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Solar irradiance is a crucial environmental parameter for optimal control
of photovoltaic (PV) systems. However, precise measurements of the solar
irradiance are difficult since the irradiation sensors (i.e., pyranometer or
pyrheliometer) are expensive and hard to calibrate. This paper proposes a
cost-effective and accurate method for estimating the solar irradiance with
a PV module via curve fitting. A dual-mode Jaya (DM-Jaya) optimization
algorithm is introduced to extract the real-time value of solar irradiance from
the measured PV characteristics data by using two search strategies. The step
sizes of a random walk are taken from even and Lévy distribution distributions
in different searching phases. Compared with the traditional irradiance sensors,
the proposed estimator does not require additional circuit and obtains relatively
lower error rates. A comparative study of seven population-based optimization
algorithms for the optimal design of the estimator is presented. These algorithms
include particle swarm optimization (PSO), cuckoo search (CS), Jaya, simulated
annealing (SA), genetic algorithm (GA), supply-demand-based optimization
(SDO), and the proposed DM-Jaya algorithm. Simulations and experimental
results reveal that DM-Jaya outperforms the other optimization algorithms in
terms of the estimation speed and accuracy.
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1 Introduction

Solar energy is a renewable, clean and inexhaustible source of energy, making it one of
the most promising alternatives to the traditional fossil fuel energy. Photovoltaic (PV) is a
technique that directly converts the solar radiation to the electrical energy. Nowadays, owing
to the simplicities of setting up, PV systems are applied in the city to power up public facilities
such as streetlamps, traffic lights and weather detectors.

The output energy of PV modules is greatly affected by environmental conditions
(e.g., the temperature and solar irradiance levels). Solar irradiance measurements
provide essential information to calculate the efficiency of a power system, to
determine possibilities for improvements of the PV plant setup, and to select a
location for the construction of a PV power plant. Therefore, precise measurements
of solar irradiance are of importance for the efficient operation of PV systems. It
is easy to collect the temperature information with a relatively high accuracy by
using commercial sensors, while this is not the case for the solar irradiance as the
solar irradiation sensors are expensive and hard to calibrate (Hameed et al., 2019).
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FIGURE 1
Equivalent single-diode circuit for a PV cell.

FIGURE 2
Current-voltage and power-voltage characteristics of a PV module.

In the literature, the solar irradiance measurement methods can
be roughly grouped into two categories: direct measurement and
soft sensing. The former applies the conventional sensing devices
like pyranometers (Matsumoto et al., 2017; Azouzoute et al., 2019),
fisheye cameras (Baek and Choi, 2022; Mira et al., 2022), and smart
devices (Al-Taani andArabasi, 2018).Using pyranometer is themost
direct approach to obtain the measurements of the solar irradiance.
However, such sophisticated instruments are expensive and need
to be properly calibrated from time to time in order to give the
most possible accurate measurement results. The fish eye cameras
were used in (Aakroum et al., 2017) to take the sky images from
the ground. A deep neural network (DNN) was applied to estimate
the solar irradiance from the cloud information in the sky images
with an accuracy of 95%, but it is quite computationally expensive.
In (Kawakami et al., 2018), the solar irradiance was estimated from
the correlation between the brightness values derived from the
color values by the image analysis. The average estimation error of
this approach is around 90 W/m2. Urbich et al. (Urbich et al., 2019)
proposed a seamless solar radiation estimation method based on
the optical flow of effective cloud albedo captured from satellite
imagery. However, the sensitivity of the direct measurements needs
to be properly controlled based on the reference value and the
environment; otherwise, the observational data may be subject to
a large error (Kim et al., 2018).

