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ABSTRACT OF THE THESIS

Feature Selection from Clinical Surveys Using Semantic Textual Similarity

by

Benjamin C. Warner

Master of Science in Computer Engineering

Washington University in St. Louis, 2023

Professor Chenyang Lu, Chair

Survey data collected from human subjects can contain a high number of features while

having a comparatively low quantity of examples. Machine learning models that attempt

to predict outcomes from survey data under these conditions can overfit and result in poor

generalizability. One remedy to this issue is feature selection, which attempts to select an

optimal subset of features to learn upon. A relatively unexplored source of information in the

feature selection process is the usage of textual names of features, which may be semantically

indicative of which features are relevant to a target outcome. The relationships between

feature names and target names can be evaluated using large language models (LLMs) such as

ClinicalBERT to produce STS scores, which can then be used to select features. This thesis

introduces two new variations upon the minimal-redundancy-maximal-relevance (mRMR)

algorithm that integrate semantic textual similarity (STS) into selection. The performance

of STS as a feature selection metric is evaluated against preliminary survey data collected as

a part of a clinical study on persistent post-surgical pain (PPSP). The results suggest that

features selected with STS can result in higher performance models compared to those with

the baseline mRMR algorithm.
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Chapter 1

Introduction

This chapter begins with a discussion of the clinical phenomenon of persistent post-surgical

pain and the collection of survey data. A review of feature selection and large language

models follows, and is then finished with a brief description of the proposed solution and

contributions of this thesis.

1.1 Persistent Post-Surgical Pain and Survey Data

Persistent post-surgical pain (PPSP) is the phenomenon of a patient experiencing surgically-

related pain for a longer duration of time than expected [1]. Because the causes are presently

unclear [2], a machine learning (ML) approach may lead to further insights into not only

understanding the cause of PPSP, but also being able to predict PPSP.

One useful source of data available for predicting PPSP is survey data collected from par-

ticipants, and different surveys have been designed for the purpose of capturing different

characteristics of PPSP. One popular tool for obtaining data from multiple surveys is the Re-

search Electronic Data Capture (REDCap) system [3], which has been popular in biomedical

research. The results from these surveys are conglomerated together and can easily contain

hundreds of features.

Since PPSP the causes of PPSP are currently unclear, a series of standard questionnaires

are collected using REDCap to assess possible causes. Among several different technical

issues that need to be addressed for building a ML model with this dataset is the high

dimensionality of the data, a problem which is exacerbated by the relatively small number

of examples upon which to train.
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1.2 Feature Selection

Fitting high-dimensional data is particularly difficult when the number of examples is low—

as is with clinical data collected from human subject—since a model can easily overfit on

the training data. To counter this, we can employ the strategy of feature selection, where a

subset of the overall features in a dataset are selected for learning.

Feature selection methods can be divided into three categories: embedded, wrapper, and

filter methods. Embedded methods incorporate feature selection as a part of training, while

wrapper methods interact in a feedback loop with the learning model. Filter methods select

a subset of features based on properties of the dataset before the model is able to learn on

the dataset, which differs from embedded and wrapper methods in that they do not form a

feedback loop with the model [4]. Because of their independence, they tend to have good

generalization abilities [5].

A literature review suggests that feature selection methods for survey data shows a diverse

array of feature selection methods. A study examining autism spectrum disorder (ASD)

survey data, examined feature selection using principal component analysis, t-distributed

stochastic neighbor embedding, and denoising autoencoders; and also found that survey fea-

tures targeting ASD tend to have high levels of redundancy [6]. Some of the other feature

selection methods found for models involve questionnaires include wrapper model based on

random forests [7], bootstrapped feature selection [8], principal component analysis, multi-

cluster feature selection [9], permutation importance [10], and ReliefF [11].

One particularly important feature selection is minimal-redundancy-maximal-relevance (mRMR),

which aims to maximize the relevance of features to the target, while minimizing the redun-

dancy between selected features. This is particularly useful when we have a small number

of features that are correlated and want to ensure a model incorporates as broad as a set of

information as possible. The objective function of mRMR, seen in equation 1.1, is simply

the the difference of relevance and redundancy, as seen in 1.2 and 1.3, respectively [12].

maxΦ(D,R) = D −R (1.1)

D =
1

|S|
∑
xi∈S

I(xi; c) (1.2)
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R =
1

|S|2
∑

xi,xj∈S

I(xi, xj) (1.3)

Because the solution space for selected features is a powerset of the possible features, we

cannot directly test all solutions, and use an incremental solution to find the set of selected

features. Equation 1.4 gives the solution for each candidate feature {X−Sn−1} from the set

of features X and the set of previously selected features at step Sn−1 [12], [13]. This results

in an algorithm with one hyperparameter, which is the number of features N to be selected.

max
xj∈X−Sn−1

I(xj; c)−
1

m− 1

∑
xi∈Sm−1

I(xj;xi)

 (1.4)

Underpinning the mRMR objective function is MI between classes and features, which is

defined in equation 1.5 using densities f and marginal densities fx, fy.

I(X, Y ) =

∫∫
dxdyf(x, y) log

f(x, y)

fx(x)fy(y)
(1.5)

Calculating true MI between two features is computationally costly, but can be approximated

using one of several methods. The MI approximation methods used here are from scikit-learn

[14], and are a synthesis of the k-nearest neighbors approaches described in [15], [16].

