modeling

2.1 Structure description

This study integrates BWEC and CCU into a conventional VPP,
i.e., a novel rural BECU-VPP, for the abundant biomass waste
resources and decentralized energy resources in rural areas. In
the BWEC module, PG pyrolyzes biomass waste to generate
electricity, AB-ST gasifies biomass waste into biogas, and B2G
converts biogas into natural gas. The VPP module integrates the
WPP and photovoltaic and small hydropower station (SHS). An
electric vehicle-to-grid aggregator (EVA) is set as an agent of rural
electric vehicles, and demand response integrators are set as an agent
of small-scale industrial load, agricultural load, and resident
flexibility load. In the CCU module, the GPPCC captures CO2

emitted by BWEC and converts CO2 to CH4 by P2G and generates

FIGURE 1
Structure diagram of a rural BECU-VPP.
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electricity again. Figure 1 is a schematic structural diagram of a rural
BECU-VPP.

As shown in Figure 1, the BECU-VPP operates in three main
areas, i.e., collecting the operation information of different units in
the physical space, transmitting to the cyber space, and realizing the
system modeling of the BECU-VPP. After system modeling is
completed, according to the input information of different units,
the virtual space introduces a robust two-stage optimal method to
construct a day-ahead deterministic scheduling model and real-time
uncertain dispatching model. Finally, the optimal dispatching
scheme is passed to the multi-agent Nash negotiation-based
benefit equilibrium allocation method, which could be used to
share the cooperative operation benefits of different agents.

2.2 Operation modeling

2.2.1 VPP operation modeling
The VPP mainly includes three parts: distributed power

generation sources, EVA, and flexible response to load demand.
The main modeling is as follows.

2.2.1.1 Distributed power generation sources
Due to uncertain external weather conditions, the output of the

WPP and photovoltaics is uncertain, and how to describe the
uncertainties is important for the dispatching of the VPP. Daniel
and Juan (2023) proved that the Weibull distribution can describe
the natural wind speed, and the Beta distribution can describe the
solar radiation intensity. The output model is constructed as follows:

gWPP,t �
0, vt < vcut−in&vt ≥ vcut−out

v3t − v3cut−in
v3R − v3cut−in

gWPP,R , vcut−in < vt < vR

gWPP,R , vR < vt < vcut−out

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (1)

gPV,t � 1 − γT Tair + Tn − 20
800

Rt − Tref( )[ ]ηrefNPVAPVRt. (2)

The power generation of the SHS mainly depends on river
runoff and water head height. If the water supply can be adjusted
when equipping the regulating reservoir, the output model of the
SHS is as follows:

gSHS,t � ηSHS × ρ × Qt × Ht. (3)
According to Eqs 1–3, when the wind speed, solar radiation

intensity, and initial data of the regulating reservoir are known, the
power output of the WPP, PV, and SHS can be calculated at time t.

2.2.1.2 Electric vehicle aggregator
There are a large number of electric tricycles and electric

motorcycles and a small number of electric vehicles in rural
areas. If the electric vehicle is represented by the aggregator and
charge according to the distribution of the net load, it can provide
flexibility adjustment capability. Then, the recursive relationship
between the quantity of electric vehicles connected to the EVA at
time t + 1 and at time t is as follows (Wang et al., 2021):

Nplug
t+1 � Nplug

t −Nleave
t +Narrive

t . (4)

Assuming that electric vehicle types are the same, the electricity
stored in the EVA is calculated as follows:

Et+1 � Et + gch
EVA,tηch − Eleave

t + Earrive
t , (5)

Eleave
t � ∑N

leave
t

n�1
ken

max � Nleave
t e max, (6)

Earrive
t � ke maxNarrive

t − Econs
t . (7)

Eqs 5–7 calculate the stored and released electricity of the EVA
at time t.

2.2.1.3 Flexible load demand response
The flexible load in rural areas mainly comes from resident load,

small industrial load, and agricultural load. There is almost no
adjustable commercial load in rural areas. The response mode of
these flexible loads is shiftable, incentive, cut, etc. For example, the
industrial load is relatively flexible, and the production plan can be
adjusted on the basis of the real-time electricity price to realize load
cut and load incentive. The resident load belongs to the necessary
electricity load, some temperature control load can be shifted, and
some lighting load can be cut. The agricultural load belongs to the
rigid load, and the load shift can only adjust the production working
time or the charging time of the power storage equipment. Table 1
shows the demand response modes for different flexible loads in
rural areas.

According to the demand response modes of the resident load,
small industrial load, and agricultural load given in Table 1, the
demand response of the flexible load in rural areas is modeled
(Huang et al., 2019).

2.2.1.3.1 Small industrial load demand response. Industrial
high-energy load could take part in the optimal scheduling of the
VPP because it has strong flexibility, and the main form includes
interruptible and incentive load.

ΔLi � −ηi,of fαi,of fLi + ηi,onαi,onLi, (8)

ηi,of f , ηi,on[ ] � 1, 0[ ], gRE − LVPP ≥ αi,onLi

0, 1[ ], LVPP − gRE ≥ αi,of fLi.
0, 0[ ], Others

⎧⎪⎨⎪⎩ (9)

Eq. 8 calculates the power output from the small industrial load
demand response including two terms, namely, the power output
from interruptible load and the power output from incentive load.

2.2.1.3.2 Agricultural load demand response. Some
agricultural loads are necessary, and some are shiftable, but they
are difficult to cut. It can only participate in the coordinated control
of the VPP by the shifting load.

ΔLa � ηaαaLa, (10)

ηa � 1, gRE − LVPP − Li > 0
0, LVPP − gRE + Li ≤ 0

{ . (11)

Eq. 9 calculates the power output from the agricultural load
demand response.

2.2.1.3.3 Resident load demand response. Part of the resident
load is the necessary load and part is the shiftable load. There are also
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some interruptible loads, which can only participate in the
coordinated control of the VPP by interruptible and shifting loads.

ΔLr � −ηr,cutαr,cutβr,cutLr + ηr,pyαr,pyLr, (12)

ηr,cut, ηr,py[ ] � −1, 1[ ], LVPP + Li + La − Lr ≥ 0
1, 0[ ], LVPP + Li − Lr < αr,pyLr

0, 0[ ], others

⎧⎪⎨⎪⎩ . (13)

Eq. 12 calculates the power output from resident load demand
response including two terms, namely, the power output from the
interruptible load and the power output from the shiftable load.

2.2.2 BWEC operation modeling
Referring to the literature (Teng et al., 2021), a rural biomass

waste energy conversion system is constructed considering multiple
waste disposal methods. BWEC mainly includes units such as PG,
AB, ST, and B2G. Figure 2 shows the energy conversion system of
rural biomass waste.

According to Figure 2, PG is used to pyrolyze and gasify
biomass waste for generating electricity and heating supply. The
supply and demand balance of electricity load is mainly
considered. Therefore, PG is set to operate in the following
electricity load (FEL) mode.

2.2.2.1 PG operation modeling
Rural biomass waste resources could be input into a pyrolysis

and gasification system for power generation. Under anoxic
conditions, high temperature is used to decompose organic
matter in straw and waste into combustible gases such as
hydrogen and natural gas. Burning at 900–1,000 C makes the
internal combustion engine provide electricity, which includes
the following two steps:

Part 1 is thermal gasification:

Vfuel,t � Mgarbage,tβgarbageβgarbage,R2FηPF. (14)

Part 2 is the gasified gas which generates power:

gPG,t � Vfuel,tLfuelηPG. (15)
Eqs 14, 15 are the operation model of PG including two parts,

namely, pyrolysis gasification and the gasified gas to generate power.

2.2.2.2 AB-ST operation modeling
Biomass waste gas production includes two steps, namely, the

mixing of manure and organic waste to generate biogas and
converting methane into natural gas.

1 Biogas production model for the mixing of manure and organic
waste

Rural organic waste has high carbon content, and manure has
high nitrogen content. If the two factors are combined, the
appropriate C/N ratio can be adjusted for microbial
production and increases the gas yield of anaerobic digestion
(Teng et al., 2021). ST will stand the rural domestic sewage. The
sludge and the organic waste will be mixed and fermented. The
static sewage will be used in B2G and P2G units to generate new
natural gas.

VST,t � gST,tβSTηAB
Msludge,t � VST,tβsludgeρsludge
VBG,t � Msludge,t +Mwet−garbage,t( )βBG

⎧⎪⎪⎨⎪⎪⎩ . (16)

2 Digester model

Heat preservation of biogas digesters needs heating for
maintenance, which consumes heat to ensure the temperature of
biogas digesters.

QBD,t � gBD,tηEQ. (17)

Eqs 16, 17 are the operation models of AB-ST including the
biogas production model for the mixing of manure and organic
waste and the digester.

2.2.2.3 B2G operation modeling
B2G adopts water washing, membrane separation, and other

methods. Desulfurization and decarburization of biogas shall be
carried out to make the biogas (methane content is about 60%) meet

TABLE 1 Rural flexible load demand response modes.

Type Response modes Load characteristics

Shiftable Incentive Cut

Small industrial load √ √ Large electricity demand, flexible distribution, and active response. Electricity cost-sensitive

Agricultural load √ Rigid load, can be shifted, cannot be increased or decreased

Resident load √ √ Necessary load, the time period is relatively fixed, part of the load can be shifted, and part of the load can be cut

FIGURE 2
Structure of an energy conversion system of rural biomass waste.
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the requirements of standard natural gas (methane content >95%) (Teng
et al., 2021).

VNG,t � VBG,tηB2G, (18)
gB2G,t � VNG,tLNGηPG. (19)

Eqs 18, 19 are the operation models of B2G

2.2.3 CCU operation modeling
CCU conducts methanation of CO2 captured by the GPPCC and

H2 generated by P2G to form CH4, which could be used for PG to
generate electricity. Figure 3 shows the operation flowchart of CCU.