Data-driven soft sensor design has recently gained immense
popularity due to advances in sensory devices, and a growing

interest in datamining. Tan et al. (2013) developed a solar irradiance
estimator based on a PV modeling equation. To obtain the required
current data, the applied PV module will be short circuited during
operation. Kang et al. (2022) developed a feature-enhanced gated
recurrent unit (FEGRU) model, utilizing the time series data for
predicting the solar radiation. No auxiliary data are required.
Chen et al. (2022) proposed a modified Ineichen–Perez estimation
model for the solar irradiance data. The peformance for estimating
the clear-sky irradiance showed the proposed model has the
potential for improving the physical methods. In (Ma et al., 2016b),
an online support vector regression-based soft sensing model was
presented. The model reconstruction was implemented to maintain
the prediction accuracy even when the electrical characteristics of
the solar cell vary with irradiance, temperature, and age. Ma et al.
(2017) proposed a field-support vector regression (F-SVR)-based
soft sensor to estimate the solar irradiance from the short-circuit
current. Although interesting, these methods require a real-time
measure of the short-circuit current. The applied PV module will
be disconnected from the load, leading to the power generation
losses. Besides, some estimation models without the dependence
of measuring the short-circuit current have been proposed.
Carrasco et al. (2014) proposed a solar irradiance estimator which
was developed based on the principles of immersion and invariance.
Simulation results demonstrated the estimated values are very
close to those measured by a commercial irradiance sensor. In
(Mancilla-David et al., 2014), the solar irradiance was predicted
by a neural network from the operating voltage, current, and
measured temperature. A big dataset for each specified PV module
is required to be collected and trained before the use of this
model. If the PV module is replaced or aging, the estimation
result could be inaccurate. Moreover, the accurate measurement
for the solar irradiance is hard to guarantee when establishing the
dataset for training. The irradiance was computed utilizing the
maximum power point (MPP) coordinates by the analytical model
in (Abe et al., 2020).These soft-sensing approaches usuallymake use
of the PV models to obtain the estimation values. The estimation
accuracy cannot be guaranteed because the parameters in themodel
acquired from the manufacturer’s datasheet aren’t accurate in terms
of the aging problem of PV cells.

With the aim of developing an accurate and cost-effective solar
irradiance estimator, this paper proposes a real-time measuring
method that extracts the value of irradiance from a series of
measured current-voltage (I-V) data via curve fitting. The idea
of this paper is similar to the work in (Batzelis et al., 2017) that
applies curve fitting on voltage and current measurements obtained
during operation to determine the MPP in real time. A dual-
mode Jaya (DM-Jaya) optimization algorithm is introduced to
balance searching space and speed for global optimization. The
proposed irradiance estimation method does not need special
installation prior to the measurement. In addition to the voltage and
current sensors, only a commercial temperature sensor is required
to measure the cell temperature. The computer simulations and
experiments are conducted to evaluate its estimation performance
under a variety of environmental conditions. The proposed
estimator could serve as a quick tool to predict the irradiance levels
in the preliminary stages of PV systems design.

The remainder of this paper is organized as follows. Section 2
introduces the electrical characteristics of a PV module and
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FIGURE 3
Flowchart of the proposed dual-mode Jaya algorithm: (A) Main program; (B) Update xki,j.

formulates the solar irradiance estimation problem. In Section 3,
the estimation problem is addressed by a DM-Jaya algorithm. The
results and discussions are presented in Section 4. Finally, Section 5
concludes this article.

2 Formulation of irradiance estimation
problem

2.1 Single diode photovoltaic model

The electrical characteristics of a PV cell can be represented
using an equivalent electrical circuit composing of linear and
non-linear components. A single-diode equivalent circuit model
defines the entire I-V curve of a PV cell for a given set
of environmental conditions. Its circuit diagram is shown in
Figure 1.

The output current of the PV cell I in Figure 1 can be expressed
as Eq. 1.

I = Iph − Id − Ip (1)

where Iph is the photocurrent, Id is the current flowing through the
antiparallel diode and Ip is the shunt current caused by the shunt
resistor Rp.

On the basis of the Shockley diode representation, the expression
for Id is given in Eq. 2.

Id = Io[exp(
V+ IRs

nT
)− 1] (2)

where V is the PV output voltage, Io is the diode saturation current
and T is the cell temperature. n = ak/q, where a is the ideality factor,
q is the electron’s electric charge (1.602× 10−19 C), and k is the
Boltzmann constant (1.38065× 10−23 J/K).

