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Abstract 

With the increasing popularity of the internet of things (IoT), fog computing has emerged as a unique 

cutting-edge approach along with cloud computing. This study proposes an approach for data integrity verification in 

fog computing that does not require metadata stored on the user side and can handle big data efficiently. In the 

proposed work, fuzzy clustering is used to cluster IoT data; dynamic keys are used to encrypt the clusters; and 

dynamic permutation is used to distribute encrypted clusters among fog nodes. During the process of data retrieval, 

fuzzy clustering and message authentication code (MAC) are used to verify the data integrity. Fuzzy clustering and 

dynamic primitives make the proposed approach more secure. The security analysis indicates that the proposed 

approach is resilient to various security attacks. Moreover, the performance analysis shows that the computation time 

of the proposed work is 50 times better than the existing tag regeneration scheme.  
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1. Introduction 

Fog computing is a widely used virtualization platform that provides various services, such as storage, networking, and 

computing-related services between data centers and users. It helps to replace classical cloud computing since it supports 

latency-sensitive, geographically distributed, and quality-of-service-based internet of things (IoT) applications. It was developed 

by Cisco to extend cloud computing to the edge of its network. It reduces latency by combining fog servers as the interface 

between users and cloud servers. It can process a large amount of data with portable applications and be deployed on 

heterogeneous hardware. These properties make fog computing well-suited for various time and location-sensitive applications. 

With cloud computing, data is outsourced to remote servers, and the data owners have no control over their data. The cloud 

service provider (CSP) may fail to keep or purposefully erase infrequently viewed data files that belong to regular cloud 

customers for their profit. Furthermore, the CSP may conceal data corruption caused by server hacks or byzantine failures. 

Hence, verifying the integrity of data stored in the cloud servers is a key constraint in this situation. To address this concern, data 

owners should implement mechanisms to maintain data integrity, regularly verify data possession, and detect illegal changes. 

The traditional data integrity verification technique consists of two phases: 

(1) Setup phase: The user uses the key generation algorithm to set the public and private parameters and the signature 

generation to preprocess the data file and compute the metadata. Then, the user uploads the file to the remote cloud server 

and sends the metadata to a third-party authority (TPA) for auditing. 
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(2) Audit phase: During the time of the verification, the TPA sends a challenge message to the cloud server. After executing 

the GenProof algorithm, the cloud server will generate a response message from the stored data file. The TPA verifies the 

response using the verification metadata via the VerifyProof algorithm [1]. 

 In both cloud computing and fog computing, data is not under the control of the data owner. Therefore, verifying the 

integrity of data stored on remote cloud/fog servers is critical for the proper functioning of the entire system. Several methods 

have been proposed in recent years to verify the integrity of data stored in cloud servers. However, most of them are not 

suitable for fog computing. In traditional cloud computing, the data owner creates the data, and they must generate the 

metadata for integrity verification. In fog computing, a variety of IoT devices create the data, while these devices cannot 

generate the metadata and verify them. The user who stores the data retrieves it in cloud computing. Various end-users access 

the data generated by IoT devices in fog computing. As a consequence, creating novel verification approaches for fog data 

integrity is crucial [2]. Fog nodes have limited power, storage, and processing capabilities. Traditional cryptographic 

techniques are unsuitable for fog computing since they consume more energy and memory. 

On the other hand, a poorly designed lightweight solution would compromise the fog nodes. An effective approach for 

securing data storage is required to ensure data integrity while maintaining low latency, energy, and memory consumption [3]. 

The proposed work guarantees the integrity of fog data using a two-level integrity verification mechanism: cluster-level and 

block-level. The cluster-level verification uses the dynamic key and message authentication code (MAC) to verify the integrity 

of each cluster, whereas the block-level verification uses fuzzy clustering that does not require metadata for verification. The 

uniqueness of the proposed work is that block-level verification is performed without metadata, and the data blocks are divided 

into clusters of different sizes to prevent attackers from predicting the size of the clusters. The usage of dynamic keys, varying 

number of clusters, different cluster sizes, dynamic permutation tables, and random fog storage node selection make the 

attacker's task more difficult. The proposed work offers higher efficiency in maintaining data integrity, and it is the best 

suitable approach for handling a large amount of data where most existing schemes fail. 