As shown inFigure 3, CO2 produced by BWEC could be
captured by the GPPCC and then flow to the carbon storage
equipment, P2G, and atmosphere.

QCO2
GPPCC,t � eCO2 ,tηGPPCC,t gPG,t + gB2G,t( ), (20)

ginput
GPPCC,t � λCO2 ,tQ

CO2
GPPCC,t, (21)

VCH4 ,t � ηP2G,tg
input
P2G,t/HL. (22)

According to Eqs 20, 22, the CH4 produced by the GPPCC and
P2G can be determined, and the process is accompanied by fixed
power consumption:

ginput
CCU,t � ginput

GPPCC,t + ginput
P2G,t + gA, (23)

goutput
CCU,t � VCH4 ,tHLηPG. (24)

Eqs 23, 24 are the input power and output power of CCU at time
t, respectively.

3 Fuzzy robust two-stage optimal
dispatching model for the rural
BECU-VPP

3.1 Two-stage optimal dispatching
framework system

The formulation of the dispatching plan of the BECU-VPP
belongs to pre-dispatching and is also a two-stage optimal

dispatching decision-making problem. Correspondingly, the
scheduling phase is split into two stages, namely, day-ahead stage
and real-time stage. Then, this study proposes a two-stage optimal
dispatching framework system. Figure 4 shows the two-stage
optimal dispatching framework.

As shown in Figure 4, according to the day-ahead forecast
output and real-time output, the optimal scheduling scheme
could be established in two stages:

• Stage 1: Day-ahead deterministic optimal scheduling model:
Considering the total biomass straw, residual waste, organic
waste, and domestic wastewater, the forecasted output of the
WPP and PV is taken as random variables to formulate a day-
ahead optimal scheduling plan with the objective of
minimizing operating costs and carbon emissions by
coordinating different units.

• Stage 2: Real-time uncertainty optimal dispatching model: The
uncertainty variable sets of the WPP and PV are constructed
by scenario sampling. The redundancy of the dispatching
strategy is constrained by the robust coefficient. An
uncertainty optimal dispatching model is proposed by
revising the deviation correction of the day-ahead
scheduling plan, which could establish the optimal
operating scheme.

3.2 Robust two-stage stochastic optimal
dispatching model

In this study, a robust two-stage optimal scheduling model is
established, and the fuzzy satisfaction theory is applied to deal with
different dimension levels of the objective functions in two
dispatching stages.

3.2.1 Stage 1: day-ahead deterministic dispatching
model
3.2.1.1 Objective function

The marginal cost of the WPP and PV output is low, but the
output is highly volatile. To overcome the volatility, the flexible

FIGURE 3
Operation flowchart of CCU.
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output of BWEC and CCU will be dispatched. However, since
BWEC will generate carbon emission, the key problem of the
BECU-VPP is how to balance operating costs and carbon
emissions. Therefore, the objective is to minimize operating costs
and carbon emissions.

1 Minimum operation cost objective

min Fcost
BECU−VPP � ∑T

t�1
CBWEC,t + CVPP,t + CCCU,t + CGrid,t{ }. (25)

Eq. 25 calculates the operation cost Fcost
BECU−VPP of the BECU-

VPP. CGrid,t is the energy interaction cost between the BECU-VPP
and external grid. When CGrid,t is negative, it means the electricity
sales revenue; otherwise, it is the electricity purchase cost.

CBWEC,t �
cgarbageQgarbage,t + ∑

i� PG,ST,B2G{ }
max 0, ci ui,t − ui,t−1( ){ }+

ofuelVfuel,t + oBGVBG,t + oSTgST,t + oNGVNG,t( )
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭,

(25a)
CVPP,t � cWPP,tgWPP,t + cPV,tgPV,t + cSHS,tgSHS,t + cEVA,tg

ch
EVA,t, (25b)

CCCU,t � φGPPCC,tg
input
GPPCC,t + φP2G,tg

input
P2G,t. (25c)

Eq. 25 calculates the operation cost of BWEC. Since the EVA
needs time to gather electric vehicles as an agent, it is difficult to
respond instantaneously, so the BWEC-VPP is set to dispatch the
EVA in the day-ahead stage.

2 Minimum carbon emissions objective

min Fcarbon
BECU−VPP � ∑T

t�1
eCO2 gPG,t + gB2G,t + goutput

CCU,t( ) + egridCO2
ggrid,t{

−QP2G,CO2
GPPCC,t − QCS,CO2

GPPCC,t}. (26)

Eq. 26 calculates the carbon emission Fcarbon
BECU−VPP of BECU-VPP

operation.

3.2.1.2 Constraint condition
The BECU-VPP mainly includes three important modules:

BWEC, VPP, and CCU. The dispatching model will face the
constraints including the co-ordination of supply and demand,
operation of different modules, and reserve capacity limitation.

3.2.1.2.1 Supply and demand balance constraints.

gday−ahead
WPP,t + gday−ahead

PV,t + gSHS,t − gch
EVA,t VPP

+ gPG,t + gB2G,t − gST,t BWEC + goutput
CCU,t − ginput

CCU,t CCU + ggrid,t

� Li,t + La,t + Lr,t.

(27)
In Eq. 27, gB2G,t and goutput

CCU,t are the power output by using CH4

generated by B2G and CCU, respectively, for PG.

3.2.1.2.2 VPP module constraints.
The power output of different units in the VPP module cannot

exceed the maximum power output. Similar to electric energy
storage devices, the EVA is regarded as a negative power output
at the charging period, which should satisfy the maximum charging
power and storage capacity constraints.

0≤gch
EVA,t ≤ ∑N

plug
t

n�1
gch,max
n , (27a)

Et ≤ ∑N
plug
t

n�1
en

max, (27b)

FIGURE 4
Two-stage optimal dispatching framework system.

Frontiers in Energy Research frontiersin.org08

Ju et al. 10.3389/fenrg.2023.1181310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1181310


k1Et
max + Eleave

t ≤ ∑N
plug
t

n�1
en

max. (27c)

Eqs 27a, b, c are the operation constraints of the VPP module
including themaximumcharging power and storage capacity constraints.

3.2.1.2.3 BWEC module operation constraints. The BWEC
module should consider the greatest and smallest power output
restrain of devices such as PG, AB, ST, and B2G. The waste disposal
amount of BWEC cannot exceed the maximum available amount
(Teng et al., 2021). The total PG output is set
as gtotal

PG,t � gPG,t + gB2G,t + goutput
CCU,t .

uPG,tΔ�g−
PG,t ≤gtotal

PG,t − gtotal
PG,t−1 ≤ uPG,tΔ�g+

PG,t, (28a)
Ton
PG,t−1 −Mon

PG( ) uPG,t−1 − uPG,t( )≥ 0, (28b)
Tof f
PG,t−1 −Mof f

PG,t( ) uPG,t − uPG,t−1( )≥ 0. (28c)

Eqs 28a, b, c are the operation constraints of the BEWC module
including constraints of the maximum and minimum power output
and startup and shutdown time.

3.2.1.2.4 CCU module operation constraints. The CCU
module includes the GPPCC, P2G, and CS, and different units
should satisfy the maximum and minimum power output limits. In
terms of CS, the maximum gas storage capacity should also be
considered as follows:

QCO2
GPPCC,t � QCO2 ,P2G

GPPCC,t + QCO2 ,CS
GPPCC,t + QCO2 ,other

GPPCC,t , (29a)
SCS,t � SCS,t−1 + QCO2 ,CS

GPPCC,t − QCO2 ,P2G
CS,t . (29b)

Eqs 29a, b are the operation constraints of the CCU module.

3.2.1.2.5 Reserve capacity constraints. Part of the capacity
space is reserved to handle the uncertainty factors, i.e., the up-
and down-spinning reserve constraints:

gPG
max − gPG,t + gSHS

max − gSHS,t + gch
EVA,t + ΔLDR,t ≥ ρLLt

+ ρupWPPgWPP,t + ρupPVgPV,t, (30a)
gPG,t − gPG

min + gSHS,t − gSHS
min − gch,max

EVA,t − gch
EVA,t( )

− ΔLDR,t ≥ ρdnWPPgWPP,t + ρdnPVgPV,t. (30b)

Eqs 30a, b are the reserve capacity constraints including the up-
spinning reserve constraint and the down-spinning reserve constraint.

3.2.2 Stage 2: real-time uncertainty dispatching
model
3.2.1.1 Uncertainty variable set construction

In this study, the uncertainty variables are described in the form
of uncertainty sets. To obtain the typical output scenarios of the
uncertainty variables, the Latin hypercube sampling method is used
to simulate the maximum fluctuation range of uncertain output
(Wang et al., 2022).

gRE,t � gday−ahead
RE,t + Δgreal−time

RE,t . (31)

Eq. 31 divides the power output into the day-ahead
predicted output and the real-time output deviation. If the
deviation obeys the normal distribution Δgreal−time

RE,t ~ [0, δ2RE,t],

then gRE,t obeys the normal distribution
gRE,t ~ [gday−ahead

RE,t , δ2RE,t]. Then, gRE,i,t and pRE,i,t are the
output and probability, respectively, of scenario i at time t. If
the number of initial sampling scenarios is N, the new energy
unit sampling scenario [gRE,i,t]T×N and scenario probability
[pRE,i,t]T×N of the output can be obtained.

