
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

Mechanical Engineering and Materials Science
Independent Study Mechanical Engineering & Materials Science

5-16-2023

Data Collection Research for Multidisciplinary Design & Data Collection Research for Multidisciplinary Design &

Prototyping Fall 2023: Spring 2023 MEMS 400 Independent Study Prototyping Fall 2023: Spring 2023 MEMS 400 Independent Study

Hayato Takai
Washington University in St. Louis

Julian Wu
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/mems500

Recommended Citation Recommended Citation
Takai, Hayato and Wu, Julian, "Data Collection Research for Multidisciplinary Design & Prototyping Fall
2023: Spring 2023 MEMS 400 Independent Study" (2023). Mechanical Engineering and Materials Science
Independent Study. 238.
https://openscholarship.wustl.edu/mems500/238

This Final Report is brought to you for free and open access by the Mechanical Engineering & Materials Science at
Washington University Open Scholarship. It has been accepted for inclusion in Mechanical Engineering and
Materials Science Independent Study by an authorized administrator of Washington University Open Scholarship.
For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems
https://openscholarship.wustl.edu/mems500?utm_source=openscholarship.wustl.edu%2Fmems500%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/mems500/238?utm_source=openscholarship.wustl.edu%2Fmems500%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Spring 2023 MEMS 400 Independent Study

Advisors: Jackson Potter

Report Submission Date: Thursday, May 9, 2023

We hereby certify that the lab report herein is our original academic work, completed in

accordance with the McKelvey School of Engineering and Undergraduate Student

academic integrity policies, and submitted to fulfill the requirements of this assignment:

Julian Wu

Hayato Takai

1

Table of Contents

Abstract 3
Introduction 3
Electronics: 5

I2C Serial Communication 5
Integrating with Arduino 6
Finding I2C Devices with Arduino 6
I2C over long Distances 6

I2C Modules 7
Real Time Clock (RTC) 7
SD card 8
Temperature 9
Magnetic Encoder 10
Optical Encoder 11

Development Board 12
Printed Circuit Board (PCB) 12
Schematic 13
Board Comparison 14

Skills 15
Connections 15
Logic Level Shifting 15
General: 15

Data Transfer 16
Bluetooth 16
Pogo Pins: 16

Deep Sleep 16
Prototyping 18

CAD (Fusion 360) 18
Laser Cutting 18
3D printing 18
Hot glue 18

Weather Station Design: 19
Radiello Cover Design 26
Code 27

I2C Data Logging Sample Code 27
Bluetooth Serial Transmit from Sd Card 33

2

Abstract

Dr. Jackson Potter is a Mechanical Engineer and professor at Washington University in
St. Louis. One of the classes he teaches is called Multidisciplinary Design & Prototyping
(MEMS 312). The class is taken by students from various disciplines to learn about design
processes and develop new skills. In addition, this class typically has a theme to make the
prototyping process more realistic and have an end goal. For 2022 the theme was accessible
gaming, where students would create universal gaming controllers for people that might not be
able to use traditional controllers. For the next year, Dr. Potter wanted to focus on sensors, so the
theme focuses on creating robust designs that could house sensors and be functional outside,
teaching students about the different sensors and prototyping the housing for it. Additionally, a
real life application is that an air quality monitoring system needs to be stored and deployed
efficiently, so we tried to come up with a minimum viable prototype to address the issue. This
document is for compiling all potential content for the Fall 2023 course theme.

Introduction

Weather Kit:

Environmental sensors are used all over the world to store and transmit data. It’s

important to have data covering multiple areas so scientists and researchers can get a good idea

about how weather patterns change. Some areas are pretty remote and can’t be accessed very

easily, so some setups need to be robust enough to last long periods of time before being replaced

or taken down. Some characteristics of weather stations are that they are weatherproof, have

long-lasting batteries, can transmit data over long distances or store data internally, and provide

precise measurements.

An example of a weather station that might be used to take data is the Sparkfun Weather

Meter Kit.

Figure 1 below shows the Sparkfun Weather Meter Kit with its components.

3

https://www.sparkfun.com/products/15901
https://www.sparkfun.com/products/15901

Figure 1 Sparkfun Weather Meter Kit

This device measures rain, temperature, windspeed, and wind direction, and stores it

either on an SD card or directly into a computer. However, this device also comes with its own

flaws. Besides having its own interfacing system (not compatible with arduino, and uses drag

and drop), the wind vane only measures 8 directions, So if it was pointing let’s say at 30 degrees,

there would be no direction listed because the switch wasn’t activated. The second drawback is

that the device itself costs ~$150 for everything to get it up and running, which costs far more

than the cheap sensors used. Therefore, the task for independent study was to come up with a

cheaper alternative that can outperform the weather kit in terms of accuracy, precision, battery

life, and programmability.