The remainder of the paper is organized as follows: Section 2 covers the existing data integrity verification techniques. 

Section 3 presents the proposed partitioning-based data integrity verification approach, and section 4 discusses the security and 

performance analysis of the proposed approach. Section 5 concludes the study with future enhancements. 

2. Related Work 

When data is outsourced to remote servers, preserving its integrity is a major concern. In this concern, many 

cryptography-based schemes have been studied by researchers in recent years. Ateniese et al. [4] proposed a scheme based on 

RSA-homomorphic authenticators that allows an unlimited number of challenges and public auditing to prove data integrity in 

cloud storage. Researchers propose various authentication structures to support integrity verification on cloud data. Wang et al. 

[5] proposed a verification scheme based on the Merkle hash tree (MHT). In this scheme, the client generates a random signing 

key pair and the MHT root, where the leaves of the MHT are hashes of the file blocks. The client generates block signatures 

and sends them along with the signed root to the server. The client initiates data integrity verification by picking random blocks 

and sending them to the server. The client verifies the signed root, and hash values of the blocks received from the server.  

Shao et al. [6] proposed a scheme based on the hashed multiple branches tree (HMBT). MHT is based on a binary tree, but 

HMBT is based on an n-ary tree. Fu et al. [7] developed a multiple hash tree (MPHT) for data integrity verification. Compared 

to MHT, the height of MPHT is low, which reduces the integrity verification time. Tian et al. [8] constructed a dynamic hash 

table for cloud data integrity verification. Shen et al. [9] proposed a method for efficient public auditing of cloud data. A 

location array and a doubly linked info table are the authentication structures used in this scheme. Khedr et al. [10] developed 

a cryptographic-accumulator model to verify the integrity of the data stored on cloud servers. The proposed model used a 

modified Rivest, Shamir, and Adleman-based cryptographic accumulator. 
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All these schemes ensure the integrity of data stored on cloud servers. Data security issues are also present in fog 

computing. Delivering security-as-a-service guarantees system security, including network, data, and fog node security [11]. 

Ahsan et al. [12] presented a technique for providing integrity and confidentiality in fog-oriented cloud storage. XOR 

operations and collision-resistant hash functions are used to check the integrity and retrieve corrupt data blocks. The data 

collected from IoT devices are encoded using Reed-Solomon code and shared between the fog and cloud storage. The hashtag 

associated with each block verifies integrity, and the encoding helps to recover corrupted blocks [13].  

For securing road surface condition crowdsensing, Basudan et al. [14] presented a system based on certificate-less 

aggregate signcryption. The solution maintains the data’s privacy, mutual authentication, confidentiality, and integrity. To 

maintain the privacy, secrecy, and integrity of vehicular crowd-sensing data, modified homomorphic encryption with a 

super-increasing sequence is applied [15]. Tian et al. [16] proposed a scheme to verify data integrity in fog-to-cloud storage 

using a tag transformation strategy. Blockchain technology is used for peer-to-peer authentication and ensuring data integrity in 

fog computing [17]. 

However, this comes at a considerable cost regarding power utilization and storage resources as the use of robust fog 

nodes is needed. Azeem et al. proposed a technique that protects data integrity and counters various security risks, such as data 

creation and replay attacks. By applying the secure message aggregation and decryption algorithm at mobile sinks and fog 

nodes, the proposed work provides secure data aggregation and data forwarding of healthcare data [18]. 

Liu et al. [19] proposed a method for securely monitoring patient healthcare data in a fog environment. Sudarsono et al. 

[20] suggested a method that uses CP-ABE and Hashed MAC to securely transfer environmental data from sensor nodes to a 

gateway while maintaining integrity. To safely encrypt the sensor data, Chatamoni et al. [21] adopted a portable compressive 

sensing technology that uses structurally random matrices and blocks compressive sensing. 

Table 1 compares the proposed work with existing works. Most of the existing work uses a fog layer to enhance the 

security of data which is stored under the cloud. The data produced by IoT devices are initially stored on fog nodes. Since the 

fog data are accessed by the various end users, the fog storage needs to be secured. If the data stored in the fog storage are 

altered by malicious users, then the consumer fog nodes and the end users will get the incorrect data. It necessitates the 

integrity verification of fog data. The proposed work guarantees fog data integrity by using MAC, fuzzy clustering, dynamic 

key, and dynamic permutation table. 