Furthermore, to eliminate the repetition and redundancy of the
sampling scenario, this study introduces the Kantorovich distance
for scenario reduction. The specific definition of the Kantorovich
distance is as follows:

DK Sorigin, Sf inal( ) � inf ∑∑ ηijcT gRE,i,t, gRE,j,t( ): ηij ≥ 0{ },
∑
j�1

~Nηij � pRE,i,t,∑N
i�1
ηij � pRE,j,t, cT gRE,i,t, gRE,j,t( ) � ∑T

t�1
gRE,i,t − gRE,j,t

∣∣∣∣ ∣∣∣∣,∀i,∀j.
(32a)

Eq. 32a defines the Kantorovich distance. Let Scut be the scenario
tree to be deleted; then, the scenario reduction process is as follows
(Wang et al., 2022):

min ∑
j∈J

pRE,i,t min
j ∉ J

cT gRE,i,t, gRE,j,t( ): J ⊂ 1, 2, . . . , ~N{ }, S � N − ~N⎡⎢⎢⎣ ⎤⎥⎥⎦.
(32b)

According to Eq. 32b, the typical scenario of the output can be
obtained, and the maximum fluctuation range Δĝreal−time

RE,t in the
random scenario can be obtained as follows:

Δĝreal−time
RE,t � max gRE,j,t − gRE,t( ), j ⊂ J{ }. (33a)

According to the maximum fluctuation value in Eq. 33a, the
output uncertainty is expressed as the uncertainty set U.

U � gRE ∈ RT×T: ∑T
t�1

gRE,t − gday−ahead
RE,t

∣∣∣∣∣ ∣∣∣∣∣/Δĝreal−time
RE,t ≤ Γ,

gday−ahead
RE,t − ΓΔĝreal−time

RE,t ≤gRE,t ≤g
day−ahead
RE,t + ΓΔĝreal−time

RE,t

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭.

(33b)
The gRE represents the vector form of the new energy output

gRE,t. Γ is the uncertainty redundancy of the alternative energy
output, which is used to adjust the conservative degree of the
uncertainty set. When the value of Γ is larger, the new energy
unit output fluctuation is more severe, and the dispatching result is
more robust.

3.2.1.2 Real-time deviation adjustment optimal model
In the real-time phase, the operation plans of BWEC and CCU

need to be modified reasonably, and flexible load demand response
is dispatched tomeet the deviation of the day-ahead scheduling plan.
Therefore, the objective is to minimize the deviation adjustment
cost.

max
U

min
Ω

Fadjust
BECU−VPP

� ∑T
t�1

c+PG,tΔg+
PG,t + c−PG,tΔg−

PG,t( ) + c+B2G,tΔg+
B2G,t + c−B2G,tΔg−

B2G,t( )
+ coutput,+CCU,t Δgoutput,+

CCU,t + coutput,−CCU,t Δgoutput,−
CCU,t( )

+ c+DR,tΔL+
DR,t + c−DR,tΔL−

DR,t( ) + c+Grid,tΔg+
Grid,t + c−DR,tΔg−

Grid,t( )
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭. (34)

The maximum in the formula refers to the worst-case scenario
with the largest cost in the uncertainty set. min means the quadratic
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decision variable to minimize the adjustment cost. Fadjust
BECU−VPP

represents the adjustment cost of the BECU-VPP in the real-time
phase. Ω represents the set of decision variables in the real-time
stage.

ΔL+
DR,t � ΔL+

i,t + ΔLtran,+
a,t + ΔLtran,+

r,t , (34a)
ΔL−

DR,t � ΔL−
i,t + ΔLtran,−

a,t + ΔLtran,−
r,t + ΔL−

r,t. (34b)

Eqs 34a, b are the load demand response output at time t.
Based on the real-time deviation of Eq. 34, some constraints

should be modified as follows.

3.2.1.2.1 Deviation adjustment balance constraints.

gRE,t − gday−ahead
WPP,t − gday−ahead

PV,t
ΔgRE,t

+ Δg+
PG,t − Δg−

PG,t + Δg+
B2G,t{

−Δg−
B2G,tΔgBWEC,t + Δgoutput,+

CCU,t − Δgoutput,−
CCU,t ΔgCCU,t

+ Δg+
Grid,t − Δg−

Grid,t gGrid,t}

� ΔL+
DR,t − ΔL−

DR,t. LDR,t (35)

Eq. 35 is the deviation adjustment balance constraints.

3.2.1.2.2 Flexibility load demand response constraints. The
rural flexible load needs to meet the demand of different types of
users and respond to output constraints. Among them, the shiftable
mode requires the same amount of load before and after the shift,
and both the incentive and reduced mode need to be performed
within a certain range; otherwise, the load curve will be more volatile
(Ju et al., 2022).

uDR,tΔLDR,t
min ≤ΔLDR,t ≤ uDR,tΔLDR,t

max, (36a)
ΔLDR,t

min ≤ΔLDR,t − ΔLDR,t−1 ≤ΔLDR,t
max, (36b)

u+
DR,t + u−

DR,t ≤ 1, (36c)

∑T
t�1
u+
DR,t ΔL+

DR,t

∣∣∣∣ ∣∣∣∣ +∑T
t�1
u−
DR,t ΔL−

DR,t

∣∣∣∣ ∣∣∣∣≤∑T
t�1
ηDR Li,t + La,t + Lr,t( ). (37)

Eqs 36a, 37 are the flexibility load demand response constraints.

3.2.1.2.3 BWEC module operation constraints. In the real-
time dispatching stage, PG in the BWEC module will adjust the
power output, including three channels: self-adjustment, originating
from B2G, and originating from P2G. We set the total output of PG
in the real-time stage as ~gtotal

PG,t, and then, the following constraints
need to be satisfied:

~gtotal
PG,t � gPG,t + gB2G,t + goutput

CCU,t + Δg+
PG,t − Δg−

PG,t + Δg+
B2G,t − Δg−

B2G,t

+ Δgoutput,+
CCU,t − Δgoutput,−

CCU,t ,

(38a)
uPG,tΔ�g−

PG,t ≤ ~gtotal
PG,t − ~gtotal

PG,t−1 ≤ uPG,tΔ�g+
PG,t. (38b)

Eqs 38a, b are the BWEC module operation constraints.

3.2.1.2.4 CCU module operation constraints. For the CCU
module, P2G converts CO2 to CH4 for PG to generate electricity.
However, P2G itself has power limitations. When adjusting the

power, the maximum and minimum power constraints must be
satisfied.

goutput,
CCU,t + Δgoutput,+

CCU,t ≤Δgoutput,max
CCU,t , (39a)

Δgoutput
CCU,t − Δgoutput,−

CCU,t ≥ 0. (39b)

Eqs 39a, b are the CCU module operation constraints.

3.2.3 Fuzzy robust two-stage dispatching model
Since the dispatching model has two objectives of minimizing

operating costs and minimizing carbon emissions, the real-time
dispatching model has a deviation adjustment cost minimum
target. The carbon emission objective makes the dimension
level of the two-stage objective function different. Three
objective functions should be considered, so a robust two-stage
optimal dispatching model is constructed. The first-stage and
second-stage objective functions are processed by the
descending semi-gradient membership function in the fuzzy
satisfaction theory, and a fuzzy robust two-stage optimal
dispatching model is constructed.

First, a single-objective optimal calculation for Fcost
BECU−VPP and

Fcarbon
BECU−VPP is carried out. The minimum value Fcost,min

BECU−VPP and
maximum value Fcost,max

BECU−VPP of the BECU-VPP operating cost are
obtained, and the minimum value Fcarbon,min

BECU−VPP and maximum value
Fcarbon,max
BECU−VPP of carbon emission are obtained. Fuzzy processing of

Fcost
BECU−VPP and Fcarbon

BECU−VPP is performed as follows:

f1 �

0, Fcost
BECU−VPP ≥F

cost,max
BECU−VPP

Fcost,max
BECU−VPP − Fcost

BECU−VPP
Fcost,max
BECU−VPP − Fcost,min

BECU−VPP
, Fcost,min

BECU−VPP <Fcost
BECU−VPP <Fcost,max

BECU−VPP,

1, Fcost
BECU−VPP ≤F

cost,min
BECU−VPP

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(40a)

f2 �

0, Fcarbon
BECU−VPP ≥Fcarbon,max

BECU−VPP

Fcarbon,max
BECU−VPP − Fcarbon

BECU−VPP
Fcarbon,max
BECU−VPP − Fcarbon,min

BECU−VPP
, Fcarbon,min

BECU−VPP <Fcarbon
BECU−VPP <Fcarbon,max

BECU−VPP.

1, Fcarbon
BECU−VPP ≤Fcarbon,min

BECU−VPP

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(40b)

Fcost,min
BECU−VPP and Fcost,max

BECU−VPP represent the minimum and
maximum operation cost, respectively. Fcarbon,min

BECU−VPP and Fcarbon,max
BECU−VPP

are the minimum and maximum carbon emission, respectively.
Then, in order to determine the minimum and maximum values

of the second-stage deviation adjustment cost target, the robust
coefficient Γ is set to be 0 and 1, respectively, to obtain Fadjust,max

BECU−VPP
and Fadjust,min

BECU−VPP. Then, fuzzy processing of F
adjust
BECU−VPP is performed as

follows:

f3 �

0, Fadjust
BECU−VPP ≥F

adjust,max
BECU−VPP

Fadjust,max
BECU−VPP − Fadjust

BECU−VPP
Fadjust,max
BECU−VPP − Fadjust,min

BECU−VPP
, Fadjust,min

BECU−VPP <Fadjust
BECU−VPP <Fcost,max

BECU−VPP,

1, Fadjust
BECU−VPP ≤F

adjust,min
BECU−VPP

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(41)

where Fadjust,min
BECU−VPP and Fadjust,max

BECU−VPP are the minimum and maximum
deviation adjustment cost.
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According to Formulas 40a, b, 41, the deterministic dispatching
model in stage 1 and the real-time uncertainty dispatching model in
stage 2 can be converted into a fuzzy robust two-stage optimal
dispatching model.

min λ1f1 + λ2f2( )
main

+max
U

min
Ω

f3 sub s.t.
Eq. 26( ) − 30b( )
Eq. 35( ) − 39b( )
λ1 + λ2 � 1

⎧⎪⎨⎪⎩ ,

(42)
where λ1 and λ2 are the weight coefficients of f1 and f2, respectively. If
equally important, the initial value can be set to 0.5. According to
Formula 42, the BECU-VPP fuzzy robust two-stage optimal
dispatching scheme is formulated.

