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frontier for CAR-NK cell-based
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Saint Camillus International University of Health and Medical Sciences, Rome, Italy
DNAM-1 is a major NK cell activating receptor and, together with NKG2D and

NCRs, by binding specific ligands, strongly contributes to mediating the killing of

tumor or virus-infected cells. DNAM-1 specifically recognizes PVR and Nectin-2

ligands that are expressed on some virus-infected cells and on a broad spectrum

of tumor cells of both hematological and solid malignancies. So far, while NK

cells engineered for different antigen chimeric receptors (CARs) or chimeric

NKG2D receptor have been extensively tested in preclinical and clinical studies,

the use of DNAM-1 chimeric receptor-engineered NK cells has been proposed

only in our recent proof-of-concept study and deserves further development.

The aim of this perspective study is to describe the rationale for using this novel

tool as a new anti-cancer immunotherapy.
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Introduction

NK cells are cytotoxic lymphocytes belonging to innate immunity that, by a complex

array of activating and inhibitory receptors, are tolerant versus healthy cells and can

recognize and kill virus-infected and transformed cells through the release of cytolytic

granules and cytotoxic cytokines (1). The peculiar ability to elicit a potent response against

target cells is due to the expression by NK cells of a repertoire of activating receptors such as

NKG2D, the accessory molecule DNAX (DNAM-1, CD226), and natural cytotoxicity

receptors (NCRs) including NKp30, NKp44, and NKp46 (2, 3). Of note, ligands for

NKG2D and DNAM-1 are poorly expressed in normal cells [proteinatlas.org, Genotype-

Tissue Expression (GTEx) from The Cancer Genome Atlas (TCGA) database and (4)] and

highly expressed in virus-infected and transformed cells (5, 6). Furthermore, NK cells,

through the expression of FcgRIIIA (CD16) receptor, are responsible for the antibody-
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dependent cellular cytotoxicity (ADCC) (7), which is a crucial

function in the clinical context of all immunotherapies involving

monoclonal antibodies (mAb) (8).

In addition to their cytotoxic function, NK cells play a crucial

role in regulating the maturation and activation state of other

immune cells, through sophisticated cross-talks and biological

mechanisms that further support their use in immunotherapy (9).

In contrast, it is noteworthy that NK cells in cancer patients

show impaired functions accompanied by a poor ability to infiltrate

the tumor microenvironment (TME), as tumor cells adopt different

various immune evasion mechanisms (10–17). Therefore, the

adoptive transfer of ex vivo expanded and activated allogeneic NK

cells for immunotherapy turns out to be a strategic clinical adoption

to help cancer patients to fight tumor cells, thus attracting

increasing interest in the past decade (18).

Primary allogeneic and alloreactive NK cells, from healthy

donors with a favorable immunoglobulin-like receptor (KIR)-

human leukocyte antigen (HLA) mismatch (19), can be harvested

from several sources such as peripheral blood (20), umbilical cord

blood (21) or be derived by induced pluripotent stem cells (iPSC)

(22, 23). Compared with the therapeutic use of T cells, that of

allogeneic NK cells has several advantages: this has progressively

stimulated the improvement of previously limited ex vivo

amplification methods of NK cells and designs for the expression

of various chimeric antigen receptors (CARs) and NKG2D chimeric

receptor (24, 25) suitable for clinical use (ClinilTrial.gov and

Supplementary Table S1).

In this context, one should consider that T and NK cells are

often dysfunctional in cancer patients, limiting the use of

autologous cells for engineered manipulation (26). Noticeably,

NK cells display greater antitumor effects in allogeneic settings

than in autologous ones (20, 27). However, the use of allogeneic T

or CAR-T cells presents limitations related to severe haploidentical

mismatch conditions necessary to reduce the risk of graft-versus-

host disease (GvHD) and cytokine release syndrome (28–30). In

contrast, allogeneic NK cells do not cause GvHD (31–33) and

display a low risk of proliferation in transfused patients and, thus a

major safety, as compared with infused T cells. Finally, the high

availability of allogeneic NK cells, their low cost compared to CAR-

T cells, and the possibility of cryopreserving them for further

administration allowing the treatment of many patients from a

single NK cell donor, entitles their clinical use for several types of

cancers (34, 35).