Table 1 Comparison of the proposed work with existing works 

Author Confidentiality Integrity 

Ensuring 

integrity at the 

storage level 

Ensuring integrity at the 

communication level 

Ensuring the 

correctness of 

fog storage 

Usage of 

dynamic 

primitives 

Wang et al. [5] x √ √ x - x 

Shao et al. [6] x √ √ x - x 

Fu et al. [7] x √ √ x - x 

Tian et al. [8] x √ √ x - x 

Shen et al. [9] x √ √ x - x 

Ahsan et al. [12] √ √ √ x x x 

Wang et al. [13] √ √ √ x x x 

Basudan et al. [14] √ √ x √ x x 

Wang et al. [15] √ √ x √ x x 

Tian et al. [16] x √ √ x x x 

Proposed √ √ √ x √ √ 
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3. Proposed System 

3.1.   System model 

Fig. 1 depicts the system model of the proposed work. The model consists of four entities: IoT devices, cloud servers, fog 

compute nodes (FCN), and fog storage nodes (FSN). A CSP organizes and administers many cloud servers to provide scalable 

and on-demand data storage. IoT devices record the raw data with the equipped sensors and send them to FCN. Fog nodes are 

reliable local computing centers that collect data from various IoT devices. Fog nodes, positioned between the cloud and 

end-user devices, can perform processing, transmission, and storage of data [22]. The proposed work considers two types of 

fog nodes: FCN and FSN. FCN collects data from various IoT devices, processes, and stores in FSN. The fog users can request 

the data through FCN. FSN stores the data processed by FCN, and each FSN is associated with the cloud server. It stores its 

data in its associated cloud server. 

 

Fig. 1 System model 

3.2.   Preliminaries 

The proposed work involves dividing the IoT data into n clusters using fuzzy clustering and encrypting them with a 

dynamic key. After that, the encrypted clusters are distributed across the n fog nodes by the dynamic permutation method. For 

data retrieval, all the n clusters and the appropriate dynamic key are required. From the dynamic key, the permutation box 

(p-box) is regenerated, and this p-box helps identify the fog storage nodes that store the corresponding clusters. Retrieved 

clusters are grouped and re-clustered by using fuzzy clustering to verify the integrity. Thus, the clustering technique and 

p-boxes play a major role in the proposed work.  

3.2.1.   Clustering 

During the clustering process, a set of data points are divided into several groups. The data points within a group are more 

similar to one another than the data points in other groups. Clustering algorithms can be deterministic or non-deterministic. A 

deterministic algorithm always obtains the same results with the same input data. A non-deterministic algorithm may provide 

different results every time it runs, even if the same input values are used. When integrity verification is performed, datasets 

grouped in one cluster should be re-clustered. Only then will the integrity verification produce correct results. As a result, 

deterministic clustering is used for integrity verification in the proposed work. 
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The proposed work uses fuzzy clustering, which is a deterministic algorithm. Fuzzy clustering generates unique cluster 

centers for a given dataset. Each record of the dataset is always assigned the same membership value, which means that the 

records of the dataset always belong to the same cluster, regardless of the number of times that the clusters are formed. This 

property is helpful for data integrity verification. Metadata for integrity verification does not have to be stored locally. This 

saves metadata storage and maintenance overhead. 

3.2.3.   Dynamic permutation 

Almost all traditional cryptographic algorithms such as the data encryption standard and advanced encryption standard use 

p-boxes. Permutations are based on a fixed table in this case. p-boxes determine the strength of cryptographic algorithms; hence, 

building cryptographically strong p-boxes is crucial in the design of secure cryptosystems. Based on number theory and modular 

computing, Zobeiri and Mazloom-Nezhad [23] suggested a method for constructing dynamic permutation tables. The length of 

the permutation table is not fixed in this case. The permutation table used in the proposed work is not unique, and it depends on 

the dynamic key. Additionally, the number of entries in the permutation table varies each time when it is constructed. These 

features of dynamic p-boxes make them more suitable to use in the proposed work to improve the security level. 