1.3 Large Language Models

LLMs are a class of language models that is loosely defined as having on the order of high

millions or more of parameters, and have been typically built with the transformer architec-

ture [17]. LLMs have demonstrated capabilities at many reasoning tasks involving semantic

meaning [18], [19], and are highly applicable to survey data due to their text-based nature.

The first stage in training BERT is pre-training, where the model is trained on two unsu-

pervised learning tasks, and then fine-tuning, where the model is subsequently applied to

a supervised learning task [20]. Pre-training is particularly useful since it results in better

3



generalization [21], and because it means that computationally expensive pre-trained models

can be reused for different tasks [22].

Among the many fine-tuning tasks is that of STS. In this task, a model attempts to evaluate

the semantic similarity of two sentences using some metric. One variation of model suited

to this is the siamese neural network (SNN), where two weight-sharing neural networks

generate embeddings for two input sentences, and then have their similarity computed with

a function. Cosine similarity, as seen in equation 1.6, is one typical function used to compute

the distance between embeddings [23], [24].

cos(E1, E2) =
E1 · E2

||E1||||E2||
(1.6)

Clinical language involves vocabulary and semantic meaning that is often not present in

non-clinical texts, and various pre-trained architectures exist to fill this gap. Among them is

ClinicalBERT, which is an extension of the BERT model trained upon clinical notes from the

MIMIC-III dataset [25], [26]. ClinicalBERT can out-perform other BERT models on tasks

specific to the clinical domain [25], and can do so more efficiently than a general-purpose

BERT model [27].

1.4 Proposed Algorithm

As a form of tabular data, survey answers are the result of questions that have text that may

be semantically related to a target outcome, as well as semantically similar or dissimilar to

one another. Intuition suggests that MI and MI are useful analogues to one another, as they

both capture relationships between data statistically and semantically, respectively. STS

scores derived from LLMs may then be useful for determining which questions are relevant

to predicting a target question based, and moreover, may be useful in determining which

questions are redundant to each other. This may be particularly true for smaller datasets

where there is a limited amount of information immediately available to learn from. If we

treat STS as a stand-in or compliment to MI in mRMR, then there are two potentially useful

new algorithms for selecting features.
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There appears to be nearly no literature examining the usage of embeddings of feature names

to select features, and none examining that between given feature and target questions. The

closest match examined the usage of word2vec continuous bag-of-words embeddings [28]

trained upon Twitter data to select Google search query trends using the embeddings of a

target concept [29]. The algorithm proposed in this paper differs in several different ways,

with the principal difference being the proposed algorithm utilizes STS selects a combination

of features maximizing equation 1.1, whereas [29] apply a one standard deviation threshold

of scores for feature selection. Another major difference is the usage of ClinicalBERT to

calculate scores, which is a more recent model than word2vec, and experimentally performs

better than word2vec on clinical natural language processing (NLP) tasks [30]. Finally, the

selection of target embeddings is differrent. In [29], they are selected purely as an adjustable

hyperparameter, and for this algorithm, the embeddings are of four target questions that

are defined in the survey, as well as defined label name.

The contributions of this paper are as follows:

• An examination of the role of the efficacy of utilizing STS scores generated by LLMs

between feature and target questions, specifically pre-trained for a clinical context, in

feature selection.

• Evaluating the performance of two novel variations of the mRMR feature selection

model: mRMR-s and mRMR-h, which utilize STS as as a direct replacement and

compliment for MI respectively.

• Evaluating how mRMR-s and mRMR-h can help to prevent overfitting on small survey

datasets.
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Chapter 2

Methods

This chapter begins with an examination of the characteristics of the dataset used, followed

by the techniques used to prepare the dataset for learning. Then the baseline mRMR with

mutual information (mRMR-i) algorithm is discussed, followed by a discussion of the design

and implementation of the mRMR with semantic textual similarity (mRMR-s) and mRMR

with hybrid mutual information and semantic textual similarity (mRMR-h) algorithms.

2.1 Data Characteristics

The data is collected from participants from the P5 - Personalized Prediction of Postsurgical

Pain study (IRB #202101123). The participants in this study are drawn from a partially

complete set of patients in the Washington University/BJC HealthCare system.

A total of 12 surveys were assigned to individual users through the REDCap system. The

principal survey is the Washington University PPSP Questionnaire [1], which contains the

four target outcome questions, which are described in more detail in Table 2.2. The other

surveys include measures of psychological and physical pain and correlated measures.

The dataset was assembled from REDCap on February 6th, 2023. A total of 617 participants

have been collected from a final goal of 2,000 participants from the WU/BJC system. Table

2.1 outlines the key characteristics of the dataset, including number of examples and general

demographics.
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Name Value

PPSP Characteristics

Individuals with Complete Mark 617

PPSP (+) 97

PPSP (-) 592

Race

Caucasian 497

American Indian / Alaskan Native 7

Asian 4

Black / African Heritage 98

Hawaiian Native / Other Pacific Islander 1

Other 9

Prefer not to answer 7

Sex assigned at birth

Female 425

Male 185

Age

Age (min) 19

Age (mean) 52.4686

Age (std. dev.) 13.5219

Age (max) 75

Table 2.1: Demographics of the partial P5 dataset.