Therefore, by substituting Eq. 2 into Eq. 1, the I-V characteristic
relation for a PV cell is as in Eq. 3.

I = Iph − Io[exp(
V+ IRs

nT
)− 1]−

V+ IRs

Rp
(3)

Assuming that a PV module contains Ns PV cells connected in
series. The I-V relation for a PV module is presented in Eq. 4.

I = Iph − Io[exp(
V+ IRs

nTNs
)− 1]−

V+ IRs

Rp
(4)

Brano et al. (2010) proposed an improved model as given in
Eq. 5. Compared with the model in Eq. 2, the I-V characteristics
presented by Lo Brano’s model is closer to the experimental one.

I = αGIL (T) − Io (αG,T)[exp(
αG (V+KIΔT) + IRs

αGnTNs
)− 1]

−
αG (V+KIΔT) + IRs

Rp
(5)
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FIGURE 4
Comparison in RMSE values along with the number of iterations among seven optimization algorithms for (A) Kyocera KC175GHT and (B) Sanyo
HIP-240.

TABLE 1 Specifications of the PVmodules used in this research under standard test condition.

Parameters Variable KC175GHT (multicrystal) HIP-240 (monocrystal)

Short-circuit current ISC 8.07 A 7.37 A

Open-circuit voltage VOC 29.35 V 43.60 V

Current at MPP IMPP 7.57 A 7.10 A

Voltage at MPP VMPP 23.60 V 34.31 V

Maximum power PMPP 175 W 240 W

Temperature coeffcient of ISC KI 0.00222 A/°C 0.00212 A/°C

Temperature coeffcient of VOC KV −0.107 V/°C −0.109 V/°C

where αG = G/GSTC denotes the ratio between the solar irradiance
and the irradiance at standard test conditions (STC, 1000 W/m2,
25°C). IL is the photocurrent at 1000 W/m2 and can be computed by
Eq. 6.K is a thermal correction factor. ΔT = T−TSTC is the difference
between the temperature and the value at STC. The saturation
current Io(αG,T) can be obtained by Eq. 7 (Brano et al., 2012).

IL (T) = Iph,STC +KI (T−TSTC) (6)

Io (αG,T) = exp(
αG − 0.2
1− 0.2

ln
Io (1,T)
Io (0.2,T)

+ ln(Io (0.2,T))) (7)

where Iph,STC is the photocurrent at STC. KI is the temperature
coefficient of short-circuit current.The value of Io(1,T) and Io(0.2,T)
are calculated by Eq. 8 as introduced in (Brano et al., 2012).

Io (αG,T) = αG(
IL (T) −VOC (αG,T)/Rp

exp(VOC (αG,T)/(nTNs)) − 1
) (8)

2.2 Objective function

In this paper, an estimator is proposed to predict the solar
irradiance G from the measured I–V characteristics. The terminal
current I, voltage V, and temperature T are used as inputs of the
estimator.

Figure 2 shows the I-V and power-voltage (P-V) characteristics
of a PV module. At all operating points in between the short-circuit
and open-circuit points, power is produced. The operating point
deliveringmaximum possible power under a specific environmental
condition is the MPP. As the operating point moves from the short-
circuit point to the MPP, the corresponding I-V curve changes from
flat to steep.When the operating point continuallymoves toward the
open-circuit point, the current dramatically decreased. Therefore,
the area around the MPP mainly reflects the curve shape, which is
affected by several model parameters like Rs, Rp, and a. Assuming
that G is constant in a sampling period, the I-V data are sampled
as the black circles in Figure 2, which are in a voltage range Vrange
defined as Eq. 9.

Vrange = VMPP ± 0.35× (VOC −VMPP) (9)

where VMPP is the voltage at the MPP. The distribution of sampling
points is shown in Figure 2. Jiao et al. (2023) used the similar
strategy in a real-time fault diagnosis system to determine normal
or abnormal operations by sampling points.

Ma et al. (2016a) extracted the parameters in the PV models
through curve fitting by bio-inspired optimization algorithms. In
this paper, the solar irradiance G is estimated by minimizing the
difference between the measured data and the calculated current
obtained by the single diode PV model. When the number of
experimental data is up to N, the objective function can be
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TABLE 2 Statistics of RMSE values in 60 test scenarios for Kyocera KC175GHTmodule.

