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ABSTRACT 

A Hybrid Model of Event Comprehension Predicts Human Activity at Human Scale 

by 

Tan Nguyen 

Master of Arts in Psychological and Brain Sciences 

Brain, Behavior, and Cognition Psychology 

Washington University in St. Louis, 2022 

Professor Jeffrey M. Zacks, Chair 

To act effectively, humans store event schemas and use them to predict the near future. How are 

schemas learned and represented in memory, and used in online comprehension? One means to 

answer these questions is modeling event comprehension. What are, then, computational 

principles of event comprehension? We proposed three candidate properties: 1) abstract 

representation of visual features, 2) predictive mechanism and prediction error as feedback, and 

3) contextual cues to guide prediction, and adapted a computational model embodying these 

properties. The model learned to predict activity dynamics from one pass through an 18-hour 

corpus of naturalistic human activity. Evaluated on another 3.5 hours of activities, it updated at 

times corresponding with human segmentation and formed human-like event categories—despite 

being given no feedback about segmentation or categorization. These results establish that a 

computational model embodying the three proposed properties can naturally reproduce two 

important features of human event comprehension.



1 

 

 

Introduction 

To make sense of and act effectively in the world—whether making a cup of tea or writing an 

email—humans store knowledge and use it to make predictions about what is going to happen1,2. 

How is this type of knowledge represented in memory? How do humans acquire this type of 

knowledge over time and use this knowledge in online comprehension? This type of knowledge 

has been historically described as “schemas”3,4 or “scripts”5,6. Schemas or scripts represent 

generic (probabilistic) knowledge, accumulated by experiencing various examples of a class of 

events, about how a type of event typically unfold4. For example, a “sandwich-making” schema 

can comprise of sequence of events “slice tomatoes”, “cut the bread”, “put vegetables in”, and 

“add condiments,” among other sequences. During online comprehension, humans select a 

schema and construct a working event model—stable representations of the current situation—to 

predict the near future7,8. When the working event model is no longer relevant to the current 

situation—once the person has done preparing a sandwich and is about to make a cup of 

coffee—humans should be able to update the working event model to represent "coffee making.” 

Previous models of event comprehension tried to formalize these mechanisms using different 

types of architecture and showed the correspondence between models’ output and human 

behavior9–12. 

What do models of event comprehension have in common? Examining that question might 

reveal core computational principles governing human event comprehension. Smith et al13 built a 

model of intuitive physics that tracks objects’ positions in scenarios typically used in 

developmental psychology to test core object knowledge14. The model has two main modules: 1) 
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“inverse graphics” module and “physical simulation” module. The “inverse graphics” module 

uses deep recognition networks to segment and identify objects from raw frames. The “physical 

simulation” module predicts objects’ location in the current frame, using its belief about their 

locations in the past. The model was tested on physically implausible scenarios (e.g. an object 

disappears behind an occlude), and the model’s surprise scores aligned with surprise level rated 

by humans more than previous models of intuitive physics. Another study10 trained a 

feedforward neural network to predict sequences of discrete states. The stimulus comprised15 

states that formed 3 “communities”; transitions between states within a community were 

common, whereas transitions that crossed communities were rare. This structure can be viewed 

as an abstraction of situations where larger events such as making a sandwich, making coffee, 

and making juice each includes collections of sub-actions such that transitions amongst sub-

actions are more common than transitions between events. The network’s hidden unit 

representations mirror the community structure and the similarity relations found in left IFG, 

insula, left ATL, and left STG10. One study11 that trained a recurrent neural network to predict 

human motion showed that gating information to the network by detecting context changes 

(peaks in prediction error) improved prediction performance. These studies suggest that models 

of event comprehension should be able to: 1) represent visual features in an abstract space, 2) 

predict the future and use prediction error as feedback, and 3) use contextual cues to guide 

prediction. 

Structured Event Memory (SEM)9 embodies these three features: 1) SEM compresses and 

abstracts the high-dimensional visual input (pixels) into a lower-dimensional vector space by a 

variational autoencoder15 (VAE), 2) it uses recurrent neural networks to learn to predict activity 

sequences and back-propagate errors, 3) it detects contextual change and updates working event 
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model to guide prediction via approximate Bayesian clustering. SEM has been used to model 

how activities are segmented into events, how working memory is updated at event boundaries, 

how a category of event generalizes to a new instance, and how event structure organizes long-

term memory on short activities. 

Previous models of event comprehension have been subject to two key limitations. First, though 

abstraction can help models learn generalized event dynamics, those representations were 

abstracted to the point that they cannot be compared meaningfully with human perceptual 

representations. Previous simulations have used arbitrary localist codings12, highly simplified 

pose representations11, or unstructured scene representation9. Second, the activities used for 

training and evaluation have been too brief to capture the naturalistic structure of human action 

performance and comprehension. These limitations have precluded answering a key question 

about the modeling of event comprehension: can a predictive system that updates event models 

based on contextual change and operates on the feature space that is comparable to human vision 

learn event representations that lead to human-like event segmentation and categorization? 

To answer that question, we adapted the SEM architecture so that it could be trained and 

evaluated on rich representations of naturalistic human goal-directed activity, which were 

recorded and processed such that the model’s outputs and internal states could be directly 

compared to human performance on a moment-by-moment basis. The model was trained on over 

19 hours of recordings of actors completing extended naturalistic activities. Each activity was 

recorded with three video cameras and an infrared time-of-flight depth sensor that captured the 

three-dimensional pose of the body. The identities and positions of objects were tracked over 

time using semi-automated object tracking, and semantic information about objects was 

incorporated using a large-scale language model16. These recordings were subjected to a 
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dimension reduction process that preserved interpretable information about the dynamics of body 

movement and the semantics of the objects with which the actor interacted. The computational 

model was trained to take in the running sequence of these reduced representations and to predict 

the next timepoint in the sequence, 1/3 of a second later. Here, we report how a model 

embodying three key computational principles learned, segmented activity, and categorized 

scene vectors, and we compare the model’s segmentation and categorization to human 

judgments. 

Methods  
 

Model architecture and implementation 
The core architecture of the Structured Event Memory (SEM) model has two main components: 

a library of recurrent neural network (RNN) schemas, and a generative model of event labels9. 