Radiello:

Radiello is an air quality monitoring system that is embedded into a small cylinder and

can be taken to very remote areas. It was developed to be light, versatile, inexpensive, and not

require any power to be operated. The way it works is that if it senses specific particles in the air,

it will change colors and alert the user that there is something in the air. The issue is that

sometimes researchers don’t want to measure the specific areas that they pass through, so they

need an efficient way to store and then quickly deploy the radiello when needed.

4

Electronics:

I2C Serial Communication
I2C is a serial communication bus that was designed in 1982 by NXP Semiconductors. It is used
widely in prototyping due to its ease of use and support. I2C gained popularity because it is a
synchronous 2-wire interface, consisting of the Serial Clock Line (SCL) and the Serial Data Line
(SDA). The SCL is generated by the controller and synchronizes the signal between the
controller and the peripherals. The SDA line is the data signal. In total, you need four wires when
you add VCC for power and GND for ground. Another reason I2C is popular is because you can
connect up to 112 devices with 7-bit addressing, usually indicated as a hexadecimal value. I2C is
used in most sensors nowadays. This is nice because you can add a bunch of sensors on just two
lines when previously, they would take up at least one IO pin on the microcontroller.

Fig 1. https://www.electronicshub.org/basics-i2c-communication/

I2C also frees up processing on the controller side. There is less to worry about when compared
to receiving raw input from sensors which often suffer from being very finicky.
Data is transferred in sequences of 8 bits preceded by a start sequence and ends with a stop
sequence. The two lines are open drain so pull up resistors(2k for 400kbps and 10k for 100kbps)
are needed so that the default for the lines are high (Fig. 1). If the signal is not acknowledged, the
controller will decide what to do. These videos are good for understanding conceptually but the
actual application will consist of following datasheets and github repositories from the
manufacturer. I2C also lets microcontrollers communicate with each other, which can be helpful
in some situations.

I2C: https://youtu.be/6IAkYpmA1DQ
I2C vs SPI vs UART: https://youtu.be/IyGwvGzrqp8
Pull-up Resistors: https://youtu.be/Ef9CpzpnjQg
Addressing: https://youtu.be/8R13KHx4dTQ

5

https://www.electronicshub.org/basics-i2c-communication/
https://youtu.be/6IAkYpmA1DQ
https://youtu.be/IyGwvGzrqp8
https://youtu.be/Ef9CpzpnjQg
https://youtu.be/8R13KHx4dTQ

Integrating with Arduino

1. Include the wire library
#include <Wire.h>

2. The easiest way to use an I2C connection is to find a library for it.
Ex. #include <SparkFun_RV8803.h>

3. Next, initialize the instance for the device.
Ex. RV8803 rtc;

4. Start the I2C connection with the wire library
Wire.begin();

5. Connect to the specific device (The begin function usually returns a boolean, for status)
Ex.

if (rtc.begin() == false){
Serial.println("Device not found. Please check wiring. Freezing.");
while (1);
}
Serial.println("RTC online!");

Finding I2C Devices with Arduino

The I2C scanner function finds available I2C devices and prints them onto the Serial Monitor.
Running this is highly recommended as a first step when troubleshooting.
https://playground.arduino.cc/Main/I2cScanner/

I2C over long Distances
Using 12C over long distances (>1m) is not recommended since the signal will suffer.
However if you must, you can lower clock speed to 50 or 10kHz or use a current booster.
Current booster: https://www.adafruit.com/product/4756
https://www.youtube.com/AFRwKN-7NbM

6

https://playground.arduino.cc/Main/I2cScanner/
https://www.adafruit.com/product/4756
https://www.youtube.com/watch?v=AFRwKN-7NbM&list=PLjF7R1fz_OOXyxiYQWEX4OZga9c7jrw5q&index=39

I2C Modules
*uses I2C

Fig. 2: Development board hooked up to multiple I2C devices

Real Time Clock (RTC)

Description: RTC modules are able to keep track of precise time even when the device is
powered off thanks to an external coin battery that keeps the crystal oscillator alive.
Features including lower power consumption, wide temperature range, and alarm
interrupts make clock modules reliable for data logging applications.

Module tested:
● RV-8803* ($17.50) https://www.sparkfun.com/products/16281

Alternative clock modules:
● DS3231*(~$3): https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/
● DS1307*(~$2)

Among the alternatives, DS3231 is recommended over the DS1307 because it is
temperature compensated. This means that the timekeeping will not fluctuate with
temperature, so it keeps better track of time. The DS1307 has an external oscillator while
the DS3231 has an internal one. The DS1307 can end up being off by five minutes per
month while the DS3231 only loses a few seconds a month. The DS3231 may be ever so

7

https://www.sparkfun.com/products/16281
https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/

slightly harder to use than the RV-8803 but would be our first choice when considering
cost, availability of tutorials/examples, and features.

