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The aim of this article is to present a very basic dynamic systems model of
L2 learning based on a number of basic principles 1) at any moment in time, a
learner’s L2 proficiency is a distribution of potentialities (possible levels of
L2 production), 2) the distribution changes as a result of experienced L2-
events such as conversations, 3) L2 proficiency and L2 events are represented
on the same underlying array of linguistic proficiency (from 0, i.e., inexistent, to 1,
i.e., maximal under the currently available linguistic resources); 4) learning
processes are “normative” in the sense that they are governed by a process of
convergence on the language spoken by a particular L2 community, this process
depends on an optimum between familiarity and novelty; 5) the parameters
governing the systems dynamic differ among individual learners and
L2 learning contexts (e.g., highly adaptive versus non-adaptive communicative
interactions with native L2 speakers).
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Modeling L2 learning as a process of change

A lack of process models

There is surprisingly little dynamic—or processual—modeling in the behavioral and
learning sciences. Researchers who focus on building dynamic or agent-based modeling of
psychological and social phenomena are rarely cited by their “mainstream” colleagues (see,
for example, the articles in the JASSS Journal). There are several explanations for
this—actually rather remarkable—fact. The mainstream praxis of the behavioral and
educational sciences, treats modeling as something that becomes only relevant after the
collection of major sets of generalizable, representative data, i.e., the crowning achievement
of extensive and laborious empirical reserach. The notions representative or general data
refer to their being representative of populations characterized by some important feature or
natural kind (e.g., the natural kind “adult learners of English as a foreign language”). That is,
in order to refer to some form of nomothetic truth, a model must refer to an important
general feature, e.g., a general class of learners. In order to achieve this form of
representativeness, the data must consist of extensive samples of independent cases, for
instance a case being a particular learner of English as a foreign language. Because of its
obvious relation to actual, specific data, the main praxis of psychological and learning
sciences research places an almost exclusive emphasis on statistical models, consisting of
statistical relationships between the main variables of a particular data set (for a general
discussion on the need for processual models in the behavioral and learning sciences,
see [1]).
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The question is whether this praxis - first data, then models - is
also typical of important nomothetic—i.e., law-seeking—sciences
such as physics. Not being a physicist myself, I am not in the position
to answer this question, but my hinge is that it is not (but the answer
depends on what one considers a “model”). Of course, the statistical
modeling of large and (in the population sense) representative data
sets is and remains an important goal of modeling. However, the
position I have tried to defend so far is that this is not the most
important goal of modeling. And neither is this form of
modeling—statistical relationships among variables based on
interindividual variability—the most suitable for the kind of
phenomena that the behavioral and learning sciences are trying
to explain. In my view, models–and dynamic models in
particular–should be expressions of the most basic defendable
assumptions about a particular kind of process, for instance the
learning of a second language.

By using mathematical or formal ways of expression, dynamic
models are primarily tools for understanding the consequences of
the recursive application of basic principles of change, typical of a
particular (sub)discipline, such as the applied linguistics of
L2 learning. The construction of such models can help us
understand our own general theoretical assumptions better: it
compels us to make our theoretical intuitions explicit, because
the model must “do” something we intend it to do, by following
the rules and principles we believe are plausible of the way nature
works for a particular phenomenon and context (e.g., [2]).

In line with the spirit of theoretical and mathematical models in
physics, I start this dynamic systems model of L2 learning from first
principles, i.e., from what I consider to be the fundamental facts or
assumptions about L2 learning.

General facts or general assumptions about
L2 learning

Taking the learning of a second language as my example—and I
assume this example represents a great variety of phenomena that
are typical of the behavioral and learning sciences in general—I
think the fundamental facts are the following.

The processual nature of L2 learning
First, learning a second language is a process. Processes are

sequences of conditionally connected events or flows that are
governed by process causality. That is, next states (the relevant
properties of the process at any particular moment in time) are
conditioned by previous states. A process is a temporal evolution
of some specific property or set of properties. In the case of L2, I
define the process as the temporal evolution of the state of
L2 proficiency in a particular learner over the course of time.

L2 learning as a process of convergence and
assimilation

Second, learning a second language is a process of active
social convergence, driven by a need to assimilate the language
spoken by an L2 community (a real community, or one that is
represented in the form of an educational teaching-learning
context). This drive towards assimilation and convergence
explains why processes of learning and development are

normative. They have a particular direction, that is, they aim
towards adaptation to a particular norm [3]. In the case of
L2 learning this norm is the language use of proficient
speakers, and in principle the language use of native speakers
of the learner’s L2. The process of convergence is often
bidirectional, but it is not symmetric. L2 learners adapt to the
language spoken by the L2 community, that is, for every moment
in time, they assimilate features of L2, given the assimilation
possibilities associated with the level of L2 they have already
achieved. This process of adaptation is, broadly speaking,
irreversible (not excluding the process of L2 attrition,
however, e.g., [4]). L2 speakers communicating with
L2 learners tend to locally and temporarily adapt to the
learner’s level of L2 understanding, for instance to facilitate
communication. However, this form of adaptation or
convergence is transient and depending on the occasion (for
an application to L1, see [5]). As a result of these processes of
convergence, a learner’s emerging verb-argument constructions
in English as a second language reflect properties of the changing
linguistic input [6].

The situatedness of L2 learning
Third, learning a second language is a concrete, physically

and semiotically situated process. That is to say, it takes place in
a concrete, embodied learner acting in a concrete physical and
semiotic context (e.g., a particular context of speakers of a
language, for instance the context of a Moroccan immigrant
worker in a particular Scottish town, or a Dutch speaking
student learning English in an English course given by a
particular teacher, using particular educational materials). An
embodied learner enters the situation of L2 learning with
person-specific dispositions, e.g., the learner’s sensitivity to
linguistic information, the ability to assimilate L2 and so
forth. These person-specific dispositions change as a
consequence of the L2 learning process. The situatedness of
L2 learning, including the specificities of the learner and the
learning contexts, is a major source of variation between
L2 learners.