The specific RNN architecture was a four-layer, fully-connected neural network with gated 

recurrent units (GRU), a leaky rectified linear activation function (leaky ReLU), and 50 percent 

dropout for regularization. The generative model clusters each incoming scene vector to an event 

schema by inferring which latent state (event schema) generates the scene vector, and it infers 

the latent state via local maximum a posterior (MAP) estimation (Fig.1). For each incoming 

vector, SEM computes likelihoods that the vector belongs to each event schema by comparing 

event schemas’ predictions with the scene vector, with higher similarity indicating higher 

likelihood. SEM-1.0 generated priors for the vector belonging to event schemas through the 

sticky Chinese Restaurant Process (sCRP). In SEM-2.0, we replace this process with a sticky 

uniform process (sUP), which is equivalent to an sCRP modified to treat the size of all visited 

clusters as equal to a constant. As in the sCRP, sUP has a hyperparameter called stickiness that 
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controls the tendency to remain in the currently active event, and a hyperparameter called 

concentration that controls the likelihood of spawning new event schemas. Priors and likelihoods 

are used to compute posterior probabilities for all event schemas, and the incoming scene vector 

is assigned to the event schema with the highest posterior probability. Consequently, in this 

architecture, event boundaries are by-products of switches between different event schemas. In 

principle, this inference over the latent states by estimating local-MAP is not exactly Bayesian 

inference, which requires computations for all past clustering outcomes. However, comparisons 

between local-MAP and more exact forms of Bayesian inference have shown their performance 

to be highly similar33. 

In SEM-1.09, there were three sources of bias (modeling assumptions) that created an imbalance 

in the relative activation of event schemas. One source of bias was that newly spawned event 

schemas were initialized to random weights. This initialization disadvantages new event schemas 

for the learning of naturalistic activities like the META corpus, because the environment is rich 

with general features and dynamics, such as where objects are typically found and how bodies 

can move, as well as event-specific information. To address this imbalance, we initialized newly 

spawned event schemas with weights from a model that was trained on all scene vectors up to 

that point in time. In addition, the process used to assign priors to event schemas was the sCRP, 

which assigns higher prior probabilities to latent states (event schemas) that have more 

frequently been activated in the past. This led to the activation of a small number of event 

schemas for most time points and rarely activated newly-spawned event schemas. Removing this 

"rich-get-richer" property helped SEM-2.0 to use event schemas more evenly. Furthermore, 

SEM-1.0 asks active schemas to make predictions about the current scene by feeding them scene 

vectors from previous timepoints while asking inactive schemas to make predictions by feeding 
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them a random vector. This approach helped the authors circumvent a computational challenge 

because predictions from inactive schemas could be cached (because the random vector was 

constant, predictions were also constant) and used to compute likelihoods for the inactive event 

schemas. However, that approach placed inactive event schemas at a disadvantage because the 

input vectors to these event schemas were not informative to predict the current scene vector, 

while the input to the active event schemas was the scene vector from previous timesteps. 

Consequently, inactive event schemas were less likely to be selected and update their weights 

(since only the active event schema updates its weights at a specific timestep), resulting in only 

some initial event schemas activating and updating their weights most of the time. Relatedly, 

because event schemas in SEM-1.0 were trained to predict current scene vectors from either 

previous scene vectors or random vectors, their predictive power was compromised. We 

therefore modified SEM-2.0 so that both active and inactive schemas were provided with the 

previous scene vectors as input. To retain efficient processing, we parallelized the calculation of 

predictions from active and inactive schemas. These changes led to more even use of event 

schemas and reduced prediction error (see SI). 

All code was implemented in Python, using the Keras library for neural network implementation 

[link to github repo]. Hyperparameters were chosen by performing a grid-search across several 

potential values and selecting the configuration of values that minimized prediction error and 

most closely matched the mean number of human event boundaries (see Supplementary 

Information). 

Materials 
SEM-2.0 was trained on the Multi-angle Extended Three-dimensional Activities (META) 

stimulus set17. This stimulus set contains over 25 hours of performances of everyday activities 
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of about 10 minutes each, performed in realistic environments (see SI for more information). 

Performances were captured with a Kinect V2 device, which includes a video camera and a time-

of-flight depth sensor34, and two other video cameras. The Microsoft Kinect for Windows SDK 

2.0 was used to infer the three-dimensional positions of the actors’ skeletal joints from the 

recorded depth image stream. The three-dimensional joint positions for each frame were 

translated to place the mid-spine joint at the origin (0,0,0). Joint coordinates were then rotated 

about the Y-axis to align the left and right shoulder joints on a common plane in the Z-axis. Raw 

features were smoothed with a rolling mean of seven frames (three frames before and three 

frames after).  From the joint position data, we calculated joint velocity and acceleration, as well 

as the inter-hand distance, velocity, and acceleration. 

Semantic information about objects that the actors touched was captured using the following 

method. For a subset of video frames at ten seconds intervals, human annotators marked the 

positions and identities of objects with bounding boxes. Then, using the subset of labeled frames, 

a computer vision tracking model was used to track the positions of objects both forward and 

backward in time between the labeled frames (Siam Region Proposal Network35). Each tracker 

was dropped when the model’s confidence fell below a threshold and the Hungarian algorithm 

was used to match forward and backward tracks. Object appearance and disappearance features 

were binary, taking values of ones for frames in which at least one object begins to be tracked 

and frames in which at least one object is no longer tracked, respectively. For each frame, the 

name of each object present in the scene was converted to a 50-dimensional vector using the 

GloVe language model16 trained on the large collection of Internet encyclopedia entries and 

news articles of the Wikipedia 2014 and GigaWord 519 corpora. A 50-dimensional feature set 

was created as an average of the embeddings of all objects present in the current frame. In 
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addition to these features representing the semantic meanings of objects in the environment, we 

created features of the semantic meaning of objects nearest to the actor’s right hand. The three-

dimensional Euclidean distance between the actor’s right hand joint and the average depth in Z 

axis of the pixels in the object’s bounding box was calculated. Then, a weighted average of the 

object vectors was calculated, scaled by the inverse of the distance to the actor’s hand. In total 

there were 102 object-related features, comprising object appearances and disappearances, 50 

features for the average embedding of all the objects present in the scene, and 50 features of the 

nearest objects to the actor’s hand. 

We performed principal component analysis to reduce the dimensionality of the feature vectors. 

Dimensionality reduction was performed separately on body motion and semantic features, to 

allow for modality-specific calculations of predictions and errors. The resulting set of features 

contained 30 dimensions (14 body motion dimensions, 13 semantic dimensions, 2 dimension for 

object appearances and disappearances, and 1 dimension for the correlation of pixel luminance 

between successive video frames). This dimensionality reduction preserved 76 percent of the 

original variance of the full feature set. 