2.2 Data & Model Preparation

Several steps are taken to prepare the survey data for fitting upon the candidate ML models.

The first step taken is to prepare the label from this particular survey dataset. The label is

derived from the four questions shown in Table 2.2 is determined using the binary formula

y1 = (Q1 ∧ Q2) ∧ (Q3 ≥ 3 ∨ Q4 ≥ 3). Once the labels are computed, these questions are

dropped from the dataset. Since we are attempting to predict PPSP, we filter out examples

that where a column indicating six-month completion has a null value.

7



# Question Text Type
y1 persistent pain N/A
Q1 In the past week, did you have any pain in your surgical incision

or in the area related to your surgery?
Yes/No

Q2 For pain in the area related to your surgery, did the pain start
or worsen after the surgery?

Yes/No

Q3 On a scale of zero to ten, with zero being no pain and ten being
the worst pain, please fill in your average pain level during the
past week, while you were at rest.

0-10

Q4 On a scale of zero to ten, with zero being no pain and ten being
the worst pain, please fill in your average pain level during the
past week, when you were active or moving.

0-10

Table 2.2: Questions used to determine the label of each survey data example.

We then filter out features from a list of features pre-determined not to be relevant to the

prediction of PPSP, which leaves 131 usable features. Features containing references to

image data are then filtered out, and columns containing string-type data with more than 5

unique values are filtered out.

To deal with missing entries in survey data, several imputation strategies are applied. For

columns with numerical types of data, entries that are NaN will be replaced with the mean

value, and then will have the L2 norm applied to that column. Date/time types will have

the median time imputed, and will then be scaled so the minimum and maximum are 0 and

1 respectively. String types—which we are treating as categorical types given the previous

filtering of unique values—will be imputed with the most common value, and then split up

into one-hot columns. With these steps, this gives 162 features upon which to train a model.

Various feature selection and classifier models were tested using the scikit-learn toolkit [14].

Classsifier models tested include XGBoost [31], linear support vector machine (SVM), mul-

tilayer perceptron, Gaussian NB, and k-nearest neighbors (k-NN). In addition to testing

the proposed variations of mRMR, SelectFromModel (which selects based on the weights

of a trained model) with linear SVM and XGBoost are tested. The linear SVM model

is tested with C over 10 logarithmically spaced values from [10−2, 1], while the XGBoost

SelectFromModel has the default settings.

An 80%/20% train/test split is used for evaluating overall performance, and 5-fold flat cross-

validation is employed to both select hyperparameters and evaluate the overall performance

8



of the dataset. Nested cross-validation is typically employed for evaluating model selection

with small datasets, but experimentally may not be necessary with low numbers of hyper-

parameters and using specific models, like gradient boosted trees [32]. For this reason, and

due to the fact that nested cross-validation with K outer-folds would incur a K-fold increase

in run-time, flat 5-fold cross-validation is used.

2.3 mRMR with mutual information (mRMR-i)

For the baseline implementation of mRMR, which shall be referred to as mRMR-i, the fast-

mRMR implementation is used [13]. MI between features is calculated using the scikit-learn

mutual info regression function, while MI between feature and label is calculated using

mutual info classif [14], which are calculated using the methods described in section 1.2.

The scikit-learn fit/transform design paradigm is followed for the implementation, and so

the feature selection will occur within the fit stage and will be applied through calls to

transform. The baseline mRMR-i is outlined in algorithm 1.

9



Algorithm 1 Fit the mRMR to X, y for a desired number of features N

procedure Fit(X, y)

selectedFeatures ← ∅
candidates ← 0...nX

candidatesVec ← ⊤ : ∀x ∈ X

accumulatedRedundancy ← 0 : ∀x ∈ X

relevancesVector ←MI(X, y)

selected ← argmax relevancesVector

lastFeatureSelected ← selected

selectedFeatures ← selectedFeatures ∪ selected

candidates ← candidates \ selected

while |selectedFeatures| < N do

max mrmr ← −∞
newLastFeatureSelected ← ∅
lastFeatureSelectedMI ←MI(XcandidatesV ec, XlastFeatureSelected)

for idxc ← 1 to n, can ∈ candidatesVec do

relevance ← relevancesVectorcan

accumulatedRedundancycan ← accumulatedRedundancycan+

lastSelectedFeatureMIidxc

redundancy ← accumulatedRedundancycan/|selectedFeatures| mrmr ← rele-

vance − redundancy

if mrmr > max mrmr then

max mrmr ← mrmr

newLastFeatureSelected ← can

end if

selectedFeatures ← selectedFeatures ∪ newLastFeatureSelected

candidates ← candidates \ newLastFeatureSelected
candidatesVecnewLastFeatureSelected ← ⊥
lastFeatureSelected ← newLastFeatureSelected

end for

end while

end procedure
10



2.4 mRMR-s and mRMR-h

This section introduces two variations on the mRMR algorithm. mRMR with semantic

textual similarity (mRMR-s) will utilize STS scores generated from a ClinicalBERT model

as a direct replacement for MI scores. mRMR with hybrid mutual information and semantic

textual similarity (mRMR-h) combines these two sources of information in assigning scores.