Idiosyncrasy and non-ergodicity of L2 learning
Fourth, given its concrete situatedness, actual processes of

L2 learning will most likely be idiosyncratic, that is to say case-
specific (by case I mean a concrete person in a concrete context).
Whether or not these idiosyncratic properties actually converge on a
set of commonalities is a question to be answered by the modeling
and, in the end, by the empirical person-specific data [7]. As a
general rule however, we can expect those processes to be non-
ergodic, that is to say that statistical properties based on a
comparison of independent individuals in a representative sample
of persons do not generalize to individual processes, i.e., sequences
of conditionally coupled states, steps or events [8]). However,
although the resulting processes of L2 learning may be
idiosyncratic, the underlying dynamic system, i.e., the system
describing the basic process mechanisms, may be universal, that
is to say generalizable to all actual processes of L2 learning. If such a
general dynamic system exists, it forms the nomothetic base of the
variety of idiosyncratic and non-ergodic processes of actual
L2 learning.
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L2 learning as a complex system
Fifth, the process of L2 learning, as virtually all forms of human

learning and development, constitutes a complex system. Put
differently, it is a process that should be understood against the
backdrop of a complexity epistemology and ontology [1, 9]. The
main arguments for interpreting L2 learning as an instantiation of
complex dynamic systems principles have been amply discussed in a
variety of articles (for instance, [9–12]).

A complex system consists of many components (it is easy to
imagine the many components involved in a particular
L2 learning process) that interact and, as a result of these
interactions, self-organize into patterns that are characteristic
of the totality of interacting components. These patterns have
emergent properties, i.e., properties not reducible to properties of
the components. Emergent properties have conditional or causal
effects on the component interactions from which these
properties are a result. That is to say, the complex system is
characterized by a cyclical relationship between bottom-up
causality (from components to overarching emergent
properties) and top-down causality (from emergent properties
to underlying components). The complexity of the process of
L2 learning depends on the fact that it is an embodied process
(there is a physical, concretely situated learner), that it is enacted
(the learning takes place in the form of interest-driven,
intertwined activities of a learner and a concrete linguistic
environment, for instance a particular speech partner), that it
is embedded (emerged in a specific material, cultural and
normative context), and that it is extended (the actual
processes of L2 learning, for instance a learner uttering a
particular sentence in a specific context, is the result of
intertwining processes that take place in the learner as well as
in the context). Dynamic systems models model system
dynamics, that is to say the evolution of particular properties
over time. However, in their form and assumptions they should
reckon with the fact that what they are referring to are complex
systems, i.e., systems with emergent properties and cyclical
causality.

As a result of this embodied-enacted-embedded-extended
format of the learning process, a particular learner’s
L2 proficiency cannot be represented by a specific point value,
that is, the learner’s “true score” on the proficiency dimension.
The learner’s proficiency should rather be seen as a potentiality
distribution stretched out across the entire proficiency dimension
(which ranges from virtually absent L2 proficiency to the level of
proficiency that is maximally attainable under the resources and
possibilities provided in a specific L2 learning context). By
potentiality distribution I mean the total of potential levels of
proficiency performance that an L2 learner can show at a
particular moment in the learning process. These levels differ
in terms of degrees of characteristicness or typicality of the levels
of L2 usage by a particular L2 learner at a particular moment.
These degrees of characteristicness or typicality are represented
by a weight function or membership function (if one uses the
tools of fuzzy logic), which, in practice, boil down to the
probability of a particular level of proficiency being actualized
at a particular moment in time. If the potentiality distribution at
time t is unimodal, the top of the distribution corresponds with
the most typical, and probably also the most likely level of

proficiency at time t. If it is multimodal, i.e., if it has more
than one local peak, it corresponds with more than one typical
proficiency level and potential discontinuities in the learning
process (e.g., [13]). During a specific communicative interaction,
which yields a particular expression of linguistic proficiency of a
learner in a specific, momentary communicative context, this
potentiality distribution collapses into a considerably narrower
region of actual, performed proficiency (similar to a point value).
An L2 proficiency test—or any psychological ability test for that
matter—is an interaction that collapses the current probability
distribution of a complex system, characterizing the particular L2
learner at a particular moment in time, into a point value. Tests
customarily provide a confidence interval around this point value
that superficially looks like the potentiality distribution discussed
above. A confidence interval, however, refers to the measurer’s
uncertainty about the true point value of the proficiency, whereas
a potentiality wave represents the current proficiency potential of
an L2 learner, which is a set of such point values associated with a
weight or probability scalar. There is a distant but not
uninteresting similarity here with the notion of a wave
function in quantum mechanics that collapses into an
observable particle state as a result of a measurement activity,
which is a form of interaction with the wave function. The
mechanisms underlying the notion of a potentiality
distribution of a particular complex system and those of the
wave function in quantum mechanics are of course entirely
different, but there is an interesting metaphorical similarity
here (and maybe an answer to the possible objection that all
the variables in nature must by necessity have a determinate
point value, and that any deviation from this principle is due to
measurement uncertainty or lack of precise knowledge1).

L2 learning is governed by feedback loops
Sixth, L2 learning has a typical feature of a complex system,

namely, the occurrence of feedback loops between the interacting
components. For instance, the language used in a particular
environment by L1 speakers influences (in fact drives) the
L2 learning of a speaker for whom this L1 is L2, whereas the
current linguistic proficiency of the learner influences the “input”
that is to say the language addressed to the L2 learner by the
L1 community. This feedback loop comes about as a result of the
communicative processes that take place between learners and their
concrete and momentary linguistic environments, and that form the
backbone of the L2 learning process. Of course, one can imagine a
completely protocolized form of L2 learning, where the learner is
presented with a fixed, gradual sequence of examples and exercises,
and where any kind of interaction is avoided (in principle, this
condition could be modeled as one out of many possible conditions
in a dynamic systems model). Feedback loops are at the heart of co-
adaptive processes, for instance in which learners adapt to the
language (L2) spoken to them, and that the native L2 speakers
adapt to the level of understanding of the learners with whom they
communicate.

1 I thank the first reviewer for pointing out that a comparable idea has been
formulated to long time ago by the distinguished linguist Kenneth Pike [36].
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L2 learning is characterized by fluctuations and
variability

Seventh, L2 proficiency as expressed in actual L2 use and
understanding by a concrete L2 learner shows typical fluctuations
and variability over time. These fluctuations and variability can of
course be interpreted as random external influences on the real or
true point-value proficiency that is supposed to show long-term
learning changes in a basically smooth manner (this is in a nutshell
the assumption of fluctuation-as-measurement-error). However, as
L2 proficiency is a feature of a complex dynamic system, its
variability is intrinsic to the system itself, and should be
conceived of as a direct consequence of the fact that the state of
proficiency in a concrete L2 learner is a potentiality wave of arbitrary
complexity instead of a point value.

