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Abstract 
Blue carbon is identified as a natural climate solution as it provides multiple ecosystem 
services, including climate mitigation, adaptation, and other co-benefits. There remain 
ongoing challenges for blue carbon as a natural climate solution, particularly as blue carbon 
ecosystems are at risk from climate change. Concepts of uniformitarianism were applied to 
consider how the present and past behaviour of blue carbon ecosystems can inform 
decision-makers of blue carbon risks. Climate change may increase the capture and storage 
of blue carbon in the short to medium-term; this is largely due to negative feedbacks 
between elevated atmospheric carbon dioxide and temperature and supplemented by 
natural processes of sediment supply and accumulation. Opportunities for retreat and 
increasing carbon storage as sea levels rise are likely to be greater where sea level has a 
longer history of relative stability, largely in the Southern Hemisphere. Landward retreat will 
be crucial where millennia of sea-level rise has limited the capacity for in situ blue carbon 
additionality; this may be thwarted by highly developed coastal zones and coastal squeeze 
effects. Negative feedbacks may fail under higher emissions, greater warming and rates of 
sea-level rise exceeding ~5-7 mm yr-1; this tipping point may be surpassed within the next 
century under a high emissions scenario. Retreat of blue carbon ecosystems to higher 
elevations where they are afforded protection from the effects of sea-level rise will be 
critical for blue carbon additionality. Carbon markets are prepared to incentivise restoration 
of blue carbon ecosystems as they adapt to climate change; however, knowledge gaps 
remain, particularly regarding the behaviour of blue carbon ecosystems in the global south. 
Given the momentum in blue carbon research, scientists and practitioners are well placed to 
continue addressing blue carbon risks. 
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Introduction 
Blue carbon is a collective term referring to the carbon associated with marine and coastal 
ecosystems, and includes all fluxes and stores that are biologically driven (Bindoff et al. 
2019). Similar to carbon sequestered in terrestrial forests, blue carbon has piqued the 
interest of practitioners seeking to mitigate climate change by enhancing carbon storage 
within natural ecosystems and improving the provision of ecosystem services (Macreadie et 
al. 2021). This interest is based on the high carbon storage potential of many blue carbon 
ecosystems (BCEs), a potential that is reported to be much higher on a unit area basis than 
other ecosystem-based climate solutions (Donato et al. 2011, Pendleton et al. 2012b, 
Duarte et al. 2013). BCEs are typically vegetated with mangroves, saltmarshes (also termed 
tidal marshes) and seagrasses, and to a lesser extent macroalgae, cyanobacteria and 
supratidal forests (Duarte et al. 2013, Raven 2018, Bindoff et al. 2019, Lovelock and Duarte 
2019) (Figure 1). Carbon is drawn down from the atmosphere via photosynthesis and stored 
within living biomass at a concentration of 40-50% of the mass, a value that is reasonably 
consistent among plants (Ma et al. 2018). Blue carbon is partitioned in above- and below-
ground biomass and the soil carbon pool. Above-ground biomass is typically estimated from 
allometric equations, initially derived from destructive measurements that relate vegetation 
structure to mass (Thursby et al. 2002, Komiyama et al. 2008, Radabaugh et al. 2017), or by 
applying remote sensing techniques to extrapolate spatial relationships (Pham et al. 2019, 
Sani et al. 2019). The below-ground component is somewhat more difficult to quantify as 
substrates contain both living biomass and dead organic material that has accumulated over 
decades to thousands of years, as evident from radiocarbon dating of BCEs (Horton et al. 
2018, Saintilan et al. 2020, Sefton et al. 2021).  

The enhanced capacity for storage is dependent upon rates of carbon addition exceeding 
loss of carbon via decomposition of organic material, and there is increasing agreement that 
this should also exceed in situ carbonate production (Saderne et al. 2019). High net primary 
production from in situ vegetation underpins the supply of organic matter to substrates, 
mostly from root material (Saintilan et al. 2013, Xiong et al. 2018) . However, organic matter 
transported on tides can also become trapped and sequestered into substrates, and there is 
increasing need to discriminate the varying role of autochthonous and allochthonous 
sources (Saintilan et al. 2013, Canuel and Hardison 2016, Van de Broek et al. 2018, 
Macreadie et al. 2019). Periodic inundation by saline tidal waters creates anaerobic 
conditions in saturated substrates that supresses microbial activity and slows decomposition 
of sequestered organic material (Duarte et al. 2013, Spivak et al. 2019). Addition of mineral 
sediments supplied by tides serves to trap sequestered organic material (Spivak et al. 2019) 
and saline substrates hamper methanogenic processes (Poffenbarger et al. 2011). While 
greenhouse gas emissions are not fully supressed (Rosentreter et al. 2018), the general 
outcome is physicochemical conditions that favours slow decomposition of organic material, 
long-term preservation of a portion of fixed carbon within substrates, and limited release of 
powerful greenhouse gases (e.g. methane and nitrous oxide) to the atmosphere (McKee et 
al. 2007, McLeod et al. 2011, Kroeger et al. 2017). Storage may be further enhanced when 
coastal processes operate to ensure that space within substrates for carbon storage 
continues to be available, and this appears to be strongly influenced by rates of sediment 
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supply, sedimentation, and coastal evolution in the context of changing sea levels (Rogers et 
al. 2019a). Together these conditions mean that BCEs can store orders of magnitude more 
carbon within their substrates than other terrestrial ecosystems, estimated to be in the 
order of 0.4-6.5 Pg. C in the upper 1 m of saltmarsh substrates globally, 9.4-10.4 Pg. C for 
mangrove forest substrates and 4.2-8.4 Pg. C for seagrass substrates (Duarte et al. 2013). 

Estimates of carbon storage in BCEs are typically determined based on their current 
distribution. At the coarsest level, a central measure (e.g. mean, median) of carbon 
concentration is multiplied by BCE extent to estimate carbon storage in various components 
(above- and below-ground biomass, soil carbon pool) (Howard et al. 2014). As can be seen 
in Figure 1 such projections to a global scale will be subject to large uncertainties associated 
with the high variability, across multiple spatial scales, in estimates within each ecosystem 
type; spatial biases in data availability also influences confidence in global projections.  

In spite of this increasing recognition of spatial and temporal variation in carbon storage, it 
is probable that additional soil organic carbon originating from BCEs is preserved within 
coastal floodplains and on continental shelfs where conditions are now no longer favourable 
for BCEs, but where long-term preservation may have occurred over millennia as coastal 
landscapes evolved (Hanebuth et al. 2000, Grindrod 2002, Rogers et al. 2019b). Additionally, 
there is also an imprint of direct human impacts on BCEs, with losses largely due to land 
cover change and gains largely due to restoration activities leading to a net decline in tidal 
wetland extent (inclusive of tidal flats, mangrove forests and tidal marshes) of ~ 4000 km2 
between 1999-2019 (Murray et al. 2022). There is evidence that this rate of loss is 
diminishing (Friess et al. 2020, Campbell et al. 2022) and substantial gains to tidal wetland 
extent, in the order of 9700 km2, have been related to the success of restoration activities 
and natural expansion (Friess et al. 2019, Murray et al. 2022). Accordingly, the current 
distribution of BCEs indicates where current storage and additionality occurs but does not 
indicate storage that occurred prior to changes in land cover at millennia timescales or over 
the record of Earth observations. This has important implications for the future of blue 
carbon, and it is probable that the geographic distribution of BCEs will continue to change as 
sea level rises, coasts evolve, and humans living in the coastal zone adapt to a new 
configuration of the coast and BCE distribution. 