SD card

Description: SD card modules are used for storing large volumes of data in a secure
location, mostly for data logging applications. They retain their files even when powered
off and are directly readable by a computer, making them vital for data logging
applications. Most SD card modules use micro SD cards. When logging onto an SD card,
it is important to consider what type of delimiter to use when writing the text file. Doing
so will allow you to parse the data much easier when opening as a csv. It is also standard
to include a line of headers in the text file, which will later become the column header.
Another useful tip is giving each file a unique name. This can be done by adding the
date/time to the file name. This will prevent newly generated files from overwriting or
appending to older files.

Module tested:
● Openlog Dev-15164* ($18.50) https://www.sparkfun.com/products/15164

Alternative SD card modules:
● SPI SD card module (~$3):

https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/

An I2C SD card module was chosen over an SPI (different communication protocol) SD
card reader because the SPI connection requires more pins. In our case, we would not
have any digital pins left on the ESP8266 which would become a problem when
connecting the optical encoder which requires a digital input pin. The I2C module is also
easier to use because it has its own ATmega328 and oscillator. It’s basically a second
arduino nano. The only downside to this is that it can draw up to 20mA when writing to
the SD card. SPI SD card modules are much more available but are very loosely
regulated. There are multiple versions of the same general PCB layout floating around
but since there is no naming for them, you can’t easily tell which model you’re getting.
Regardless, when using SD cards with microcontrollers, the SD card must be formatted
to FAT16 or FAT32 and work best with cards that are 64MB to 32GB. A good formatter

8

https://www.sparkfun.com/products/15164
https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/

is ​​https://www.sdcard.org/downloads/formatter/. Disk Utility on Mac was tested and did
not work as reliably.

Temperature

Description: Temperature sensors are typically very easy to use and widely available.
They have a small footprint so most modules come in the form of a breakout board. They
are lower power consumption which minimizes self heating.

Module tested:
● TMP117* ($14.95) https://www.sparkfun.com/products/15805

Alternative temperature modules:
● TMP102* ($5.50): https://www.sparkfun.com/products/13314
● AHT20/21* (~$4.50) https://www.adafruit.com/product/4566
● AHT10* (~$2)
● DHT22 (~$4)
● DHT11 (~2.00)

The recommended temperature really depends on the needs of the applications. The
TMP117 is super high precision but comes at a cost. The TMP and AHT line up uses I2C while
the DHTs use analog voltage. There are so many temperature sensors out there with different
performance results that it is really hard to recommend the “best” one. The DHTs have been
around for a long time and are common since they are cheap and easy to find but are considered
more of a toy than a data logging instrument. The AHTs are sort of the newer generation of
sensors to the DHTs and include humidity sensing but are far from perfect. There are so many
sensors out there and even the same models of sensors have different boards and performance at
times. Here is a very interesting forum that tests out a bunch of temperature sensors.
https://forum.arduino.cc/t/compare-different-i2c-temperature-and-humidity-sensors-sht2x-sht3x-
sht85/599609 The forum leads to this project page
https://wiki.liutyi.info/display/ARDUINO/v9+Sensors+Board

9

https://www.sdcard.org/downloads/formatter/
https://www.sparkfun.com/products/15805
https://www.sparkfun.com/products/13314
https://www.adafruit.com/product/4566
https://forum.arduino.cc/t/compare-different-i2c-temperature-and-humidity-sensors-sht2x-sht3x-sht85/599609
https://forum.arduino.cc/t/compare-different-i2c-temperature-and-humidity-sensors-sht2x-sht3x-sht85/599609
https://wiki.liutyi.info/display/ARDUINO/v9+Sensors+Board

Magnetic Encoder

Description: A magnetic encoder is a contactless angle measurement device that uses a

bi-directional magnet to make friction virtually obsolete. By sticking the magnet onto the

bottom of a wind vane, the sensor does not make any contact with mechanical

components, unlike when using a potentiometer. Magnetic encoders are becoming more

common in applications, even more than optical encoders because they are able to

maintain their calibration even when powered off when using a permanent bi-directional

magnet.