Algorithm Minimum RMSE (A) Average RMSE (A) Maximum RMSE (A)

DM-Jaya 7.97e-6 6.06e-4 5.60e-3

PSO 2.60e-3 1.01e-2 6.98e-2

CS 1.20e-3 8.20e-3 2.70e-2

Jaya 1.63e-4 3.89e-2 4.08e-1

SA 2.60e-3 1.62e-1 1.94e-0

GA 4.72e-4 2.40e-3 8.10e-3

SDO 1.72e-4 2.80e-3 1.11e-2

TABLE 3 Statistics of RMSE values in 60 test scenarios for Sanyo HIP-240module.

Algorithm Minimum RMSE (A) Average RMSE (A) Maximum RMSE (A)

DM-Jaya 2.33e-6 9.23e-4 5.90e-3

PSO 2.85e-4 9.70e-3 9.44e-2

CS 1.30e-3 8.10e-3 2.95e-2

Jaya 5.21e-5 3.90e-3 3.15e-2

SA 1.68e-4 3.09e-2 4.67e-1

GA 4.35e-5 1.30e-3 6.20e-3

SDO 3.62e-5 1.90e-3 3.58e-2

formulated by RMSE as Eq. 10.

RMSE = √ 1
N

N

∑
i=1
( fi (V, I,x))

2 (10)

where x = [Rs,Rp,a,K,G]. The fi(V, I,x) can be expressed by Eq. 11,
which is the equivalent form of Eq. 5.

fi (V, I,x) = I− αGIL (T) + Io (αG,T)

× [exp(
αG (V+KIΔT) + IRs

αGnTNs
)− 1]

+
αG (V+KIΔT) + IRs

Rp
(11)

3 Estimation of solar irradiance

3.1 Jaya algorithm

In 2016, Rao (2016) developed a new gradient-free optimization
algorithm which is capable of solving both constrained
and unconstrained optimization problems. In the literature,
there exists a good number of gradient-free optimization
algorithms, such as genetic algorithm (GA) (Holland, 1992),
particle swarm optimization (PSO) (Kennedy and Eberhart,
1995), cuckoo search (CS) (Yang and Deb, 2009), simulated
annealing (SA) (Kirkpatrick et al., 1983), supply-demand-
based optimization (SDO) (Zhao et al., 2019), etc. The Jaya

TABLE 4 Estimation errors of solar irradiance from different optimization
algorithms for Kyocera KC175GHTmodule.

Algorithm RMSE (W/m2) MAE (W/m2) MSE (W/m2)2 R2

DM-Jaya 8.5757 6.0294 73.5429 0.9991

PSO 12.1744 8.9731 148.216 0.9982

CS 13.2606 10.1522 175.8422 0.9979

Jaya 63.5409 35.3449 4037.4 0.9511

SA 98.5576 63.2042 9713.6 0.8823

GA 9.4488 6.7056 89.2793 0.9989

SDO 15.2515 10.8838 232.6097 0.9972

TABLE 5 Estimation errors of solar irradiance from different optimization
algorithms for Sanyo HIP-240module.

Algorithm RMSE (W/m2) MAE (W/m2) MSE (W/m2)2 R2

DM-Jaya 8.4376 6.0321 71.1925 0.9991

PSO 12.7181 8.3794 161.7507 0.9980

CS 9.6304 6.5935 92.7442 0.9989

Jaya 13.5583 9.2100 183.828 0.9978

SA 44.7538 25.3491 2002.9 0.9757

GA 9.4822 6.5393 89.9112 0.9989

SDO 9.3334 6.4488 87.1125 0.9989
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FIGURE 5
Statistics of the RMSE values in the 40 runs of the DM-Jaya optimization algorithm under (A) different solar irradiances at 25°C and (B) different
temperatures at 1000 W/m2 for Kyocera KC175GHT module.