To characterise the future of blue carbon as a natural climate solution, we apply concepts of 
uniformitarianism to consider how the contemporary distribution and behaviour of blue 
carbon can inform our understanding of the long-term evolution of coastal carbon storage. 
In this regard, we consider processes that influence blue carbon over the observational 
record (i.e., the present) are the same as those that have operated for millennia (i.e., the 
past), and, by extrapolation, consider blue carbon futures. We specifically consider the 
evidence preserved in stratigraphic records of the evolution of BCEs and present the case 
that blue carbon storage is related to coastal evolution and influenced by sediment supply 
and Holocene sea-level change. We also recognise that coastal evolution and the influence 
of humans on coastal landscapes means that the response of BCEs in the past is not a direct 
analogue for their future adaptation to anticipated sea-level rise and climate change 
(Woodroffe and Murray-Wallace 2012). Nevertheless, present day coastal landscapes are an 
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archive of information that can be used to parameterise models projecting the response of 
BCEs to environmental change; thereby providing the critical information needed to inform 
coastal zone planning and decision making, improve the resilience of BCEs and ensure their 
long-term application as a nature-based solution that contributes to climate mitigation 
efforts.  

The PRESENT: Blue carbon in coastal landscapes 
Mangroves and saltmarsh typically occupy the upper half of the intertidal zone, with 
mangrove forests dominating intertidal shorelines of the tropics and saltmarshes 
dominating intertidal shorelines of temperate zones (Figure 2). There is considerable 
overlap in the latitudinal distribution of mangroves and saltmarshes (Figure 1), with 
mangroves generally limited to ocean temperatures that exceed 20°C during the coldest 
month (West 1956, Quisthoudt et al. 2012, Osland et al. 2016), whilst saltmarsh distribution 
is influenced by substrate salinity (Bertness et al. 1992, Silvestri et al. 2005). Where salinity 
is very high and salts concentrate hypersaline flats/sandflats or sabkha predominate, often 
with cyanobacterial mats, and saltmarsh vegetation is sparse; in the tropics where rainfall is 
high, mangroves predominate in the upper half of the intertidal zone (Rogers and 
Woodroffe 2014). Most seagrass species occupy fully inundated substrates (i.e. subtidal 
elevations) where water clarity is a significant control on productivity (Madsen et al. 2001). 
Where hydrodynamic conditions allow, a diversity of seagrass genera may also occupy the 
lower intertidal niche (i.e. below MSL) (Björk et al. 1999). Depth constrained species of 
seagrass and macroalgae can accumulate organic material within substrates as they adjust 
to changing water levels (e.g. Zostera spp., Halophila spp., Phyllospadix spp.) (Koch 2001, 
Madsen et al. 2001). While seagrass meadows may be an exceptional carbon source for 
sequestration elsewhere, their capacity for in situ blue carbon storage is largely limited to 
that stored within the living biomass and some detritus. Increased sequestration is 
therefore largely dependent upon an increase in lateral extent of seagrass meadows 
(Greiner et al. 2013) and should be balanced against the additional CO2 that is released by 
carbonate sediment production (Howard et al. 2018). While net ecosystem primary 
production may be high for macroalgae, with potential importance for the export of carbon 
to other environments, in situ burial of carbon is limited (Figure 1; Krause-Jensen and 
Duarte 2016). For these reasons, this review focuses on mangrove and saltmarsh blue 
carbon futures. 

Geomorphological settings occupied by BCEs are delimited to areas where low energy 
intertidal substrates support the establishment and maintenance of salt-tolerant vegetation. 
Globally, deltas are hotspots for BCEs due to high rates of sediment supply promoting the 
development of broad intertidal environments where resource availability is high (Rovai et 
al. 2018, Worthington et al. 2020, Murray et al. 2022). Along tide-dominated coasts, 
favourable conditions may arise on the open coast where tidally borne sediments can 
accumulate, or within the intertidal zone of tide-dominated estuaries. Along wave-
dominated coasts, barriers at estuary entrances dampen wave energy and terrigenous 
sediments supplied from catchments via distributaries contribute to intertidal development 
of fluvial deltas, and to a lesser extent marine sediment delivered by tides contribute to the 
development of flood-tide deltas that support BCEs. These fluvial and floodtide deltas 
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associated with wave-dominated estuaries are also hotspots for blue carbon due to the 
development of low-gradient intertidal substrates (Kelleway et al. 2016a) 

Global and continental scale analyses of above-ground biomass of mangroves and 
saltmarshes variably highlight the role of climatic factors that vary with latitude, proposing 
that optimal temperature and higher rainfall favours productivity and carbon addition to 
plants within BCEs (Kirwan and Mudd 2012, Rovai et al. 2016, Sanders et al. 2016). For 
example, analyses of mangrove heights and biomass using the global shuttle radar 
topography mission altimetry dataset highlights the role of precipitation, temperature and 
cyclone frequency, explaining 74% of global trends in mangrove canopy height (Simard et al. 
2019). Yet, these are also factors that modify substrate salinity and may promote 
decomposition of organic material (Chmura et al. 2003, Kirwan et al. 2014, Mueller et al. 
2018). The outcome may be that once living standing stock reaches a threshold biomass, 
additions to the living biomass are offset by losses to the standing stock (Chmura et al. 
2003).  

Observations of mangrove above-ground biomass addition in forestry plots indicate that 
individual tree growth will asymptote at a threshold height and biomass addition is largely 
limited to small increments to woody components (i.e. thickening of trunks and stems) (Jin-
Eong et al. 1995, Alongi 2020b, Osland et al. 2020). It is this asymptotic nature of above-
ground biomass addition over time that has led to many forestry-based carbon offsetting 
schemes having a minimum commitment period of at least 20 years before harvesting can 
occur (Galik et al. 2022) and this has translated into voluntary methods for blue carbon 
offsetting (Lovelock et al. 2022a). This aligns with the period over which biomass addition 
accelerates as plants establish and the rate of carbon sequestration is high. When mangrove 
forests and saltmarshes have reached their threshold capacity for standing above-ground 
biomass, then increases in the standing living stock is largely achieved by lateral increases in 
extent as increases in plant density in mature forests will be resource limited. Increases in 
below-ground biomass are presumed to be limited by vertical space within substrates for 
net biomass additionality and addition of biomass will increasingly be offset by 
decomposition of below-ground biomass as substrates asymptote towards higher 
elevations; that is unless relative sea-level rise creates more vertical space for below-ground 
storage. Critically, lateral increases in extent are constrained by the availability of land 
where conditions are favourable within the intertidal and supratidal zone. In addition, while 
intense cyclones and storms are reported to have a return interval of approximately 20 
years (Elsner et al. 2006), aligning with the commitment period for restoration projects 
before harvesting can occur (Galik et al. 2022), the feasibility of restoration projects in 
regions with a propensity for cyclone activity may decrease should projected increases in 
the frequency and intensity of major storms eventuate (IPCC 2021).  