Fine-tuning on ClinicalBERT for STS would require a dataset with ground-truth labels for

similar sentences. Two datasets, ClinicalSTS and MedSTS, are candidates for the fine-tuning

[33], [34], but due to the logistical challenges in obtaining these datasets, we instead use the

weights from a ClinicalBERT model fine-tuned on MedSTS [35]. The MedSTS dataset

contains pairs with target labels defined on a 0 to 5 scale, with 5 representing identical

meaning and 0 representing no shared semantic meaning. It is expected that most results

will fall between 0 and 1, as a score of 1 is defined as “The two sentences are not equivalent,

but are on the same topic” [34].

For mRMR with semantic textual similarity (mRMR-s), mutual information is replaced

with the STS scores between feature questions and target questions computed using the

aforementioned ClinicalBERTmodel. The resulting relevance and redundancy functions then

become equations 2.1 and 2.2, while the underlying incremental search algorithm remains

the same.

D =
1

|S|
∑
xi∈S

cos(Ei, Ec) (2.1)

R =
1

|S|2
∑

xi,xj∈S

cos(Ei, Ej) (2.2)

To combine STS and MI, mRMR-h involves treating the two scores as a linear combination,

resulting in the equations for relevance and redundancy in equations 2.3 and 2.4. Only one

hyperparameter is needed since there are two terms in the linear combination of MI and

STS.

D =
1

|S|
∑
xi∈S

I(xi; c) + α cos(Ei, Ec) (2.3)
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R =
1

|S|2
∑

xi,xj∈S

I(xi, xj) + α cos(Ei, Ej) (2.4)

For evaluating the best hyperparameters in 5-fold cross-validation, we will use a linear space

between [0, 2] with 50 evenly-spaced values for the selection of α. To minimize the overall

runtime of cross-validation, each fold is split across all available processors. Spawning a

new process requires reloading a BERT model into the state of the program, and incurs a

significant performance penalty each time. To avoid this overhead with each spawn, the

STS scores among feature questions and between feature questions and target questions are

pre-calculated and cached.
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Chapter 3

Results

This chapter is begun by evaluating the overall performance of each possible model and

feature selection configuration. After this, we look at the best possible hyperparameters for

each model given the dataset. Finally, we examine the performance of the model on the

given dataset as the hyperparmaeters are varied.

3.1 Model Performance

Table 3.1 highlights the performance of each combination of feature selector and model in

terms of area under the receiver-operator curve (AUROC), area under the precision-recall

curve (AUPRC), and accuracy. All feature selectors are fixed to select a total of 40 features,

or approximately one-quarter of the possible features, for the purpose of comparison.

In terms of performance, we find that mRMR-s is the most effective variant of for XGBoost,

while mRMR-h is the most effective for linear SVM. mRMR-h is a close second for Gaussian

NB in terms of AUROC and AUPRC performance. mRMR-s and mRMR-h are the most

effective mRMR variants for multilayer perceptron (MLP), while no variant of mRMR is

effective for feature selection with k-NN.

3.1.1 Selected Features

Tables A.1, A.2, and A.3 contain the selected features from mRMR-i, mRMR-s, and mRMR-

h, respectively. Each of the aformentioned tables shows the order in which the feature was

selected, the assigned mRMR score as well as its constituent relevancy and redundancy

scores. In addition, the feature importance when used in a Gaussian NB model is calculated

13



AUROC AUPRC
Selector Cls. Test Train Test Train
Identity XGB 0.74253 0.852927 0.173495 0.267482
SFM-XGB XGB 0.737628 0.855092 0.165651 0.247675
SFM-SVM XGB 0.664566 0.862356 0.120219 0.283392
mRMR-i XGB 0.689309 0.890087 0.124102 0.269925
mRMR-s XGB 0.814893 0.875707 0.20337 0.255488
mRMR-h XGB 0.744398 0.876307 0.1459 0.229443
Identity SVM 0.898382 0.920399 0.376203 0.449496
SFM-XGB SVM 0.87535 0.887429 0.283943 0.2783
SFM-SVM SVM 0.875506 0.905066 0.226138 0.281013
mRMR-i SVM 0.895736 0.913156 0.318761 0.361423
mRMR-s SVM 0.897915 0.89419 0.334992 0.340455
mRMR-h SVM 0.908652 0.906614 0.330394 0.354387
Identity MLP 0.884532 0.935978 0.282288 0.516197
SFM-XGB MLP 0.882353 0.881933 0.293784 0.277231
SFM-SVM MLP 0.864768 0.901766 0.220033 0.277267
mRMR-i MLP 0.880797 0.933514 0.27275 0.469809
mRMR-s MLP 0.888422 0.897094 0.310206 0.348706
mRMR-h MLP 0.882975 0.938727 0.272302 0.513593
Identity GNB 0.80789 0.836726 0.157917 0.159329
SFM-XGB GNB 0.889823 0.852209 0.279041 0.192056
SFM-SVM GNB 0.824074 0.86878 0.177902 0.192038
mRMR-i GNB 0.806178 0.843938 0.157338 0.166143
mRMR-s GNB 0.868114 0.880422 0.248683 0.238535
mRMR-h GNB 0.858077 0.883347 0.214441 0.229685
Identity k-NN 0.823529 0.938004 0.2139 0.412918
SFM-XGB k-NN 0.814581 0.93675 0.188433 0.38525
SFM-SVM k-NN 0.850373 0.940114 0.264685 0.431081
mRMR-i k-NN 0.713897 0.927701 0.151576 0.369271
mRMR-s k-NN 0.778245 0.925156 0.195084 0.352407
mRMR-h k-NN 0.747432 0.928896 0.15026 0.350174