3.3 Fuzzy robust two-stage dispatching
model solution method

The proposed robust two-stage optimal dispatching model is a
min–max–min three-layer optimal form. The existing commercial
solvers cannot be solved directly. The common solution paths
include the Benders decomposition method and the C&CG
algorithm. Chen et al. (2019) confirmed that the C&CG
algorithm has higher solution efficiency than the Benders
decomposition method. To explain the solution process, Eq. 43 is
rewritten as follows:

min
x1∈Ω1

c1( )Tx1 + max
gRE,t∈U

bTg2RE + min
x2∈Ω2

c2( )Tx2( )

s.t.

Ω1 � x1 |Ax1 ≤ a{ }

U � gRE ∈ RT×T: ∑T
t�1

gRE,t − gday−ahead
RE,t

∣∣∣∣∣ ∣∣∣∣∣/Δĝreal−time
RE,t ≤ Γ,

gday−ahead
RE,t − Δĝreal−time

RE,t ≤gRE,t ≤gday−ahead
RE,t + Δĝreal−time

RE,t

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭,

Ω2 � x2 |Dx2 ≤ Ex1 + Fg1RE + d{ }

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(43)

where x1 is the decision variable of the first stage, including
gday−ahead
WPP,t , gday−ahead

PV,t , gSHS,t, gBWEC,t, gCCU,t, and uPG,t. x2 is the
decision variable of the second stage, including Δg+

PG,t, Δg−
PG,t,

Δg+
B2G,t, Δg−

B2G,t, u+DR,t, and u−DR,t. g1RE and g2RE represent the
available output of new energy in the first and second stages,
respectively. c1, b, c2, A, a, D, E, F, and d are constant matrices
corresponding to the objective function and constraints.

According to Eq. 43, the main problem includes the first stage
model and subproblems to find the output constraints of new energy
units in the worst scenario. The main problem in the i-th iteration
process is as follows:

min
x1∈Ω1

c1( )Tx1 + η

s.t.

x1 ≤ a
η≥ bTg2*

RE,k + c2( )Tx2,k
Dx2,k ≤ Ex1 + Fg1RE + d
0≤ k≤ i − 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,
(43a)

where g2*
RE,k is the new energy output in the worst-case scenario

solved by the lower-level problem. x2,k is a new optimal variable
for the main problem. η is the value of the second stage to be
optimized.

The inner minimization problem can be transformed into a
maximization problem. The i-th iteration subproblem model after
transformation is

max bTg2RE + Ex1,i + Fg1RE + d( )Tφ( )
s.t.

Dφ≤ c2
φ≤ 0{ , (43b)

where φ is the dual variable of the second-stage constraint condition.
It should be noted that the available output of new energy is
introduced in the second-stage model, which ensures the
feasibility of the subproblem.

According to Eq. 43, the main and subproblems are solved by the
C&CG algorithm as follows:

Step 1. An initial variable is established, and an initial value is
assigned. The number of iterations i = 1, the upper bound
UB → +∞, and the lower bound LB → +∞ of the objective
function, and the convergence judgment coefficient ε is set,
where ε is a sufficiently small value greater than 0.

Step 2. Major problems are solved. The main problem is solved
according to Eq. 43a, the objective function value Vi of the main
problem, control variable x1,i, is obtained, and the lower bound of
the objective function is updated to LB � Vi.

Step 3. The subproblems are solved according to Eq. 43b, and the
objective function value fi and the worst operating scenario value
g2*
RE,k are obtained. The constraints in Eq. 43aare returned to the

main problem of Eq. 43.

Step 4. The convergence is deteremined. If (UB − LB)/LB ≤ ε, the
problem converges, the iteration is stopped, and the objective
function value is UB. Otherwise, the iteration is continued, i =
i +1, and step 2is repeated.

4 Multi-agent benefit equilibrium
allocation model for the rural
BECU-VPP

This section mainly adopts the Nash negotiation model,
combining the marginal contribution rate, carbon emission
contribution rate, and deviation risk coefficient to form a
final negotiation strategy-based operational benefit allocation
method, and draws a flowchart for solving the solution by
combining the two-stage scheduling method and the benefit
allocation method.

4.1 Nash negotiation theory

For the general Nash negotiation problem, with the four
postulates, it is noted that the solution x*

i that maximizes the
generalized Nash product is the Nash equilibrium solution of the
problem (Qin et al., 2019).
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x*
i � argmax

xi
∏
i ∈ S

Ui xi( ) − Ui xi,min( )( )αi . (44)

xi ∈ (0, 1) is the benefit allocation coefficient of the negotiating
participant i, and it is a decision variable. argmax is the variable value
when the objective function takes the maximum value. S is the
cooperative alliance formed by each negotiator. Ui(·) is the utility
function of negotiation. αi is the negotiating power of negotiator i,
which needs to satisfy αi > 0 and ∑

i∈S
αi � 1. xi,min is the initial

negotiation point of negotiator i.
Considering when the EVA and DR participate in the dispatching

of the VPP, the BECU-VPP will give subsidy benefits according to their
power output. If it does not participate in dispatching and cannot obtain
subsidies, it already belongs to the beneficiary, and there is no need to
reallocate excess benefits when benefiting allocation. According to Eq.
44, the WPP, PV, SHS, BWEC, and CCU are regarded as different
negotiators. At this time, three key parameters need to be considered:
setting the initial negotiation point for different units, selecting the
benefit function, and determining the negotiation power.

4.2 Utility function of cooperation agents

The selection of the utility function reflects the policymaker’s
preference for benefit, which has the dual characteristics of being
subjective and objective, and can also reflect the policymaker’s risk
attitude. After normalizing the utility function, the definition
domain and the value domain are in (0, 1) and monotonically
increasing. This study chooses the exponential function and
logarithmic function based on a natural logarithm to construct
the utility function model as follows.

4.3 Multi-agent benefit equilibrium
allocation strategy

4.3.1 Initial negotiation point
The negotiation starting point is that different unit agents

participate in cooperative operation, expecting to obtain the
minimum benefit allocation coefficient. If the benefit allocation
coefficient obtained by a negotiator is lower than the minimum
benefit allocation coefficient, the negotiation breaks down and
cooperation cannot be realized. So, this study sets the negotiation
starting power calculation as follows:

αinitiali � v i{ }( )/v S( ). (45)
αinitiali is the initial negotiation point. v( i{ }) is the characteristic

function of the independent operation of the negotiating participant
i. As far as the BECU-VPP is concerned, the operation costs and
deviation adjustment costs of different unit equipment are mainly
considered to construct v( i{ }) and v(S), where v( i{ }) is mainly
adjusted according to the operating states and deviations of different
unit equipment in Eqs 25a-25c and Eq. 34. Taking BWEC for
example, the feature function is constructed as follows:

minCBWEC,t +max
U

× min
Ω

c+PG,tΔg+
PG,t + c−PG,tΔg−

PG,t( ) + c+B2G,tΔg+
B2G,t + c−B2G,tΔg−

B2G,t( ){ }. (46)

According to Eqs 45, 46, it can be established that the different
units of the BECU-VPP can be used as the negotiation starting point
among the negotiating participants in the cooperative operation.
According to the utility characteristics of the cooperative operation,
the cooperative negotiation is carried out.

4.3.2 Negotiation power
From the form of the Nash equilibrium solution, negotiating

power is a key factor in deciding the benefit allocation coefficient of
each participant. This study quantifies the indicator from three
perspectives: marginal contribution, carbon emission contribution,
and deviation risk factor.

4.3.2.1 Marginal benefit contribution.
Theminimum operation cost of the BECU-VPP is realized when

different agents are in the cooperation operation mode. However, a
game relationship between different agents exists, and the Shapley
value is used to represent this relevance and establish the
contribution of marginal cost (Ju et al., 2022):

Bi � ∑
S∈M

S| | − 1( )! M − S| |( )!
M!

R S( ) − R S − i{ }( )[ ], (47a)

bi � Bi/ ∑
i∈M

Bi. (47b)

Bi represents the benefit contribution factor of unit i. S
represents the alliance formed by each unit. R(S − i{ }) represents
the benefit after removing member i from S. (|S|−1)!(M−|S|)!

M! represents
the weighting factor of S. bi is the marginal contribution. M
represents all collaborators.

4.3.2.2 Carbon emission contribution
TheWPP and PV have zero-carbon properties, CCU is the agent

of carbon reduction, and BWEC is the agent of carbon emission.

Fi � ∑
S

S| | − 1( )! M − S| |( )!
M!

−Fcarbon
BECUW−VPP S( ) + Fcarbon

BECUW−VPP S − i{ }( )[ ],
(48a)

ϕi � Fi/∑
i∈S

Fi. (48b)

Fi represents the carbon emissions after unit i is distributed.
Fcarbon
GPW−VPP(S − i{ }) is the carbon emissions after removing unit i

from S. ϕi represents the contribution of carbon emissions.

4.3.2.3 Deviation risk factor
Output uncertainty of the WPP and PV brings deviation

adjustment cost to the real-time dispatch. This study calculates
the deviation costs of the WPP and PV and the benefits (negative
costs) of BWEC and CCU. Taking the ratio of different units’
deviation adjustment cost to the total deviation adjustment cost
as the deviation risk factor,

ri � Fadjust
BECU−VPP i{ }

∑
i∈S
Fadjust
BECU−VPP i{ }. (49)

ri is the deviation risk factor. Fadjust
BECU−VPP i{ } is the deviation

adjustment cost of negotiator i.
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4.3.3 Comprehensive negotiation score
According to Eqs 47a, b, 48a, b, 49, the indicators of different

unit agents participating in negotiation are obtained. The
comprehensive negotiation score of different units participating
in the negotiation is calculated as follows:

αf inali � ρ1bi + ρ2ϕi + ρ3ri. (50)
αf inali is the comprehensive negotiation score. ρ1, ρ2, and ρ3 are

the weight coefficients of marginal contribution, carbon emission
contribution, and deviation risk factor, respectively. Furthermore,
according to Eqs 43, a, b, 44, 45, 46, 47a, b, 48a, b, 49, 50, the benefits
of different unit agents participating in cooperative operation are
obtained. Figure 5 shows the solution flowchart of the two-stage
dispatching and benefit allocation method.