The aim of this article is to discuss a dynamic systems model of
the process of change in proficiency in L2 learners, reckoning with
the basic facts, or maybe more precisely, the basic assumptions
discussed above.

The basic components of the process model

The model contains two components: one is the L2 learner,
represented by the process of changing L2 proficiency, defined
over a dimension or array of proficiency levels ranging from
zero (absent) to 1 (highest possible proficiency level given the
current learning resources in context). The other component is
the L2 environment with whom the L2 learner interacts. The
L2 environment may consist of speakers for whom the learner’s
L2 is their first language, other speakers who are in the process
of learning L2, professional educators teaching L2 to a variety of
learners, didactic and educational L2 materials and so forth. Hence,
although the dynamic model describes the trajectory of L2 learning
in a single learner, it does so in the form of a socially interactive
process, in which a learner and an L2 environment affect one
another.

This environment is not a fixed variable: it is itself a dynamic
process as it is presented to the learner in the form of a sequence of
what I shall call L2-events. In the great majority of cases, those
L2 events will consist of conversations in L2 between the learner and
various conversation partners, such as native speakers, teachers or
other L2 learners. L2 events may also consist of formal exercises in
L2 courses. They may or may not contain explicit activities aimed at
correcting an L2 learner’s mistakes or imperfections (see [14] for
discussion). With the current modeling purposes, I shall confine
myself to more or less informal L2 events such as spontaneous
L2 conversations. Aspects of these conversations such as explicit
educational methods, assignments and feedback can eventually be
incorporated into general parameters of the model, such as the
parameter(s) moderating the learning effects of L2 events (for
instance, operationalizing the assumption that adequate
corrective feedback accelerates L2 learning). In the model, the
main influence goes from the environment to the learner, as the
environment is the source of the learner’s developing L2 proficiency.

However, in the model I assume a feedback loop from the
learner to the learner’s environment. It is important to note that the
L2 events are by definition L2 experiences: their properties in terms
of the information and meaning they provide depend on the

learner’s experience of those events. The learner’s current
experience potential greatly depends on the currently available
L2 knowledge that is expressed in form of the learner’s current
proficiency distribution. To the extent that the linguistic event is
interactional, e.g., in the form of a conversation, a considerable part
of the linguistic event will consist of the contributions of the learner
him- or herself, and those contributions depend on the learner’s
current L2 proficiency and the scaffolding of L2 use in the form of
the activities of the conversational partners. Conversational partners
may be sensitive to the learner’s current linguistic proficiency to
different extents: some will adapt their learner-directed speech to
what they perceive as the learner’s ability to understand and
respond, whereas others might be totally insensitive to the
learner’s current L2 abilities and use learner-directed speech that
is in no way different from the way they converse with other native
speakers of their language (their L1, which is the learner’s L2). That
is, the learner’s L2 proficiency and the L2 environment in the form of
a process of speech interaction events are mutually coupled (see
Figure 1).

Finally, as learning is a recursive or iterative process—the next
step is conditioned by the preceding step or steps—the model also
contains a self-referential coupling in the L2 learner component. If
the conversation partner is a fixed person (or persons; as in
L1 learning with parents as major conversation partners, or
formal L2 learning with a fixed teacher) a self-referential
coupling might also be added to the L2 environment (see [5] for
a discussion of a dynamic model in L1, involving a coupling between
child speech and child directed speech). For the current purposes, I
assume that since in L2 learning conversation partners are variable,
the second self-referential coupling (involving the L2 events) can be
omitted (if there is basically only one conversation partner, as in
formal L2 learning with an L2 teacher, the iterative coupling of
L2 events must be introduced as a component of the model).

Note that this mathematical model deliberately has been greatly
simplified, and in fact reduced to the bare essentials of the assumed
processes of L2 learning. It is what physicists call a toy model, and

FIGURE 1
Basic structure of the dynamic model with feedback loops.
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although this term might evoke negative connotations (“it should
not be taken seriously”) it provides in fact possibilities, first, to check
whether the highly simplified, basic assumptions suffice to generate
major qualitative properties of actual L2 learning and second, to see
what variation in essential parameters generates in terms of
idiosyncratic learning trajectories (e.g., under conditions of sub-
optimal or even adverse parameter settings, corresponding with
suboptimal or adverse conditions of L2 learning).

Dynamic systems as process models

What is a dynamic system?

Learning a second language is a process with properties as
defined above. Dynamic systems provide an appropriate formal
framework for modeling such processes, given that certain
requirements are met.

To see which requirements they are, we begin with a general
definition of a dynamic system: “A dynamical system is a state
space S, a set of times T and a rule R for evolution, R:S×T→S that
gives the consequent(s) to a state s∈S. A dynamical system can be
considered to be a model describing the temporal evolution of a
system.” [15]. The state space is the set of all possible states of a
particular dynamic system, for instance the set of all possible
states of L2 proficiency in a particular L2 learner on the one hand,
and the state of all possible L2 events (conversations, etc.) on the
other hand. In principle, we can represent each set of possible
states by means of a one-dimensional ratio scale, a dimension of
real numbers referring to particular levels of L2 proficiency. This
dimension is a useful abstraction of actual measurement scales
that capture L2 proficiency of a particular type. Examples are
measures of spoken language proficiency, syntactic or semantic
complexity and correctness of a learner’s L2 speech, or a main
principal component of a variety of proficiency scales comprising
syntactic, semantic, lexical and pragmatic abilities. For the
purposes of modeling—as I understand its function in the
scientific understanding of a particular phenomenon such as
L2 learning—issues and difficulties of measurement are not
conditional. They would be so if modeling would be confined
to modeling existing data sets, which are of course dependent on
the measurement issues they faced. However, if modeling is
primarily serving the goal of theoretical understanding of the
way processes unfold, it may assume that the state spaces it
requires can in principle be represented by ratio scales,
irrespective of whether such ratio scales are available in the
empirical researchers’ toolkits. In principle, dynamic systems
models may be extended towards categorical dimensions, for
instance in the form of symbol dynamics. Such symbol dynamics
may be modeled in the form of agent-based models, but for the
current purposes, I will confine myself to system dynamics based
on ratio scales.