Training and Testing regimen 
The Kinect body tracking produced large-scale errors for some of the activities (for example, in 

activities where the actor’s lower body was occluded, the Kinect mistook the actor’s upper body 

as the whole actor). To prevent activities with large tracking errors from having an undue 

influence on the model’s performance, we developed a filtering algorithm to select high-quality 

activities for training and validation. First, we calculated the range of all possible values for each 

derived body motion feature. The algorithm has two thresholds to: 1) mark bad features and 2) 

filter bad activities. For each feature in each activity, the feature was considered good if y% of 



 

9 

 

the values for that feature fell inside of the ninetieth percentile of the possible range, otherwise it 

was marked. If more than x% of all features of the activity were marked, the activity was filtered. 

A grid-search was used to determine values for x and y. See Fig. 7 for the proportion of activities 

that are left after applying each pair of x and y thresholds. The x-axis and y-axis in the plot 

correspond to threshold x and threshold y respectively, and the annotated values indicate the 

proportion of activities left. Because SEM-2.0 showed learning saturation after watching 

approximately 40 to 60 activities, we can afford to apply stringent thresholds to maintain high 

quality without worrying about depleting the training dataset. As a result, we ended up with 128 

activities out of the 149 activities in the META stimulus set (86%); an activity is selected if more 

than 80% if its features are considered good, and a feature is considered good if more than 80% 

of its value fall within the ninetieth percentile of the possible range. 

Filtering thresholds for activity inclusion 

 

Figure 1: The proportion of activities passing the filtering algorithm with different combinations of two thresholds. Y-axis 

represents the proportion of frames falling within the ninetieth percentile so that a feature can be marked as good. X-axis 

represents the proportion of good features so that the video can be used for training and testing. Each annotated number is the 

proportion of activities passing the filtering algorithm with each combination of threshold 

We split the 128 activities into a training set (108 activities) and validation set (20 activities). 

SEM-2.0 watched activities from the training set, and at each time step the weights in the active 

RNNs in SEM-2.0 were updated by back-propagating the squared error between SEM-2.0’s 



 

10 

 

predictions and the input scene vectors. In this way, SEM-2.0 was only permitted to learn from 

each training activity once, to match the uniqueness of experience of humans. We evaluated 

SEM-2.0 after it watched each training activity by presenting SEM-2.0 with all validation 

activities, while freezing SEM-2.0’s parameters to prevent weight updating. 

Generic model architecture 
The SEM model builds a library of RNN event schemas and chooses between them using a Bayesian 

inference process over latent states. For comparison with SEM-2.0, we created a generic model consisting 

of a single RNN and removed the Bayesian inference mechanism. In this way, we tested a system that 

applies a single RNN event schema to predict the next time step against the full SEM-2.0 model which 

selects between separate RNNs to predict the next time step. Apart from this key difference, the 

parameters were matched between SEM-2.0 and the generic model. SEM-2.0’s library of RNNs adds a 

larger number of parameters above the generic model’s but the same amount of weight updating 

(learning) on each time step; the exact number of weights depends on the number of event schemas 

created. To address this issue, we also created variations of the generic model with double and triple the 

number of units in the hidden layer. This increases the number of weights to be more comparable with the 

number of weights in SEM-2.0—but gives the generic model a large advantage in the amount of weight 

updating it experiences. 

 

Evaluation Metrics 
Whole prediction error 

In order to measure how a model learns to predict over the course of training, we calculated its 

prediction error for each pass through the validation set. The prediction error for each timestep is 

the Euclidean distance between the active model’s prediction and the input scene vector at that 
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timestep, and the summarized prediction error for the validation set is the average of the 

prediction errors calculated at all timesteps for all activities. 

𝑃𝐸 

=  
1

|𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠|
∑

 

𝑎∈𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

 
1

|𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠|
   ∑

 

𝑡∈𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠𝑎 

√(𝑣(𝑡)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  −  𝑣(𝑡)𝑖𝑛𝑝𝑢𝑡)
22

;   𝑣

∈ 𝑅30 

( 1 ) 

Parcellated prediction error 

Because we performed dimensionality reduction separately on body motion features, object 

semantics, object appearance or disappearance, and optical features, we could calculate 

predictions and prediction errors specifically for each of those. The resulting set of features 

contained 30 dimensions (14 body motion dimensions, 13 semantic dimensions, 2 dimensions for 

object appearances and disappearances, and 1 dimension for the correlation of pixel luminance 

between successive video frames). Prediction error for a specific modality at each timestep is the 

Euclidean distance between the model’s prediction for that modality and the input scene vector 

for that modality. For example, prediction error at each timestep for body motion features is the 

Euclidean distance between a 14-dimensional prediction vector, which is a subset of the model’s 

prediction, and a 14-dimensional input vector, which is a subset of the input scene vector. 

Segmentation 

An event boundary for SEM occurs when it switches from one event schema to another event 

schema, or when it decides to restart the current event schema. The generic model only has one 

event schema, so this definition of event boundaries is not applicable. To simulate event 

boundaries for the generic model, we identified peaks in prediction error. Peaks were local 
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maxima selected in descending order of height. The number of peaks was matched to SEM-2.0’s 

number of event boundaries for that validation activity. To have a fairer comparison between the 

generic model and SEM-2.0, we applied the same algorithm to SEM-2.0’s prediction errors to 

derive event boundaries. The generic model’s boundaries, SEM-2.0’s actual boundaries, and 

SEM-2.0’s derived boundaries were compared against human boundaries to calculate point-

biserial correlations. 

Mutual Information 

To quantify SEM-2.0’s categorization agreement with human categorization, and how SEM-

2.0’s event schemas generalize to actions performed by the same actor in different instances and 

by different actors at different locations, we computed the mutual information score (with 

adjustment to account for chance36) between the model event labels and script action labels 

every time the model completes watching a training activity. We treated script action labels as 

one clustering of input vectors, and model’s event labels as another clustering of input vectors. 

Formally, given a stimulus set Corpus with N input scene vectors (the total number of input 

scene vectors across all validation activities), and two partitions of Corpus, namely Schemas 

(SEM-2.0’s categorization) and Actions (humans’ categorization): 

𝐶𝑜𝑟𝑝𝑢𝑠  =  {𝑣1,  𝑣2,   … ,  𝑣𝑛};   𝑣𝑖  ∈  𝑅30 

( 2 ) 

𝑆𝑐ℎ𝑒𝑚𝑎𝑠  =  {𝑠𝑐ℎ𝑒𝑚𝑎1,  𝑠𝑐ℎ𝑒𝑚𝑎2,   … ,  𝑠𝑐ℎ𝑒𝑚𝑎𝑛};  𝑠𝑐ℎ𝑒𝑚𝑎𝑖  =  {𝑣𝑖,  𝑣𝑗 ,   … ,  𝑣𝑘} 