5 Case analysis

5.1 Basic data

In this study, a rural distribution network in Jiangsu province,
China, is selected as the test system. Nodes 7, 30, and 20 access 6 ×

1 MW WPP, 4×1MWPV, 2 × 1 MW SHS. Node 4 accesses a 4 MW
PG with an average daily waste treatment capacity of 40 tons, a
0.5 MW ST with an average daily sewage treatment capacity of
900 m3, and a biogas generation capacity of 12 m3. Nodes 17 and
33 have access to the EVA. The rated power of the EV is 0.15 kW, the
quantity of the EVA aggregating EV is 1,000, and the capacity of the
battery of one electric vehicle is 3 kW·h. Nodes 23, 24, and 25 access
small industrial load, agricultural load, and resident load. At the
same time, node 31 accesses a 3 MW GPPCC, 15 t CS, and 1.5 MW
P2G. The conversion efficiency of power to energy is 60%. Figure 6
shows the improved distribution network node diagram.

In the process of rural waste energy utilization, the waste-to-
energy subsidy is 0.25¥/kW·h, the waste treatment fee is 20¥/ton,
and the sewage treatment fee is 0.5¥/ton. Among them, the per
capita daily domestic sewage volume is 90 kg, residual waste is
0.4 kg, and kitchen waste is 0.6 kg, while the average daily sewage
volume of human feces in the sewage is 0.5 kg, the daily urine
volume is 1 kg, and the moisture content is 80% and 96%,
respectively. Referring to Teng et al. (2021), Table 2 demonstrate
the BWEC equipment operating parameters.

The shape parameter is set as φ � 2, proportion parameters
ϑ � 2�v/

''
π

√
, and the photovoltaic radiation intensity distribution

FIGURE 5
Solution flowchart of the two-stage dispatching and benefit allocation method.
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parameters a and b are set to 0.3 and 8.54, respectively (Ju et al.,
2022). The output scenes of WPP and PV are sampled according to
Eqs 31, 32a, b. The scenario with the highest probability result of the
day-ahead output is selected, and the scenario with the highest
volatility is chosen as the real-time output result. The maximum
electricity loads are 4.6, 3.5, and 2.5 MW of the small industrial load,
agricultural load, and resident load, respectively. Figure 7 represents
the available output of the WPP, PV, and demand distribution of
three types of load on a typical load day.

The parameters of demand response are set referring to the work
of Qin et al. (2019). The load fluctuation range, the maximum cut,
and incentive load should be lower than 10%, 5%, and 5% of the
original load, respectively. Table 3 shows the DR’s parameters of
different types of flexible loads.

The power consumption price of the GPPCC and P2G is set to
130¥/MWh, gA = 3 MW, eCO2 ,t = 0.15 t/MWh, λCO2 ,t = 0.05 MWh/t,
ηGPPCC,t = 0.9, ηP2G,t = 0.9, and ginput

P2G,t = 2 MW. The EVA charging
price is 250 ¥/kW h. In the real-time stage, the price of PG adjusting
the upper and lower output is 250 ¥/MW·h and 450 ¥/MW·h,
respectively. The cost of grid adding and reducing electricity is
550 ¥/MW·h and 250 ¥/MW·h. The initial Γ is set as 0.5, and the
reserve coefficients are 0.03.

Based on the aforementioned data, the improvement effect of
BWEC and CCU on VPP operation is compared and analyzed, and
the four simulation cases are set as follows:

Case 1. Basic case: The VPP dispatches without BWEC and CCU.
This case mainly considers the WPP, PV, SHS, EVA, and flexible
load DR. An operating optimal strategy for the VPP is established as
a comparison case.

Case 2. BWEC case: The VPP is dispatched with BWEC. This case
integrates BWEC into the VPP. The impact of biomass waste energy
on VPP operation is analyzed, especially when PG can provide new
regulatory output for the WPP and PV.

Case 3. CCU case: The VPP is dispatched with CCU. This case
integrates CCU into the VPP. Since the H2 generated by CCU
through P2G cannot be converted into electricity, it can only be sold
to obtain economic returns from the external gas network.

Case 4. Comprehensive case: The VPP is dispatched with BWEC
and CCU. This case integrates BWEC and CCU into the VPP. The
electric–carbon–electricity synergistic optimal effect is analyzed
between BWEC and CCU.

Finally, according to the aforementioned four cases, the
optimization of day-ahead deterministic dispatching and
real-time uncertain dispatching is carried out, and the fuzzy
robust two-stage dispatching model is solved to obtain the
optimal dispatching results of the four cases. Through
comparative analysis, the contribution of different agents is
established to cooperative operating benefits, and the benefit
equilibrium allocation of a multi-agent is carried out based on
Nash negotiation to formulate a reasonable benefit allocation
strategy.

5.2 Case results

5.2.1 Validation
This section applies the robust two-stage optimization theory to

the optimal scheduling of the BECU-VPP. Table 4 shows the
optimized scheduling results of the BECU-VPP.

According to Table 4, in the day-ahead stage, BWEC and SHS
dispatch more because their marginal cost is lower than new

FIGURE 6
Improved distribution network node diagram.

TABLE 2 BWEC equipment operating parameters.

Parameter Value Parameter Value Parameter Value

βgarbage 0.78 ηPF 0.95 ηBD 0.86

βgarbage,R2F 0.9 ηPG 0.94 ηEQ 0.54

βST 0.68 ηloss 0.05 θ1 0.85

βsludge 0.32 ηh 0.85 θ2 0.84

ρsludge 0.48 ηAB 0.52 α1 0.45

βBG 0.84 ηB2G 0.45 α2 0.48
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energy units. However, BWEC will generate carbon emissions, and
CCU is dispatched more for carbon conversion. When the
minimum carbon emission is the objective, the power output of
the WPP and PV is higher. When the two objectives are considered
comprehensively, the dispatch cost and carbon emissions are
increased by 9.56% and 16.85%, compared with the worst
values. It shows that the comprehensive dispatching scheme can
better balance operation costs and carbon emissions. Furthermore,
when there is a deviation in the real-time power output of the WPP
and PV, BWEC and CCU will adjust the day-ahead output plan,
and DR is also dispatched to provide flexible output. Figure 8

shows the two-stage optimal dispatching scheme of the
BECU-VPP.

According to Figure 8, in the day-ahead period, the WPP, PV,
SHS, and BWEC are the main power resources, and CCU converts
CO2 into CH4 by using part of the abandoned power output during
the trough period, and converts CH4 into power output during part
of the peak period. In the real-time stage, DR is dispatched to
provide negative output in the low period and positive output in the
peak period. At 0:00–8:00, CCU converts more CO2 generated by
BWEC into CH4 for power generation. At 11:00–15:00 and 19:
00–21:00, since BWEC is already dispatched at full power, CCU
converts more stored CO2 into CH4 for power generation. In
general, the two-stage dispatching module of the BECU-VPP
formulates a dispatching plan that satisfies the real-time power
supply and demand balance. Figure 9 shows DR schemes for
different types of users’ load.

On the basis of Figure 9, during the periods of 0:00–6:00 and 22:
00–24:00, DR is dispatched to provide positive output. During the
period of 7:00–21:00, DR is dispatched to provide negative output.
Specifically, the small industrial loads mainly increase load demand
and generate negative output at 0:00–5:00, 16:00–19:00, and 22:
00–24:00, and cut load demand at 7:00–15:00. The agricultural load
shifts the production load from 7:00–18:00 to 5:00–6:00 and 19:
00–22:00. The resident load shifts part of the load from 18:00–22:

FIGURE 7
Available output of the WPP and PV and the demand distribution of load on a typical load day.

TABLE 3 Parameters of distinct kinds of flexible loads’ DR.

Small industrial
load

αi,on αi,off ci,on ci,off — Li/MW

Value 0.2 0.2 200 400 — 4.6

Agricultural load αa ηa ca — — La/MW

Value 0.3 0.2 300 — — 3.5

Resident load αr,py αr,cut βr,cut cr,cut cr,py Lr/MW

Value 0.4 0.4 0.2 200 250 2.5

TABLE 4 Optimal scheduling results of the BECU-VPP at different stages.

Objective VPP/MW·h BWEC/
MW·h

CCU/
MW·h

Grid/
MW·h

Objective value/¥, ton, ¥

WPP PV SHS EVA DR Fcost
BECU−VPP Fcarbon

BECU−VPP Fadjust
BECU−VPP

Day-ahead
stage

f1 78.54 22.38 30.12 −3 — 52.4 6.38 0.52 17,245.15 44.54 —

f2 94.58 26.58 26.33 −2 — 38.52 2.48 0.84 19,995.80 32.74 —

f1
+ f2

86.33 24.38 28.89 −2.65 — 44.09 4.8 0.75 18,050.25 37.48 —

Real-time
stage

f3 68.13 22.74 29.83 −3 (−2.8,2.4) 61.72 7.14 1.2 21,916.35 52.46 9,325.50
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00 to 0:00–04:00, and part of the load is cut. In general, different
types of loads generate demand response output through shifting,
cutting, and incenting. Figure 10 shows the power distribution of
BWEC and CO2 flow in the BECU-VPP dispatching scheme.

According to Figure 10, in terms of BWEC output distribution,
BWEC is dispatched to provide more output, and PG is in a full state
from 6:00–19:00, which is significantly higher than the previous
output plan. AB-ST and B2G generate more natural gas at 0:00–5:
00 and use it for power generation to balance the output volatility of
the WPP and PV. As far as CO2 flow in CCU is concerned, the
GPPCC captures and stores the CO2 generated by BWEC during the
trough period and some normal periods. During peak hours, P2G
converts CO2 into CH4. Table 5 shows the optimal scheduling
results under different robust coefficients.