Table 3.1: Results from using selected feature selection methods, all feature selection methods
set to select up to 40 features. Best metrics for each model type and among mRMR are
bolded.

using SHapley Additive exPlanations (SHAP) [36], and is shown in the last column. It

should be noted that scores are not necessarily comparable between mRMR variants due to

differences in scales between the scoring methods.
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The underlying scores that are derived for feature-feature pairs and feature-target pairs using

MI and STS, are shown in Figures 3.1 and 3.2, respectively.
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Figure 3.1: Heatmap of feature-feature and feature-target MI scores.

3.2 Hyperparameter Performance

3.2.1 Performance Over N For mRMR-i and mRMR-s

For mRMR-i and mRMR-s, there is only one hyperparameter, N , which is the number of

features to select. Figures 3.3 and 3.5 show the train/test performance of Gaussian NB using

the mRMR-i and mRMR-s feature selectors in terms of AUROC and AUPRC. In addition,

figures 3.4 and 3.6 show the corresponding train/test performance using XGBoost with the

same feature selectors.
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Figure 3.2: Heatmap of feature-feature and feature-target STS scores.

3.2.2 Performance Over N,α For mRMR-h

The linear combination of MI and STS in the corresponding R and D objective functions

introduces another hyperparameter, α. Since there are only two elements of the linear combi-

nation, we leave MI unscaled and scale STS to remove a dimension from the hyperparameter

space. To evaluate the performance, combinations of N and α were selected from the range

[0, 40) and 20 logaritmically-spaced numbers [10−2, 101], respectively. Figure 3.7 highlight

the AUROC performance for a Gaussian NB classifier.

There are several noteworthy regions in Figure 3.7. The first noticeable region is the one

between α ∈ [0.00, 0.41), where a noticeable improvement in AUROC occurs while requiring

the utilization of a smaller number of questions. This suggests that some values of α result

in MI-STS ratios that are more effective than others for selecting features to use.
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Chapter 4

Discussion

This thesis is concluded with the discussion of model performance, as well as future oppor-

tunities for this area of work.

4.1 Model Performance

As briefly discussed in chapter 3, mRMR-s and mRMR-h appear to result in higher perfor-

mance models and there are several possible reasons for this.

One principal reason that the usage of STS appears to work better than MI is that MI is only

able to evaluate the relevance and redundancies between features one-on-one statistically.

With many possible causes for the target label, individual features can share little MI, and

features that we would expect to be more relevant than others will only have slightly more

MI than those that would not be relevant. This becomes particularly evident for mRMR-i

scores that dip into the negative: the subsequent feature learned is more redundant than it is

relevant, yet there are many unselected features that we would consider to be truly relevant.

Features that end up having no effect in the end—as measured by SHAP value—still tend to

share some MI with the target variable, as features with enough member examples will have

some MI with the target variable. Some of the most striking examples of this can be seen in

Table A.1. For example, there are four rows at the start with a measurably high amount of

relevance, and no redundancy in relation to other features, that all end up having a SHAP

value of 0 since the Gaussian NB model has picked up no true relationship between them

and the target.

STS appears to be useful for several reasons. One reason is that STS is not always correlated

with MI, meaning that it represents a contrasting, non-correlated, source of information
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compared to MI. This fact can be seen from the strong contrast in highlighted regions between

Figures 3.1 and 3.2. STS is clearly more able to highlight redundant regions, especially along

the diagonal, and is more able to distinguish between relevant and irrelevant features than

MI. This is particularly useful for when MI that results from the training dataset fails to

match what we might expect from the population sampled, as STS is not vulnerable to

differences in the sample and population distributions.

Another reason why mRMR-s and mRMR-h appear to perform better is integration of clinical

knowledge the selection of features. LLMs trained on clinical knowledge have demonstrated

the ability to reason through question-answering problems [18], and the results here suggest

that ClinicalBERT is able to connect feature concepts to target concepts. Of particular note

are the features in Table A.2 that have a relevance score below 1. As discussed in section 2.4,

a score of 1 is defined as “The two sentences are not equivalent, but are on the same topic”

[34], meaning that values between 0 and 1 are weakly relevant. ClinicalBERT is able to

ascertain that some features are relevant, such as “Age,” “Final T-Score,” and so on. Many

of these variables do not appear among the features selected using mRMR-i, as seen in Table

A.1, suggesting that STS is a useful source of information when metric like MI cannot fully

capture the relationships underpinning a dataset.

4.2 Future Work

One area of future work could consider the mRMR algorithm using metrics other than MI or

STS, as both metrics have weaksnesses that make them ineffective metrics. MI is incapable of

measuring the true amount of information a feature contains in context with other features,

and STS can only be used to represent semantic relationships rather than true statistical

relationships.