( 3 ) 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠  =  {𝑎𝑐𝑡𝑖𝑜𝑛1,  𝑎𝑐𝑡𝑖𝑜𝑛2,   … ,  𝑎𝑐𝑡𝑖𝑜𝑛𝑚};  𝑎𝑐𝑡𝑖𝑜𝑛𝑖   =  {𝑣𝑖′ ,  𝑣𝑗′ ,   … ,  𝑣𝑘′} 

( 4 ) 

The mutual information score between Schemas and Actions is computed as: 
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 𝐼(𝑆𝑐ℎ𝑒𝑚𝑎𝑠;  𝐴𝑐𝑡𝑖𝑜𝑛𝑠)  = ∑ ∑ 𝑃(𝑠𝑐ℎ𝑒𝑚𝑎,  𝑎𝑐𝑡𝑖𝑜𝑛) log (
𝑃(𝑠𝑐ℎ𝑒𝑚𝑎, 𝑎𝑐𝑡𝑖𝑜𝑛)

𝑃(𝑠𝑐ℎ𝑒𝑚𝑎)𝑃(𝑎𝑐𝑡𝑖𝑜𝑛)
) 

𝑥∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠
 
𝑦∈𝑆𝑐ℎ𝑒𝑚𝑎𝑠   

( 5 ) 

Concretely, equation 5 is a summation over all schema-action pairs. An example of a schema-

action pair is shown in Fig. 8, and the calculation for that pair is below: 

𝑃(𝐸𝑣𝑒𝑛𝑡 4;  𝐽𝑢𝑚𝑝𝑖𝑛𝑔 𝐽𝑎𝑐𝑘𝑠) log (
𝑃(𝐸𝑣𝑒𝑛𝑡 4;  𝐽𝑢𝑚𝑝𝑖𝑛𝑔 𝐽𝑎𝑐𝑘𝑠)

𝑃(𝐸𝑣𝑒𝑛𝑡 4)𝑃(𝐽𝑢𝑚𝑝𝑖𝑛𝑔 𝐽𝑎𝑐𝑘𝑠)
) 

( 6 ) 

Equation 6 was repeated and summed for all pairs of SEM-2.0 event schemas and scripted action 

labels to derive mutual information score. 

 

Figure 2: Conceptual example of the calculation of mutual information. Top: a sequence of human actions. Orange vertical line 

indicates the start of one action and the end of another action. Blue vertical line indicates the transition between two activities 

(since all validation activities were concatenated to compute mutual information score). P(Jumping Jack) and P(Event 4) are 

marginal probabilities of jumping jack scenes and scenes that were assigned to SEM’s event 4. P(Event 4, Jumping Jack) is the 

joint probability of scenes assigned to event 4 and jumping jack. In this illustration, the result of equation 6 will be high since 

there is a high correspondence between event 4 and jumping jack. 

For each pair of Schemai (e.g. SEM-2.0 event schema “4,” meaning the 4th schema created by 

SEM-2.0 during training) and Actionj (e.g. script action label “jumping jack”), P(event 4, 

jumping jack) is the probability that an input scene vector belongs to both clusters event 4 and 

jumping jack. If cluster event 4 corresponds with cluster jumping jack (a large number of 

timesteps are labeled as both SEM-2.0 event schema 4 and script action label jumping jack), the 

ratio within the logarithmic function will be high and the term for this pair will also be high. The 
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mutual information score can also inform us about SEM-2.0’s ability to generalize across actors 

and activities. A given action (e.g. jumping jack) can be performed by different actors in 

different environments. If SEM-2.0 is able to generalize across actors and environments, it 

should assign the same event label (e.g. event 4) to those input scene vectors. In that case, the 

adjusted mutual information score will be high. In contrast, if SEM-2.0 assigns different event 

labels to the same action performed by a different actor in a different room (event 4 to actor A 

jumping jack and event 20 to actor B jumping jack), the score will be low. To the degree that 

SEM-2.0 categorizes input scene vectors in a human-like way, and its event schemas generalize 

to instances of the same action, adjusted mutual information between two partitioning algorithms 

will be high. 

Permutation testing 
We assessed how likely the results would occur by chance via permutation testing. SEM-2.0’s 

event labels for all validation activities were first concatenated. A permutation is generated by 

shuffling runs of event labels, thus preserving event lengths in the resulted permutation. The 

shuffling not only changes SEM-2.0’s event labels for particular input scene vectors but also 

changes SEM-2.0’s event boundaries. As a result, the shuffling procedure can be used for both 

segmentation and categorization tests. When we concatenate two validation activities, there is an 

interval between the onset of SEM-2.0’s last event in the first activity and the onset of SEM-

2.0’s first event in the second activity. Because human event boundaries are less likely to fall 

into these intervals, and SEM-2.0 never placed boundaries in these intervals, we made sure 

permutations did not have boundaries within these intervals so that SEM-2.0 would not have an 

unfair advantage over permutations. Permutations were repeated 100 times and scaled point-
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biserial correlation, adjusted mutual information, purity, and coverage were computed for each 

permutation. 

Training and testing input-deprived models 
To test the ability of the model to learn representations with limited input, we trained two 

versions of SEM-2.0, each version with eight random initializations, that generated predictions 

of the full scene vector from deprived input features: we withheld either the body motion 

features or the semantic features. The input scene vector is a concatenation of multiple PCA-ed 

vectors: a 14-dimensional vector for body motion features, a 13-dimensional vector for semantic 

feature, a 2-dimensional vector for object appearance/disappearance feature, a 1-dimensional 

vector for optical flow feature. For the semantics-deprived model, we set the 13-dimensional 

vector for semantic features to zeros before feeding into the model. For the motion-deprived 

model, we set the 14-dimensional vector for body motion features to zeros before feeding into 

the model. The two models still had to make predictions for all features: 30-dimensional output 

vectors. We evaluated deprived models on the aforementioned metrics: prediction error, scaled 

point-biserial correlation, and adjusted mutual information; we used permutation testing to assess 

the statistical significance of segmentation and categorization metrics. 
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Results  

Models of event comprehension were trained and tested on the Multi-angle Extended Three-

dimensional Activities (META) stimulus set, a corpus of naturalistic activities17. In each 

activity, an actor performed a series of 6 to 7 scripted actions in a realistic environment. Because 

the visual and semantic features processed in mid-level human vision may be the building blocks 

from which event representations are constructed18, we used a combination of human and 

computer vision methods to generate a rich set of these features. From three-dimensional joint 

position recordings, we calculated features of body pose, velocity and acceleration, as well as 

inter-hand distance, velocity, and acceleration. To represent the semantic meanings of interactive 

objects in the activities, we annotated bounding boxes that tracked the positions of objects, then 

used a language model (GloVe16) trained on a large text corpus19 and translated the name of 

each object to a vector embedding. We then computed a weighted vector representation of the 

objects closest to the actor’s right hand, and the mean vector representation of all objects 

currently present in the scene. Principal component analysis reduced a set of 253 input features 

(object appearances, object disappearances, mean frame-to-frame change in pixel luminance 

values, skeletal motion features, object semantic features) to a set of 30 features that we 

presented as input scene vectors to the event prediction model. 