Fig. 3: https://www.akm.com/us/en/products/rotation-angle-sensor/tutorial/magnetic-encoder/

Module tested:
● AS5600-SO_EK_AB* ($16.76)

https://www.digikey.com/en/products/detail/ams-osram/AS5600-SO-EK-AB/5066
879

Alternative Magnetic Encoders:
● AS5600* ($3.50):

https://www.amazon.com/Magnetic-Encoder-Induction-Measurement-Precision/d
p/B097QNG1CN/ref=sr_1_3?keywords=magnetic%2Bencoder&qid=168339988
6&sr=8-3&th=1

● Hall Effect Encoder(~$8): https://www.pololu.com/product/3081

We tested the chip manufacturer, AMS’s, official breakout board for the AS5600 chip
made by AMS but there are third party boards that use the same chip for much cheaper.

10

https://www.akm.com/us/en/products/rotation-angle-sensor/tutorial/magnetic-encoder/
https://www.digikey.com/en/products/detail/ams-osram/AS5600-SO-EK-AB/5066879
https://www.digikey.com/en/products/detail/ams-osram/AS5600-SO-EK-AB/5066879
https://www.amazon.com/Magnetic-Encoder-Induction-Measurement-Precision/dp/B097QNG1CN/ref=sr_1_3?keywords=magnetic%2Bencoder&qid=1683399886&sr=8-3&th=1
https://www.amazon.com/Magnetic-Encoder-Induction-Measurement-Precision/dp/B097QNG1CN/ref=sr_1_3?keywords=magnetic%2Bencoder&qid=1683399886&sr=8-3&th=1
https://www.amazon.com/Magnetic-Encoder-Induction-Measurement-Precision/dp/B097QNG1CN/ref=sr_1_3?keywords=magnetic%2Bencoder&qid=1683399886&sr=8-3&th=1
https://www.pololu.com/product/3081

The Hall Effect Encoder is pretty much a deconstructed AS5600 and is not recommended
since it does not use I2C.

Other types of Magnetic Sensors:
● Magnetoresistive sensor
● Magneto-impedance sensor

Optical Encoder

Description: Optical Encoders are another type of contactless angle measurement device.

They use a code disk with opaque ticks that block out light in pulses between a light source and a

photodetector. By increasing the number of ticks on the code disk, the optical encoder is more

precise than magnetic encoders but must be calibrated each time the system is reset or if the disk

falls out of calibration. It is easier to use optical encoders for measuring rotary speed than for

angular position.

Fig. 4: https://www.encoder.com/article-what-is-an-optical-encoder

11

https://www.encoder.com/article-what-is-an-optical-encoder

Development Board
A dev board was created to make testing various communication interfaces and connecting and
removing devices easier. On the outermost row, screw block terminals can be used to ensure a
secure connection. There are five I2C interfaces, four customizable through-holes and one
3.5mm jack connection. There is one UART interface and one SPI interface. When the SPI
interface is not in use, three digital input pins are available. D5, D6, D7. One analog pin is also
available. ESP8266 was chosen as a board for its high clock speed, flash memory, and wifi
connection, while having a very cheap cost (~$2). There are designated spots for pull-up
resistors, as well as customizable voltage options. This board was manufactured and used in all
testing.

Printed Circuit Board (PCB)

Fig. 5 a,b: Front (Left), Back (Right) of PCB

Fig. 6: Wire Traces for Development Board

12

Schematic

Fig. 7: Schematic for Development Board

13

Board Comparison

ESP8266 (NodeMCU) ESP32 (Devkit) Arduino Nano
(Atmega328P)

Flash 4mb 16mb 32Kb

Clock Speed 160MHz 160MHz 16MHz

Output Voltage (DC) 3.3V 3.3V 5V DC

Input Voltage (DC) 5V - 12V 5V - 12V Mac 20V

Low Power 20μA 10μA 6mA

Digital Pins 17 6 14

Analog Pins 1 8 6

PWM 4 16 6

I2C 2 2 1

UART 2 2 1

SPI 2 4 1

WiFi Yes yes No

Bluetooth No yes No

Cost $3-$6 $6-$12 $10-$20

Datasheet https://www.espressif.c
om/sites/default/files/do
cumentation/0a-esp826
6ex_datasheet_en.pdf

https://www.espressif.c
om/sites/default/files/do
cumentation/esp32_dat
asheet_en.pdf

https://docs.arduino.cc/r
esources/datasheets/A0
00066-datasheet.pdf

Warning, that when using ESP8266, the GPIO has different pinout numbers. See image below

14

https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf

Fig. 8: Image from https://coeleveld.com/esp8266-esp-12e-big-digits-ntp-clock-with-date-time-temperature-humidity-pressure-barometer/

Skills

Connections

Soldering: https://www.youtube.com/QKbJxytERvg

Solid core vs stranded wire: https://www.youtube.com/UcZX-s3lEN4

Logic Level Shifting

Logic level shifting is a way to make the +5V output of a microcontroller such as an Arduino
Uno, compatible with +3.3V logic devices (Such as I2C devices without voltage controllers).
https://www.youtube.com/Ux0WYpDA