Partitioning of mangrove biomass between above-ground and below-ground differs to 
terrestrial forests in that a relatively high proportion is allocated to below-ground root 
systems (Saintilan 1997, Lichacz et al. 2009), a possible adaptation to saline conditions (Ball 
1988). However, below-ground biomass is somewhat difficult to determine because 
decomposition is limited by saline and anaerobic conditions of tidally inundated substrates, 

https://doi.org/10.1017/cft.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2023.17


Accepted Manuscript 

and differentiating living and dead components of below-ground biomass is difficult (Adame 
et al. 2017). The proportion of mass allocated to above and below-ground components is 
influenced by environmental conditions, most notable soil water salinity, observed in both 
laboratory (Ball 1988, Ball 2002) and field studies (Saintilan 1997), but also soil water 
nutrient conditions (Darby and Turner 2008) and atmospheric CO2 concentrations (Langley 
et al. 2009). Observations of below-ground root addition have been undertaken using root 
ingrowth bags and ‘marsh organ’ experiments, indicating rapid root development 
(Muhammad-Nor et al. 2019, Kihara et al. 2022), an observation supported by repeat 
measures of root biomass (Lamont et al. 2020).  

While addition of carbon to living biomass makes an important contribution to carbon 
drawdown from the atmosphere, the substrates of BCEs are typically the largest carbon pool 
within BCEs with soil organic carbon to a depth of 1 m estimated to comprise 77% of the 
total global mangrove stock and 95% of the total global saltmarsh stock (Alongi 2020a). 
Constraining controls on global below-ground carbon storage has been more elusive, and 
variably related to edaphic conditions associated with climate and substrate salinity 
(Chmura et al. 2003, Kirwan and Mudd 2012, Sanders et al. 2016, Rovai et al. 2018, 
Sanderman et al. 2018). It took some time for the role of sea level rise to be linked to soil 
organic carbon accumulation (Rogers et al. 2019a, Wang et al. 2019); this is surprising given 
the geographic position of intertidal BCEs near mean sea level and the well-established 
influence of sea-level rise on coastal geomorphology. Increasing mangrove extent with 
relative sea-level rise and warmer temperatures over the past few decades has been 
observed and is particularly notable in Australia, Brazil, the Gulf and Atlantic US Coastline, 
Mexico, and South Africa where mangroves have expanded landward to higher elevations 
and/or to more poleward positions (Saintilan et al. 2014, Godoy and Lacerda 2015, Ximenes 
et al. 2016, Osland et al. 2017). Increases in soil organic carbon storage has occurred in 
consort (Kelleway et al. 2016b, Simpson et al. 2019), implying links between soil organic 
carbon storage and sea level is partly mediated by vegetation change.  

Increases in organic carbon accumulation has been measured in wetlands subject to 
increased rates of sea-level rise in southwest Florida (Breithaupt et al. 2020), and eastern 
Australia (Marx et al. 2020). Extreme rapid subsidence beneath a coastal wetland in 
Australia, in the order of 1 m, has served as a natural laboratory for observing the influence 
of relative sea-level rise on carbon storage and addition to mangrove and saltmarsh 
ecosystems (Rogers et al. 2019a). Here soil organic carbon addition accelerated following an 
increase in relative sea level. Following subsidence, conditions in the former higher 
elevation saltmarsh became favourable for mangroves, which rapidly established a deeper 
root network, supplementing the soil organic carbon pool. The submerged mangrove forest 
was inundated more frequently, providing more opportunities for carbon rich tidally borne 
sediments to accumulate and increase the rate of carbon addition. 

The great mangrove forests and saltmarsh plains prior to widespread human-driven change 
to the coastal zone have been reduced to remnants following decades of clearance for 
aquaculture, agriculture, coastal developments, and tidal obstructions (Gedan et al. 2009, 
Friess et al. 2019, Goldberg et al. 2020). This is compounded by conversion to open water 
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arising from land subsidence following groundwater and hydrocarbon extraction and/or 
associated with diminishing sediment supply arising from damming and diversions. Losses in 
recent decades of mangrove forests (0.7-3.0 % yr-1), saltmarshes (1.0-2.0% yr-1) and seagrass 
meadows (0.4-2.6 % yr-1) have contributed an estimated 0.15-1.02 Pg of CO2 emission 
(Pendleton et al. 2012b) per year (by comparison, 3-19% of emissions from deforestation). 
These losses reverse decades of carbon sequestration within biomass and millennia of 
sequestration from substrates. In particular methane flux, a greenhouse gas with ~28 times 
higher global warming potential than carbon dioxide (Smith et al. 2021), is markedly higher 
following substrate disturbance. A global review of methane emissions arising from 
conversion of mangroves, saltmarshes, seagrasses and tidal flats for coastal aquaculture 
estimated a rise in methane emissions per area 7-430 times higher than emissions from 
non-converted coastal habitats (Rosentreter et al. 2021b). Fortunately, there is evidence 
that this trend of declining BCE extent is slowing (Pendleton et al. 2012b, Friess et al. 2019, 
Friess et al. 2020), and losses are being offset by the creation of new wetlands (Murray et al. 
2022).  

Conceptualising Blue Carbon Accommodation Space 
Accommodation is a term used to define the three-dimensional space available for mineral 
sediments and soil organic matter (Jervey 1988) (Figure 2A). The maximum elevation of tidal 
inundation delimits both the landward extent that tidally-borne mineral and organic matter 
can accumulate, and delimits the zone supporting living mangrove and saltmarsh vegetation 
and in situ soil organic matter contributions (Rogers 2021). In situ contributions are also 
delimited at the seaward margin and along tidal creeks by the low energy hydrodynamic 
conditions required for vegetation establishment and ongoing survival; in these locations it 
is only detrital material that can accumulate within sediments. Initially, bedrock or 
basement geology delimits the zone in which sediments can accumulate, but as 
accommodation becomes increasingly infilled, or ‘realised,’ via the accumulation of mineral 
and organic material, substrate elevations increase and become progressively terrestrialised 
and exposed to the oxidising conditions underpinning aerobic processes of soil organic 
matter decomposition. In these circumstances an increase in available accommodation, 
either via autocompaction of sediments that have accumulated within the ‘realised’ 
accommodation, subsidence of the basement, or sea-level rise, is required to reinstate tidal 
inundation, preserve the niche of BCEs, minimise decomposition of organic material by 
processes of oxidation or methanogenesis, and provide new space for additional soil organic 
matter.  