3.3.   Proposed data integrity verification approach 

The cloud-based IoT network model depends on centralized cloud data centers, which is not feasible for IoT applications. As 

a result, fog computing was introduced to enable data manipulation at the network end to improve service quality by responding 

quickly to customer requests. Data stored in fog nodes are subject to attacks, just like data stored in cloud servers. As a result, the 

integrity of data stored in fog nodes must be verified. Various approaches for verifying data integrity have been established; 

however, most present techniques rely on complex cryptographic algorithms and are unsuitable for handling big data.  

The proposed work uses fuzzy clustering along with dynamic permutation, dynamic key, and MAC to address this issue. 

The proposed approach validates data integrity by considering three phases: key generation, data processing, and integrity 

verification. During the key generation phase, dynamic keys are generated by FCN and used for encryption, permutation, and 

MAC generation. The second phase is the data processing phase where the FCN is used to encrypt, cluster the data, and 

distribute them to the FSN with fuzzy clustering, dynamic permutation, and a dynamic key. The third stage is the integrity 

verification stage, where data is decrypted, grouped, and re-clustered to verify integrity. Fig. 2 illustrates the block diagram of 

the proposed system model. 

 

Fig. 2 Block diagram of the proposed system model 
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3.3.1   Key generation phase 

Dynamic keys and related sub-keys are generated in this phase. Fig. 3 and Fig. 4 show the generation of the dynamic key 

and its sub-keys. Each FCN is associated with a secure static key (SSK) that is not shared with other fog nodes. The 

pseudo-random number generator generates a nonce at the end of every application session. The metadata and timestamp of the 

application's data are used to generate a random nonce. Dynamic key (DK) is produced by XORing the nonce with the SSK and 

hashing it using a secure hash function. The generated DK is 512 bits long and is renewed after each session. DK is subdivided 

into four sub-keys that serve as seeds for various cryptographic primitives. The use of dynamic cryptographic primitives gives 

strong resistance to existing and new threats. 

DK has a size of 64 bytes, divided into four parts, each with a length of 16 bytes. Every 16 bytes is used for different 

cryptographic mechanisms: 

(1) Cluster sub-key PK1: The number of clusters is determined using this sub-key. It is made up of B63-B48 bytes of DK. 

(2) Encryption sub-key PK2: The encryption sub-key is used to encrypt the clusters. It is made up of DK’s B47-B32 bytes of DK. 

(3) MAC generation sub-key PK3: This sub-key checks the cluster's integrity. It is made up of B31-B16 bytes of DK. 

(4) Permutation sub-key PK4: This sub-key is utilized to generate a dynamic permutation table. It is made up of B15-B0 bytes 

of DK. 

Every session has a distinct dynamic key, and any bit change in nonce produces an entirely new set of dynamic sub-keys. As a 

result, different cryptographic updates and primitives are produced. 

  

Fig. 3 Key generation phase Fig. 4 Dynamic sub-keys 

3.3.2   Data processing phase 

The key generated during the key generation phase is divided into four 128-bit parts. The four parts are respectively used 

for the number of cluster selections, symmetric encryption, MAC generation, and permutation. At the end of each application 

session, FCN groups the data received from IoT devices and applies fuzzy clustering to the collected data. 

The number of clusters to be formed is determined by PK1. After clustering, each cluster is encrypted using PK2, and a 

MAC is generated for each encrypted cluster using PK3. The FCN adds the MAC to each encrypted cluster and stores these 

clusters in FSNs using a dynamic permutation table generated with PK4. 

 

Fig. 5 Sub-keys for permutation table generation 
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Fig. 6 Dynamic permutation with NC = 8 and NFSN = 10 

To minimize communication time, only a few clusters are considered. For this, the four LSBs of PK1 or 4 bits extracted 

from PK1 can be used to determine the number of clusters. To generate a dynamic permutation table, arbitrary variables need 

to be initialized. For this, PK4 is divided into 4 sub-keys PK4a, PK4b, PK4c, and PK4d as shown in Fig. 5. The number of entries 

in the input permutation table is determined by the number of clusters. The permutation table is constructed using arbitrary 

variables. In most cases, the entries in the input and the output permutation tables are the same. In the proposed work, the 

number of entries in the input table is equal to the number of clusters, whereas the number of entries in the output table is equal 

to the number of FSNs. Fig. 6 shows the distribution of clusters over the FSNs. The first cluster is stored in the seventh FSN, 

the second one is stored in the fifth FSN, and so on. 