According to Table 5, with the increase of Γ, the acceptable
uncertainty redundancy of the BECU-VPP dispatching scheme
decreases gradually, making it difficult to deal with the
uncertainty risks. Compared with Γ = 0, when Γ = 1, the electric

power generation of the WPP and photovoltaics decreased by
15.72% and 15.12%, respectively, while the power output of
BWEC increased by 30.7%. This also increases the power output
of CCU by 188.19%, indicating that Γ has a direct impact on the
BECU-VPP and will constrain the scale of the WPP and
photovoltaic grid connection. When Γ∈ (0.3, 0.9), the electric
power generation of the WPP and photovoltaics drops
significantly, indicating that the growth of Γ has the most direct
impact on the scheduling scheme. When Γ > 0.9 or Γ < 0.3, the
changes in power output are not obvious, indicating that the change
in Γ has little effect on the dispatching scheme. The former means
the dispatching plan is close to the most conservative scheme, and
the latter is because the dispatching scheme has a high tolerance for
uncertainty. Furthermore, from changes in the objective value, the
operation cost, carbon emission, and deviation cost all decrease with
the increase of Γ gradually, and the distribution trend is consistent
with the changing trend of the power output. Therefore, when the
policymakers avoid risks, the uncertainty margin needs to be set at
(0.3, 0.9) Figure 11 shows the sensitivity analysis results with
different capacity scales of BWEC and CCU.

According to Figure 11, when the capacity is 2–6 MW, the slope
of the output growth curve is higher, indicating that the unit capacity
increase will bring higher power output. When the capacity exceeds
6 MW, the output growth is lower. For operation cost, as the
capacity of BWEC increases, the cost decreases gradually, and
when the capacity of BWEC exceeds 6 MW, the operation cost
remains unchanged basically. For carbon emissions, when the
capacity of BWEC exceeds 4 MW, the carbon emissions decrease
gradually, and when the capacity of BWEC exceeds 6 MW, the
carbon emissions remain unchanged basically. For deviation
adjustment cost, as the capacity of BWEC increases, the
deviation adjustment cost decreases gradually, and the deviation
adjustment cost basically remains unchanged until the capacity
reaches 6 MW. In general, when the capacity of BWEC is 6 MW,
the dispatching scheme can become optimum. Based on this, when
the capacity of CCU exceeds 3 MW, the output of the WPP and PV
no longer increases basically. When the capacity of CCU exceeds

FIGURE 8
BECU-VPP day-ahead scheduling scheme (A) and real-time adjustment scheme (B).

FIGURE 9
Demand response schemes for different types of users’ load.
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FIGURE 10
BWEC Production Distribution Diagram (A) and CO2 Flow Diagram (B) in BECU-VPP Scheduling Scheme.

TABLE 5 Optimal dispatching results under different robust coefficients.

Γ WPP/MW·h PV/MW·h BECU/MW·h CCU/MW·h f 1/¥ f2/ton f3/¥

0 74.85 24.93 53.64 4.32 20,084.25 45.59 14,567.14

0.1 73.97 24.36 54.36 5.16 20,450.46 46.21 12,364.95

0.3 71.05 23.55 58.04 6.15 21,000.30 49.33 10,845.23

0.5 68.13 22.74 61.72 7.14 21,916.35 52.46 9,325.50

0.7 65.76 22.16 65.09 9.34 23,051.01 55.32 8,770.44

0.9 63.39 21.58 68.45 11.54 24,185.67 58.18 8,615.38

1.0 63.08 21.46 70.12 12.45 24,850.24 59.60 8,435.18

FIGURE 11
Sensitivity analysis results of different capacity scales of BWEC and CCU.
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4 MW, the value of the objective function does not change basically.
Therefore, while theWPP + PV capacity ratio, BWEC, and CCU is 5:
3:2, the dispatching operation scheme of the BECU-VPP is optimal.

5.2.2 Comparative analysis of different cases
This section focuses on analyzing the synergistic optimal effect

between BWEC and CCU. According to the basic case, BWEC case,
CCU case, and comprehensive case in Section 5.1, the robust
coefficient Γ of the four cases is 0.5. Table 6 shows the optimal
dispatching results of the BECU-VPP in different cases.

According to Table 6, when both BWEC and CCU are equipped,
the operation cost and deviation adjustment cost are reduced by
26.21% and 39.78% compared with Case 1, respectively. It shows
that BWEC and CCU can provide flexible output for the WPP and
photovoltaic, and BWEC can gain benefit from the conversion of
biomass waste resources, reducing the overall operation cost of the
VPP. The day-ahead dispatching plan deviations are mainly satisfied
by BWEC and CCU. It replaces the high-cost grid flexibility load, so
the deviation adjustment cost is also reduced significantly.
Furthermore, compared with Case 2 and Case 4, CCU can
convert CO2 generated by BWEC operation into CH4, which
could reduce the operation cost and deviation adjustment cost by
15.90% and 25.89%, respectively. Compared with Case 3 and Case 4,
when the VPP is not equipped with BWEC, CCU can only capture
CO2 in the atmosphere, resulting in relatively high cost and weak
regulation ability, so operation adjust and the cost of cost deviation
are both increased by 3.58% and 44.39%, respectively. In general,

there is a synergistic optimal effect between BWEC and CCU. It is
beneficial to realize the optimal dispatching of the BECU-VPP.
Figure 11 represents the dispatching scheme of the BECU-VPP in
different cases.

TABLE 6 Optimal dispatching results of the BECU-VPP under different conditions.

Case VPP/MW·h BWEC/MW·h CCU/MW·h Objective value/¥, ton, ¥

WPP PV SHS EVA DR PG AB-ST B2G GPPCC P2G Fcost
BECU−VPP Fcarbon

BECU−VPP Fadjust
BECU−VPP

Case 1 63.02 20.72 25.56 −3 (−0.9, 0.6) — — — — — 30,597.02 — 15,485.60

Case 2 62.84 21.48 25.56 −3 (−3.6, 3.3) 46.46 −2.19 6.26 — — 26,845.21 56.85 12,584.80

Case 3 67.14 21.98 32.80 −3 (0.3,0.3) — — — −3.59 9.42 23,684.41 — 13,465.24

Case 4 68.13 22.74 29.83 −3 (−2.8, 2.4) 55.07 −3.59 10.24 −4.78 11.92 22,576.56 52.47 9,325.50

FIGURE 12
Dispatching scheme of the BECU-VPP in different cases.

FIGURE 13
BWEC operation results in case 2 and case 4.
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On the basis of Figure 12, according to Case 1 and Case 3, if
the VPP is not equipped with BWEC, the VPP would buy more
power from the external grid. However, if the VPP is equipped
with BWEC (Case 2), the VPP will reduce the purchase of
electricity from the external grid significantly, and BWEC will
produce more electricity, so that the dispatching output of DR is
also significantly higher than in Case 1. Different from Case 1 and
Case 3, if CCU is only equipped in some time periods (5:00–6:
00 and 22:00–23:00), the BECU-VPP will sell power to the
external grid, mainly from the electricity output of CCU by
converting CO2. Compared with Figure 8, if BWEC and CCU
are equipped at the same time, the CO2 generated by the BECU-
VPP can be converted into CH4. Figure 12 shows the BWEC
operation results in Case 2 and Case 4.

According to Figure 13, in Case 4, the power output of BWEC is
more than that in case 2. PG, AB-ST, and B2G are basically at rated
power from 5:00–20:00. The generated CO2 will be captured, stored,
and converted by CCU, which could provide more flexible output. In
Case 4, more AB-ST is used to ferment organic waste and domestic
sewage to generate biogas, and use B2G to convert the biogas into
CH4 for power generation. Figure 13 shows the output consequence
of CCU in Case 3 and Case 4.

According to Figure 14, the VPP is not equipped with
BWEC in Case 3. When CCU performs carbon capture and
conversion, it operates more at rated power and cannot be
adjusted. When the VPP is equipped with BWEC, CCU can
directly capture CO2 generated by BWEC and convert it into CH4

for power generation. More flexibility adjustment services for the
WPP and PV are undertaken by CCU. This makes the output
power fluctuation range more obvious. In conclusion, when the
VPP is equipped with BWEC and CCU, it can capture and store
the CO2 generated while converting and utilizing biomass waste
resources, and then be converted into CH4 for power generation,
which could generate an electricity–carbon–electricity cycle
optimal effect.

5.2.3 Multi-agent benefit equilibrium allocation
result

According to the scheduling results of the BECU-VPP, this
section optimizes the benefits allocation from different agents in the
collaborative operation. From Eqs 43, a, b, 44, 45, 46, 47a, b, 48a, b,
49, 50, if different agents in BWEC, VPP, and CCU are used as
independent agents to participate in benefit allocation, the
calculation amount will be 214–1, the workload is huge, and some
calculation schemes are redundant. Therefore, according to the
attributes and scale of the agent, this study mainly selects four
types of agents: WPP + PV, SHS, BWEC, and CCU. Table 7 shows
the objective values for different possible combinations.

According to Table 5, the negotiation starting point of the
cooperation benefit allocation of the BECU-VPP is calculated by
applying Eqs 44, 45. Eqs 47a, b, 48a, b, 49 are used to establish
marginal benefit contribution, carbon emission contribution, and the
deviation risk factor. A comprehensive negotiation score could be
calculated by Eq. 50, which is used to carry out the benefit allocation
of WPP + PV, SHS, BWEC, and CCU. For WPP + PV, BWEC, and
CCU, they all include multiple internal unit equipment and allocate the
benefits of each equipment according to the proportion of output to total
output. Table 8 shows the allocated profits of the BECU-VPP in Case 4.