Observations of mangrove and saltmarsh substrate elevation changes using techniques such 
as surface elevation tables, marker horizons and radiometric dating (Figure 2B) confirm that 
sedimentation and surface elevation gain are proportional to position in the tidal frame, 
reflecting the influence of accommodation on accumulation of mineral and organic material 
in substrates (Webb et al. 2013, Raw et al. 2020, Cahoon et al. 2021, Saintilan et al. 2022). 
The effect of sea-level rise on the position in the tidal frame of BCEs has been 
conceptualised by Allen (2000) to account for the addition of mineral and organic material, 
autocompaction and relative sea-level rise. Providing accommodation is available, below-
ground biomass from established vegetation increases substrate volume and the mass of 
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the soil organic carbon pool; above-ground biomass baffles tidal energy, improving 
hydrodynamic conditions for the deposition of suspended sediments. As substrate 
elevations increase, the space available for below-ground organic matter additions and 
mineral sediment addition diminishes, and organic matter decomposition may increase due 
to an associated reduction in inundation depth, duration and/or frequency (often termed 
hydroperiod). In combination, these factors generate a self-organising negative feedback 
that favours the stabilisation of substrate elevations. As a small increment in sea level 
increases accommodation, the associated increase in tidal inundation serves to enhance 
conditions favouring the accumulation of mineral and organic sediments, thereby offsetting 
the small increment in sea level, and maintaining the intertidal position of the substrate; 
addition of organic material is a vital component of this negative feedback. The coupling 
between inundation and organic matter addition that contributes to this negative feedback 
was initially conceptualised for marshes of the SE coast of USA (Morris et al. 2002) and has 
formed the basis for models projecting the organic response of substrates to sea-level rise 
(Mudd et al. 2009, Mack et al. 2023). Field studies have also confirmed linkages between 
coastal wetland evolution, accommodation space and carbon concentrations in mangrove 
and saltmarsh substrates of SE Australia (Owers et al. 2022) (Figure 3). 

The PAST: Sea-level rise, and blue carbon accommodation 
For extended periods over Earth’s history, when the coincidence of rising sea level, 
favourable coastal geomorphology and suitable tidal range has been conducive to extensive 
coastal wetland development, blue carbon has been an important and arguably dominant 
control on global trends in atmospheric CO2. During the Oligo-Miocene, the combined 
influence of sea-level rise, high tidal range and a resultant extensive mangrove development 
in the South China Sea trapped up to 2000 Pg of organic carbon, equivalent to up to 60 
p.p.m. of atmospheric CO2 per Myr (Collins et al. 2017). The development of these forests 
could have been a major contributor to the reduction in atmospheric CO2 concentrations 
from circa 800 to 300 p.p.m. since the Late Oligocene (34-0Ma) (Collins et al. 2017). 

At the peak of the last glacial maximum, sea level was 130-120 m lower than present; this 
low stand and the present high stand are indicative end points of global eustatic sea-level 
cycles (Murray-Wallace and Woodroffe 2014). The response of mangrove forests and 
saltmarshes to sea-level rise since the last glacial maximum has been likened to the 
behaviour of coral reefs at the same period (Neumann and MacIntyre 1985, Reed 1990, 
Woodroffe and Davies 2009), where, depending upon the rate of sediment supply relative 
to the rate of sea-level rise, mangrove forests and saltmarshes may be ‘drowned’, 
‘backstep’, catch-up, ‘keep-up’, ‘prograde’ or ‘emerge’. When rates of sea-level rise 
exceeded 1 m per century during the late-Pleistocene and early-Holocene, the capacity of 
mangrove forests to accumulate mineral and organic material appear to have been 
exhausted, and evidence of ‘drowned’ mangrove peats overtopped by marine transgressive 
sand sheets have been preserved on the Sahul Shelf (northwest Western Australia (Nicholas 
et al. 2014) and the Sunda Shelf (on the western rim of the South China Sea) at water depths 
of up to 100 m (Hanebuth et al. 2000). Extensive mangrove forest development at the time 
appears to have been terminated by Meltwater Pulse 1A, during which rates of relative sea-
level rise increased to >20 mm yr-1 (Lambeck et al. 2014).  
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Deceleration in the rate of sea-level rise in the early-Holocene was broadly marked by 
mangrove development in the millennia prior to sea level stabilisation near present levels. 
In settings of high sediment yield, including the Ganges-Brahmaputra delta, India (Hait and 
Behling 2009) and the Queensland continental shelf, Australia (Grindrod et al. 1999), 
mangrove forests adjusted in situ to sea-level rise from the early-Holocene (~9000 BP), but 
were subsequently ‘drowned’ and then ‘backstepped’. By ~7500 BP, relative sea-level rise 
had decelerated to less than 6-7 mm yr-1, and ‘catch-up', or mangrove landward 
transgression, followed by ‘progradation’ occurred where sediment supply was high, 
resulting in extensive mangrove forests in tropical minerogenic settings. In many places, 
these forests were considerably greater in extent than contemporary mangrove forests, 
including Australia (Woodroffe et al. 1985), the Mekong and Red River deltas of Vietnam 
(Tran and Ngo 2000, Li et al. 2012), and the Great Songkla Lakes, Thailand (Horton et al. 
2005). High rates of organic matter accumulation in this globally synchronous phase of blue 
carbon development sequestered an estimated 20-60 Pg. C, contributing to a 5 p.p.m. 
decline in atmospheric CO2 concentrations in the early Holocene (Saintilan et al. 2020). An 
early-mid Holocene decline in methane, primarily in the Southern Hemisphere, according to 
ice-core data (Beck et al. 2018), commenced over the same period, with reductions in 
Southern Hemisphere emissions estimates of ~19 Tg CH4 yr-1 (Beck et al. 2018). The δ13C 
signals in methane in the Southern Hemisphere for the period show a 1.5 p.p.t. depletion 
(Beck et al. 2018) consistent with a replacement of vegetation utilising the C4 
photosynthetic pathway (tropical grasslands and saltmarsh adapted to low atmospheric 
carbon dioxide) with mangroves utilising the C3 pathway (Sowers 2010). 