Algorithm 1 describes the steps in the data processing phase. Table 2 shows the list of notations used in algorithm 1 and 

algorithm 2. Initially, fuzzy clustering is applied to divide the data block into clusters. These clusters are encrypted using 

symmetric encryption and PK2. PK3 is used to generate the MAC for every encrypted cluster, and this MAC is appended to 

each encrypted cluster. 

Algorithm 1: Data processing phase 

Input: Dynamic sub-keys (PK2, PK3), data block (D), number of clusters (NC) 

1. C0, C1, …., Cn-1 = FC(D, NC) 

2. for i = 0 to NC - 1 do 

3.            Ci’ = Enc(PK2, Ci) 

4.  MACAi = MAC(PK3, Ci’) 

5.  Ci’’ = MACAi || Ci’ 

6. end for 

Output: MAC attached encrypted clusters 

 

[ ]( ) [ ]( )% %tmpE X SP pow Y SP n m = − +   (1) 

 

Algorithm 2: Permutation table generation 

Input: Dynamic sub-keys (PK4a, PK4b, PK4c, PK4d), number of clusters (NC), and total number of FSNs (NFSN) 

1. PTip[ ] = [1, 2, …., NC] 

2. PTop[ ] = [ ] 

3. X’ = PK4a; Y’ = PK4b; Z’ = PK4c 

4. X = X’ + 1000; Y = Y’ + 1000; Z = Z’ + 100 

5. Bool = 0 

6. while (Bool == 0) do 

7.  if (Z is prime) then 

8.            Bool = 1 

9.  else Z-- 

10.  end If 

11. end while 

12. LP = Z 

 //Initialization of SP array with set of prime numbers 

13. SP[ ] = [LP, ….., 5, 3, 2] 

14. m = n = NC 
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15. for k = 0 to n - 1 do 

16.  Etmp = [(X - SP[k]) pow (Y + SP[k]) % n] % m  

  //Find the Etmp
th entry in the PTip[] and copy it in the PTop[] 

17.  PTop[k] = PTip[Etmp] 

18.  while (Etmp < m) do 

19.   PTip[Etmp] = PTip[Etmp + 1] 

20.   Etmp++  

21.  end while 

22.  m = m - 1 

23. end for 

24. for z1 = 0 to NC - 1 do 

25.  PTop[z1] = (PTop[z1] + PK4d) % NFSN 

26. end for 

Output: Permutation table 

Algorithm 2 describes the process of permutation table generation. To generate a permutation table, two tables PTip and 

PTop are used. The three variables X', Y', and Z' are initialized with PK4a, PK4b, and PK4c. The variable LP is initialized with 

the largest prime number less than Z. A set of prime numbers (LP, ..., 3, 2) is used to initialize the SP array. The variables m and 

n are used to get the value of PTip and populate PTop. The permuted entries for PTip are calculated using Eq. (1). To fill PTop, Eq. 

(1) is repeated n times. Each time the Etmp entry in the PTip is replaced by its successor, the remaining entries in the PTip are 

shifted to the left. To distribute clusters among available FSNs, each entry in the final permutation table is processed by PK4d. 

The resulting permutation table is used to distribute the clusters among FSNs. 

Table 2 List of notations 

Notations Meaning 

D Data block 

C1, C2, C3, …., CNc Clusters 

C1’, C2’, C3’, …., CNc’ Encrypted clusters 

C1’’, C2’’, C3’’, …., CNc’’ Encrypted clusters attached with MACs 

MACAi MAC generated from cluster Ci 

NC Number of clusters 

NFSN Number of FSNs 

LP Largest prime 

SP Set of prime numbers 

PTip Input permutation table 

PTop Output permutation table 

MAC(PK3, Ci’) MAC generation of Ci’ by PK3 

Enc(PK2, Ci) Symmetric encryption of Ci by PK2 

FC(D, NC) Fuzzy clustering of D with NC 
 

3.3.3.   Integrity verification phase 

In the study, integrity verification is completed on two levels: cluster level and block level. When the user requests the 

data, FCN derives DK from the stored SSK and nonce. FCN computes the number of clusters using PK1 of DK and finds the 

associated FSNs using PK4 of DK. It gets the clusters from the relevant FSNs and uses PK3 to generate MACs for every cluster. 