The core architecture of the model, depicted in Fig. 1, was modified from the Structured Event 

Memory (SEM) model9; we will refer to the modified version as SEM-2.0 and the original 

version as SEM-1.0 (SEM refers to both SEM-1.0 and SEM-2.0). This model uses fully-

connected recurrent neural networks (RNNs) to represent event schemas, and an approximate 
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Bayesian inference (clustering) process to assign incoming scene vectors to event schemas. On 

each time step (3 Hz), a currently active RNN is presented with an input scene vector and 

predicts the next scene vector. The clustering process then compares the posterior probability of 

the active RNN’s prediction, relative to that from all other models, and then either 1) retains the 

current event model, 2) activates a different event schema from the library, or 3) spawns a new 

event schema. SEM-2.0 includes hyper-parameters for stickiness, the tendency to keep the active 

model (to ensure temporal coherence in events), concentration, the tendency to spawn new 

models, and learning rate to update RNNs. The hyper-parameters used for our experiments are 

shown in Table 1, and hyper-parameter tuning is described in Supplementary Information. In 

SEM, the set of RNN weights that are learned during training are event schemas, and each 

activation of a schema constitutes the construction of a working event model. 
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Figure 3: Overview of SEM architecture. (A) In this hypothetical example, SEM is in the process of training and has generated 

four event schemas (RNNs). At each time step, the event schemas predict the current input scene vector from the previous scene 

vector. Based on the posterior probability, SEM keeps the active event schema active, switches to another schema in its library, 

or spawns a new event schema (depicted as an RNN with a dotted outline). In this case, the active schema is retained. The 

resulting active event schema updates its weights by backpropagating its prediction error. (B) A potential sequence of outcomes. 

On the first two timesteps, the currently active schema is retained. On the third timestep, SEM switches to a different previously-

learned schema. On the fourth timestep, SEM initializes a new schema. (Not shown: SEM separately evaluates the probability of 

the current schema based on the current RNN hidden unit values and based on re-initializing the RNN. If resetting the hidden 

unit values is found to be more valuable, they are reset. This allows SEM to model, for example, washing a plate and then 

immediately washing a second plate.). 

 

Learning Rate Stickiness Concentration Input vector 

dimensionality 

Number of RNN hidden 

units 

1e-3 1e7 1e-1 30 16 
Table 1: Model's hyper-parameters. 

Applying the original implementation (SEM-1.0)9 on the corpus dataset, we noticed that the 

model only used a couple of event schemas to account for most of 22 hours of activities, which 

wasn’t the issue in the original dataset of short videos (average of 4 minutes) that SEM-1.0 was 

trained and tested on. There were three sources of bias (modeling assumptions) that created an 
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imbalance in the activation of event schemas when the model interacted with the extended 

naturalistic activities. First, newly spawned event schemas were initialized to random weights; 

this disadvantages new event schemas for the learning of naturalistic activities that afford rich 

“general knowledge” about feature co-occurrence and dynamics. In SEM-2.0, we initialized 

newly spawned event schemas with weights from a single RNN that was trained on all scene 

vectors up to that point in time. Second, the process SEM-1.0 used to assign prior probabilities to 

schemas was the sticky Chinese Restaurant Process20 (a type of Dirichlet process). Dirichlet 

process is a commonly-used prior distribution and has a “rich-get-richer" property21—a small 

number of large clusters accounts for most observations. In SEM 1.0, this property caused most 

timepoints to be assigned to only a small number of event schemas. Although “rich-get-richer” 

might be appropriate to some clustering applications, this property might not be desirable in 

certain applications where a more balanced prior distribution is desired21,22. In SEM-2.0, we 

instead used a uniform prior distribution, while retaining stickiness and concentration 

parameters. Third, SEM-1.0 asked active schemas to make predictions about the current scene 

from the current scene vector, but it asked inactive schemas to make predictions from a random 

vector. This approach is computationally efficient, but it puts inactive schemas at a disadvantage. 

In SEM-2.0, we feed all schemas scene vectors from previous timepoints (see Methods for 

details). 

From 128 activities (total duration: 21 h 43 m, range: 5 m 35 s to 19 m 16 s, mean: 10 m 11 s), 

activities were randomly split into a training set of 108 activities (18 h 4 m) and a validation set 

of 20 activities (3 h 39 m). In contrast to the common practice with deep learning models of 

interleaving learning with repeated presentation of stimuli23, SEM-2.0 encountered and learned 

each training activity only once, watching the whole activity before moving to the next activity. 
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This strategy resembles blocked training regime and imitates the uniqueness of visual stimuli. 

Both of these features are characteristics of human learning experience, enabling a meaningful 

comparison of the model’s outputs to human’s segmentation and categorization. After training 

on each activity, the validation set was tested with learning turned off. 

SEM-2.0 learns to predict naturalistic scene dynamics and 

outperforms comparison models 
The time course of prediction error for the trained SEM-2.0 model contains spikes of high 

prediction error punctuating periods of stable predictions (Fig. 2A). SEM-2.0’s mean prediction 

error for validation activities decreased over the course of training (Fig. 2B, top), as SEM-2.0 

partitioned event knowledge into discrete recurrent neural networks and used a Bayesian 

updating process to select the active event schema. To assess the impact of event knowledge 

partitioning, we created a generic model, composed of a single RNN that predicted the incoming 

scene vector from the last input. This model used the same parameters as SEM-2.0 for its one 

event schema, but could not switch or spawn new event schemas. The generic model had higher 

mean validation prediction error across 16 simulations (SEM: 0.575, 95% CI (0.571, 0.579); 

generic: 0.636, 95% CI (0.622, 0.651); also see Figure 2B and 2C, top panels, for 4 simulations). 
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Figure 4: Prediction Error performance. (A) Prediction error of SEM-2.0 shows regular spiking. Illustrated here is prediction 

error for one cleaning activity in the validation set after training on approximately 450 minutes of other activities in the training 

set. (B-E) Prediction errors for SEM-2.0 and generic models over the course of training. Each point is the mean prediction error 

for all validation activities at each evaluation time over the course of training.  (B-E) Top: Mean prediction error for all 

validation activities across training for SEM-2.0, generic model with the same, double, and triple the number of hidden units. 

