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Introduction

Mammalian cells have evolved defense systems to detect and respond to viral infections

by producing cytokines that activate and shape the antiviral immune response (1, 2).

Recent studies have revealed that cancer cells can also activate antiviral signaling in

response to therapy-induced DNA damage and demethylation (3–6). This activation

initiates the production of type I interferon (IFN), which is crucial for a T-cell response

against cancer cells (4–6) and supports anti-tumor immunity (7). However, it has become

apparent that therapy-induced activation of antiviral signaling can also trigger interleukin-

1 (IL-1)-driven antiviral responses, which may not be advantageous as IL-1 promotes the

production of cytokines that directly enhance tumor growth or inhibit anti-tumor

immunity through the recruitment of myeloid-derived suppressor cells (MDSCs) to the

tumor microenvironment (TME) (8). Therefore, it is important to understand the interplay

between IFN and IL-1 antiviral responses in cancer cells and how this may impact immune

evasion and anti-cancer therapy.
IFN and IL-1 antiviral response pathways

The human body is constantly exposed to a wide range of pathogens, including viruses that

can cause severe illnesses. To combat these pathogens, the immune system has evolved a

complex network of defense mechanisms, including the antiviral response pathways (1, 2). The

pathways are initiated by specialized receptors called pattern recognition receptors, which

recognize viral components such as viral RNA or DNA. These receptors include surface
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molecules such as Toll-like and lectin receptors, as well as cytoplasmic

receptors such as retinoic acid-inducible gene (RIG-I) and melanoma

differentiation-associated gene 5 (MDA-5). The receptors are expressed

in various cells, including epithelial and immune cells.

Activation of pattern recognition receptors triggers signaling

cascades that converge into activation of IRF3 and IRF7

transcription factors and/or NF-kB pathways. This ultimately

leads to the production of type I and III IFNs, which are

cytokines that play a crucial role in the antiviral response (9, 10).

Type I and III IFN bind to specific receptors on the surface of

infected and neighboring cells, triggering a signaling pathway that

results in the upregulation of a variety of antiviral effector

molecules. The molecules can directly inhibit viral replication or

induce apoptosis, thereby limiting the spread of the virus. In

addition, the antiviral response leads to production of

proinflammatory cytokines that support innate and adaptive

immunity, including IL-1, which plays a crucial role in regulating

the immune response to viral infections. Like IFNs, IL-1 contributes

to the overall antiviral signaling by promoting local and systemic

inflammation and activating immune cells (11). The expression of

IL-1 is also mediated by IRF and NF-kB signaling pathways. Despite

the important roles of both the IFN and IL-1 response pathways in

the antiviral defense, the relationship between them remains

poorly understood.
Diverging roles of IFN and IL-1
antiviral pathways in cancer

Intriguingly, cancer cells can also activate antiviral signaling in

the absence of viral infection through two distinct mechanisms: (i)

the release of fragmented dsDNA into the cytosol due to genomic

instability or (ii) epigenetic activation and transcription of dsRNAs

from endogenous retroviruses (ERVs) in the genome (3–6). These

mechanisms occur spontaneously in cancer cells due to their

genomic and epigenetic instability and are strongly triggered by

standard anti-cancer therapies such as radiation therapy,

chemotherapy, and hypomethylating agents (3–6, 12–15).

Activation of antiviral signaling in cancer cells can induce the

expression of type I IFNs (3–6, 12–15), which generally inhibit

cancer cell growth and support the function of immune cells with

anti-cancer effects, such as T cells and NK cells (7). This suggests a

beneficial role of spontaneous or therapy-induced activation of

antiviral signaling in cancer cells.

However, recent research challenges the notion that IFNs are

the primary drivers of antiviral responses in cancer cells. Evidence

suggests that in a substantial subset of melanoma, breast and

ovarian cancers, IL-1 is a potent moderator of the antiviral

response to treatment with hypomethylating agents (8). In

contrast to IFNs, IL-1 is considered to have unfavorable effects on

anti-tumor immunity (11), largely due to its ability to enhance the

recruitment of immune repressive cells to the TME (11, 16–24). In
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agreement, IL-1-driven antiviral response in cancer cells promote

the expression of multiple myeloid cell chemoattractant, which

recruit MDSCs to tumors (8). MDSCs are known to restrict the

activation, proliferation and functionality of T cells in the TME,

leading to repression of anti-tumor immunity (25–29).