The cluster's integrity is guaranteed if a newly generated MAC matches a previously stored MAC. Hence, the integrity is 

verified at the cluster level. The clusters are then decrypted using PK2 and a symmetric decryption algorithm. FCN combines 

the clusters into a single data block before re-clustering them. Records belonging to the same cluster should have the same 

membership values. This attribute aids in the verification of the received data block's integrity. The data block is re-clustered 

using a fuzzy clustering algorithm, and membership values are examined to verify the integrity at the block level.  



 International Journal of Engineering and Technology Innovation, vol. 13, no. 2, 2023, pp. 160-174 168 

Clustering is an efficient method for identifying patterns and structures in labeled and unlabeled datasets [24]. Most data 

security methods in fog computing collect raw IoT data, apply encryption mechanisms and store it on a server. It is far more 

beneficial to secure processed data than raw data. In the proposed work, fuzzy clustering is used to find useful patterns in the 

dataset and helps to ensure the integrity of the data stored in the fog layer. Then cryptographic mechanism is applied to the 

clusters to store them securely in the FSNs. Fig. 7 shows the integrity verification phase of the proposed approach. 

 

Fig. 7 Integrity verification phase 

The dataset Zaxb was partitioned into three shares, Z1pxb, Z2qxb, and Z3rxb, and then the three shares were distributed 

into 3 FSNs. The integrity of original data can be verified only when all shares are received. In fuzzy clustering, every object 

can belong to every cluster with a membership weight between zero and one.  If the weight is one, then the object belongs to 

that cluster. Fuzzy clustering works as follows: 

(1) Initially, the number of clusters NC is determined, and NC cluster centers are selected randomly from the dataset. 

(2) Membership probability for each data point is calculated as follows: 
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where Dij is the distance between the ith data point to the jth cluster center, and f is a fuzziness parameter, ranging from 1 to infinity. 

The fuzziness parameter establishes the degree of data point sharing between clusters. In the proposed work, it is set to 1. 
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(3) Cluster centers are calculated by: 
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where ik
x  is the data point. 

(4) Steps 2 and 3 are repeated till the cluster centers remain constant. 

This procedure is used for integrity verification at the block level. During integrity verification, clusters are retrieved from 

the FSN and grouped, cluster centers are randomly selected, and the membership values are calculated for each record. Cluster 

centers are recalculated until they stop changing. Once the cluster centers remain unchanged, the membership values of each 

record are checked to verify the integrity of the retrieved data. 

4. Security Analysis and Performance Analysis 

The proposed work uses a dynamic key approach, which generates a set of highly random dynamic sub-keys. All 

cryptographic operations are associated with dynamic keys that ensure the desired cryptographic performance. This section 

describes the security and performance analysis of the proposed work. 

4.1.   Security analysis 

This section analyses the security of the proposed work by considering various security attacks. Key sensitivity analysis 

shows that small changes in dynamic keys lead to drastic changes in the permutation table. The cryptanalysis discussion 

addresses the difficulty of attackers in recovering the original data. The proposed approach is resilient to the following attacks: 

(1) Linear and differential cryptanalysis attack: Linear cryptanalysis is a type of cryptanalysis attack that looks for a 

relationship between the input and output of a cipher scheme. Differential cryptanalysis attack exposes a different pattern 

between two plaintexts and their associated ciphertexts. 

(2) Chosen/known plaintext/ciphertext attack: A cryptanalyst can choose any plaintext/ciphertext and then obtains the 

associated ciphertext/plaintext. Thus, attackers try to either obtain the secret encryption key or devise an algorithm that 

would allow decrypting all ciphertext messages encrypted with this key. 

(3) Session key attack: Attackers obtain the session key for a particular session and utilize it for other sessions. 

(4) Eavesdropping attack: It captures data sent over a network by a computer or other connected devices. Attackers can 

monitor and listen in on network communications. 

Owing to the use of a dynamic key and an efficient permutation mechanism, the proposed approach is secure against all 

the attacks mentioned above. Furthermore, even if an adversary successfully recovers one generation, all subsequent 

generations cannot be recovered because the key is updated dynamically. 