It is important to note that this ratio scale of linguistic
proficiency in spoken L2 in conversations and interactions
applies to both components of the model, or, to put it
differently to both dimensions of its state space. That is,
L2 proficiency applies to the L2 learner but also to the
L2 events that represent the learner’s environment. That is,

each such event corresponds with a particular distribution of
L2 proficiency levels. The width of this distribution depends on
the nature of the L2 event: compare for instance a very simplified
conversation with very short, extremely simple sentences with
highly limited vocabulary, to a conversation as would occur with
two native speakers; or compare a conversation between two
inexperienced L2 learners with a conversation between an
L2 learner and a native speaker.

In the current litterature on the modeling of L2 learning, the
focus is on the application of connectionist networks, which are self-
organizing computational processes extracting structure from
inputs, e.g., a linguistic corpus, generating outputs that conform
to the inputs (e.g., [6, 16, 17]). Although connectionist networks are
examples of dynamic models, a discussion of differences and
similarities from typical dynamic systems models exceeds the
scope of the current article [18].

The starting point: the (initial) proficiency
distribution

I shall assume that the state space—or phase space in this
particular case—consists of dimensions in the form of a ratio
scale ranging from 0 to 1. Let us focus on the dimension
specifying the L2 proficiency of the learner. The value
0 represents the absence of any L2 proficiency, and the value
1 represents a maximum level of proficiency available under the
given learning resources, including examples from native speakers,
help from educators, cognitive variables in the learner relating to
sensitivity for linguistic patterns and so forth. I have stated that since
the learner is a complex system, the ability to produce and
understand a particular second language is an embodied, enacted,
embedded and extended ability. This implies that it is highly unlikely
that a learner’s current L2 ability—or L2 proficiency—can be validly
represented by a point value, that is to say by a single “true and
unique” level on the proficiency axis. Instead, recognizing the
complexity and dynamic nature of this proficiency it should be
represented as a distribution of potentialities, i.e., a distribution of
potential, more or less typical levels of L2 proficiency of a learner at
any given time. The distribution is a scalar field, i.e., for each value of
the proficiency dimension there is a characteristic value for the
L2 learner’s proficiency, corresponding with a probability that this
particular value will be expressed in the learner’s L2 use. This
distribution of potentialities forms a dynamic field, that is to say
a field that can change under the influence of internal and external
events. The notion of dynamic fields is a central feature of Dynamic
Field Theory [19]. It “ . . . provides an explanation for how the brain
gives rise to behavior via the coordinated activity of populations of
neurons. These neural populations [. . .], make local decisions about
behaviorally relevant events in the world2.” Both events in the world
and the neuronal populations that reacted on them are represented
in the form of scalar fields, corresponding with potentials to react.
The concept of dynamic fields, representing a particular skill,
knowledge, developmental or proficiency level in the form of a

2 https://dynamicfieldtheory.org/
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distribution of potential levels, can also be applied to any cognitive,
linguistic or skill dimension to which learning or developmental
change can apply [20].

The simplest way to represent the initial state of this
distribution—that is the point at which L2 learning begins with
a novice—is by means of a symmetric distribution, such as a
typical bell curve or normal distribution (see Figure 2). In the
simulation model, this initial proficiency is the non-negative half
of a normal distribution with a mean of zero and a particular
standard deviation (which I customarily set to 5% of the total
reach of possible linguistic proficiency, for technical details see
Supplementary Appendix).

Figure 2 shows a typical starting level for a particular L2 learner,
in the form of a dynamic field, i.e., a distribution of potential
expressions of L2 proficiency.

FIGURE 2
A typical starting level for a particular L2 learner.

FIGURE 3
(A) unimodal distribution turns into a multimodal distribution over the course of time corresponding with a discontinuity in L2 learning. (B) under
different parameter values, an initial unimodal distribution remains unimodal over the course of time (typical of linear change).
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Let us call this distribution ψt which is the distribution of
potential proficiency levels of a learner L at time t. The
development of L2 proficiency amounts to the change and
transformation of this distribution over the course of time. This
change and transformation apply, first, to the form of the
distribution, for instance from unimodal it may become bimodal
or multimodal (similar to the shift from one to various attractor
states) and, second, to the position of the distribution across the
proficiency dimension (from occupying mainly the lower levels to
occupying the higher to highest levels of proficiency). A distribution
that begins in a unimodal format can eventually evolve towards a
multimodal distribution, corresponding with discontinuities in the
major mode (i.e., the preferred proficiency level at a partiular
moment in time; see Figure 3).

The L2 learning dynamic system’s evolution
rule

The dynamic model intends to describe the transformation ofΨt

over the course of time. To do so it needs “. . . a rule R for evolution,
R:S×T→S that gives the consequent(s) to a state s∈S” [15]. As stated
earlier, the model assumes that L2 learners learn a second language
to the extent that they are confronted with tokens from the second
language, for instance in the form of conversations with a native
speaker, exercises given by a second language teacher, or passive
participation in L2 use (perception of L2 spoken by others). In the
typical case, these L2 tokens are interaction events that present the
L2 learner with a range of examples of L2 that correspond with a
range of levels of proficiency. For instance, they range from simple
short sentences to long and complicated ones, and they will even
contain typical errors as the L2 learner’s contribution to an
interaction is part of the linguistic token. That is, in most of
these L2 tokens, especially those that take place in the form of
conversations (or educational assignments), the learner’s own
L2 production is part of the set of linguistic tokens from which
the L2 learner appropriates the second language. These wholes of
linguistic tokens are the L2 events (or events for short) mentioned
before, and they are determined by the way they are experienced by
the L2 learner (they are experienced events). Similar to the way in
which the L2 learner’s current proficiency is represented as a
distribution rather than a point value, these events are also
represented as a distribution on the proficiency dimension. A
typical event such as a conversation or a discussion piece in an
L2 class, provides a variety of examples of proficiency levels–for
instance, sentences of various levels of grammatical and semantic
complexity. This event-proficiency distribution at time t is referred
to by the Greek letter epsilon, εt (referring to “event”).