Future work could also consider the choice of model for computing STS. Many new pre-

trained transformer models have been released since the original ClinicalBERT model was

released in 2019 [25], such as BioGPT [37], PubMedBERT [38], and GatorTron [39], and

further work could explore how these different architectures perform when used in mRMR-s

and mRMR-h.
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Future work could also consider the use of semantic pairs that specifically rate relevancy

and redundancy between pairs of question embeddings, rather than similarity. Relevant and

redundant questions may not always be semantically similar, and a dataset for fine-tuning

upon this type of task may improve the performance of mRMR-s or mRMR-h.

Another potential area of future work would be to serialize the mRMR objective into a text

prompt. Serialization of tablular data into a question prompt for a large language model can

achieve high performance in a few-shot learning context [40], and serialization of the mRMR

objective may also be able to capture further semantic relationships between features.
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Appendix A

Feature Importance

Feature Name n mRMR

Score

Relevancy Redundancy Mean

Absolute

SHAP

Current Medications:

Confirmed with participant

(choice=Metformin) Checked

1 0.0722903 0.0722903 0 0

Please specify your race:

(choice=Black / African

Heritage) Checked

2 0.0668161 0.0668161 0 0

Please specify your race:

(choice=Hawaiian Na-

tive / Other Pacific

Islander) Checked

3 0.0584943 0.0584943 0 0

Please specify your race:

(choice=American Indian /

Alaskan Native) Checked

4 0.0522559 0.0522559 0 0

Baseline Emotional

Distress-Anxiety - Short

Form 4a T Score

5 0.046146 0.046146 0 1.22624e-

05

Baseline Cognitive Func-

tion - Abilities - Short Form

4a T Score

6 0.011949 0.0351969 0.0232478 0

Please specify your ethnic-

ity: Non-Hispanic

7 -0.00107861 0.0227256 0.0238042 0.0118578
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Did you find submerging

your hand in the cold water

bath to be: Not Painful

8 -0.00486099 0.0496789 0.0545398 0

Pain intensity - Baseline 2: 9 -0.0145096 0.0474391 0.0619487 0

Pain intensity - CPM Aver-

age:

10 -0.011965 0.0400014 0.0519664 0

Baseline Emotional

Distress-Depression -

Short Form 4a T Score

11 -0.0159725 0.0240158 0.0399883 0

How often have you been

using cannabis (marijuana,

pot, weed, grass) in the past

year? Never

12 -0.0286325 0.0408129 0.0694454 0.00290619

Pain intensity - CPM 1: 13 -0.0478522 0.0445602 0.0924124 0

Moderate activities such as

moving a table, pushing a

vacuum cleaner, bowling, or

playing golf? Yes limited a

lot

14 -0.0585221 0.0203294 0.0788515 0.000588596

Climbing several flights of

stairs? Yes limited a lot

15 -0.0591006 0.0109577 0.0700583 0.000269773

Why are you having this

upcoming procedure?

Please mark all that

apply. Please mark all

that apply. (choice=My

doctor said I needed the

procedure) Unchecked

16 -0.0536297 0.0292872 0.082917 0.000637646

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Tramadol

(Ultram)) Unchecked

17 -0.051138 0.0501994 0.101337 0.00564071
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Did you find submerging

your hand in the cold water

bath to be: Mildly Painful

18 -0.0523673 0.0249529 0.0773202 0

Have you ever been diag-

nosed with anxiety? No

19 -0.059889 0.0288636 0.0887526 0

Have you ever been diag-

nosed with anxiety? Yes

20 -0.0611281 0.0262699 0.087398 0.00174126

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Duloxetine

(Cymbalta) or amitripty-

line (Elavil)) Unchecked

21 -0.0590742 0.0530448 0.112119 0.008645

Have you ever been di-

agnosed with chronic

pain? No

22 -0.0644443 0.0579427 0.122387 0

Moderate activities such as

moving a table, pushing a

vacuum cleaner, bowling, or

playing golf? Yes limited a

little

23 -0.0619967 0.0151508 0.0771475 0.000821582

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain,

what is your average pain

level at rest TODAY?

24 -0.0658826 0.031516 0.0973986 0

Please specify your race:

(choice=Black / African

Heritage) Unchecked

25 -0.0672812 0.00402699 0.0713082 0.00459841

Please specify your race:

(choice=Prefer not to an-

swer) Checked

26 -0.0628143 0.0638041 0.126618 0
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Please specify your race:

(choice=Other) Checked

27 -0.0617346 0.0325781 0.0943127 0

Baseline Physical Function

- Short Form 4a

28 -0.0646048 0.0151008 0.0797057 0

Do you take any of

the following medica-

tions for pain treatment

at least once per week?