General:
Personal favorite youtube channel for electronics (Playlist:
https://www.youtube.com/KoSatCnclhE

15

https://coeleveld.com/esp8266-esp-12e-big-digits-ntp-clock-with-date-time-temperature-humidity-pressure-barometer/
https://www.youtube.com/watch?v=QKbJxytERvg
https://www.youtube.com/watch?v=UcZX-s3lEN4&list=PLjF7R1fz_OOXyxiYQWEX4OZga9c7jrw5q&index=14
https://www.youtube.com/watch?v=rawUx0WYpDA&list=PLjF7R1fz_OOXyxiYQWEX4OZga9c7jrw5q&index=12
https://www.youtube.com/watch?v=KoSatCnclhE&list=PLjF7R1fz_OOXyxiYQWEX4OZga9c7jrw5q

Data Transfer

Data transfer can be done by connecting to a mobile device via bluetooth or via pogo pins

Bluetooth
The easiest way to use bluetooth will be to read data off of an SD card in block or “chunks” and
transmit each block at a time over a serial bluetooth connection to a mobile device. Since
ESP8266 does not support bluetooth, recommended boards are ESP32 or nrf52840 or stm32wb.
See “Bluetooth Serial Transmit from Sd Card” in the code section below.
An mobile app for receiving serial data is required.
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en&p
li=1
Warning: Due to the limited bluetooth apps available, there is a high chance that apple does not
allow SPP (Serial Port Profile) or “Classic Bluetooth” devices and interfaces.
A workaround is to use BLE, which is a bit more complicated, and data logging files may not be
suitable.
IOS:https://apps.apple.com/us/app/nrf-connect/id1054362403

Pogo Pins:
What are pogo pins: https://youtu.be/NGZ_vd6qmeQ

One method of transferring data is having 4 waterproof contacts that are pressed on by a I2C SD

card. When the device detects that the new SD card is connected, it transfers data from the

internal SD card to the external SD card, using the same block by block method.

https://www.digikey.com/en/products/detail/mill-max-manufacturing-corp/878-20-004-00-01100

0/16630537

Deep Sleep

Deep Sleep is a state where a microcontroller shuts off everything high frequency and only

leaves the clock and wake circuitry. Power consumption values range wildly since there are so

many factors that draw power. Development boards will use more power in deep sleep than their

chip alone. In usage, more power will be used than written deep sleep power consumption values

as energy is used to wake the device and perform a task.

16

https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en&pli=1
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en&pli=1
https://apps.apple.com/us/app/nrf-connect/id1054362403
https://youtu.be/NGZ_vd6qmeQ
https://www.digikey.com/en/products/detail/mill-max-manufacturing-corp/878-20-004-00-011000/16630537
https://www.digikey.com/en/products/detail/mill-max-manufacturing-corp/878-20-004-00-011000/16630537

In an idle state, an ESP32 can use 15μA to 400mA. Assuming Wifi is on, the ESP32 dev board

consumes typically around 58mA at 3.3V in idle.

Watt’s Law: W=V*A*p.f = 3.3*58mA = 191mW

Power Consumption per day:4.6Wh

On a 5000mAh battery, 5000mAh / 58mA = 86 hours

However, batteries usually drop in voltage before they deplete so this is most likely lower.

In deep sleep, power consumption usually drops to around 4.1mA. The power consumption is a

lot higher than what the data sheet states due to power loss from the voltage regulator and

CP2102N chip.

Watt’s Law: W=V*A*p.f = 3.3*4.1mA = 13.5mW

On a 5000mAh battery, 5000mAh / 4.1mA = 1220 hours

This is a lot longer but since the device will need to wake up from time to time to record data,

this value will be lower.

This can be done with:

ESP.deepSleep(uint32 time_in_us);

17

Prototyping

CAD (Fusion 360)
Can probably reuse the tutorials from last year as it still fits the curriculum

Laser Cutting
What is laser cutting?

■ https://www.twi-global.com/technical-knowledge/faqs/what-is-laser-cuttin
g

CO2 laser cutting primer
■ https://aplazer.com/how-it-works-co2-laser-cutters/

3D printing
Option to reuse old 3D printing primers but I have put a few more below