So far, the successful use of NK cells engineered for several

CARs and for NKG2D chimeric receptor in the hematological and

solid tumor settings has been widely reported (ClinicalTrial.gov

Supplementary Table S1). Based on the success of CD19-targeted

CAR-T cells (36), approved by U.S. Food and Drug Administration

(FDA), the first CAR-NK cells were engineered with chimeric anti-

CD19 single chain fragment variable (scFv) for the cure of

hematologic malignancies (21). Currently, the use of CAR- or

NKG2D chimeric receptor-engineered NK cells has been

extended to different type of cancers; however, the number of

clinical trials evaluating their efficacy against solid tumors is far
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lower than against hematologic malignancies (14 versus 29, as

reported in Supplementary Table S1). This represents a clinical

gap that needs to be filled. CAR-T or CAR-NK cells have generally

shown greater efficacy in hematologic malignancies than in solid

tumors, mainly for the following reasons: (i) firstly, the accessibility

of CAR-T or CAR-NK cells to tumor cells is significantly different

between solid and hematological tumors, depending on cell

morphology (absence or presence of cell-cell adhesions) and body

distribution; (ii) secondly, solid tumor cells are less sensitive to

cytotoxic lymphocytes, as the immune suppression mechanisms

occurring in TME constitute a barrier to lymphocyte infiltration.

Therefore, in order to improve the efficacy of the adoptive transfer

of CAR-NK cells for immunotherapy of solid tumors, the search for

more specific tumor target molecules, accompanied by mechanisms

that overcome the barriers of TME, still needs to be extensively

explored (37).

Aiming to fill this gap, recently we have provided promising in

vitro results on the efficacy of never before explored DNAM-1-

chimeric receptor-engineered NK cells against neuroblastoma (NB)

(38). This proof-of-concept study is prompting us at optimizing the

DNAM-1-based chimeric construct with the aim of developing

highly efficient DNAM-1 chimeric receptor-engineered NK cells to

be employed in preclinical studies and prospective clinical trials

primarily directed against solid tumors.
DNAM-1

Human DNAX accessory molecule-1 (DNAM-1, CD226) is

constitutively expressed in T, NK cells, and some myeloid cells. It is

a type I transmembrane glycoprotein containing a leader sequence

of 18 amino acid (aa), two extracellular Ig-like C2-set domains of

230 aa, a transmembrane domain of 28 aa and a cytoplasmic region

of 60 aa. Together with other activating receptors, such as NKG2D

and NCRs (39), DNAM-1 triggers powerful activating signals that

promote NK cell-mediated cytotoxicity and cytokine secretion (40,

41). DNAM-1 mediates activation signals through the engagement

with two ligands such as PVR (poliovirus receptor, CD155) and

Nectin-2 (poliovirus receptor-related 2 protein, PVRL2, also known

as CD112) (5). Furthermore, through cis-binding to the integrin

LFA-1 upon the engagement of LFA-1 with ICAM-1 (42), DNAM-1

undergoes phosphorylation at conserved amino acid residues in its

cytoplasmic domain such as tyrosine 322 [Y322 in human and Y319

in mouse, (42)] and serine 326 (40) via Src family kinase Fyn and

protein kinase C, respectively (43). The coordinated expression of

DNAM-1 and LFA-1 is also crucial for NK cell education (44).

Adequate expression of DNAM-1 enables NK cells to recognize

and kill hematopoietic malignancies such as acute myeloid leukemia

(AML) (45), multiple myeloma (MM) (39), and solid tumor cells

such as melanoma (46) and NB (47), thus contributing to a

favorable prognosis (45, 48). In contrast, DNAM-1 expression is

impaired in AML cancer patients and its loss has been correlated

with the tumor severity (49).
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PVR and Nectin-2 in cancer patients

Both PVR and Nectin-2 ligands are closely linked to

tumorigenesis. Indeed, in addition to being expressed in virus-

infected cells (43), these ligands are overexpressed in several

hematological and solid tumors (5, 50–52). Noticeably, these

ligands, in particular PVR, are potential prognostic markers in

AML (53, 54), MM (55), hepatocellular carcinoma (56), and bladder

urothelial carcinoma (BLCA) (57). As we have previously reported,

PVR expression is directly under the control of p53 at promoter

level (47), whilst the transcriptional regulation of Nectin-2 remains

more widely to be explored (58). Furthermore, PVR and Nectin-2

are both upregulated by Toll-like receptors agonists in dendritic

cells (59, 60) and by DNA-damage response in multiple myeloma

cells (61) or in Ag-activated T lymphocytes (62). In addition, PVR is

upregulated by IFN-g in NB cell lines (63) and epigenetic

modulations in malignant lymphocytes (64), while it is

downregulated by the human immunodeficiency virus type 1 Nef

and Vpu proteins (65) and the human cytomegalovirus UL141

protein (66).