For simplicity, this proficiency distribution is modeled by a
standard normal distribution with a mean drawn from the current
proficiency distribution of the learner Ψt and a randomly varying
standard deviation representing the amount of L2 variety present in
the experienced L2 event. For instance, events may contain one or a
few L2 sentences, in which case they are represented by a
distribution with a very small standard deviation. Other events
consisting of lengthy conversations or L2 class exercises will be
represented by a distribution with a considerably bigger standard
deviation.

In a standard dynamic growth model where the change in
variable X depends on the value of a variable Y, the change in
variable X is typically represented by ΔX/Δt = a *x *y (for a a
particular change parameter). This principle also applies to the
current model where the variables are represented by
distributions rather than point values: Δψ/Δt = a *ψ *ε. In the
model, this basically means that for every value of the proficiency
dimension, the corresponding values of ψ and ε are multiplied.

An additional assumption is that a particular linguistic event
such as an L2 conversation or extensive exercise does not only have
positive, but also negative effects. That is, its core will have an
increasing effect on the corresponding values of the learner’s
proficiency distribution. Its extremes (i.e., its lateral values)
however will have a decreasing or reducing effect on the
proficiency values that correspond with these extreme ranges (see
Figure 4). That is, an experienced L2 event increases the weight or
probability of its central range of proficiency and decreases the
weight or probability of the proficiency levels at its extremes.

This inhibitory effect of the extremes can be modeled in the form
of a so-called Mexican hat function (see Figure 4B). A much simpler
solution, which I followed in the very basic simulation model I am
presenting here, is to subtract a constant from every value of the
event distribution: Δψ/Δt = a *ψ * (ε-c) (Figure 4A).

In earlier publications (in particular [20]) I have argued that the
normative aspect of learning and development—its being drawn
towards a particular normative state, e.g., L2 as a spoken by native
speakers of L2—can be explained by the dynamics of two

FIGURE 4
The effect of an L2 event, e.g., a conversation, on the change in
the learner’s current proficiency distribution. (A) A simple “inundated”
effect distribution. (B) a Mexican hat function.

Frontiers in Physics frontiersin.org07

Van Geert 10.3389/fphy.2023.1186136

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1186136


antagonistic properties, namely, familiarity versus novelty.
Familiarity depends on what the learner has already mastered,
which is represented by the learner’s proficiency distribution at a
particular moment in time. Familiarity can be represented as a
distribution over the proficiency dimension, more precisely by a
sigmoid curve denoted by the Greek letter Phi, φ, which has a
maximum value for the maximum value of the proficiency
distribution and for all proficiency levels lower than that. In the
model, the curve has two fixed parameters (1 as its maximum, 0 as its
minimun) and two free parameters, governing its steepness and flex
point. Novelty, represented by the Greek letter Nu, ν, is defined as
the inverse of familiarity and is represented by a sigmoid curve
defined by (1–φ). For any given L2 event as defined above, the more
it represents a familiar level of proficiency, the easier it is to learn, but
also the less important it is to learn (since it largely corresponds to
what is already there). On the contrary, the more novel an L2 event
is, the more important it is to learn it, but also the more difficult it is
to learn it (to the point of being impossible to learn if the L2 event is
too novel). Hence, the effect of an L2 event on the proficiency
distribution of an L2 learner is a simple compromise between
familiarity and novelty. It can be modeled by the product of the
familiarity sygmoid (descending) and the novelty symoid
(ascending). The effect of the familiarity/novelty compromise can

further be modified by adding a fixed parameter d (see Figures 5A, B
for familiarity, novelty and familiarity*novelty product curves).

The familiarity/novelty optimality function is a generalization of
fundamental properties of learning and development described in
classic theories of (cognitive) development, notably those of
Vygotsky and Piaget. Both theories postulate a function that runs
ahead of the current developmental or learning level of a particular
learner. Vygotsky does so with the concept of a zone of proximal
development, which defines what a learner can do with the help of a
more competent other. Piaget makes a distinction between processes
of assimilation (basically a reduction of the content of an experience
to what is already known or mastered) and processes of
accommodation (basically an adaptation to what is new in a given
experience, vis-à-vis what is currently familiar). The dynamics of these
processes have been amply discussed in earlier publications [20, 21]. A
detailed study of the properties of a dynamic systems model based on
Vygotskyan principles of learning reveals a rich landscape of possible
outcomes (for a mathematical analysis, see [22]).

In the present model, novelty and familiarity are “elastic”
properties. That is to say, they depend on person-specific abilities
and on context-specific events. For instance, some learners can,
on average, tolerate more novelty than others, which implies that
they can profit from information that lies relatively far ahead of
their current level of maximal L2 proficiency. This ability to profit
from relatively new information is, very broadly speaking, an
expression of (linguistic) learning ability. Other learners have a
familiarity curve that goes down quite rapidly, which means that
their optimal level of novelty lies quite close to their current
maximal level of familiarity. They can only profit from
L2 experiences that are close to what they have already
achieved. However, some L2 contexts provide learners with
L2 experiences that correspond with high levels of novelty,
that is, with experiences that are quite far from a particular
learner’s current maximal L2 proficiency. In this sense, they
overcharge the learner’s current L2 learning capacity, or to
put it differently, they require more familiarity with novel
features of L2 than the learner can currently muster. In
principle, an optimally adaptive L2 learning environment will
provide L2 experiences with levels of novelty and familiarity that
are relatively close to the learner’s optimal levels, given a
particular level of linguistic proficiency. In the current,
simplified model, what counts as the optimal level of
familiarity/novelty is implicit (it is the range of levels for
which L2 learning occurs rapidly and smoothly; Van Geert
and Steenbeek [21], presented a model of Vygotsky’s zone of
proximal development, in which this optimal level is a free
parameter). However, in the current model it is easy to
experiment with the effect of different distances between the
current proficiency level and the point where the familiarity and
novelty curves cross by manipulating the free parameters of the
familiarity curve (see the next section, step two).

A description of the dynamic model of
L2 learning

In order to keep the dynamic systems model as a simple and
transparent as possible, I will present it in the form of a spreadsheet

FIGURE 5
(A) familiarity, novelty and familiarity*novelty product
distributions for an initial proficiency distribution. (B) familiarity,
novelty and familiarity*novelty product distributions for a multimodal
proficiency distribution.