By the mid-Holocene, eustatic sea level stabilised within approximately 2 m of its current 
elevation (Clark et al. 1978, Khan et al. 2015). However, the initiation of mangrove and 
saltmarsh transgressive phases was globally variable due to the influence of glacio-isostatic 
adjustment on varying rates of mid- to late-Holocene relative sea-level rise (Ribeiro et al. 
2018), and the modulating effect of other climatic variables (e.g., droughts and/or frequent 
storms) on conditions conducive to intertidal vegetation expansion or decline (Sherrod and 
McMillan 1985, Jones et al. 2019). Global scale variation in relative sea-level trends, largely 
arising from glacio-isostatic adjustment, had a profound influence on blue carbon 
accumulation throughout the mid- to late-Holocene and storage since this time (Rogers et 
al. 2019). Principally related to distance from regions of maximal ice sheet extent during the 
last glacial period, relative sea-level rise modifies the accommodation available for blue 
carbon. The delineation of zones across oceans globally where post-glacial sea-level trends 
are relatively similar (Figure 4A and 4B, Clark et al. 1978) therefore provides an indication of 
the accommodation available for blue carbon storage over the past few millennia. While 
more is known of post-glacial sea-level change since these zones were initially demarcated, 
their broad correspondence with what we now know of relative sea-level trends (Khan et al. 
2015) provides some confidence in the geographic position of zones (noting that boundaries 
between zones are diffuse and not definite). Clark et al. (1978) delineated five zones across 
oceans globally (a sixth zone was associated with continental coastlines) that can be broadly 
grouped into three regions; i) near-field locations are proximal to ice sheets of the last 
glacial maximum and typically exhibit continuous patterns of relative sea-level fall (i.e. Clark 
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et al. 1978, zone I); ii) intermediate locations exhibit complex sea-level trends, however 
relative sea-level rise over the past few millennia is typical; and iii) far-field locations are 
distal from ice sheets and eustatic sea-level trends dominate processes of glacio-isostatic 
adjustment. For brevity, we focus on end members: far-field locations (Zone IV-V) where 
relative sea level has been relatively stable for millennia (or may have fallen); intermediate 
locations where relative sea level has been rising over the mid- to late-Holocene (Zone II-III); 
and near-field locations (Zone I) where relative sea level has been falling (Figure 4A). 

Far-field locations (Zone IV-V), distal from regions of maximal ice sheet extent, exhibit 
patterns of mid-Holocene infill in mangrove (Woodroffe et al. 1993, Cohen et al. 2005, 
Hashimoto et al. 2006, Proske and Haberle 2012, França et al. 2013, Boski et al. 2015, 
Punwong et al. 2018) and saltmarsh settings, with coastal barriers typically enclosing bays 
along the more southern wave-dominated coastlines (Compton 2001, Vilanova et al. 2006, 
Fornari et al. 2012, Kennedy et al. 2021). Ongoing coastal and estuarine sedimentation, and 
a fall in sea level to present levels where a high stand occurred in the late Holocene, caused 
coastal floodplains to increasingly ‘prograde’ or become ‘emergent’, with accommodation 
being limited, and BCEs restricted to the fringes of estuarine shorelines (Woodroffe and 
Davies 2009). Blue carbon ecosystems were replaced by floodplain terrestrial forests and 
freshwater wetlands, a shift that may have contributed to gradual increases in atmospheric 
methane concentrations in the late-Holocene after declining in the early- to mid-Holocene 
(Beck et al. 2018). Preservation of soil organic carbon in far-field locations is limited by 
decomposition as coastal floodplains become increasingly terrestrialised and support 
grasses and sedges, else soil organic matter may be vulnerable to metabolisation and 
formation of pyrites when sulfate and sulfate reducing bacteria are present. This sets up the 
conditions for generation of acid sulfate soils when coastal floodplains are drained, and 
oxidisation occurs. The relationship between former distribution of saltmarshes and 
mangrove forests, relative sea-level stability and coastal acid sulfate soil development is well 
established (Pons et al. 1982, Van Breemen 1982) and reflected in the greater extent of 
actual and potential coastal acid sulfate soils in SE Asia, Africa, Australia and South America 
(Michael 2013) and their virtual absence from intermediate-field locations (see Figure 4A). 

Intermediate field locations also exhibit broad agreement in geomorphological evolution 
over the Holocene (Woodroffe 1981, Digerfeldt and Hendry 1987, Parkinson 1989, 
Parkinson et al. 1994, McKee 2011). In Florida and the northern Gulf of Mexico, the early 
Holocene was marked by rates of relative sea-level rise that were too high for broadscale 
mangrove development (<~7500 BP) (Sherrod and McMillan 1985, Parkinson 1989). Evident 
from interbedded peats and marls, the onset of the transgressive ‘catch-up’ phase occurred 
from about 3500 BP (Scholl 1964, Parkinson et al. 1994, Jones et al. 2019), although the 
occurrence of continuous vertical peat growth, typical of ‘keep-up’ behaviour, is modulated 
in some locations by other climatic factors, including a period of cooling, that may not have 
been conducive to widespread mangrove expansion and vertical growth (Sherrod and 
McMillan 1985, Jones et al. 2019). Where conditions were favourable, vertical growth of 
mangrove peats is near continuous. In particiular, the cenotes of the Yucatan Peninsula are 
reported to have amongst the highest mangrove carbon stocks globally, and their 
accumulation has been related to ongoing relative sea-level rise over the late-Holocene 
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(Adame et al. 2021). The later onset of transgressive phases of mangrove development in 
intermediate field locations reflect stronger rates of relative sea-level rise throughout the 
mid-Holocene, ongoing sea-level rise in the late-Holocene, the influence of other climatic 
variables, as well as limited capacity for vertically adjustment to sea-level rise due to low 
rates of sediment supply in some carbonate dominated settings. Accordingly, ongoing sea-
level rise and limited mineral sediment supply since the late-Holocene may explain the 
preservation of carbon rich mangrove peats in this region (McKee 2011). Similar 
preservation of saltmarsh peats and associated foraminifera is evident at intermediate-field 
sites with a history of increasing accommodation with sea-level rise throughout the mid- to 
late-Holocene (Redfield 1972, Orson et al. 1998, Gehrels 1999). 

Saltmarshes at near-field locations (climate not suitable for mangroves throughout the 
Holocene), those proximal to regions of maximum ice sheet extent at the last glacial 
maximum, exhibited a highly variable pattern of vertical growth and carbon accumulation 
dependent upon the influence of glacio-isostatic adjustment on relative sea-level rise (Khan 
et al. 2015). Analyses of radiocarbon dated saltmarsh sequences in the UK differentiated 
both transgressive sequences (i.e. ‘catch-up’), representing increasing marine influence and 
regressive sequences (i.e. ‘progradation’ or ‘emergent’) indicating increasing 
terrestrialisation (Horton et al. 2018). The presence of these sequences aligned with 
Holocene sea-level history, with ‘catch-up’ transgressive sequences predominating in 
southern England where relative sea-level rise exhibited a pattern of deceleration, while 
regressive sequences were more prominent in Scotland, where relative sea level fell in both 
the early- and late-Holocene. Complex spatio-temporal patterns of postglacial relative sea-
level change throughout the mid- to late-Holocene are also preserved in saltmarsh peats of 
near-field locations across the coastline of the North Atlantic (Vacchi et al. 2018, Cohen et 
al. 2022, Creel et al. 2022). 