The activating signal mediated by DNAM-1 following the

engagement of the ligands PVR or Nectin-2 is counteracted by

the competing binding of inhibitory receptors such as TIGIT (T-cell

immunoglobulin and ITIM domain) (67), TACTILE (T cell

activation, increased late expression, also known as CD96) (68)

and PVRIG (69) for the same ligands. In particular, PVR is

recognized by TIGIT and TACTILE (70, 71), while Nectin-2 is

recognized by TIGIT and PVRIG (69, 70). For this reason, TIGIT,

TACTILE and PVRIG have been considered targets for checkpoint

blockade immunotherapy (72). Of note, the high expression levels

of PVR, typical of various tumor types, revealed its hypothetical

proto-oncogenic role, leading researchers to develop therapeutic

strategies that directly target PVR (73).
DNAM-1 chimeric receptor-
engineered NK cells

Adoptive transfer of activated NK cells expressing higher and

more stable levels of DNAM-1, might be a useful clinical approach

to help cancer patients to fight tumor cells. The DNAM-1 chimeric

receptor could confer a dual advantage to NK cells: (i) specific

recognition of ligands such as PVR and Nectin-2, which are highly

expressed in tumor cells, but importantly absent or poorly

expressed in normal cells, and (ii) its overexpression, which

should result in a favorable molecular imbalance with respect to

the normal expression of competing receptors (TIGIT, TACTILE,

PVRIG), leading to its increased binding to PVR and Nectin-2. In

addition, its function could be strategically improved by in-frame

expression of costimulatory molecules that support cytotoxic

activity and overcome TME immune escape mechanisms. We

previously reported a proof-of-concept study on the activity of

DNAM-1-chimeric receptor-engineered NK cells obtained by

transient transfection of primary human NK cells for a DNAM-1-

chimeric receptor (38). Specifically, we compared four different
Frontiers in Immunology 03
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different DNAM-1-based chimeric receptors providing the

expression of DNAM-1 in frame with costimulatory molecules

such as 2B4 and CD3z, and we showed that the DNAM-1-CD3z
construct, which recapitulates a first generation of DNAM-1

chimeric receptor, yielded the best results in terms of expression

of DNAM-1 chimeric receptor and NK cell functions. Furthermore,

DNAM-1-CD3z engineered NK cells were particularly more

effective to recognize and kill two NB cell lines, LAN-5 and SMS-

KCNR, treated with Nutlin-3a, an MDM2 targeting drug with

immunomodulatory effects on the upregulation of ligands for NK

cell-activating receptors, including PVR and Nectin-2 (47).

Therefore, the combined use of DNAM-1-CD3z engineered NK

cells with Nutlin-3a in tumors that retain p53-wt, such as most

forms of NB, with the exception of some cases of relapse (74), may

represent a novel therapeutic approach for solid tumors.
In-silico analysis of PVR and Nectin-2
in solid tumor patients

The widely reported high expression of both PVR and Nectin-2

in solid tumor cells and very low expression in normal cells

[protein.atlas.gov and GTEx from TCGA database], was the main

reason for choosing to engineer NK cells with a DNAM-1 chimeric

receptor. In order to further explore the expression of both PVR and

Nectin-2 in solid tumors, and to prospectively propose the adoptive

transfer of DNAM-1 chimeric receptor-engineered NK cells also in

adult solid malignancies, we performed an in-silico bioinformatic

analysis by using GEPIA2 (www.gepia2.cancer-pku.cn, Figure 1).

Specifically, we queried this online tool providing data concerning

gene expression and tumor stage/grade, to compare the expression

of selected genes between tumor and normal tissues, based on

TCGA. Interestingly, we found that the expression profile of both

PVR and Nectin-2 resulted higher in several tumor samples than in

paired normal tissues across a broad spectrum of solid tumors. In

particular, the expression of PVR was significantly higher in colon

adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and

neck squamous ce l l carc inoma (HNSC) , pancrea t i c

adenocarcinoma (PAAD), rectum adenocarcinoma (READ),

stomach adenocarcinoma (STAD) and thymoma (THYM), while

that of Nectin-2 was significantly higher in bladder urothelial

carcinoma (BLCA), breast invasive carcinoma (BRCA), COAD,

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

glioblastoma multiforme (GBM), brain lower grade glioma

(LGG), ovarian serous cystadenocarcinoma (OV), PAAD, READ,

STAD, THYM and uterine corpus endometrial carcinoma (UCEC)