Frontiers in Physics frontiersin.org08

Van Geert 10.3389/fphy.2023.1186136

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1186136


model, with a few simple functions added, the syntax of which will
be given in Supplementary Appendix. The spreadsheet model
provides an overview of its basic structure and can be rewritten
in any programming language the reader prefers, in order to
improve speed and flexibility. I will describe the model in the
form of its consecutive steps.

The steps in the model

1. Step 0: Define the L2 proficiency array: the array consists of
values from 0 to 1, with step size 0.01: {0, 0.01, 0.02, . . . }; This
array corresponds with the basic dimensions of the dynamic
system and defines the state of the system in terms of a
distribution of weights or probabilities.

2. Step 1: Define the initial proficiency range for the L2 learner at
time 1 (which corresponds with the first step in the simulation
process);
a. Define a probability density function for every value of the

L2 proficiency array, in the form of the non-negative part of a
normal distribution (use mean of 0 and standard deviation of
0.05; both are free parameters that can be modified to model
different initial states);

b. Normalize the values of the probability density function to a
number close to but bigger than 0 and close to but smaller
than 1 (default limits are 0.02 and 0.96).

c. Determine the proficiency level for the maximum value of the
learner’s proficiency range maxp; for the initial proficiency
range this maximum is the corresponding proficiency value
for the mean of the proficiency probability density function,
which is set to 0; store maxp

d. Randomly draw 50 proficiency levels from the proficiency
density function (by means of a Visual Basic function called
rand_dist_array(); the syntax is given in Supplementary
Appendix); these 50 levels correspond for instance with
50 utterances produced by the learner at this point in
time, for instance in the context of a conversation; they
are thus a randomized expression of the learner’s current
L2 proficiency

e. Calculate the mean, mode, 0.75th percentile, distance between
10th and 90th percentile, and the proficiency value
corresponding with the maximum value of the original
proficiency density function of these 50 levels; store for
final output; to determine the mode, the simulation model
uses a kernel density function to calculate frequencies and
determine the maximum frequency (see Supplementary
Appendix)

3. Step 2: Define familiarity and novelty functions and their
product
a. Determine the density function for familiarity: for each value

of the proficiency array, calculate the value of a sigmoid curve
with minimum value 0 and maximum value 1, and two free
parameters, one for the midpoint value (equal to a constant,
e.g., 0.1, plus the value of maxp) and the slope parameter
(which in the case of the familiarity function must be a
negative value, e.g., −0.05);

b. For every value p of the proficiency array, define the density
function for novelty as 1–famp;

c. For each value of the proficiency array ranging from 0 to 1,
multiply the familiarity and novelty value;

d. Normalize all multiplied values by dividing by the maximum
value of the curve obtained in step c

4. Step 3: Define an L2 event;
a. Randomly draw a proficiency value me from the current

learner’s proficiency range with the rand_dist_array()
function (note that after a few steps in the learning
process, the proficiency range is often no longer a
unimodal or symmetric distribution, as its properties have
been updated by every step in the simulation process);
randomly draw a value sde for a standard deviation
between a minimum and maximum value (the current
model uses 0.15 and 0.35)

b. For every value of the L2 proficiency array, calculate the value
of a probability density function with mean me and standard
deviation sde

c. Determine how the event array will contribute to the change
in the learner’s proficiency array by subtracting a constant
from each value in the array; this constant is a free parameter;
in the current model it most often varies between 0.2 and 0.4;
instead of a simple subtraction, the effects may be determined
by a Mexican hat function (see Supplementary Appendix for
further explanation); the current model uses subtraction as the
simplest, standard solution); this results in an event effect
value evp for every point p on the proficiency array ranging
from 0 to 1

5. Step 4: update the proficiency range based on the effect of the
L2 event:
a. Multiply every value of the normalized familiarity-novelty

product by a constant; this constant is a free parameter; the
current model uses 0.25; this constant should never be 0: in
order to model the absence of the familiarity-novelty effect,
the current model uses an if-then parameter

b. For every value of the proficiency array ranging from 0 to 1,
multiply each value from the preceding step by the
corresponding value of the event contribution evp

c. For every value of the proficiency array ranging from 0 to 1,
multiply each corresponding value from the preceding step by
the corresponding value of the probability density function
representing the L2 learner’s current L2 proficiency

d. For every value of the proficiency array ranging from 0 to 1,
add the corresponding value from the preceding step to the
corresponding value of the current probability density
function representing the L2 learner’s current L2 proficiency

6. Step 5 to final number of simulation runs:
a. Repeat step 1b, update the learner’s L2 proficiency range with

these new values, then repeat step 1c
b. Repeat all steps from step 2 on for the predetermined number

of steps in the simulation; copy the results calculated in step 1e
as final output

The model “output” representing the
process of L2 learning

In order to determine the learning of L2, during each simulation
step, the model generates 50 L2 expressions from the current
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L2 proficiency distribution of the learner. These “expressions” are
in fact point values of the proficiency array (ranging from 0 to 1)
drawn from the proficiency distribution, turned into a probability
distribution, with the aid of the function described in step
1d. Think of these “expressions” as short L2 phrases, sentences,
contributions to conversation, etc., produced by the L2 learner.
Since the standard way of representing a learner’s current
L2 proficiency is to take the average of the produced
proficiency levels, the first output measure is the mean of
the 50 randomly drawn proficiency levels. In addition to the
average value of the 50 randomly drawn levels, I also took
the most typical level of proficiency during that particular step
in the simulation. The most typical level was defined as the
level that occurred most frequently (which is a range of levels
in fact, but I represented it by the central value of a frequency bin,

calculated over the 50 levels by means of a kernel density
estimator). The third way of representing the current
proficiency level present in the 50 randomly drawn levels is to
take a characteristic high level of proficiency, representing the
more advanced proficiency levels, for which I used the 75th
percentile level of the 50 expressions. In order to represent the
within- (simulation) step variability, i.e., the amount of variation in
the 50 expressions, I used the difference between the 90th and the
10th percentile (a standard measure would be the standard
deviation, but this makes sense only if the variation is
symmetrically distributed around a mean, which we cannot
always justify in this particular case). Once all output has been
generated, e.g., after the customary 500 simulation steps, between-
step variability can be easily calculated by taking the absolute
difference between any two consecutive measurements, e.g., the
most typical level of proficiency at time t and t+1. This difference
representation can then be smoothed by means of a Loess
smoother (a smoothing function available in the simulation
model; see Supplementary Appendix).