Additionally, tumor infiltration of MDSCs is associated with

tumor progression and poor response to various therapies,

including chemotherapy, radiation, and immunotherapy, across

multiple tumor types (30). Therefore, many tumors may evade

immune control and anti-cancer treatment by rewiring antiviral

pathways to substitute a lethal IFN-driven inflammatory response

with an IL-1-driven response (Figure 1).
Interaction between IFN and IL-1
antiviral pathways

There is growing evidence to suggest that the interplay between

IL-1 and IFNs is crucial in maintaining a delicate balance in the

innate inflammatory response. Studies have shown that both IFN-a
and IFN-b can downregulate the transcription of IL-1a and IL-1b,
as well as inhibit the processing of the inflammasome that produces

bioactive IL-1 (31–33). Additionally, numerous studies have shown

that type I IFNs induce the expression of IL-1RA, which is an

antagonist of the IL-1 receptor (34–36). These effects have also been

observed in patients receiving type I IFN therapy (37). Thus, it

appears that type I and III IFNs are capable of suppressing IL-1

activity at multiple levels.

The IFN-mediated regulation of IL-1 activity can have opposing

effects during pathogen infections, depending on the situation. In

some cases, the inhibition of IL-1 activity by IFNs can impair the

host ability to mount a robust immune response against the

pathogen. However, in situations where excessive IL-1 activity

could lead to immunopathology, IFN-mediated suppression of IL-

1 can be beneficial in limiting tissue damage and inflammation.

Although much less studied, available data also suggest that IL-1

potently antagonizes type I IFN responses by directly regulating

both transcription and translation of IFN-b (33, 38) as well as

attenuating IFN-a/b-induced STAT phosphorylation (39).

Although limited, the available data suggest that there is

crosstalk between IFNs and IL-1 in cancer as well. Specifically, it

has been demonstrated that activation of antiviral signaling by

DNA methyltransferase inhibitor-mediated de-repression of ERVs

induce the expression of IFN and IL-1 genes in a complex pattern,

with some cancer cell lines expressing either one alone or both

together (8). This suggest that IFN and IL-1 antiviral responses are

not mutually exclusive, despite the negative crosstalk between these

signaling pathways. Additionally, it was found that DNA

methyltransferase inhibitor-mediated induction of IL-1 was

strongly suppressed by the presence of type I and III IFN,

whereas IL-1 did not inhibit IFN expression. These findings

suggests that there is interplay between IFN and IL-1 in cancer.
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Discussion

Antiviral signaling is increasingly recognized as a critical

regulator of both tumor development and anti-tumor immunity.

While much research has focused on the role of IFNs in this process

(4, 5), recent evidence suggests that IL-1 may also play a significant

role (8). Therefore, understanding the complex interplay between

these two signaling pathways in tumors and their divergent roles in

anti-tumor immunity is crucial.

For instance, it is well known that IFN signaling is often lost in

cancer, but it is not known how this affects IL-1 activity and

ultimately anti-tumor immunity. Therefore, studying the

relationship between IFN and IL-1 in tumors will be essential to

develop effective cancer therapies that activate antiviral signaling. It

will also be important to comprehensively characterize the

molecular differences that determine the relative activation IFN

and IL-1 signaling in tumors. This understanding will provide

profound biological insight into tumor biology and aid the

identification of biomarkers for cancer patient stratification with

respect to treatment with drugs that activate antiviral signaling,

such as agents that induce DNA damage and demethylation.

Overall, elucidating the interplay between IFNs and IL-1 in

cancer will have far-reaching implications for the development of

novel cancer therapies and personalized medicine.
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FIGURE 1

Different roles of IFN and IL-1 antiviral signaling in anti-tumor immunity and the therapeutic response of tumors. Proposed model for tumor
inhibiting IFN-driven (A) and tumor promoting IL-1-driven (B) antiviral responses in cancer cells and their effects on the anti-tumor immune
response and anti-cancer treatment. (A) Activation of IFN expression in tumors by the antiviral response results in autocrine and paracrine IFN
signaling and production of a variety of antiviral effector molecules that support anti-tumor immunity. (B) Activation of IL-1 expression in tumors
results in the production of multiple myeloid cell chemoattractant, which recruit MDSCs to the tumor microenvironment. MDSCs may restrict the
activation, proliferation and functionality of T cells in the tumor microenvironment, leading to repression of anti-tumor immunity, and they may
promote a poor response to various therapies, including chemotherapy, radiation, and immunotherapy.
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