(Figure 1A). In addition, the higher expression of PVR or Nectin-2

correlated with the advanced stage of different forms of solid

tumors. In particular, PVR higher expression correlated with the

advanced stage of adrenocortical carcinoma (ACC), BLCA, liver

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LUSC) (Figure 1B), while that of

Nectin-2 correlated with the advanced stage of ACC, BLCA, HNSC,

testicular germ cell tumors (TGCT), skin cutaneous melanoma
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(SKCM) and UCEC (Figure 1C). These data indicate that the high

expression of PVR and Nectin-2 in tumor cells compared to normal

cells affects several solid tumors, supporting the hypothesis of a

wide prospective clinical use of DNAM-1 chimeric receptor-

engineered NK cells.

Furthermore, we used the R2 Genomics Analysis and

Visualization Platform (https://hgserver1.amc.nl/cgi-bin/r2/

main.cgi?open_page=login) to investigate the prognostic value of

PVR and Nectin-2 ligands in a variety of tumor types. We found

that higher expression of PVR significantly correlated with lower

patient overall survival in ACC, BLCA, COAD, ESCA, HNSC,

kidney renal clear cell carcinoma (KIRC), kidney renal papillary

cell carcinoma (KIRP), LUAD, LUSC, mesothelioma (MESO), OV,

prostate adenocarcinoma (PRAD), SKCM, STAD and uveal

melanoma (UVM) (Supplementary Figure 1A). By contrast, the

lower expression of PVR significantly correlated with lower patient

survival in BRCA, PAAD, READ and THYM (Supplementary

Figure 1B), in agreement with published data from a cohort of
Frontiers in Immunology 04
patients with a pediatric form of solid tumor such as NB (75).

Similarly, the higher expression of Nectin-2 correlated with lower

patient overall survival in KIRC, KIRP, GBM, HNSC, LIHC, LUAD,

LUSC, MESO, OV, READ, SKCM, UCEC and uterine

carcinosarcoma (UCS) (Supplementary Figure 2A). By contrast,

the lower expression of Nectin-2 correlated with lower patient

overall survival in BRCA, COAD, ESCA, PRAD, STAD and

UVM (Supplementary Figure 2B). These data suggest that the

expression levels of both PVR and Nectin-2 can correlate

differently with patient overall survival, depending on the kind of

solid tumors.
Clinical perspective

With a view to finding an optimized off-the-shelf product for

cellular immunotherapeutic approaches, we foresee that DNAM-1

chimeric receptor engineered-NK cells have several strengths that
A

B C

FIGURE 1

In-silico bioinformatics analysis of PVR and NECTIN2 gene expression by GEPIA2 web-tool based on The Cancer Genome Atlas (TCGA) database.
(A) Dot plot profiling of PVR (top) and Nectin-2 (down) differential expression levels in 33 cancer types, derived from TCGA database, compared to the
normal, derived from TCGA or Genotype-Tissue Expression (GTEx). Each dot represents a distinct tumor (red) or normal sample (green) while each
column represents a different tumor type (tumor labels and sample sizes are reported in Supplementary Table 2). The transcript per million (TPM) value,
shown in ordinate, is used to display the relative gene expression. Tumor labels are indicated in red when there is a significant difference between tumor
(T) versus normal (N) tissues. Data were analyzed by ANOVA test. |log2FC| > 1 and FDR < 0.05 were considered as differentially expressed. (B, C) Violin
plots showing the expression level of PVR (B) and Nectin-2 (C) among different pathologic stages (S) of indicated solid tumors. F-value indicates the
statistical value of the F test; Pr (> F) indicates p value. A p value of < 0.05 was considered statistically significant.
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should be taken into account. NK cells engineered for a chimeric

form of an activating receptor such as DNAM-1 are likely to

specifically target tumor cells which express high levels of PVR

and Nectin-2 (Figure 1), while should be tolerant of normal cells

expressing low levels of PVR and Nectin-2 [protein.atlas.org, GTEx

from TCGA database and (4)]. This represents an advantage over

many types of single-chain antibody-based CAR-engineered

lymphocytes designed to target proteins expressed not only by

tumor cells but also, at high physiological levels, by various normal

cells such as CD19 and B220 (B lymphocytes and follicular

dendritic cells), disialoganglioside or GD2 (neurons, skin

melanocytes and peripheral nerves), human epidermal growth

factor receptor 2 or HER2 (many tissues), prostate-specific

membrane antigen or PSMA (kidneys, small intestine and

salivary glands), etc. This non-selective tumor specificity is often

the cause of high toxicity and adverse effects due to the cytotoxic

reaction mediated by CAR-lymphocytes against normal tissues. So

far, with a restricted expression in normal tissues and

overexpression in many types of solid tumors, B7-H3 resulted a

more promising therapeutic target compared to the others (76).