As a final measure for the current proficiency, the model
determines the maximum value of the current proficiency curve.
As this curve can take a multimodal form, e.g., with 3 peaks, the
maximum level is the value of the dominant mode. This measure is
particularly suited for showing discontinuities in the process,
i.e., where one mode suddenly becomes dominant, replacing an
earlier dominant mode. This process is the inverse of the typical
attractor switch in models of behavioral potentials, for instance
modeled by means of the so-called cusp catastrophe (e.g., [23]). In
this sense, the dominant mode of the proficiency distribution is
reminiscent of the dominant (deepest, widest) attractor in an
attractor landscape.

In addition to the values of the 50 randomly drawn expressions
and the dominant mode of the current proficiency distribution, the
model keeps track of the proficiency distributions taken every 10th
simulation step. Given the default number of simulation steps has
been set to 500, every simulation is represented by 50 consecutive
proficiency distributions.

An overview of some typical simulation
results

A hypothetical default case

I hypothesize that, in a typical progressive learning model, the
familiarity curve should neither be too close nor too far away from
the current proficiency distribution of an L2 learner at a particular
moment in time. That is, given a particular L2 event presenting
levels of L2 proficiency that the learner does not yet master, what a
learner perceives as learnable, or recognizes as new and higher levels
of proficiency in this event, should not be too similar to the learner’s
own, current proficiency. This description is of course extremely
vague, but it can be operationalized in the form of different
familiarity curves for a given proficiency distribution. For
instance, in Figure 6A, I defined the peak of the familiarity-
novelty product too close to the learner’s current (initial)
proficiency distribution, in Figure 6B the distance is adequate,
and in Figure 6C it is too far. That is, for the case in Figure 6B

FIGURE 6
Optimal and suboptimal familiarity-novelty distances: An
example of a familiarity-novelty function that is too close to the
learner’s proficiency distribution (A), one that is an example of an
optimal distance (B) and one in which the distance is too
great (C).
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learning will be optimal (smooth and relatively fast), given all other
parameter values are similar.

Figure 7 show the result of a simulation based on optimal
parameter settings, given the number of 500 simulation steps.
Optimality is defined in terms of whether or not the simulation
reaches the maximum level within the time range of this simulation,
where the maximum level corresponds with maximum
L2 proficiency, given the L2 proficiency demonstrated in the
L2 events that the learner is confronted with in his or her given
L2 context. The simulation shows how the maximum level of the
proficiency curve changes in a discontinuous fashion, which is due
to the fact that the proficiency curve becomes multimodal (it has
more than one local maximum suggesting more than one attractor
state). The discontinuity is most clearly visible in the mode of the
L2 production, i.e., in the trajectory of the most frequent levels
occurring in the changing corpus of 50 L2 expressions at any
particular moment in time. These discontinuities relate to the
discontinuities in the maximum point of the proficiency curve.

The curve of the averages shows a slightly scalloped pattern,
corresponding with the discontinuities in the most frequent level,
in the maximum point of the proficiency curve, or in the
discontinuities of the maximum of the changing proficiency
distributions.

Within-step variability, that is, differences between the
proficiency levels of the recurrent 50-utterances corpus, is highest
around the middle of the learning trajectory. Between-step
variability peaks after the points of discontinuous change. That
is, distances between successive steps in the simulation, i.e., between
proficiency indicators of the successive samples of 50 expressions,
are greatest immediately after the discontinuity.

It is interesting to note that in the simulated optimal
L2 learning (e.g., Figure 7C), the frequency distribution of the
between-step variability values closely follows a power law
distribution. Power law distributions are typical of complex
systems whose behavior is governed by interactions between
their components (for instance in psychological reaction times

FIGURE 7
(A–F)Results of a simulation with a familiarity-novelty curve considered optimal. (A) Themost frequent level changes in amore or less discontinuous
fashion, relating to the discontinuities in themaximumpoint of the proficiency curve; (B) the curve of the step averages shows a slightly scalloped pattern;
(C) themaximum level of the proficiency curve changes in a discontinuous fashion, which is due to the fact that the proficiency curve ismultimodal (it has
more than one local maximum suggesting more than one attractor state); (D) within-step variability is highest around the middle of the learning
trajectory; (E) the frequency of between-step differences follows a power law distribution; (F) a log-log plot of the simulated between-step differences
and of their power law model, including the linear trend equation for the simulated differences.
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[24]). Let y be the frequency with which a value x of between-step
variability occurs, then y = k * xa (a constant k multiplied by x to
the power a). In the distribution of between-step distances in the
simulated trajectory represented by Figure 7C, a = −1.7 and k =
0.52; the correlation between the logarithms of the frequencies
based on the simulation and those predicted by the power law
model is 0.93. Power law distributions (also called Zipfian
distributions) have been found in data from L2 learning, for
instance in the frequency distributions for types of verb-
argument constructions and verb lemmas [6, 25]. These data
are of course different from the between-step variability
discussed above, but they illustrate the ubiquity of power law
(or Zipfian) distributions in L2 (and language in general for that
matter).

The proficiency curves change from a unimodal distribution
(the initial distribution) to multimodal distributions representing
different attractors for the mode (i.e., most frequently occurring
level; Figures 8A, B).

Simulation results under non-optimal
parameter values

The following results refer to a model in which the familiarity-
novelty function is too far away from the learner’s current proficiency

level (see Figure 9). It might be compared with the situation in which a
learner is only confronted with linguistically complex L2 use, without
any form of adaptation or simplification towards the learner’s current
proficiency. Note however that, whatever the complexity of the L2 use
in the L2 event1 the learner is confronted with, these events will always
be drawn from the learner’s current proficiency distribution. That is to
say, irrespective of how complex the actual L2 input might be, the
learner will always assimilate this to what he or she is able to understand

FIGURE 8
(A) The proficiency curves change from a unimodal distribution
(initial distribution) to multimodal distributions, representing different
attractors for the mode (i.e., most frequently occurring level); shifts
between peaks represent discontinuities in L2 development (B)
Between step variability peaks after the points of discontinuous
change.