Patterns of relative sea-level change over the Holocene and its influence on the distribution 
of BCEs has provided two important lines of evidence about the future of BCEs. Global 
analyses of soil organic carbon stocks in saltmarshes indicate that regions where sea level 
has a longer history of rising over the mid- to late-Holocene, that is intermediate and some 
near-field locations, exhibit higher soil organic carbon stocks and deeper soil organic carbon 
pools than far-field locations (Rogers et al. 2019a). This has been linked to the influence of 
relative sea-level rise on accommodation for blue carbon within substrates, the largest 
carbon pool within BCEs. Where sea level has been rising at a moderate rate for a few 
millennia, vertical space is created for storage of blue carbon within below-ground biomass 
and soils (Figure 4C). In contrast, where sea level has been relatively stable over the mid- to 
late-Holocene, that is across much of the Southern Hemisphere, carbon pools may be 
depleted and shallower (although the depth is dependent upon tidal range), and this has 
been related to the limitations placed on accommodation as substrates become increasingly 
dominated by mineral sediments (Figure 4D). Where sea level has been falling, substrates 
become increasingly terrestrialised with brackish to fresh substrate salinities that are 
aerobic and favour decomposition and methanogenesis (Figure 4E). These differences in 
organic matter content between far-, intermediate- and near-field locations are also 
reflected in the character of contemporary sediment accumulating in wetlands. 
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Intermediate- and near-field locations have higher organic carbon accumulation above 
artificial marker horizons (Saintilan et al. 2020), reflecting both the comparatively higher 
contemporary rates sea-level rise, and possibly also the more organic sub-tidal reservoirs of 
sediment contributing to marsh accretion (Hopkinson et al. 2018).  

The FUTURE: The Present and Past as a Guide to Blue Carbon Futures 
The spectre of climate change has focussed attention on reducing atmospheric carbon 
concentrations and limiting warming well below 2°C, a commitment established in the Paris 
Agreement at COP21 (Iyer et al. 2015). Accordingly, the capacity of BCEs to draw carbon 
from the atmosphere is being leveraged as a climate mitigation strategy, and received 
considerable recognition in the latest IPCC report (Cooley et al. 2022). Conservation of BCEs 
aimed at minimising losses in extent through land use and land cover change (LULCC) and 
restoring condition through improved management will be important. The Reducing 
Emissions from Deforestation and Forest degradation in Developing Countries (REDD+) 
program of the United Nations Framework Convention on Climate Change (UNFCCC) 
specifically targets the improved management of forests to minimise loss and release of 
greenhouse gases, and conservation efforts are increasing in developing countries (Ahmed 
and Glaser 2016). Similar programs for non-forested ecosystems, such as saltmarshes, do 
not exist; however, there is a global peatland initiative that could be applied to saltmarshes. 
In many jurisdictions BCEs are already protected from loss because of the benefits they 
provide to society (Romañach et al. 2018). Despite these policies, loss of BCEs is ongoing 
(Gedan et al. 2009, Friess et al. 2019, Goldberg et al. 2020), and this increases the burden 
for carbon additionality by other mechanisms, such as restoration. 

Restoring BCEs, achieved by planting vegetation, seeds or propagules, or managing barriers 
to tidal exchange that have been put in place to facilitate past LULCC, may enhance carbon 
sequestration as blue carbon vegetation re-establishes. Analyses suggest that restoration to 
recover BCE habitat that has been lost due to human activities in the coastal zone is 
potentially feasible for mangroves, less so for seagrass and saltmarshes (Griscom et al. 2017, 
Macreadie et al. 2021). However, the capacity for large scale restoration is constrained by 
socio-economic factors, particularly where the coastal zone is critical for maintaining 
livelihoods and food security (Herr et al. 2019). Efforts are in place globally to restore 
mangrove forests (Friess et al. 2019), but success is highly variable; often there is a lack of 
understanding of the geomorphological and hydrological controls on restoration success, 
and mangrove restoration efforts have been plagued with failure (Lee et al. 2019, Lovelock 
et al. 2022c). Saltmarsh restoration is also occurring, but receives considerably less scientific 
attention beyond North America; this likely reflects an efficient policy environment and 
sufficient financial capacity for restoration (Billah et al. 2022). Despite these challenges, 
restoration of BCEs is likely to accelerate, being buoyed by the United Nations declaration 
that 2021-2030 is the “United Nations Decade on Ecosystem Restoration” to help meet 
sustainable development goals (Billah et al. 2022).  

Market mechanisms have been developed to incentivise BCE restoration, and currently 
there are two primary markets; the compliance and voluntary markets (Sapkota and White 
2020). Compliance markets are underpinned by regulations to offset greenhouse gas 
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emissions and typically require offsets are accounted under existing standards and using 
approved methodologies, such as the Verified Carbon Standard (VCS) methodology for tidal 
wetlands (VM0033) (Emmer et al. 2015a, Emmer et al. 2015b). In some jurisdictions, the 
voluntary market is also highly regulated; for example, the Australian Government 
administers a voluntary market, the Emissions Reduction Fund, which provides tradeable 
credits (Australian Carbon Credit Units) for tidal restoration activities that increase blue 
carbon storage (Lovelock et al. 2022a, Lovelock et al. 2022b). The payment period for these 
programs is well-defined as the carbon benefits are likely to diminish in the above-ground 
carbon pool once vegetation has reached maturity, and in the below-ground pool when 
substrates are saturated with mineral and organic material (i.e., when accommodation is 
limited). The 25-year permanence time frame aligns with the period for which woody 
vegetation is anticipated to reach maturity and exhibit high rates of carbon addition to 
substrates (Osland et al. 2020), whilst the 100 year timeframe aligns with what is regarded 
to be permanently sequestered soil organic carbon (i.e. permanence) (Dynarski et al. 2020). 
Payments are dependent upon forward projections and ongoing verification. 

Use of BCEs as a mechanism for carbon removal has received some criticism (Williamson 
and Gattuso 2022) due to the high variability and errors in carbon burial rates, lateral 
carbon transport (Maher et al. 2018), methane and nitrous oxide fluxes (Rosentreter et al. 
2021a, Malerba et al. 2022), carbonate formation and dissolution (Saderne et al. 2019, Van 
Dam et al. 2021), vulnerability to future climate change and non-climatic factors, and cost-
effectiveness and scaleability (Macreadie et al. 2021). Confidence in forward projections is 
likely to be improved as data collection continues and knowledge gaps are addressed 
(Macreadie et al. 2019).  

Permanence (i.e., beyond the 25-year and 100-year time frames) of blue carbon is 
fundamental to the success of BCEs as a natural climate solution. Critically, conservation and 
restoration activities will not occur in the absence of sea-level rise, warming and elevated 
atmospheric carbon dioxide concentrations, placing considerable uncertainty regarding 
permanence. The fate of sequestered carbon from BCEs once they succumb to sea-level rise 
is difficult to project, but likely to be highly variable. Palaeo-records provide the opportunity 
to validate projections of the response of BCEs to sea-level rise; however do not fully 
indicate blue carbon futures as sea-level rise is now occurring on coastal landscapes that 
developed throughout the Holocene, have been highly modified and do not have a historic 
analogue (Woodroffe and Murray-Wallace 2012). Projecting blue carbon futures therefore 
requires integration of information from the past and present behaviour.  