4.1.1   Brute-force attack 

Brute force attacks are most often used to compromise keys. This can be achieved by trying all key possibilities using 

known/selected plaintext/ciphertext pairs to obtain the desired result. In this case, the length of the key is critical to protect the 

attacker's work. The secret key should be at least 128 bits long, which corresponds to a key space of 2128 bits. In the proposed 

approach, the dynamic key is 512 bits in length, with a key space of 2512 corresponding to it, which is sufficient to make the 

brute-force attack infeasible. 
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The time required to crack a key grows exponentially with the length of the key. In the proposed work, dynamic keys 

significantly complicate the attackers’ work. Attackers must know the key during the session to reveal the original data. 

Knowing the key for a single session does not guarantee that an attacker can access data processed in the past or the future. 

4.1.2.   Key sensitivity 

The key sensitivity test modifies the PK4 slightly and computes the difference between the permuted entries at the bit 

level. A key sensitivity value close to 50% should be guaranteed by an effective cryptographic system. Two secret keys Key1 

and Key2 are used in this test; both of them are identical, except for one random bit. The corresponding p-boxes are computed, 

and the hamming distance between these two p-boxes is calculated as follows: 

1 2

1 100%
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where T is the bit-level permutation table's length. The key sensitivity test is shown in Fig. 8 for 1,000 iterations; the mean 

result is close to 50% with a low standard deviation. The proposed work can therefore guarantee high resistance to related-key 

attacks and linear and differential attacks. 

4.1.3.   Cryptanalysis discussion 

The proposed work’s cryptographic security is based on using variable cryptographic primitives. The previous or next 

set of encrypted clusters cannot be recovered even with complete knowledge of the encrypted cluster since new 

cryptographic primitives are applied for each application session. This ensures both forward and backward secrecy. 

Additionally, the permutation method is used to strengthen the unpredictability of the clusters before the data is stored in 

FSNs. The proposed work distributes encrypted clusters over various FSNs. Therefore, the original data protection relies on 

the task of extracting the clusters from NFSN FSNs, as well as the challenge of finding the proper session key, which is 

sufficiently long to make it impossible. 

 

Fig. 8 Key sensitivity variations 

4.2.   Performance analysis 

This section compares the proposed work based on fuzzy clustering with other clustering algorithms. The subsections 

analyze the proposed work in terms of computation, communication, and storage overhead. The proposed work was deployed 

and tested on Raspberry Pi. In the experimental setup, Raspberry Pi represents the FCN. The Raspberry Pi kit used in this 

experiment is RPI4. RPI4 has a 1.5GHz quad-core microprocessor with ARMv7 instructions and 8GB RAM. For analysis, the 
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computation time of the proposed work is compared against k-means, agglomerative clustering with three and five as the 

hyperparameter value of the number of clusters. Since most of the computations take place in FCN, the performance of the 

FCN has been analyzed with data integrity verification time.  

The fuzzy clustering algorithm is used for forming the clusters, AES-128 symmetric encryption algorithm is used for 

encrypting the clusters, SHA-512 is used for dynamic key generation, and HMAC is used for generating the MAC value. The 

efficiency of the proposed partitioning-based data sharing approach using computation time is adapted for assessment. The 

assessment is performed with the mHealth dataset [25] developed by the University of Granada, Spain. It includes capturing 

the vital signs and body motions of ten different participants. Sensor readings are obtained from the volunteer's left ankle, right 

wrist, and chest. The sensor readings are also treated as healthcare data obtained from IoT devices. Fig. 9 and Fig. 10 show the 

integrity verification time of data blocks with varying data sizes from 1MB to 5MB using fuzzy clustering, K-means clustering, 

and agglomerative clustering. 

 

Fig. 9 Integrity verification time with NC = 3 

 

 

Fig. 10 Integrity verification time with NC = 5 

From the analysis, it is identified that fuzzy clustering and K-means clustering took minimal computation time compared to 

agglomerative clustering. But K-means clustering is a non-deterministic algorithm. This means that using the algorithm multiple 

times on the same set of data may provide different outcomes, as shown in Fig. 11. In addition, K-means do not produce the best 

results and only works when the clusters are of diverse sizes and densities. If the initial centers are chosen incorrectly, the 

solution may focus on local maxima rather than global maxima. These characteristics make the K-means clustering to be 

unsuitable for integrity verification. Likewise, agglomerative clustering consumes higher computation time than the other two 

clustering techniques. Hence, fuzzy clustering is a suitable technique for integrity verification in the fog layer. 