FIGURE 9
If the familiarity-novelty distance from the current proficiency
level is too great, the learning process shows a prolonged, self-
sustaining sub-optimal proficiency level (around level 0.5) and
complex forms of variability (note that the simulation covers
1500 instead of 500 time steps, as in the optimal case).
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or process (but eventually only with great difficulty). That being said
however, a non-optimal familiarity-novelty distance will result in a
process of learning that takes about 3 times as long to reach amaximum
proficiency level. In addition, themodel generates only 2 discontinuities,
one from the initial level to some middle level of proficiency, which
remains unchanged for a very long time. Finally, towards the end of this
extended learning trajectory (1,500 simulation steps) a new
discontinuity emerges leading to the final, that is maximum level of
proficiency the L2 learnermay contain (see Figures 9A–C).Within-step
variability (i.e., variability within the samples of 50 L2 expressions) is
complex and highly nonlinear (see Figure 9D). Between-step variability
typically peaks before the discontinuity arises (this can best be seen in
the trajectory of the 75th percentile level).

If the familiarity novelty curve is too close to the current
familiarity-novelty level of the L2 learner, the resulting learner
trajectory is strictly linear (Figure 10). Around 500 simulation
steps, it reaches a level of 0.45 (as compared to the level I, which
represents the maximally attainable proficiency under the given
range of L2 events). Note also that the within- and between-step
variability are stationary.

If there is no effect of a familiarity-novelty function (which is
different from this function being too close or equal to the current
proficiency distribution of the L2 learner) the result is an erratic
trajectory of local ups and downs, stabilizing around a value of about
0.5 of the maximum proficiency level, with a stationary within-step
variability (see Figure 11).

Some preliminary conclusions

The aim of this article was to present a very basic dynamic
systems model of L2 learning based on a number of fundamental
principles: 1) at any moment in time, a learner’s L2 proficiency is a
distribution of potentialities (possible levels of L2 production), 2) the
distribution changes as a result of experienced L2-events such as
conversations or L2 instruction, 3) L2 proficiency and L2 events are
represented on the same underlying array of linguistic proficiency
(from 0, i.e., inexistent, to 1, i.e., maximal under the currently
available linguistic resources); 4) learning processes are
“normative” in the sense that they are governed by a process of

FIGURE 10
A strictly linear increase occurring with a familiarity-novelty function too close to the current proficiency level of the learner.

FIGURE 11
Deficient temporal trajectory of L2 proficiency over a duration of 2,500 steps if the effect of familiarity-novelty function is disabled.
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convergence on the language spoken by a particular L2 community,
this process depends on an optimum between familiarity and
novelty; 5) the parameters governing the systems dynamic differ
among individual learners and L2 learning contexts.

Optimal parameter values are those that generate an
L2 trajectory from close to 0 (L2 proficiency is minimal) to close
to 1 (L2 proficiency as maximal under the given learning resources),
over a duration of time represented by 500 simulation steps (the
number of simulation steps is arbitrary, but it should be defendable
under the interpretation of L2 events, for instance in the form of
conversations or other repeated events that foster L2 learning).
Significant deviance from optimal parameter values leads to
“degenerate” learning trajectories, such as continuous self-
reproduction of suboptimal proficiency levels.

Under these optimal parameter values, the model also yields
some interesting additional effects.

First, the model provides evidence of discontinuous change,
that is to say, of leaps from one mode to another (modes are
defined as the local maxima of the proficiency distribution at any
one point in time). In the model’s L2 “output” (i.e.; the
expressions of L2 proficiency by the learner in the form of
utterances or contributions to conversations), discontinuities
are best observable in the most frequently occurring L2-levels
at any moment in time (the “typical” level at a particular moment
in time). This simulation result is directly in line with findings on
L2 development by Rastelli [13, 26]. Rastelli explains the
occurrence of discontinuities by the combination of statistical
and grammatical learning in L2. This type of functional
explanation does not contradict the validity of a dynamic
systems model such as the one presented in the current
article. Dynamic systems models try to capture the evolution
rules of a particular state space, whereas functional explanations
explain how the learning actually works (by way of an analogy,
think about the difference and compatibility between a
dynamic systems model of the growth of a biological
population on the one hand and a functional-physiological
model of biological reproduction and death of organisms
on the other hand). Discontinuities in L2 proficiency are also
in line with the existence of qualitatively different stages in
L2 learning: a shift from one stage to another is likely to
correspond with a discontinuous change in L2 proficiency
(e.g., [25]).

Second, the simulation model under optimal values generates
nonlinear trajectories of variability. That is, within-step
variability increases towards the middle of the learning
process, and then sharply decreases as the level of “full”
mastery is achieved (note that this is defined relative to the
available L2 resources). Nonstationary variability is an
important property of the dynamics of L2 learning [27–29].
As to between-step variability, magnitudes of differences
between steps are distributed in accordance with a power law
(similar to a Zipf distribution). This distribution is typical of a
wide range of linguistic phenomena, and also occurs under
various forms in L2 learning [6]. The simulation model shows
increased between-steps variability in the vicinity of
discontinuous changes. This is a typical nonlinear feature of
variability in discontinuous development [23], which can also be
found in L1 acquisition [30]. The co-occurrence of increased

variability with developmental jumps has also been shown to
occur in L2 learning [27, 31].

With this—in fact extremely simple—dynamic systems
model of L2 learning, based on the general assumptions
discussed in the introduction of this article, I have tried to
provide a “proof of concept” or proof of possibility of a dynamic
systems model that is based on the idea of L2 proficiency as a
distribution of possible proficiency levels, instead of
L2 proficiency as a point value on some measurement
dimension. As with all such models, the connection with the
empirical data poses interesting problems (for a discussion of
L2 proficiency measurement, see [32]). As regards the
measurement of abilities represented by distributions instead
of point values, some practical tools have been suggested for
time-serial observational data, for instance in L1 and L2 [33–35].
However, I believe that models such as this one should, in the
first place, provide a correspondence with major, empirically
observed, qualitative properties, such as nonlinear variability,
discontinuity, and inter-individual differences based on
different parameter sets. If the general correspondences
apply, simple models can further be elaborated to account for
individual, time-serial data sets and for the complexities of
L2 learning as a social, co-adaptive process.
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