Recent analyses have indicated that rising seas associated with ice melt following the last 
glacial maximum exceeded the capacity of tropical mangroves (Saintilan et al. 2020) and 
saltmarshes (Horton et al. 2018, Törnqvist et al. 2021) to remain in situ (i.e. ‘keep-up’) when 
sea level increased at rates exceeding ~ 5-7 mm yr-1. However, mangrove and saltmarsh 
sediments have been preserved since the Holocene (Hanebuth et al. 2000, McKee et al. 
2007, Wang et al. 2009) following sea-level rise at rates higher than currently encountered 
(Redfield 1972, McKee et al. 2007, Saintilan et al. 2020). Long-periods of sea-level stability 
across much of the Southern Hemisphere has contributed to the development of broad, 
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mature coastal floodplains (i.e., considerable elevation capital) when conditions are 
conducive. These floodplains are not typically saturated with carbon (Rogers et al. 2019a), 
may be hot spots for potential and realised acid sulfate soils (Michael 2013), and could 
become extensive BCEs, much like those of the mid-Holocene (Woodroffe et al. 1985). Many 
BCEs in the northern hemisphere have been adapting to sea-level rise for millennia and are 
likely to be lower-lying (i.e., less elevation capital) and have limited capacity to adapt to 
anticipated sea-level rise as the coastal zone is highly contested and coastal squeeze is 
likely.  

The permanence of organic material exposed to drowning is an important consideration. 
Since it takes some time for mature trees and tidal marshes, that are high in the tidal frame 
to drown with incremental increases in sea level, it is feasible that submergence and death 
may occur beyond the minimum 25-year permanency time frame applied in managed blue 
carbon markets. Loss of standing biomass that is currently lower in the tidal frame or in the 
interior of saltmarshes may be high (Kearney et al. 1994), and depending on exposure to 
erosion, soil carbon may be variably preserved (Krauss et al. 2018, Rogers et al. 2019a) or 
reworked and transported elsewhere (DeLaune and White 2012, Haywood et al. 2020). 
Increasing atmospheric carbon dioxide concentrations may enhance productivity of BCE 
vegetation, with enhanced root allocation contributing to sea-level rise adaptation and 
carbon sequestration via addition of carbon volume to substrates (Ball et al. 1997, Langley 
et al. 2009, McKee et al. 2012, Reef et al. 2017). Widespread mangrove dieback has been 
associated with short-term methane flux to the atmosphere (Jeffrey et al. 2019); this has 
potential implications on atmospheric carbon budgets in the event of broadscale mangrove 
mortality under high rates of sea-level rise, or short-term sea-level fluctuations. Figure 5 
conceptualises the hypothesised carbon storage and greenhouse gas flux outcomes under 
scenarios of atmospheric carbon dioxide concentrations, warming and relative sea-level rise. 

The degree to which climate change modifies BCEs is difficult to project as shoreline erosion 
is poorly preserved in the stratigraphy of depositional environments, limiting the capacity to 
parameterise models. In addition, multiple coastal processes contribute to shoreline change 
and observations indicate considerable local and regional variability in the operation of 
processes. Studies that project BCE dynamics with sea-level rise and infer carbon 
implications, are therefore typically undertaken at the local scale, and at data rich sites, and 
the outcomes can rarely be extrapolated to other locations. Otherwise, projections are 
dependent upon simplification of processes and apply reductive estimates of carbon 
concentrations (Lovelock and Reef 2020, Wang et al. 2021), or explore future scenarios 
using simplified idealised models (Kirwan and Mudd 2012). Spatial models typically require 
decisions regarding whether landward retreat of BCEs is parameterised, and, invariably, the 
projected outcomes are highly dependent upon model parameterisation. For example, 
recent projections estimated net gains in blue carbon in the order of 1.5 Pg to 2100 when 
coastal squeeze impacts are minimised and climate change impacts are high (i.e. RCP8.5 
scenario), whilst net blue carbon gains are in the order of 0.8 Pg when under moderate 
climate change scenario (i.e. RCP4.5 scenario) (Lovelock and Reef 2020).  
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Models have consistently indicated the importance of minimising coastal squeeze to 
enhance climate adaptation and mitigation benefits from BCEs (Schuerch et al. 2018, 
Lovelock and Reef 2020, Wang et al. 2021). Managing structures that modify tidal exchange 
and sediment supply will be crucial for maximising blue carbon benefits. Indeed, storm 
surge barriers are already managed to reduce coastal flooding impacts (Haigh et al. 2022) 
and engineering structures could be modified to meet design requirements anticipated with 
sea-level rise and to manage for blue carbon services (Sadat-Noori et al. 2021, Haigh et al. 
2022). In many cases ‘holding back the tide’ will become challenging and costly, and it is 
likely that difficult land use decisions will be made to increase BCE extent and the provision 
of co-benefits (Rogers et al. 2022). Sea-level rise will reduce the viability of large tracts of 
low-lying coastal land for agriculture and grazing purposes, and the efficacy of existing 
structures to hold back tides, many of which were designed when rates of sea-level rise 
were negligible, will be tested. In these circumstances, the benefits of land cover conversion 
for BCEs should therefore be weighed against the costs associated with upgrading existing 
structures to meet future design requirements that accounts for the effects of sea-level rise 
and storm surges on tidal regimes. Momentum towards recognising BCE co-benefits for 
biodiversity, coastal fisheries and water quality is increasing (Rahman et al. 2021, Hagger et 
al. 2022), and efforts are underway to develop a ‘blue chip’ carbon market that provides 
payments for blue carbon additionality and co-benefits (Macreadie et al. 2022). These blue-
chip markets may sufficiently incentivise land managers to reconsider upgrades of tidal 
barriers and instead receive a blue carbon income stream from the land (Rogers et al. 2022).  

Conclusion 
In the short- to medium-term, climate change may increase the capacity of BCEs to capture 
and store atmospheric CO2, largely due to processes that respond to elevated CO2 and 
temperature, and influence carbon capture and storage. These processes include in situ 
responses such as CO2 fixation, biomass storage, biogeochemical enhancement of burial 
efficiency, as well as the expansion of BCEs at local and global scales. The magnitude and 
duration of the negative feedback on climate may vary between hemispheres. Climate 
change is expected to squeeze mangrove and saltmarsh area in the Northern Hemisphere 
between accelerating relative sea-level rise and hard barriers. In the Southern Hemisphere, 
opportunities for landward expansion of mangrove and saltmarsh may be available where 
late-Holocene sea-level history coupled with ongoing sediment supply and lower 
contemporary rates of relative sea-level rise has facilitated the development of broad 
coastal floodplains and where coastal squeeze effects are minimised. The long-term future 
for these negative feedbacks on radiative forcing is dependent upon decisions made in the 
coming decades. At the global scale, the rate of sea-level rise projected under high 
emissions scenarios will lead to degradation and loss of existing coastal wetlands. Sea-level 
rise of ~ 5-7 mm yr-1 is likely to be a critical tipping point at which the predominantly 
negative climate feedbacks driven by blue carbon sequestration become positive feedbacks 
driven by plant decomposition and remineralisation. This tipping point will be surpassed 
under high emissions scenarios within the next century.  