Fuzzy clustering uses a deterministic approach and gives each record a membership value based on its distance associated 

with the cluster centers. Records are clustered together using these membership values. Fuzzy clustering always generates the 

same cluster centers for a given dataset. It consistently assigns the same membership value to each record in a dataset, meaning 
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that records always belong to the same cluster, regardless of the number of executions. This characteristic aids in the 

verification of data integrity. Fig. 12 shows the distribution of records among several clusters. The membership values 

assigned to each record during clustering are not required to be maintained in local storage. Hence, the proposed approach is 

efficient in terms of memory utilization. 

 

Fig. 11 Cluster formation in K-means vs fuzzy clustering 

 

 

Fig. 12 Distribution of records in different clustering techniques with NC = 3 

4.2.1   Computation time 

The computation time involves generating dynamic keys using SHA-512 and XOR operations, encrypting data using the 

AES algorithm, generating MAC using the HMAC algorithm, partitioning data using fuzzy clustering, and generating a 

permutation table using modular exponential operations. The initial data upload time is TSHA + TXOR + TAES + THMAC + TFC + TPT. 

The data integrity check time involves the same operations, except AES decryption. In addition, the time to group the clusters 

into a block and the final verification of the membership value of the newly formed clusters are also considered to calculate the 

computation time. Fig. 13 shows that the proposed scheme performs 50 times better than the tag regeneration scheme [16]. The 

proposed scheme mainly involves a few modular exponential operations, XOR operations, and hashing operations, while the 

tag regeneration scheme mainly involves bilinear pairing operations, exponential operations, and hashing operations. 

 

Fig. 13 Comparison of the proposed work with the tag regeneration scheme 

Proposed scheme Tag regeneration scheme [16] 
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4.2.2   Communication time 

The cluster size and the number of clusters to be verified influence the communication time in the proposed work. 

Communication time increases with the number of clusters. However, the proposed work greatly reduces communication time 

owing to the adoption of the fog layer. Fog computing reduces the amount of data that goes to the cloud, significantly reducing 

the latency, response time, and end-to-end latency of data transmission. Several schemes use a fog layer to process IoT data 

and store the processed data in cloud storage, while the proposed work stores data in fog storage and serves end users [12-13, 

16]. Therefore, the proposed work reduces the overall communication time. 

4.2.3   Storage overhead 

Regarding storage overhead, FCN uses SSK and a nonce to generate a dynamic key at the end of each application session. 

Regardless of the number of connected IoT devices, FCN uses a single 512-bit nonce to generate dynamic keys and process 

data received from the IoT layer. During data retrieval, FCN regenerates dynamic keys using the same nonce. Hence, the 

storage overhead for integrity verification on the FCN side of a single session is only 512 bits. During the data processing phase, 

a 128-bit MAC is attached to each cluster, which is then checked during data retrieval. Therefore, the storage overhead of FSN 

is 128 bits per cluster. 

5. Conclusions 

In this study, a partitioning-based data integrity verification approach is proposed. The network contains four entities: IoT 

nodes, FCNs, FSNs, and cloud servers. The procedure of this approach includes three phases protecting and maintaining the 

integrity of the data stored in the fog layer. These phases are the key generation phase, the data processing phase, and the 

integrity verification phase. During the key generation phase, a secure dynamic key is generated, and sub-keys are derived from 

it. In the data processing phase, the received IoT data are clustered and encrypted, and MAC tags are generated for each cluster. 

To store the clusters in distributed FSNs, a dynamic p-box is generated, and the clusters are distributed. Finally, in the integrity 

verification phase, the steps of the data processing phase are performed in reverse order to verify the integrity of the data. 

The proposed partitioning-based sharing approach provides improved performance for the highest level of security. This 

approach focuses on verifying the integrity of a single data replica stored on fog nodes. In a large-scale fog infrastructure, 

multiple data replicas are placed on various fog nodes to minimize the access latency of data consumers. In the future, the 

proposed work can be extended to verify the integrity of the multiple data replicas in large-scale fog infrastructures. Moreover, 

clustering can be coupled with deep learning to improve the efficiency of data integrity verification. 
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