■ What is it?
● https://3dprinting.com/what-is-3d-printing/

■ Types of 3D printing
● https://ultimaker.com/learn/what-is-3d-printing

■ What 3D printing made possible
● https://all3dp.com/2/3d-printing-innovations-innovative-3d-printin

g/
■ Tolerances

● https://all3dp.com/2/3d-printing-tolerances-test-fdm/

Hot glue
Makerspace hot glue tutorial

Prototyping
Engineering design process primer

18

https://www.twi-global.com/technical-knowledge/faqs/what-is-laser-cutting
https://www.twi-global.com/technical-knowledge/faqs/what-is-laser-cutting
https://aplazer.com/how-it-works-co2-laser-cutters/
https://3dprinting.com/what-is-3d-printing/
https://ultimaker.com/learn/what-is-3d-printing
https://all3dp.com/2/3d-printing-innovations-innovative-3d-printing/
https://all3dp.com/2/3d-printing-innovations-innovative-3d-printing/

Weather Station Design:
● Example of a hobbyist kit

○ https://www.sparkfun.com/products/15901?gclid=CjwKCAjwrpOiBhBVEiwA_4
73dPWXGvMr1Ggk4m2xneXzYnAoSZ5ZAXWTkg5ffRxxC4wBg906Btw6Bxo
C2icQAvD_BwE

○ Cons
■ Only measures 8 directions (not 360 degrees)
■ Uses drag and drop coding (not open source and very limited

● Other examples
○ Upgraded sparkfun weather station

■ https://www.instructables.com/Web-Connected-Weather-Station/
○ DIY weather station

■ https://www.instructables.com/DIY-Standalone-Weather-Station-Powered-
by-Arduino/

○ IoT (long range, low power) weather station
■ https://www.instructables.com/Esay-IoT-Weather-Station-With-Multiple-S

ensors/

Weather Station Design:
● Constraints

○ Has to be weather resistant
○ Can’t be too bulky
○ Should be inexpensive

● Optimization
○ Should be able to be put in a remote area
○ Should lsat awhile
○ Data should be relatively precise

Thought process:
● Could be helpful to but the anemometer and wind vane next to each other to save space

instead of making them into one unit
○ Could have a shaft of different length so one fits on top of the other (see picture)

19

https://www.sparkfun.com/products/15901?gclid=CjwKCAjwrpOiBhBVEiwA_473dPWXGvMr1Ggk4m2xneXzYnAoSZ5ZAXWTkg5ffRxxC4wBg906Btw6BxoC2icQAvD_BwE
https://www.sparkfun.com/products/15901?gclid=CjwKCAjwrpOiBhBVEiwA_473dPWXGvMr1Ggk4m2xneXzYnAoSZ5ZAXWTkg5ffRxxC4wBg906Btw6BxoC2icQAvD_BwE
https://www.sparkfun.com/products/15901?gclid=CjwKCAjwrpOiBhBVEiwA_473dPWXGvMr1Ggk4m2xneXzYnAoSZ5ZAXWTkg5ffRxxC4wBg906Btw6BxoC2icQAvD_BwE
https://www.instructables.com/Web-Connected-Weather-Station/
https://www.instructables.com/DIY-Standalone-Weather-Station-Powered-by-Arduino/
https://www.instructables.com/DIY-Standalone-Weather-Station-Powered-by-Arduino/
https://www.instructables.com/Esay-IoT-Weather-Station-With-Multiple-Sensors/
https://www.instructables.com/Esay-IoT-Weather-Station-With-Multiple-Sensors/

■
● Would be nice to reuse parts to save from having all unique pieces

Function Tree:

Morph Chart:

20

Potter’s Prototype:

Prototype Design:

21

● Part selection:
○ Shaft should be 3D printed (it is round so would be hard to laser cut)
○ Box should be laser cut (more straight edges and acrylic might be more weather

proof)
○ Wind vane and anemometer should be 3d printed (usually are plastic parts and

unique shapes)
● Prototype pictures

○

○

22

○
● Issues with prototype

○ Tolerance errors with 3D printed parts +/- 0.25mm
○ Shaft collar thickness (bolt dragging along bearing)
○ Bearing friction (doesn’t spin well)

● Improvement recommendations
○ Find a more frictionless way to move pieces (capture small wind direction

changes)
○ Refine the tolerances for laser cuts and 3D prints (weatherproofing)
○ Add a hinge design for easy access

Radiello Design:
● Introduction (https://radiello.com/)

○ Radiello is an air quality monitoring system that detects specific particles in the
air like pollen, and then changes color accordingly (indicating that specific
particles are present in the air). Radiello was designed with simplicity in mind, as
it is electricity free, lightweight, easy-to-produce, and has multiple uses.