The threat to in situ coastal wetlands makes local land-use and coastal protection the key 
determinant of long-term survival, driven by retreat of BCEs to higher elevations. 
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Investment in coastal wetland conservation and restoration provides benefits not only for 
the preservation of ecosystem services such as coastal fisheries, but also a promising 
opportunity for nature-based mitigation. National governments are developing a broad 
spectrum of climate adaptation and mitigation responses with innovative approaches to 
financing these activities, including some focused specifically on blue carbon. Carbon 
markets are rapidly expanding as a tool for governments, private corporations, and 
individuals to reduce greenhouse gas emissions. While currently only a few blue carbon 
projects have reached the point of generating financing through carbon markets, projects 
are in development in Mexico, Kenya, Colombia, Madagascar and other locations, and blue 
carbon credits are in high demand due to the multitude of co-benefits provided. This 
suggests that carbon markets are promising to finance coastal restoration, climate 
adaptation, and livelihoods for coastal communities.  

Critical knowledge gaps need to be overcome before the full benefit of blue carbon can be 
realised. Priorities include: establishing the full global extent of BCEs and developing 
ongoing monitoring at management-relevant resolutions; addressing the permanence and 
temporal continuity of blue carbon storage and sequestration subject to SLR, changing 
climatic conditions and their impact on the distribution of mangroves, tidal wetlands, 
seagrass and macroalgae at high latitudes; establishing the factors that determine the 
carbon storage and sequestration capacity at the site scale and how these might be 
managed to increase mitigation benefit; and establishing the carbon mitigation potential 
and pathways for other coastal and marine ecosystems such as macroalgae and tidal forests. 
Given the recent momentum in blue carbon research, scientists and policy makers are well 
placed to address these gaps, providing research is sufficiently supported. Crucial to the 
effectiveness of blue carbon research for policy and management application is actively 
focussing on the highly under-studied regions, particularly in the global south, where the 
distribution of mangrove forests is greatest. 
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Figure 1 - Global mapped distribution and existing estimates of carbon cycling parameters of 
(A) saltmarsh and (B) mangrove; (C) modelled distribution of seagrass; and (D) genus 
richness of benthic marine macroalgae. All values are global mean values ± 1 standard 
deviation (where available) unless otherwise specified. Belowground carbon stocks are 
estimated to 1m depth. CAR = (surface) carbon accumulation rate; NPP = net ecosystem 
primary productivity; SE = 1 standard error. Note that for macroalgae, CAR is replaced by 
estimates of carbon burial in situ (i.e., in algal beds) and exported particulate organic carbon 
buried in shelf sediments. Map data sources: saltmarsh (Mcowen et al. 2017) ; mangrove 
(Bunting et al. 2018) ; seagrass (Jayathilake and Costello 2018); macroalgae (Kerswell 2006).  
Carbon data sources: a (Rogers et al. 2019a); b (Pendleton et al. 2012a); c (Duarte and 
Cebrian 1996); d (Wang et al. 2021); e (Ouyang and Lee 2014); f (Atwood et al. 2017); g ; h 
(Alongi 2012); i ; j (McLeod et al. 2011); k (Krause-Jensen and Duarte 2016). 
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Figure 2 - Profiles of BCE landscapes indicating (A) accommodation space, delimited by 
highest astronomical tide, basement or bedrock geology, and hydrodynamic conditions 
favourable for mineral and organic matter accumulation (modified from Rogers (2021)); and 
(B) the range of techniques that can be used to observe and measure changes in substrate 
volume, mineral and organic matter accumulation, and position within the tidal frame, with 
specific focus on changing tidal position with sea-level rise, as per Allen (2000). 
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Figure 3 – (A) Conceptual model of lateral zonation of BCEs of southeastern Australia with 
respect to tidal parameters, and varying distribution of soil organic carbon within the active 
root zone, inactive root zone and subtidal zone; and (B) associated generalised variation in 
carbon storage within BCEs (modified from Owers et al. (2022)). (C-D) Relationships 
between carbon storage and sea-level change (from T0 to Tn) under conditions of (C) 
relatively stable sea level since the mid-Holocene and (D) rising sea level since the mid-
Holocene (modified from Allen (2000)). 
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Figure 4 –Relative sea-level change is a significant control on processes of carbon 
accumulation and decomposition, and varies globally according to the generalised Holocene 
relative sea level zones (A) (Clark et al. 1978) and generalised Holocene relative sea level 
curves across these zones (B). Note the distribution of coastal acid sulfate soils in (A), which 
corresponds broadly with regions where sea level conditions facilitated widescale mangrove 
and saltmarsh development throughout the late-Holocene. When sea levels are rising (C), 
sedimentary carbon continues to accumulate within available accommodation and 
pathways of decomposition are dampened under increasingly anaerobic conditions. Where 
sea level has been relatively stable (D), blue carbon additionality is limited by the upper limit 
of tidal inundation and substrates become increasingly mineral dominated and support 
terrestrial vegetation as accommodation is diminishes. Under conditions of falling sea levels 
(E), substrates become increasingly terrestrialised (i.e., with terrestrial vegetation) and 
conditions favour aerobic decomposition and methanogenesis of blue carbon. 
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Figure 5 – Conceptualisation of the interacting effects of atmospheric carbon dioxide, 
warming and relative sea-level rise on BCE projected to occur under a range of emissions 
scenarios. Under the baseline scenario (A) carbon is fixed by in situ vegetation and 
contributes to soil carbon accumulation and substrate volume via accretion. The landward 
margin under brackish conditions is a source of methane. Under the mid-range emissions 
scenario (B) the feedbacks between elevated atmospheric CO2 and organic carbon 
sequestration and between relative sea-level rise (RSLR) and organic carbon production, 
preservation, and vertical accretion are strengthened. Saline intrusion reduces methane 
emissions in the landward fringe, although this may be counterbalanced by increased 
emissions resulting from increases in NPP induced by CO2 and warming. Under the high 
range emissions scenario (C) a tipping point is reached where RSLR exceeds vertical 
accretion leading to mortality and shoreline retreat. Mortality of terrestrial vegetation 
contributes to elevated methane production in the short term. Note that the relative 
strength of interactions with greenhouse gases are indicated by the thickness of lines, and 
greyed-out vegetation is indicative of dieback or loss associated with the effects of rising sea 
levels. 
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