Four colors indicate four different simulations with different random weight initializations and different orders of training 

activities. Using discrete event schemas and a Bayesian updating process, SEM-2.0 reduces prediction error over the course of 

training. The generic model reduces prediction error over the course of training, to a level of prediction error slightly higher 

than SEM-2.0. Generic models with double and triple the number of hidden units can reduce errors lower than SEM-2.0; 

however, all generic models show greater interference from new learning (mean prediction error fluctuates across training). 

Bottom: Prediction errors for all validation activities across training for SEM-2.0, generic model with the same, double, and 

triple the number of hidden units, for the “red” simulation. SEM-2.0 shows some interference around minute 300-th, with 

prediction errors for a couple of validation activities increase. However, the generic model shows catastrophic interference 

around minute 800-th, with almost all validation activities’ prediction errors increase. The same pattern can be observed in the 

generic models with double and triple number of hidden units. 

A 

B C D E 



 

22 

 

Compared to the generic model, SEM allocates more storage to representing the results of 

learning because it accumulates a library of event schemas. For comparison, we considered 

expanded generic models had double (2x) or triple (3x) the number of units in the hidden layer of 

the model. Notably, these models experienced much more weight updating than the generic 

model or SEM; whereas only the active model in SEM is able to update its weights, the original 

and expanded generic models update all their weights on each time step, which increases the 

amount of weight updating 2.5 times and 4 times, respectively. As shown in Fig. 2D-E (top 

panels), expanding the size of the hidden layer in the generic model also reduced the mean 

validation prediction error across 16 simulations (2x: 0.545, 95% CI (0.537, 0.554); 3x: 0.511, 

95% CI (0.505, 0.518)). Thus, whereas adding the ability to switch event schemas reduces 

prediction error, this set of simulations demonstrate that it is also possible to reduce prediction 

error by increasing the hidden layer size. However, there are differences in the weight updating 

processes between SEM and the generic models: whereas the generic models must update its 

weights with each new input scene, the schema weight updating mechanism in SEM is able to 

silo data from a newly-encountered event without compromising the integrity of the other event 

schemas in its library. This reduced interference: As shown in Figure 2C-E (top panels), the 

generic models’ average prediction error for validation activities sometimes increased as they 

saw more training activities, suggesting that the new learning from recent training activities had 

interfered with previously acquired learning that was beneficial to predict validation activities. 

Figure 2C-E (bottom panels) shows prediction errors for all validation activities across training 

for the “red” simulation. The generic model shows catastrophic interference at many points 

across training (e.g. around minute 510-th or minute 800-th), with almost all validation activities’ 
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prediction errors increase. The same pattern can be observed in the generic models with double 

and triple number of hidden units. 

To quantify the benefit of modeling scene dynamics with an RNN, we created a pair of very 

simple comparison models: The last scene model simply used the last scene vector as its 

prediction for the current scene, instead of generating a prediction as the output of an RNN. The 

recent scene model used a moving average of the previous three scene vectors as its prediction 

for the current scene vector. Both models performed poorly compared to SEM (mean prediction 

errors of 2.15 and 2.33, respectively.) 

SEM-2.0 segments activities in a human-like fashion without 

being reinforced for segmentation 
For each timestep, SEM selects an RNN to remain active or become active; this can be 

interpreted as an event label categorizing that timestep. For each event label en, SEM assumes 

the event schema en is active and generates a predicted scene vector conditioned on en. The 

probability of assigning event label en to the input scene vector monotonically decreases with the 

difference between the input scene vector and the predicted scene vector generated by event 

schema en. Moreover, for the active event label (the event label assigned to the previous scene 

vector), SEM calculates two probabilities: the probability of observing the input scene vector if 

the active event continues, and the probability of observing the input scene vector if the active 

event restarts. An event boundary is inferred when event labels for subsequent scene vectors are 

different, or when the probability of restarting the active event is higher than the probability of 

continuing. Events are the intervals between event boundaries. 

A key test of the model is to determine whether it generates human-like event boundaries for 

naturalistic stimuli. To compare SEM-2.0 to human performance on event updating and 
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understanding, we used data from the META stimulus set17. Normative event boundaries were 

collected from an online sample of participants. Participants were instructed to watch a 

randomly-selected sequence and press a button each time one meaningful unit of activity ended 

and another began. Each participant was assigned a grain of coarse, defined as the largest 

meaningful units of activity, or fine, defined as the smallest meaningful units of activity. 

Participants could segment multiple videos. We collected 30 segmentations per grain per 

activity. 

To quantify model-to-human and human-to-human segmentation agreement, we calculated the 

proportion of human raters who segmented during each timestep, and computed the point-

biserial correlation between that normative human segmentation time series and (a) each 

individual human rater, and (b) SEM-2.0 models’ segmentation. The possible range of this 

correlation depends on the number of event boundaries; thus, comparing correlations for two 

segmenters who identify different numbers of event boundaries can be misleading. Therefore, we 

scaled the correlation24  based on its minimum possible and maximum possible values, given the 

number of boundaries observed. We also assessed how likely the result would occur by chance 

by permutation testing: shuffling event boundaries while preserving event lengths (see Methods). 

As shown in Figure 3A, SEM-2.0’s point-biserial correlations across training were much larger 

than would be expected by chance, and are within the lower end of the distribution of human-to-

human segmentation agreement. 
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Figure 5: Compare segmentation agreement with a human normative group between SEM-2.0 and individual human segmenters, 

generic models. (A) Scaled point-biserial correlations across all validation activities for SEM-2.0 simulations, humans, and 

permutations across training. Each purple violin plot is a distribution of point-biserial correlation for different initializations of 

SEM-2.0. Each light sea-green violin plot is a null distribution generated by shuffling SEM-2.0’s boundaries while preserving 

SEM-2.0’s event lengths. The goldenrod violin plot is a distribution of scaled point-biserial correlation for different human 

subjects (which doesn’t change over the course of training). SEM-2.0’s segmentation agreement with human segmenters is 

bigger than expected by chance, and falls within the lower end of human segmenters. (B) Comparison of agreement with human 

segmentation between SEM-2.0 and generic models. SEM-to-human denotes SEM-2.0’s boundaries derived from Bayesian 

inference (event label switches). SEM_pe-to-human denotes SEM-2.0’s boundaries derived from its prediction error. 

Generic_pe-to-human, Generic_pe2 -to-human, and Generic_pe3 -to-human denote boundaries derived from prediction errors in 

the generic model, the generic model with double and triple the number of hidden units. Each violin plot is a distribution of 

scaled point-biserial correlation for different initializations and training orders. Segmentation agreement between generic 

models and humans is bigger than expected by chance, though it is smaller than segmentation agreement between SEM-2.0 and 

humans. 