○ The issue with Radiello is sometimes there are false positives and also transport
through places that don’t need to be measured. To combat this, students are tasked
with designing a contraption to keep the Radiello away from detecting when not
needed, and then release it quickly through a contraption

● Constraints
○ Radiello must have 360 degree freedom when extended
○ Radiello should be relatively hidden away when stored (doesn’t have to be fully

airtight)
● Optimization

○ As light as possible
○ As small as possible

Dr. Potter’s idea:

23

Function Tree:

Morph Chart:

24

Prototype Design:

25

Radiello Cover Design

The radiello design was built to have students get hands on experience with building. The design uses
wire from a hanger that was cut and bent. Two holes were drilled into a piece of plywood to secure the
wire in place. A length of pvc pipe was cut and two holes were tapped and drilled in a vice to pass
through a string. This string will be attached to the arm of a servo motor that lifts and lowers the pvc.
There is a 3D printed piece attached to the top of the radiello that creates an airtight-like seal that also acts
as a track for the pvc pipe to slide along.

26

Code

I2C Data Logging Sample Code

Sample Output (exported as csv)

//Author: Hayato Takai 5/3/2023

/*Description:
This code was written for a datalogging weather station for Independent Study SP2022.
Hardware requirements:

• Sparkfun Qwiic RV8803 RTC
• Sparkfun Openlog DEV15164
• Sparkfun TMP117 Temperature
• AS5600-SO_EK_AB AMS OSRAM Magnetic Encoder

*/

27

//
Settings**********************************

boolean resetTime = false; // if true, resets RTC time
boolean militaryTime = false; // if true, uses 24hr clock
boolean customTime = false; // if true, sets the RTC to custom time
String myFile = "test.txt";
// **Hardware
Connections***

// Plug the RTC into the Qwiic port on your microcontroller or on your Qwiic shield/adapter.
// If you are using an adapter cable, here is the wire color scheme:
// Black=GND, Red=3.3V, Blue=SDA, Yellow=SCL
// Open the serial monitor at 115200 baud

//
Libraries*********************************

#include <SparkFun_RV8803.h> //Get the library here:http://librarymanager/All#SparkFun_RV-8803
RV8803 rtc; //Create RTC instance

#include "SparkFun_Qwiic_OpenLog_Arduino_Library.h"
OpenLog myLog; //Create Logger instance
int ledPin = LED_BUILTIN; //Status LED connected to digital pin 13

#define STATUS_SD_INIT_GOOD 0
#define STATUS_LAST_COMMAND_SUCCESS 1
#define STATUS_LAST_COMMAND_KNOWN 2
#define STATUS_FILE_OPEN 3
#define STATUS_IN_ROOT_DIRECTORY 4

// The default address of the device is 0x48 = (GND)
#include <SparkFun_TMP117.h> // Used to send and receive specific information from our sensor
TMP117 sensor; // Initalize sensor

#include "AS5600.h"
AS5600 as5600; // use default Wire
// **Custom
Time***

// The below variables control what the date and time will be set to
int sec = 2;

28

int minute = 47;
int hour = 14; //Set things in 24 hour mode
int date = 2;
int month = 3;
int year = 2020;
int weekday = 2;

// **Set
Up**
**
void setup(){
pinMode(ledPin, OUTPUT);
Wire.begin(); // begin I2C communication
// Wire.setClock(400000); //Go super fast
Serial.begin(115200); // serial baud rate
Serial.println("Setting: ");
Serial.println("resetTime: " + String(resetTime));
Serial.println("militaryTime: " + String(militaryTime));
Serial.println("customTime: " + String(customTime));
// **RTC Set

Up**
**
Serial.println("Connecting to RTC");
if (rtc.begin() == false){
Serial.println("Device not found. Please check the wiring. Freezing.");
while (1);

}
Serial.println("RTC online!");
// Use the time from the Arduino compiler (build time) to set the RTC
// Keep in mind that Arduino does not get the new compiler time every time it compiles.
// To ensure the proper time is loaded, open up a fresh version of the IDE and load the sketch.
// Also note that due to upload times, compiler time may be a little bit off on seconds/hundredths
if (resetTime) {
Serial.println("Resetting Time");
if (customTime) {
Serial.println("Setting device to Custom Time");
if (rtc.setTime(sec, minute, hour, weekday, date, month, year) == false) {
Serial.println("Custom time set: Fail");

} else {
Serial.println("Custom time set: Success");

}
} else {
Serial.println("Setting device to Compiler Time");
if (rtc.setToCompilerTime() == false) {

29

Serial.println("Custom time set: Fail");
} else {
Serial.println("Compiler time set: Success");

}
}
if (militaryTime) {
Serial.println("Using 24hr clock");
rtc.set24Hour();

} else {
Serial.println("Using 12hr clock");

}
}
// **Openlog Set

Up**
**
myLog.begin();
byte status = myLog.getStatus();
Serial.print("Status byte: 0x");
if (status < 0x10) Serial.print("0");
Serial.println(status, HEX);
if (status == 0xFF){
Serial.println("OpenLog failed to respond. Freezing.");
while (1); //Freeze!