(choice=Aspirin) Unchecked

29 -0.0648413 0.0430928 0.107934 0.00851012

Have you been experiencing

pain in the past week? Yes,

and RELATED to my need

for surgery

30 -0.0648443 0.0513111 0.116155 0

Total Years of Education 31 -0.0662292 0.0581167 0.124346 0

Have you ever been di-

agnosed with a Post

Traumatic Stress Disorder

(PTSD)? Yes

32 -0.0701365 0.0182878 0.0884243 0

Other:.1 married; polyam 33 -0.0696431 0.062555 0.132198 0

In the past three months,

did you experience daily or

near daily pain? Yes

34 -0.0687923 0.0362142 0.105007 0.00166769

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Gabapentin

or Pregabalin) Unchecked

35 -0.0764872 0.0161022 0.0925894 0.00229307

Have you ever been diag-

nosed with depression? Yes

36 -0.0754841 0.0226042 0.0980883 0.00121398

Please specify your race:

(choice=Caucasian) Unchecked

37 -0.076869 0.00424245 0.0811114 0

Please specify your ethnic-

ity: Hispanic

38 -0.0746797 0.00940563 0.0840853 0.000735745
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Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=None) Unchecked

39 -0.0733169 0.0390622 0.112379 0.00349479

What is your sex (assigned

at birth): Female

40 -0.0740775 0.00283702 0.0769145 0.00268547

Table A.1: Feature importance using Gaussian NB for mRMR-i with 40 features

Feature Name n mRMR Relevancy Redundancy Mean

Absolute

SHAP

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain ,

please mark your average

pain level during the past

week, while you were active

or moving.

1 2.92961 2.92961 0 0.00166769

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Aspirin) Checked

2 1.32006 1.32006 0 0.00185162

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Acetaminophen

(Tylenol)) Checked

3 0.717374 1.49348 0.776111 0.00307787
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Have you been experiencing

pain in the past week? Yes,

and RELATED to my need

for surgery

4 0.633957 2.65388 2.01992 0.00264868

Have you been experiencing

pain in the past week? Yes,

but NOT RELATED to my

need for surgery

5 1.02072 2.54984 1.52912 0.0029675

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain,

what is your average pain

level at rest TODAY?

6 0.415542 2.80485 2.38931 0

Pain intensity - CPM 1: 7 0.161247 2.26003 2.09878 0

Pain intensity - CPM 2: 8 0.440164 2.2078 1.76763 0

In the past three months,

did you experience daily or

near daily pain? No

9 0.355732 2.3925 2.03676 0.00112814

Have you ever been di-

agnosed with chronic

pain? No

10 0.468039 2.06852 1.60049 0.00339669

In the past three months,

did you experience daily or

near daily pain? Yes

11 0.362483 2.39647 2.03399 0.00472103

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain,

please mark your average

pain level during the past

week, while at rest.

12 0.492365 2.89288 2.40052 0.00167995

Have you been experiencing

pain in the past week? No

13 0.59769 2.80017 2.20248 0.00134887
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Have you ever been di-

agnosed with chronic

pain? Yes

14 0.459705 2.06441 1.6047 0.00179031

Why are you having this

upcoming procedure?

Please mark all that ap-

ply. Please mark all that

apply. (choice=Decrease

pain) Checked

15 0.200513 1.27984 1.07933 0

Why are you having this

upcoming procedure?

Please mark all that ap-

ply. Please mark all that

apply. (choice=Decrease

pain) Unchecked

16 0.180732 1.18812 1.00739 0

Pain intensity - Baseline

Average:

17 0.211212 2.42521 2.214 0.00126303

Have you used opioid med-

ications for pain manage-

ment in the past? yes

18 0.146445 1.96976 1.82331 0.00274678

Pain intensity - CPM Aver-

age:

19 0.106595 2.31014 2.20355 0

Final T-Score 20 0.11073 0.562743 0.452013 1.22624e-

05

Total Score 21 0.108315 0.661823 0.553508 0

Have you used opioid med-

ications for pain manage-

ment in the past? no

22 0.0913118 1.96299 1.87168 0.00207235

Pain intensity - Baseline 2: 23 0.180321 2.27706 2.09674 0.00137339

Pain intensity - Baseline 1: 24 0.227999 2.33905 2.11105 0

Interference 25 0.0677081 0.328047 0.260339 0

Age: 26 0.0691869 0.366818 0.297631 0.00174126
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Do you take any of

the following medica-

tions for pain treatment

at least once per week?

(choice=Aspirin) Unchecked

27 0.103845 1.2731 1.16926 0.0184059

Have you used opioid med-

ications for pain manage-

ment in the past? I don’t

know

28 0.0940281 1.94502 1.85099 0.000465972

Rumination Score 29 0.0938397 0.50304 0.4092 0

Do you currently use opioid

medications for pain man-

agement? no

30 0.104262 1.7738 1.66954 0.00605763

Helplessness Score 31 0.109871 0.694804 0.584933 0

Do you currently use opioid

medications for pain man-

agement? I don’t know

32 0.144523 1.78068 1.63616 0.00076027

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Tramadol

(Ultram)) Unchecked

33 0.137729 1.53953 1.4018 0.018553

Do you currently use opioid

medications for pain man-

agement? yes

34 0.125729 1.73716 1.61143 0.00445126

BRS Score 35 0.107977 0.496375 0.388397 0

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Gabapentin

or Pregabalin) Checked

36 0.111957 1.36527 1.25332 0.00282036
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Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Tramadol

(Ultram)) Checked

37 0.107958 1.53492 1.42696 0.00207235

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Acetaminophen

(Tylenol)) Unchecked

38 0.103917 1.48786 1.38394 0.00239117

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Other) Unchecked

39 0.0531368 1.53429 1.48115 0.00347026

Magnification Score 40 0.0485151 0.351817 0.303301 0

Table A.2: Feature importance using Gaussian NB using mRMR-s with 40 features.