According to Table 8, the cooperative operation of different
agents can generate an incremental profit of 4,500.16 ¥. From the
results of traditional benefit allocation, because of the great
contribution of the WPP and PV to marginal benefits and a total
of 24,039.75 ¥ obtained during the incremental benefit allocation,
BWEC and CCU provide flexibility adjustment services for theWPP
and PV and obtain incremental profits of 1,191.91 ¥ and 1,388.94 ¥
respectively. Furthermore, the carbon emission contribution and
deviation risk factors are included in the cooperation benefit
allocation to obtain comprehensive negotiation scores. Due to the
risk influence of power generation deviation, WPP + PV obtains
2,626.32 ¥. The SHS earned 2,376.06 ¥ due to the zero-carbon and
zero-risk attributes of power generation, and both BWEC and CCU
obtain incremental benefits. Particularly, CCU gains a larger share of
excess profits due to its ability to convert CO2 to CH4, thereby
providing flexible adjustment services for the WPP and PV, while
reducing carbon emissions and deviation risks. Figure 14 shows the
proportion of benefits obtained by each agent in different allocation
factors and allocation methods.

According to Figure 15, for marginal benefit contribution, the
WPP and PV have higher marginal benefit contribution and obtain a
higher benefit share (48.20%). For carbon emission contribution,
WPP + PV and SHS’s power generation is zero-carbon emission,
and CCU can produce a carbon reduction effect, and the share of
benefit is 51.6%, 35.2%, and 8.4%. However, BWEC produces carbon
emissions, which reduces the share of benefits to 4.8%. For deviation
risk factors, BWEC and CCU provide more flexible adjustment
services for the WPP and PV, and the benefit share is 38.5% and
9.2%. If the benefit allocation is based on the comprehensive
negotiation score, the SHS and BWEC gain a higher share, and
the CCU benefit share also increases. It shows that the proposed
Nash carbon emission-benefit allocation strategy can take into
account the multidimensional influencing factors, and establish a
reasonable benefit allocation strategy. Figure 15 shows the benefit
allocation results of each agent in different cases.

FIGURE 14
Output results of CCU in cases 3 and 4.
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According to Figure 16, since the power output of BWEC
satisfies the internal load demand in Case 2 and Case 4, the VPP
reduces the amount of electricity purchased from the power grid,
and the total profit is higher than in Case 1 and Case 3, with an
increase of 15,895.73 ¥ and 11,333 ¥, respectively. For the specific
benefit allocation plan, in comparison with Case 1 and Case 3, after
the VPP is equipped with CCU, the WPP and photovoltaic power
output increase, and putting forward more flexibility adjustment
requirements for the SHS and CCU, SHS and CCU obtained
incremental profits of 2,509.93 ¥ and 4,856.37 ¥. Compared with
Case 2 and Case 4, after the VPP is equipped with BWEC, the WPP
and PV power output becomes the highest. BWEC can significantly
reduce the cost of deviation adjustment and increase the operating
output of CCU, so BWEC and CCU obtain an incremental profit of
1,548.23 ¥ and 6,999.13 ¥, respectively. The proposed Nash carbon

emission–benefit equilibrium allocation strategy can take into
account the features of different agents and formulate the most
reasonable benefit allocation strategy. Furthermore, as the
uncertainty of the WPP and photovoltaic, it is essential to
analyze the benefit allocation strategy in different margins.
Table 9 shows the benefit allocation strategy of each agent has a
distinct robust factor.

According to Table 9, from the perspective of the total profit,
along with the growth of Γ, the WPP’s power output and
photovoltaic power generation gradually decrease, and the VPP
purchases more power from the electric fence to reduce the cost of
real-time deviation risk, resulting in a gradual decrease in the total
profit. When Γ = 1, compared with Γ = 0, the total profit is reduced
by 14.98%. From the perspective of specific benefit allocation, with
the growth of Γ, the WPP and PV have higher deviation risk costs

TABLE 7 Objective values of the possible combinations in case 4.

Available units Profit/¥ Carbon emission/ton Adjusted cost/¥

WPP + PV SHS BWEC CCU

1 √ 23,888.03 0 8,050.90

2 √ 12,347.04 0 0

3 √ 8,932.725 58.18 0

4 √ 207.06 0 0

5 √ √ 37,597.00 0 8,593.79

6 √ √ 39,264.50 53.08 8,766.20

7 √ √ 28,280.00 0 8,222.29

8 √ √ √ 46,753.00 39.49 9,145.91

9 √ √ √ 38,542.00 0 8,653.31

10 √ √ √ 39,307.50 49.68 8,673.83

11 √ √ 22,134.00 55.52 0

12 √ √ 14,430.00 0 0

13 √ √ 11,091.50 56.48 0

14 √ √ √ 20,872.00 50.47 0

15 √ √ √ √ 49,875.00 46.81 9,325.50

TABLE 8 Allocated profits of the BECU-VPP in case 4.

αinitiali Negotiating
power

αfinali Different methods/¥

bi ϕi ri Non-cooperative game
theory

Shapley value-based
method

Nash negotiation-based
method

WPP
+ PV

0.526 0.482 0.516 0.284 0.43 23,888.03 24,039.75 21,261.71

SHS 0.272 0.283 0.352 0.239 0.30 12,347.04 14,114.63 14,723.10

BWEC 0.197 0.203 0.048 0.385 0.20 8,932.725 10,124.63 10,209.41

CCU 0.005 0.032 0.084 0.092 0.07 207.06 1,596.00 3,680.78
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due to their uncertainty, so the share of profit gradually decreases.
However, the SHS, BWEC, and CCU can provide flexible
adjustment services, so the profit gradually increases. When Γ∈
(0.03, 0.9), the proportion of profits obtained by the WPP and PV
decreased significantly. When Γ > 0.9 or Γ < 0.3, the proportion of
WPP and PV profits decreased slowly, and the distribution trend
was identical with the consequence given in Table 5. It shows that
the proposed Nash carbon emission–benefit equilibrium allocation
strategy can consider the impact of the uncertainty margin regarding
the operation of the BECU-VPP and formulate the optimal agent
benefit allocation strategy reflecting different uncertainty margins.

6 Conclusion

For massive biomass waste resources such as straw, solid waste,
and sanitary sewage in rural areas, this study proposes a new concept
of biomass waste energy conversion (BWEC) and a new model of
carbon recycling utilization (CCU) based on GPPCC-P2G, and
constructs a novel BWEC-CCU-based VPP (BECU-VPP). In
addition, a fuzzy robust two-stage optimal scheduling model for
the BECU-VPP is developed in this study. Finally, a Nash
negotiation-based benefit-balancing allocation strategy is
constructed considering marginal revenue contribution, carbon
emission contribution, and deviation risk factors. Finally, a rural
distribution network in Jiangsu province, China, is used as a test
system.

FIGURE 15
Proportion of benefits obtained by each agent in different allocation factors and allocation methods.

FIGURE 16
Benefit allocation results of each agent in different cases.

TABLE 9 Benefit allocation strategy of each agent with different robust
coefficients.

Γ Different units’ profit ratio/% Total profit/¥

WPP PV SHS BWEC CCU

0 36.06 12.36 21.30 19.09 11.19 56,815.49

0.1 35.36 11.80 21.32 19.49 12.02 54,797.44

0.3 34.24 11.43 21.33 20.09 12.91 52,262.17

0.5 32.54 10.86 21.53 21.03 14.03 49,875.00

0.7 31.56 10.53 21.84 21.46 14.61 49,602.17

0.9 29.63 9.99 22.25 22.74 15.39 48,478.94

1.0 28.67 9.89 22.43 23.30 15.62 48,299.56
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1 BWEC could convert rural biomass waste resources into
energy, and CCU could play power–carbon–power the cycle
optimal effect, which could improve the output of the WPP
and photovoltaic by aggregating the SHS, EVA, and multi-type
user DR. Compared with the conventional VPP, BWEC and CCU
could reduce the operation cost by 12.26% and 22.59% and
decrease deviation adjustment cost by 18.73% and 13.05%,
respectively. When they are both introduced, the operation
cost and the deviation adjustment cost could be reduced by
26.21% and 39.78%, which shows that there is a synergistic
optimal effect between BWEC and CCU.
2 The fuzzy robust two-stage optimal dispatching model of the
rural BECU-VPP can measure the non-determinacy of the WPP
and PV, analyze the influence of uncertainty redundancy on the
optimal dispatching scheme, and develop the optimal scheduling
plan that considers the minimization of operation cost, carbon
emission, and deviation adjustment cost. In the real-time phase,
DR is dispatched to provide −2.8 and 2.4 MW response output,
and the real-time output of BWEC and CCU increased by 40.01%
and 48.57%, respectively. Furthermore, the sensitivity analysis of
Γ shows that compared with Γ = 0, when Γ = 1, the outputs of the
WPP and photovoltaic decrease by 15.72% and 15.12%,
respectively, and the outputs of BWEC and CCU increase by
30.7% and 188.19%, respectively. When Γ∈ (0.3,0.9), the output
of the WPP and photovoltaic and objective function values
change significantly, and the growth of Γ has the most direct
influence on the dispatching scheme. The uncertainty
redundancy is set at (0.3, 0.9). Finally, the capacity sensitivity
analysis of BWEC and CCU shows that while the capacity ratio of
WPP + PV, BWEC, and CCU is 5:3:2, the BECU-VPP
dispatching operation scheme is optimal.
3 The multi-agent benefit equilibrium allocation strategy for the
rural BECU-VPP could consider marginal benefit contribution,
carbon emission contribution, and deviation risk factors and
formulate a benefit distribution strategy that reflects the utility
features of different agents and comprehensive negotiation
scores. Compared with the non-cooperation case, the
cooperation of different agents can increase the operating
profit by 9.92%. Compared with the traditional cooperative
benefit allocation strategy based on benefit contribution, if the
benefit distribution is according to the comprehensive
negotiation score, the benefit share of the WPP and PV is
reduced by 5.2%, and the benefit share of the SHS, BWEC,
and CCU is increased by 1.7%, 9.7%, and 3.8%, respectively. If
the VPP is equipped with CCU, the incremental profit of the SHS
and CCU will increase by 2,509.93 ¥ and 4,856.37¥. However, if
VPP is equipped with BWEC, the incremental profit of BWEC
and CCU will increase by 1,548.23 ¥ and 6,999.13 ¥, respectively.
When Γ∈ (0.3, 0.9), the proportion of the WPP and PV benefits
significantly decreased and the proportion of BWEC and CCU
benefits increased significantly.
4 In the energy treatment of biomass waste material, this study
mainly considers its pyrolysis and gasification to generate
electricity. The natural gas formed by the fermentation of wet

garbage and domestic sewage is also converted into electricity. It
belongs to a single-dimensional power supply and demand
balance decision-making problem. In practice, the pyrolysis
and gasification of biomass power generation waste resources
also generate part of heating. If it can be utilized, it can form the
coordinated supply problem of electricity, heating, and gas. A
single balance of power supply and demand to a multi-energy
supply and co-ordination of supply and demand of electricity,
heating, and gas is formed, and this is the main research direction
in the future.
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Nomenclature