 

SEM-2.0’s segmentation agreement out-performs generic 

models 
Because the generic model has only one event schema, it doesn’t produce event boundaries. To 

estimate event boundaries for the generic models, we identified timesteps where its prediction 

errors were highest. For a fair comparison between the generic models and SEM-2.0, we also 

A 

B 
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applied the same algorithm to SEM-2.0’s prediction errors to obtain event boundaries. We 

calculated point-biserial correlations for generic model’s boundaries and SEM-2.0’s boundaries. 

While SEM-2.0’s and generic models’ event boundaries derived from prediction errors align 

with human segmentation significantly more than chance, SEM-2.0’s event boundaries derived 

from the Bayesian inference process (event label switches) had higher agreement with human 

segmentation than these PE-derived boundaries (Fig. 3B). This result suggests that, although 

increasing the number of hidden units in the generic model reduces prediction error (Fig. 2C), it 

does not lead to more human-like event segmentation. 

 

SEM-2.0 produces flurries of updating at some event 

boundaries 
Examining the time course of SEM-2.0’s updating reveals that there are moments when SEM-2.0 

makes a flurry of rapid updates within a relatively short time window. Figures 4A and 4B show 

SEM-2.0’s boundaries for two example validation activities. Fig. 4C shows the distribution of 

elapsed durations between consecutive boundaries. The distribution is heavily right-skewed, and 

approximately 42% of consecutive boundaries have durations below 2 seconds, showing that 

SEM-2.0 makes flurries of rapid updates within a short time. Even though we know that humans 

agree where event boundaries are, we don’t know if it is the case that the brain experiences one 

boundary or a series of boundaries. Thus, SEM-2.0 makes the novel prediction that the brain 

might sometimes experience a series of updates before settling into a new stable event model. 
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Figure 6: Flurries of updating. Examples of SEM-2.0’s boundaries for (A) one “cleaning room” activity and (B) one “exercise” 

activity. For the cleaning activity, SEM-2.0 made flurries of updates around the 10th and 105th seconds. For the exercise 

activity, SEM-2.0 made flurries of updates around the 5th and 150th seconds. (C) Distribution of elapsed time between SEM-

2.0’s consecutive boundaries. Durations longer than 30 seconds were collapsed together. Most of the pairs of consecutive 

boundaries have small durations, indicating that SEM-2.0 made rapid updates within short intervals. 

SEM-2.0 forms schemas that correspond with judges’ action 

categories, and generalizes across actors and 

environments without being reinforced for 

categorization 
To comprehend an activity, one needs to not only capture its boundaries but also to relate the 

current activity to previous knowledge. SEM-2.0’s event labels model the act of classifying a 

current moment as an instance of a previously-learned activity. To evaluate SEM-2.0’s ability to 

classify, we used the script action labels that were provided to the actors before recording of each 

activity. We had two human raters watch videos of the activities and identify the beginning and 

ending of each of the 6-7 scripted actions per activity. Agreement between raters was high, with 

a median discrepancy of 1.41 s between raters. Discrepancies were resolved by computing the 

A B 
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mean of the time annotations. We compared human-rated action labels and SEM-2.0’s event 

labels. Fig. 5A shows examples for these script action labels, and Fig. 5B shows SEM-2.0’s 

event labels for one activity.  

 

 

 

 

Figure 7: Categorization agreement with script action labels for SEM-2.0. (A) Examples of script action labels for “making 

breakfast” activities. Each row is an activity, and each group on the y-axis indicates the actor performing these action 

sequences. Each color represents an action label. X-axis indicates the length of the activity. (B) An example of SEM-2.0’s active 

event schemas for one bathroom grooming activity at three different points (top three rows) in training (139 minutes, 391 

minutes, and 767 minutes) and script action labels (last row). (C) Categorization agreement between SEM-2.0 event labels and 

human action labels. Each purple violin plot is a distribution of adjusted mutual information scores between different simulations 

of SEM-2.0. Light sea-green violins indicate distributions of adjusted mutual information scores for permutations: each 

permutation is a shuffle of SEM-2.0’s boundaries while preserving event lengths. SEM-2.0’s adjusted mutual information scores 

increase across training, and remains significantly bigger than chance. 

d)

b)a)

c)
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To quantify SEM-2.0’s agreement with human action categories, we calculated the adjusted 

mutual information between SEM-2.0’s event labels and the scripted action labels. Mutual 

information quantifies the information shared by the two partitioning (clustering) algorithms 

(both SEM-2.0 and humans partition input scene vectors into clusters) and thus can be employed 

as a categorization similarity measure. If SEM-2.0 categorizes input scene vectors in a human-

like way, and SEM-2.0’s event schemas generalize across instances of the same action, mutual 

information between SEM-2.0 and script action labels will be high (see Methods). The adjusted 

mutual information score corrects for the chance level of expected mutual information between 

two partitions. To test the significance of the adjusted mutual information between SEM-2.0’s 

event schemas and script action labels, we performed a permutation test by randomly shuffling 

the order of SEM-2.0’s events 100 times and computing the adjusted mutual information 

between SEM-2.0’s event schemas and action labels (see Methods). As shown in Fig. 5C, the 

adjusted mutual information between SEM-2.0’s event schemas and script action labels was 

significantly higher than the permuted null distributions, indicating that SEM-2.0 can form event 

schemas that generalize across actions performed by different actors in different environments. 

Examination of the correspondence between SEM-2.0 categories ad script action labels revealed 

that SEM’s categories generalized across actors and environments: The same schema was often 

activated for the same script action performed by different actors in different environments (see 

Supplementary information.) 

Note that perfect adjusted mutual information is possible only if two partitions have the same 

number of categories; if two partitions differ in the number of categories (i.e., if one is finer than 

the other), the best possible adjusted mutual information score is lower. By the end of training, 

SEM-2.0 partitioned scenes into a lower level than humans do, with a mean event length of 
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29.47s compared to a mean scripted action length of 79.90 s, thus worsening the score. To better 

characterize the relationship between SEM-2.0’s evolving partitioning and human categories, we 

used pair of complementary categorization metrics, purity and coverage, which suggested that 

SEM-2.0’s categorization at the end of training captured sub-units of the action script labels (see 

Supplementary Information). 

 

The rate of event schema formation slows over learning 
A notable aspect of SEM-2.0’s behavior is the rate at which it forms new event schemas over the 

course of its training. Fig. 6 shows the number of SEM-2.0’s event schemas over the course of 

training. Early in training, when SEM-2.0 hasn’t learned much, it keeps creating new event 

schemas to capture the statistics of the stimuli. In the middle and late of training, SEM-2.0 starts 

to reuse its event schemas to accommodate novel stimuli while using these novel stimuli to 

update the weights of its existing event schemas. This process might resemble how humans learn 

and use event schemas: acquiring schemas quickly early in development, then relying more on 

existing schemas when a library of schemas has been established and encountered situations are 

similar to those previously encountered. 
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Figure 8: SEM-2.0’s number of event schemas across training. Color lines are simulations of SEM-2.0 with different weight 

initializations and training orders. SEM-2.0 created many new event schemas early in training and reused these event schemas in 

the middle and late of training. 