}
if (status & 1 << STATUS_SD_INIT_GOOD){
Serial.println("SD card is good");
}

else{
Serial.println("SD init failure. Is the SD card present? Formatted?");

}
if (status & 1 << STATUS_IN_ROOT_DIRECTORY){
Serial.println("Root directory open");

}
else{
Serial.println("Root failed to open. Is SD card present? Formatted?");

}
if (status & 1 << STATUS_FILE_OPEN){
Serial.println("Log file open and ready for recording");

}
else{
Serial.println("No log file open. Use append command to start a new log.");

}
Serial.println("Done!");

30

long sizeOfFile = myLog.size(myFile);
if (sizeOfFile == -1){ //File does not exist. Create it.
Serial.println(F("File not found, creating one..."));
myLog.append(myFile); //Create file and begin writing to it
myLog.syncFile();

} else{
Serial.println("File found!");
myLog.append(myFile); //Create file and begin writing to it

}
// **TMP117 Set

Up**
**
if (sensor.begin() == true){ // Function to check if the sensor will correctly self-identify with the proper

Device ID/Address
Serial.println("Begin");

} else{
Serial.println("Device failed to setup- Freezing code.");
while (1); // Runs forever

}
Serial.println("date,time,temp(C),temp(F),wind dir");
myLog.println("date,time,temp(C),temp(F),wind dir");

// **AS5600 Set
Up**
**
as5600.begin(4); // set direction pin.
as5600.setDirection(AS5600_CLOCK_WISE); // default, just be explicit.
int b = as5600.isConnected();
Serial.print("Connect: ");
Serial.println(b);}

//
Loop************************************

void loop(){

float dir=as5600.rawAngle() * AS5600_RAW_TO_DEGREES;
if (sensor.dataReady() == true){ // Function to make sure that there is data ready to be printed, only

prints temperature values when data is ready
if (rtc.updateTime() == true){ // Updates the time variables from RTC
myLog.append(myFile); //Create file and begin writing to it
String currentDate = rtc.stringDateUSA(); // Get the current date in mm/dd/yyyy format (we're weird)
String currentTime = rtc.stringTime(); // Get the time
Serial.print(currentDate);
myLog.print(currentDate);

31

Serial.print(",");
myLog.print(",");
Serial.print(currentTime);
myLog.print(currentTime);
Serial.print(",");
myLog.print(",");
float tempC = sensor.readTempC();
float tempF = sensor.readTempF();
// Print temperature in °C and °F
Serial.print(tempC);
myLog.print(tempC);
Serial.print(",");
myLog.print(",");
Serial.print(tempF);
myLog.print(tempF);
Serial.print(",");
myLog.print(",");
Serial.print(dir);
myLog.print(dir);

} else{
Serial.print("RTC read failed");

}
Serial.println("");
myLog.println("");
myLog.syncFile();

}
}

32

Bluetooth Serial Transmit from Sd Card
//Author: Hayato Takai 5/3/2023

/*Description:
This code was written for reading data off of an sd card and transmitting the data over bluetooth for
Independent Study SP2022.
Hardware requirements:

• Serial Bluetooth App

https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en&pli=1
• ESP32

*/

//
Libraries*********************************

#include
"BluetoothSerial.h"//https://github.com/espressif/arduino-esp32/tree/master/libraries/BluetoothSerial
#include "SparkFun_Qwiic_OpenLog_Arduino_Library.h"
OpenLog myLog; //Create Logger instance
// Check if Bluetooth configs are enabled
#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif
// Bluetooth Serial object
BluetoothSerial SerialBT;
String myFile = "test.txt";

void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32");

}
// **Set
Up**
**
void loop() {

long sizeOfFile = myLog.size(myFile);
if (sizeOfFile > -1){
Serial.print(F("Size of file: "));
Serial.println(sizeOfFile);

//Read the contents of myFile by passing a buffer into .read()

33

//Then printing the contents of that buffer
byte myBufferSize = 200;
byte myBuffer[myBufferSize];
//myLog.read(myBuffer, myBufferSize, myFile, 4); //Doesn't yet work
myLog.read(myBuffer, myBufferSize, myFile); //Load myBuffer with contents of myFile

//Print the contents of the buffer
Serial.println("File contents:");
for (int x = 0 ; x < myBufferSize ; x++){
SerialBT.print(myBuffer[x]);
Serial.write(myBuffer[x]);

}
Serial.println("\nDone with file contents");

} else{
Serial.println(F("Size error: File not found"));

}

Serial.println(F("Done!"));
myLog.syncFile();

}

34

	Data Collection Research for Multidisciplinary Design & Prototyping Fall 2023: Spring 2023 MEMS 400 Independent Study
	Recommended Citation

	Writeup