VPP virtual power plant

BWEC biomass waste energy conversion

PG pyrolysis power generation

AB anaerobic biogas

ST sewage treatment

B2G biogas to gas

GPPCC gas-power plant carbon capture

P2G gas-power plant carbon capture

CCU carbon cycle utilization

BECU-VPP BWEC-CCU-based VPP

WPP wind power plant

PV photovoltaic power

SHS small hydropower station

EVA electric vehicle-to-grid aggregator

DGs distributed power generation sources

CS carbon storage

t index for time

i index for unit

ηref references efficiency

ηSHS power generation efficiency of hydropower station

ρ gravitational acceleration at location of the SHS

ηch charging efficiency of the EVA

αi,off interruptible coefficient of small industrial load

αi,on incentive coefficient of small industrial load

αa shift coefficient of agricultural load

αr,cut shift coefficient of resident load

αr,py cut coefficient of resident load

βr,cut cut coefficient of resident load

βgarbage coefficient of PG gasification waste

ηP2G,t operating efficiency of P2G equipment

HL calorific value of CH4

ηGPPCC,t capture rate of carbon at time t

emax most storage capacity of electric vehicles

Econs
t EVA power consumed

gRE renewable energy output

LVPP total load demand in the VPP

Mgarbage,t residual waste processed by PG at time t

Lfuel calorific value of the gasified fuel

Msludge,t mass of sludge at time t
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Mwet−garbage,t mass of organic waste mixed with sludge at time t

LNG calorific value of natural gas

eCO2 ,t carbon emission intensity at time t

λCO2 ,t power consumption of processing device CO2 at time t

gA fixed power consumption of GPPCC-P2G

ofuel , oBG, oBD , oNG operation and maintenance cost coefficients of PG, AB, ST,
and B2G in BWEC

cWPP,t , cPV ,t , cSHS,t operation cost coefficients of WPP, PV, and SHS at time

cEVA,t cost coefficients of the VPP dispatching EVA at time t

gday−aheadWPP,t
forecasting power output before day of WPP time t in the
day-ahead stage

gday−aheadPV ,t
PV power generation at time t predicted in the day ahead

gch,max
EVA,t

maximum charging power of the EVA at time t

en max maximal charge and discharge power of the n-th electric
vehicle

Mon
PG, M

off
PG

minimum allowed startup and shutdown time of PG

QCO2 ,CS,max
GPPCC,t ,

QCO2 ,CS,min
GPPCC,t

maximum and minimum permitted storage capacity of CS at
time t

gSHS
max maximum power output of the SHS at time t

gSHS
min minimum power output of the SHS at time t

c+PG,t , c−PG,t up and down output prices of PG

c+B2G,t , c−B2G,t up and down output price of B2G

c+DR,t , c−DR,t up and down output prices of flexible loads

c+Grid,t price of the VPP increasing power purchase

ΔLDR,t min,
ΔLDR,t max

minimum and maximum demand response output

gB2G,t electricity that converted from natural gas produced by B2G

QCO2
GPPCC,t

CO2 capture flow of GPPCC

VCH4 ,t methane produced by P2G

ginputP2G,t
power consumption of P2G

ginputCCU ,t
power consumption of GPPCC-P2G

goutputCCU ,t
generated power from the CH4 converted by GPPCC-P2G
into PG

CBWEC,t ,
CVPP,t , CCCU ,t

operation cost of BWEC, VPP, and CCU

CGrid,t energy interaction cost between the BECU-VPP and the
external grid

cgarbage cost coefficients of BWEC processing unit waste

ci start-stop cost coefficients of controllable unit i in BWEC

ui,t operating state of controllable unit i in BWEC at time t

QP2G,CO2
GPPCC,t

CO2 consumption captured by the GPPCC in P2G at time t

QCS,CO2
GPPCC,t

CO2 storage captured by the GPPCC in CS at time t

uPG,t operation state of PG at time t

Δ�g+PG,t , Δ�g−PG,t up and down climbing power of PG at time t
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g totalPG,t total power output of PG at time t

Ton
PG,t−1, T

off
PG,t−1 continuous starting and closing time of PG at time t-1

QCO2 ,CS
GPPCC,t

CO2 stored in CS at time t

QCO2 ,other
GPPCC,t

carbon emission of the GPPCC at time t

SCS,t carbon storage of CS at time t

gRE,t power output of the new energy unit at time t

gday−aheadRE,t
output power of new energy unit at time t in the day-ahead
stage

Δgreal−time
RE,t output deviation of the new energy unit in real-time stage

Sorigin initial scenario set [gRE,i,t]T×N
k1 minimum level of EV stored electric energy

ηEQ electric heat conversion coefficient of the heating device in
digester

ηB2G conversion efficiency of B2G

ρsludge average sewage density after quiescent precipitation

βBG gasification coefficient of sludge mixture and organic waste

βST amount coefficient of sewage that treated per unit of electric
energy

ηAB coefficient of fermentable organic matter in mixture

βsludge coefficient of sludge of static sewage after sedimentation

βgarbage,R2F gasification coefficient of waste

ηPF efficiency of the pyrolysis furnace

ηPG power generation efficiency of the gas turbine

ρL load reserve coefficient

ρupWPP , ρ
dn
WPP the up-down rotation reserve coefficient of the WPP

ρupPV , ρ
dn
PV the up-down rotation reserve coefficient of PV

egridCO2
average carbon emission coefficient of grid unit power
generation

eCO2 carbon emission coefficient of PG, B2G, and CCU

vt natural wind velocity at time t

vin , vout cutting-in and cutting-out wind speed

vrated rated wind speed

gWPP,R rated power output of the WPP

γT temperature parameter of the conversion efficiency of the
photovoltaic panel

Tair ambient temperature

Tn normal working temperature

Rt intensity of solar radiation at time t

Tref reference temperature

NPV quantities of photovoltaic panels

APV area of single photovoltaic panel

Qt power drainage flow of the SHS at time t

Ht net water level of the SHS at time t
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Nplug
t

number of electric vehicles in the EVA at time t

N leave
t

number of electric vehicles left at time t

Narrive
t number of EVAs arriving at time t

en max section maximum storage capacity of electric vehicles

ηDR load demand change caused by the flexible load demand
response

coutput,+CCU ,t , coutput,−CCU ,t
up and down output price of CCU at time t

gWPP,t WPP’s output at time t

gPV ,t PV’s output at time t

gSHS,t SHS’s output at time t

Et EVA’s stored power at time t

gchEVA,t EVA charging power at time t

Eleave
t , Earrive

t
stored power of EVA leaves and arrives at time t

ηi,on incentive state of small industrial loads

ηi,off interruptible state of small industry loads

ΔLi small industrial load that can participate in dispatching

Li total small industrial load

ΔLa agricultural load that can partake in dispatching

La total agricultural load

ηa shiftable state of agricultural load

ηr,cut resident load that can partake in dispatching

Lr total resident load

ηr,cut cut state of resident load

ηr,py shiftable state of resident load

V fuel,t combustible gas generated by the pyrolysis and gasification of
PG at time t

gPG,t power output of PG

VBG,t biogas generated by AB

gST,t electricity consumption of sewage treatment by ST

VST,t amount of ST-treated sewage

QBD,t heating demand of the biogas digester

gBD,t electricity consumption of the digester

VNG,t amount of natural gas obtained after purification of the biogas

gRE,j,t power output of new energy units in scenario j at time t after
reduction

Sfinal reduced scenario set [gRE,j,t]T× ~N

pRE,j,t occurrence probability of the reduced time t scenario j at time t

~N total number of scenarios after reduction at time t

Δg−Grid,t default cost of the VPP reducing power purchase at time t

Δg+PG,t , Δg−PG,t up and down output of PG at time t

Δg+B2G,t , Δg−B2G,t up and down output of B2G at time t

Δgoutput,+CCU ,t , Δgoutput,−CCU ,t
up and down output of CCU at time t
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Δg+Grid,t , Δg−Grid,t increased and decreased power purchased by the VPP from
the grid at time t

ΔL+DR,t , ΔL−DR,t up and down output of small industrial users, agricultural
users and resident users’ flexibility loads at time t

ΔL+i,t , ΔL−i,t up and down output of small industrial users at time t

ΔLtran,+a,t , ΔLtran,−a,t up and down output of agricultural users by load shift at time t

ΔLtran,+r,t , ΔLtran,−r,t up and down output of the resident users by load shift at time t

ΔL−r,t down output of the resident users at time t

ΔgRE,t output deviation of the new energy unit at time t

ΔgBWEC,t deviation output of BWEC at time t

ΔgCCU ,t deviation output of CCU at time t

ΔgGrid,t deviation output of grid at time t

ΔLDR,t the flexible load demand response output scheduled at time t

uDR,t flexible load demand response state variable at time t

u+DR,t up output state variables of flexible load at time t

u−DR,t down output state variables of flexible load at time t

~g totalPG,t
total output of the PG in real-time stage

Δgoutput,max
CCU ,t

P2G’s maximum power output conversion in the CCU
module at time t
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