FIGURE 6
Statistics of the RMSE values in the 40 runs of the DM-Jaya optimization algorithm under (A) different solar irradiances at 25°C and (B) different
temperatures at 1000 W/m2 for Sanyo HIP-240 module.

algorithm is distinguished since it does not contain any
hyperparameter.

Suppose the objective function f(x) is with D dimensional
variables, and xki,j is the estimation value of the jth (j = 1,2,…,D)
variable for the ith competitor solution in the kth iteration. In each
iteration, the best and worst competitor solutions are identified
among the n candidate solutions. The best competitor solution
xkbest,j = (x

k
best,1,x

k
best,2,…,x

k
best,D) obtains the minimum values of the

objective function in the present populace and the worst competitor
solution xkworst,j = (x

k
worst,1,x

k
worst,2,…,x

k
worst,D) obtains the maximum

values of the objective function in the present populace. The new
position xk+1i,j is predicted based on the best and worst candidate
solutions according to Eq. 12.

xk+1i,j = x
k
i,j + rand1 × (x

k
best,j − |x

k
i,j|) − rand2 × (x

k
worst,j − |x

k
i,j|) (12)

where the two random numbers rand1 and rand2 are in the range of
[0,1]. The term “xkbest,j − |x

k
i,j|” and “x

k
worst,j − |x

k
i,j|” drive the candidate

solutions to the positions that are closed to the best solution and
far from the worst solution. If the xk+1i,j obtains a smaller function

value than the current best value, it replaces the xki,j. These updated
solutions will become the input of the next iteration. In such a way,
the Jaya algorithm seeks to achieve victory by forthcoming to the
optimized result.

3.2 Dual-mode Jaya algorithm

As discussed in Section 2.2, the objective function is with five-
dimensional factors, including series resistance Rs, shunt resistance
Rp, ideality factor a, thermal correction factor K, and irradiance
G. In the conventional Jaya algorithm, the random parameters
rand1 and rand2 are two random numbers in the range of [0, 1].
The generated candidate solutions are with a certain distribution,
which isn’t sufficient to balance searching space and speed for
global optimization. In the local search phase, an intensive search is
preferred to explore the feasible neighborhood space of the current
best solutions. For a global search, more feasible solutions in the
entire solution space can be evaluated to obtain the global optimum.
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FIGURE 7
Estimation results of time-varied solar irradiance during day time on a sunny day: (A) comparison between experimental and estimated values; (B)
absolute errors.

In this sense, different random distributions can be applied in
various search phrases.

Lévy flight is a random walk in which the step-lengths obey
to the Lévy distribution named after the French mathematician
Paul Lévy. In the real world, many animals spend most feeding
time around a food source, and they will occasionally undertake
long-distance movement to seek the next fool source (Viswanathan,
2010).

To generate random numbers with Lévy flights, the step length
S can be determined by Eq. 13, known as Mantegna’s algorithm.

S = u
|v|1/β

(13)

where β is usually set to 1.5; u and v obey normal distributions,
namely:

u ∼ N(0,σ2u) , v ∼ N(0,σ2v) (14)

where

σu =
Γ (1+ β) × sin (πβ/2)

Γ ((1+ β)/2) × β× 2(β−1)/2
, σv = 1 (15)

And Γ denotes the gamma function. The detailed computation
algorithm of gamma function is available is outlined in (Cody,
1976). In this paper, the new position xk+1i,j is predicted based on the
random numbers with uniform distribution and Lévy flights. Eq. 12
is modified as Eqs 16, 17.

xk+1i,j = x
k
i,j + (0.8+ S∗ α) × (x

k
best,j − |x

k
i,j|)

− (0.8+ S∗ α) × (xkworst,j − |x
k
i,j|) (16)

xk+1i,j = x
k
i,j + (1− rand∗ α) × (x

k
best,j − |x

k
i,j|)

− (1− rand∗ α) × (xkworst,j − |x
k
i,j|) (17)

Figure 3 shows the flowchart of the proposed dual-mode Jaya
algorithm. Cosine similarity is used to measure the similarity
between two non-zero vectors. In Eq. 18, the θgen is used to
determine whether two candidate solutions in the same population
are pointing in roughly the same direction.