Feature Name n mRMR Relevancy Redundancy Mean

Absolute

SHAP

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain ,

please mark your average

pain level during the past

week, while you were active

or moving.

1 29.3107 29.3107 0 0.00237891
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Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Aspirin) Checked

2 12.9 13.2062 0.306242 0.00185162

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Acetaminophen

(Tylenol)) Checked

3 7.13422 14.9638 7.8296 0.00248927

Have you been experiencing

pain in the past week? Yes,

and RELATED to my need

for surgery

4 6.34058 26.5799 20.2393 0.00213366

Have you been experiencing

pain in the past week? Yes,

but NOT RELATED to my

need for surgery

5 10.1997 25.4984 15.2987 0.00284488

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain,

what is your average pain

level at rest TODAY?

6 4.14844 28.0843 23.9359 0

Pain intensity - CPM 1: 7 1.55363 22.6376 21.084 0

Pain intensity - CPM 2: 8 4.37524 22.0825 17.7073 0

In the past three months,

did you experience daily or

near daily pain? No

9 3.48939 23.9295 20.4401 0.000686695

Have you ever been di-

agnosed with chronic

pain? No

10 4.56223 20.7428 16.1806 0.00364194
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In the past three months,

did you experience daily or

near daily pain? Yes

11 3.60014 23.9924 20.3922 0.00478234

On a scale of zero to ten,

with zero being no pain and

ten being the worst pain,

please mark your average

pain level during the past

week, while at rest.

12 4.85349 28.9413 24.0878 0

Have you been experiencing

pain in the past week? No

13 5.92479 28.0017 22.077 0.00196199

Have you ever been di-

agnosed with chronic

pain? Yes

14 4.59072 20.6562 16.0655 0.00197425

Why are you having this

upcoming procedure?

Please mark all that ap-

ply. Please mark all that

apply. (choice=Decrease

pain) Checked

15 1.93161 12.8317 10.9001 0

Why are you having this

upcoming procedure?

Please mark all that ap-

ply. Please mark all that

apply. (choice=Decrease

pain) Unchecked

16 1.78804 11.8824 10.0944 0

Pain intensity - Baseline

Average:

17 2.08934 24.2521 22.1628 0.00139792

Have you used opioid med-

ications for pain manage-

ment in the past? yes

18 1.43209 19.7206 18.2885 0.00313918

Pain intensity - CPM Aver-

age:

19 0.977467 23.1422 22.1647 0
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Final T-Score 20 0.958883 5.67918 4.7203 0

Total Score 21 0.914266 6.66802 5.75375 0

Have you used opioid med-

ications for pain manage-

ment in the past? no

22 0.917278 19.6458 18.7286 0.00324954

Pain intensity - Baseline 2: 23 1.67049 22.8134 21.1429 0.00240343

Pain intensity - Baseline 1: 24 2.26412 23.3986 21.1345 0

Interference 25 0.444967 3.32661 2.88164 0

Do you take any of

the following medica-

tions for pain treatment

at least once per week?

(choice=Aspirin) Unchecked

26 0.705992 12.78 12.074 0.0158676

Rumination Score 27 0.482619 5.08523 4.60261 0

Do you currently use opioid

medications for pain man-

agement? no

28 0.917341 17.7617 16.8444 0.00535868

Age: 29 0.536772 3.70914 3.17237 0.00107909

Have you used opioid med-

ications for pain manage-

ment in the past? I don’t

know

30 1.06422 19.4564 18.3922 0.000429185

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Tramadol

(Ultram)) Unchecked

31 1.00569 15.438 14.4323 0.0183078

Do you currently use opioid

medications for pain man-

agement? I don’t know

32 1.20055 17.8068 16.6063 0.00104231

Helplessness Score 33 1.0705 6.9977 5.9272 0
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Do you currently use opioid

medications for pain man-

agement? yes

34 0.789919 17.3952 16.6053 0.0041447

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Acetaminophen

(Tylenol)) Unchecked

35 0.860962 14.8857 14.0248 0.00180258

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Gabapentin

or Pregabalin) Checked

36 0.898638 13.6626 12.764 0.00282036

BRS Score 37 0.519309 5.02212 4.50281 0

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Tramadol

(Ultram)) Checked

38 0.675679 15.3492 14.6735 0.00207235

Do you take any of the fol-

lowing medications for pain

treatment at least once per

week? (choice=Ibuprofen

(Motrin or Advil), cele-

coxib (Celebrex, Naproxen

or Aleve), or other

NSAIDs) Unchecked

39 0.397347 13.6129 13.2156 0.00361741

Do you take any of the

following medications

for pain treatment at

least once per week?

(choice=Other) Unchecked

40 0.355878 15.3664 15.0106 0.0032618
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Table A.3: Feature importance using Gaussian NB using mRMR-h with 40 features. Features
are selected with α = 0.0923671, which was found through 5-fold flat cross-validation.
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