DNAM-1 ligands PVR and Nectin-2 have been described to be

absent or very scarcely expressed in normal tissue [proteinatlas.org

and (73, 77)], so their targeting should hypothetically not be toxic;

however, the differential expression of DNAM-1 ligands in cancer

versus normal cells does not exclude a possible toxicity mediated by
Frontiers in Immunology 05
DNAM-1 chimeric receptor-engineered NK cells, which should be

carefully explored by preclinical studies.

For a hypothetic good manufacturing practice (GMP)

production and clinical use of DNAM-1 chimeric receptor-

engineered NK cells, primary NK cells should be isolated through

leukapheresis by the blood of a HLA-matched unrelated healthy

donor, ex vivo expanded and activated, engineered for the

expression of DNAM-1 chimeric receptor, expanded to be infused

in cancer patients or be cryopreserved for future use (Figure 2).

Different modes of administration should be considered, depending

on the type and location of the tumor in the body, such as

intravenous or local injection. DNAM-1 chimeric receptor,

expressed at stable and high levels, should strongly compete for

the binding of PVR and Nectin-2 with the agonist receptors TIGIT,

TACTILE and PVRIG, thus favoring activating cytotoxic signals

over inhibitory ones. The high expression of PVR and Nectin-2 in

tumor cells could make them strongly susceptible to DNAM-1

chimeric receptor-engineered NK cell-mediated recognition and

killing. Within days after the injection of DNAM-1 chimeric

receptor-engineered NK cells, tumor cell death could occur at the

tumor site and lead the patient to an objective clinical response,

depending on the aggressiveness and size of primary or secondary

tumor masses. To avoid recurrence, the number of administrations

of DNAM-1 chimeric receptor-engineered NK cells should be

carefully planned, depending on the characteristics of the tumor,
FIGURE 2

Clinical perspective of the GMP manufacturing and clinical use of DNAM-1 chimeric receptor-engineered NK cells. After leukapheresis of a healthy
HLA-related donor, mature alloreactive NK cells can be isolated to be firstly ex vivo expanded and activated and then engineered for the expression
of DNAM-1 chimeric receptor. Large quantities of DNAM-1 chimeric receptor-engineered NK cells can be obtained to be infused in cancer patient
or cryopreserved for future use. The high expression of PVR and Nectin-2 specifically in tumor cells should facilitate their recognition mainly by
DNAM-1 chimeric receptor compared to competing receptors (TIGIT, TACTILE and PVRIG), thus promoting tumor cell death. The figure was created
with Biorender (https://biorender.com/).
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such as location, extent, stage, or presence of metastasis. To enhance

the anticancer efficiency, the use of DNAM-1 chimeric receptor-

engineered NK cells could be combined with that of current

anticancer cytotoxic drugs (78, 79), activating cytokines or mAbs

recognizing immune checkpoint molecules (80). Ideally, the

administration of DNAM-1 chimeric receptor-engineered NK

cells should be also considered after surgical removal of solid

tumor masses to avoid the risk of developing the minimal

residual disease (MRD).
Conclusion

The adoptive transfer of DNAM-1 chimeric receptor-

engineered NK cells is expected to represent an innovative

strategic clinical tool to help cancer patients in fighting solid

tumors. Therefore, the development of preclinical and clinical

studies aimed at obtaining stable, nontoxic, highly antitumor

cytotoxic DNAM-1 chimeric receptor-engineered NK cells, in

high quantities for cryopreservation and immediate future use,

applicable to a broad spectrum of solid tumors, deserves

further exploration.
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SUPPLEMENTARY FIGURE 1

Overall survival probability of patients with the indicated solid tumor type

(tumor labelling is explained in Supplementary Table 2) in each graph carrying
high (blue line) or low (red line) PVR gene expression. High PVR gene

expression can correlate with a worse (A) or favorable overall survival (B).
Statistically significant p values are indicated.

SUPPLEMENTARY FIGURE 2

Overall survival probability of patients with the indicated solid tumor type

(tumor labelling is explained in Supplementary Table 2 in each graph carrying
high (blue line) or low (red line) NECTIN2 gene expression. High NECTIN2

gene expression can correlate with a worse (A) or favorable overall survival (B).
Statistically significant p values are indicated.
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