θgen =
xkp ⋅ x

k
q

‖xkp‖× ‖x
k
q‖

(18)

The similarity between the two generations can be calculated by
Eq. 19.

θpar =
xk ⋅ xk−1

‖xk‖× ‖xk−1‖
(19)

When the θgen < θ1, the algorithm may fall into local optimum.
The θpar is used to further confirm the optimization status. If the
θpar is also greater than θ2, it indicates that the candidate solutions
in a population are similar.The α is then adjusted to α1 to reduce the
impact of the best andworst solutions. Otherwise, the α is set to α2. If
the situation cannot be improved, then themodel switches themode
back to the one with uniform distribution. The algorithm attempts
extraordinary endeavors to successfully discover the genuine result
and solution on both modes, so it is named the DM-Jaya algorithm.
In the validation part of the manuscript, the value for θ1 is set to
10e-4, θ1 is 0.99, α1 is 0.5, and α2 is 0.8. The selection of these values
were verified through the experiments and can be tuned in terms of
different applications.
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FIGURE 8
Estimation results of time-varied solar irradiance during day time on a cloudy day: (A) comparison between experimental and estimated values; (B)
absolute errors.

4 Results and discussions

To provide a thorough evaluation of the proposed optimization
algorithm, two solar panels that were manufactured using different
PV technologies were tested in this paper: (a) a Kyocera KC175GHT
module and (b) a Sanyo HIP-240 module. The former is a
1290*990 mm multicrystal PV module with 175 W maximum
power at 1000 W/m2. There are 48 cells bonded by 3 busbars
in this module. The HIP-240 is a monocrystal PV module
comprising 72 cells. Its rated output at STC is 240 W. The
detailed specifications of the two PV modules are listed in
Table 1.

The data collection comprises the data of these two modules
operating under varied environmental conditions in the Simulink
environment. Test temperature was varied from 0°C to 50°C in
steps of 10°C. Test solar irradiance was varied from 100 W/m2 to
1000 W/m2 in steps of 100 W/m2. A total of 60 test scenarios are
available for evaluation for each PV module. The standard particle
swarm optimization (PSO), cuckoo search (CS), Jaya, simulated
annealing (SA), genetic algorithm (GA), and supply-demand-based
optimization (SDO) algorithmswere also tested in the same scenario
with the proposed DM-Jaya. To make a fair comparison, the
same objective function was used in all the involved optimization
algorithms. Besides, the population size of all seven algorithms was
set to 10.The parameter selection of the compared algorithmswas as
follows. For the PSO algorithm, the range of the inertia weight was
[0.4, 0.9]. The initial temperature was set to 1 in the SA algorithm.
For the GA algorithm, the crossover probability was set to 0.1 and
the genetic probabilitywas set to 0.9.The size of commodities in each

market for SDOwas set to 30.The Lévy distribution parameter βwas
set to 1.5 both in the CS and DM-Jaya algorithms.

Figure 4 depicts the comparative results of the root mean
squared errors (RMSE) along with the number of iterations among
the seven optimization algorithms based on the tested two PV
modules. As shown in Figure 4A, for Kyocera KC175GHT PV
module, it is observed that the at the iteration of 10,000, all
the algorithms reach a low RMSE value below 0.01 A except
for the SA algorithm, whose RMSE value is around 0.15 A.
Among the seven algorithms involved in the comparative
study, PSO has the slowest optimization speed. Although
SDO could reach a low RMSE value similar to the proposed
DM-Jaya algorithm, the optimization speed of the proposed
DM-Jaya is much faster. Similar cases can be observed as in
Figure 4B for Sanyo HIP-240 module, where the RMSE value
of the final optimized result from the proposed DM-Jaya is
around 0.0009 A and the best among all the tested optimization
algorithms.