Comparison with input-deprived models 
To quantify how SEM predicts, segment activities, and categorize scene vectors, we created two 

input-deprived SEM-2.0 versions, semantics-deprived and motion-deprived models (see 

Methods) and compared them to SEM-2.0. Deprived models have higher prediction error than 

SEM-2.0, with large contribution coming from respective deprived features. Full SEM-2.0 had 

higher segmentation correlation with humans and higher categorization agreement with humans 

than deprived models did (see Supplementary Information). 
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Discussion  

A computational model that can be meaningfully tied to human behaviors and neural mechanisms can 

provide a framework for understanding human event comprehension. Thus, comparing the model’s output 

and empirical data provides a feasibility test for a computational model of event comprehension. In this 

research, we tested if a model of event comprehension that embodies three key computational 

principles—abstraction, prediction, and context—can learn representations to improve predictions, update 

event models, and categorize scenes in a human-like fashion. We adapted the original SEM architecture9 

so that it can be trained and evaluated on large-scale naturalistic and complex stimuli. Each video is an 

extended activity that captures the structure and complexity of sequences of everyday activities. SEM-

2.0's input features mimic the representations of ventral and dorsal streams of visual perception, which are 

object categories and biological motion respectively. We have shown that the model can learn to 

anticipate the next scene, segment events in a human-like manner, form event schemas that correspond to 

human action labels, and generalize these schemas to new events. The naturalistic dataset provides a 

rigorous test for SEM-2.0, and these results establish the feasibility of this architecture, and consequently 

its core computational properties, for event comprehension. 

 

Prediction  
SEM-2.0’s ability to predict replicated findings that recurrent neural networks are suitable candidate for 

sequential learning23,25. Both the generic model with the same number of hidden units and the generic 

model with double number of hidden units can learn event dynamics. Notably, we observed that by 

increasing the number of hidden units in the generic model, effectively increasing its capacity, the generic 

model can learn to reduce error further. However, the bigger model is more susceptible to catastrophic 

interference from new data for blocked training scheme26,27. In contrast, SEM-2.0’s ability to parcel event 

knowledge into separate RNNs makes it more resistant to interference from new data--it can spawn a new 

RNN to accommodate new (and possibly noisy) input without messing with the weights of existing 
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RNNs. This feature of SEM-2.0 distinguishes it with previous models of event cognition10–12: in these 

models, event dynamics was learned by a single neural network instead of a library of neural networks. 

 

Segmentation  
The model's segmentation resembled human segmentation on extended naturalistic stimuli. In the 

segmentation simulation, the input to SEM-1.0 was a high-dimensional vector derived from applying a 

variational autoencoder15 (VAE) to video pixels. Even though the features were an advancement from 

low-dimensional and often artificial stimuli, they do not necessarily represent features that can be 

meaningfully compared with human perceptual representations. Here, we have demonstrated that the 

computational principles in SEM-2.0 can account for naturalistic input mimicking human ventral and 

dorsal streams.  

Using peaks in prediction error as event boundaries, the generic model’s segmentation can also capture 

human segmentation behavior better than chance, and poorer than SEM-2.0 does. The finding is 

unsurprising given that SEM-2.0's segmentation mechanism also relies on prediction errors, and it 

suggests that human segmentation is sensitive to prediction errors as well. 

 

Generalization 
In this research, we have tested SEM-2.0’s generalizability against a corpus of naturalistic stimuli. We 

showed qualitatively that SEM-2.0 reused event schemas to action labels performed by different actors in 

different environments, indicating that it could learn underlying event dynamics while smoothing surface 

features. We quantified SEM-2.0’s generalizability by the adjusted mutual information score between 

SEM’s event instances and ground truth action labels. Adjusted mutual information score was 

significantly larger than expected by permutation tests, and it increased over the course of training. The 

finding makes sense because as SEM-2.0 sees more and more training examples, it should be better able 
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to extract underlying event dynamics and generalize to novel stimuli. In SEM-1.0, the authors have 

demonstrated that it generalizes a previously learned event schema to novel stimuli with different fillers 

but similar underlying relations on a toy dataset. A large corpus of extended naturalistic stimuli offered a 

stronger test of generalizability, and SEM-2.0 was able to generalize event schemas across ground truth 

action labels on the corpus dataset. 

Extensions 
One limitation of this model is that it does not combine known event schemas to generate a new event 

schema. For example, an event “selling stock at a coffee shop” can include elements of event “selling 

stock” and elements of event “have coffee at a coffee shop.” Adding this ability is equivalent to extending 

SEM’s ability to use contextual information to guide prediction more effectively. To do so, SEM might 

need to represent events compositionally, decomposing events into elements and being able to combine 

these elements in a rule-like manner. The resulting model could potentially reduce representational 

demands (representational dimensions) and generalize better thanks to its flexible combination rules. 

Elman and McRae12 demonstrated that a single, large neural network, which does not separate event 

knowledge, can combine elements learned in different events. The authors trained a neural network model 

on two different events, one in which a person cuts food in a restaurant with a knife and another where the 

same person cuts themselves with a knife and bleeds. The authors then gave the model an event in which 

the person was in the restaurant and cut themselves, and the model correctly inferred that the person 

bleeds, combining elements from the two events. One limitation of this approach is that the network 

employs localist representation, which has been laborious and infeasible to code for a large corpus of 

naturalistic stimuli. However, a recent advance28 in computer vision presents a way to automate the 

process, opening a promising research direction. 

Another limitation of the current model is that it does not model the hierarchical nature of events, smaller 

events are grouped to form larger events. For example, if “browsing the menu,” “call the waiter/waitress,” 

and “order meals” reliably occur sequentially, one could learn this temporal relationship and form a larger 
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event, “order food at a restaurant.” Behavioral29,30 and neural31,32 findings provide evidence that human 

event comprehension represents such temporal hierarchy. Franklin et al.9 discussed two strategies to 

implement a mechanism of learning hierarchical events. The first strategy is to extend the sticky-CRP 

process to learn transition dynamics between events, effectively grouping smaller events belonging to a 

larger event together. Another strategy is to make SEM to learn events of multiple hierarchies 

simultaneously. In principle, by scaling the prior over event noise parameter for each event schema 

(RNN), one can change the event schema’s sensitivity to prediction errors, effectively changing its 

granularity.  
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