Tables 2, 3 list the statistical RMSE values within 10,000
iterations and 60 individual test scenarios from the seven
optimization algorithms for Kyocera KC175GHTmodule and Sanyo
HIP-240 module. In the comparative study, the SA algorithm shows
the worst performance in terms of the maximum RMSE values. The
difference between themaximumandminimumRMSE values of the
SA algorithm are the largest on both PV modules, which indicates
that the optimization performance of the SA algorithm is not stable.
This can be also reflected from the results in Figure 4, where the
final optimized RMSE values of SA algorithm are much larger than
the other optimization algorithms. On the contrary, the minimum
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RMSE value of the proposed DM-Jaya algorithm is lower than the
other six algorithms by at least 95%. Meanwhile, the maximum
RMSE of DM-Jaya is also the best from the results in both Tables 2,
3.

The final estimation errors of the solar irradiance from the
tested two PV panels are recorded in Tables 4, 5, respectively. Four
mathematical indicators were used to analyze the accuracy of the
irradiation estimators.They areRMSE,mean absolute errors (MAE),
mean squared errors (MSE), and R-squared (R2). It is observed
from the data that the proposed DM-Jaya algorithm significantly
improves the performance in terms of the estimation accuracy.
The DM-Jaya algorithm has the best estimation performance
among the seven optimization algorithms. Although the GA
algorithm has a similar estimation error to the proposed DM-
Jaya, the convergence speed is slower than DM-Jaya based on
the results shown in Figure 4. The GA algorithm converges to
the vicinity of the optimum after the iteration of 103 while
the DM-Jaya algorithm achieves such value before the iteration
of 102.

The performance of the proposed DM-Jaya algorithm under
different environments (irradiation and temperature) is evaluated
and the results are presented in Figures 5, 6. Figures 5A, B are
respectively the box plots of the RMSE values in the 40 runs under
different solar irradiances and temperatures for the PV module
Kyocera KC175GHT, while Figure 6 is the result for Sanyo HIP-240
module. Based on the results in the box plots, it is observed that
the median estimation RMSE values for KC175GHT multicrystal
module fluctuate with different irradiation ranges. The median
RMSE for the range 200–400 W/m2 is lower than the other solar
irradiances. Such a phenomenon does not exist for the HIP-240
monocrystal module. As shown in Figure 6A, the median RMSE
values of different irradiation ranges are all around 5× 10−5 A. In
addition, the performance of the proposed DM-Jaya optimization
algorithm is not affected too much by the temperature, the median
RMSE values are around 5× 10−4 A and 6× 10−5 A for KC175GHT
and HIP-240 module, respectively. Hence, the proposed DM-Jaya
algorithm can remain a good optimization result under all the tested
environments.

Finally, the estimation results for the time-varied solar
irradiance are shown in Figures 7, 8. The solid blue line is the
measured irradiance values during day time from 8:00 to 16:00. The
data in Figure 7A is measured on a sunny day, while the one in
Figure 8A is for a cloudy day. The solar irradiance was sampled
every 10 min by a calibrated pyranometer. The proposed solar
irradiance estimation method is applied every 10 min. The red
circles are used to represent the estimated solar irradiance values.
Figures 7B, 8B present the absolute errors between the estimated
values and experimental values. In average, the RMSE values in this
test are 6.92 W/m2 and 6.10 W/m2 for the sunny day and cloudy
day, respectively. It can be concluded that the proposed technique is
capable of predicting the solar irradiance under changing irradiance
conditions.

5 Conclusion

This paper has proposed a novel estimation method for
estimating the solar irradiance with a single PV module. The
developed estimator is cost-effective and does not require any
additional calibration process. By optimizing a single-diode PV
mode, the proposed dual-mode Jaya (DM-Jaya) optimization
algorithm can extract the current solar irradiance level from a
series of measured I-V data. Six popular optimization algorithms,
including particle swarm optimization (PSO), cuckoo search (CS),
Jaya, simulated annealing (SA), genetic algorithm (GA), and supply-
demand-based optimization (SDO) have been used to perform a
comparative study in two modules manufactured by using different
PV technologies. Simulation and experimental results show that
the proposed DM-Jaya algorithm obtains a relatively lower error
rate than other algorithms, and it is very reliable to estimate the
solar irradiance and its variability under different environmental
conditions.
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