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pancreatic ductal adenocarcinoma
Pancreatic cancer arises when cells in the pancreas, a glandular organ behind the stom-
ach, begin to multiply out of control and form a mass. Pancreatic cancer is an aggressive 
cancer with an overall survival rate of 11%, the lowest survival rate of all cancers 1, where 
pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic can-
cer 2. PDAC develops within the exocrine compartment of the pancreas. Signs and 
symptoms of PDAC may include yellow skin, abdominal or back pain, unexplained weight 
loss, light-colored stools, dark urine, and loss of appetite 3. Usually, no symptoms are 
seen in the early stages, and symptoms that are specific enough to suggest pancreatic 
cancer typically do not develop until the disease has reached an advanced stage and has 
o�en spread to other parts of the body 4. The number of patients with PDAC continues 
to increase and is expected to become the second leading cause of cancer-related deaths 
by the year 2040 5. Screening the general population has not been found to be effective. 
The 20% of the patients that are diagnosed with localized PDAC are still eligible for sur-
gical resection with curative intent. For the other 80%, the tumor has either advanced 
locally (LAPC) or has metastasized to other parts of the body. These patients receive 
chemotherapy consisting of fluorouracil, leucovorin, irinotecan, and oxaliplatin 
(FOLFIRINOX) sometimes in combination with radiotherapy. However, not all patients 
respond to FOLFIRINOX, and the tumor will continue growing or develop metastasis. 
The reason for the lack of response to treatment in PDAC patients can partially be blamed 
on the heterogeneity of the tumor 6. PDAC is known to have a tumor environment (TME) 
that stimulates tumor growth, invasion, and metastasis 7. The TME is a complex system 
made up of many different cell types, the secreted products of these cell types, such as 
cytokines and chemokines, and other non-cellular extracellular matrix components 8. 

the tumor immune microenvironment of 
pdac

The TME of PDAC is characterized by a dense stromal architecture, regulating processes 
such as tumor growth, drug responsiveness, and metastasis 9. This physically dense 
structure prevents the infiltration of immune cells and traditional therapies, like 
FOLFIRINOX. Furthermore, the TME consists of pancreatic stellate cells (PSCs), can-
cer-associated fibroblasts (CAFs), immune cells, extracellular matrix (ECM), and other 
immune-suppressive molecules. PSCs are a unique type of cells that exist in normal 
pancreatic tissue 10. These PSCs differentiate into CAFs, which play a significant role in 
the TME of PDAC by producing ECM and their interaction with tumor and other stromal 
cells. PDAC has a unique fibrotic TME composed of ECM proteins produced by CAFs, also 
known as the desmoplastic stroma. This ECM encloses various cell types, including dif-
ferent immune cells such as lymphocytes, macrophages, mast cells, and myeloid-derived 
suppressor cells (MDSCs), along with endothelial and neuronal cells11. Tumor-infiltrating 
lymphocytes (TILs) are o�en observed in resected cancer tissue and are believed to par-
ticipate in the host immune response against cancer 12. The heterogeneity of the 
tumor-infiltrating immune cells within the TME plays a key role in the tumor’s response 
to therapy 13. A heterogeneous tumor immune microenvironment (TIME) within PDAC 
has access to many different tumor-promoting aspects and can thus be responsible for 
the poor survival rate of PDAC 14. In the past, many omics studies (proteomics, transcrip-
tomics, etc.) have been utilized to study the TIME of PDAC.
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antibody-based profiling: a rapid 
and simple method to determine the 
composition of the pdac time

Antibody-based profiling can target proteins that are expressed by specific immune cell 
types. Furthermore, it can detect proteins that are secreted by a cell, such as cytokines or 
chemokines, which are involved in cell signaling and transcriptional regulation. Thus, 
Antibody-based profiling can give us an insight into the composition and functionality 
of cells in the PDAC TIME. The currently most used methods are immune histochemistry 
(IHC), flow cytometry, and mass spectrometry. 

Immunohistochemistry (IHC): Since the first production of reagents against typhus and 
cholera using a red stain in 1934, the techniques used for immunohistochemistry have 
been improved immensely 15. Nowadays, in the clinical diagnostic field pathologist can 
classify tumors based on their expression of lineage-specific markers, oncogenic somatic 
mutations, and epigenetic modifications 16,17. IHC provides a rapid and simple method to 
determine the origin of neoplastic tissue or investigate the behavior or progression of a 
given neoplasm 18. In short, IHC is performed on formalin-fixed paraffin-embedded 
(FFPE) tumor slides. Antibodies are used in conjunction with a coloring dye to visualize 
and detect the antigen of interest in the tissue section. Usually, manual scoring is per-
formed to evaluate the location and intensity of the markers 19. Standardization by 
automated IHC machines has improved reproducibility and enabled high throughput. 
Instead of manual scoring sophisticated algorithms are implemented for automatic 
quantification. Both the standardization of the machines and implementation of the 
algorithms reduce biases 20. Further, multiplex IHC provides the possibility to stain more 
proteins. This way a more complete overview of the TIME can be achieved. Multiplex IHC 
enables the researcher to study functionally active subsets of immune cells or co-locali-
zation of antigens on tumors or immune cells.

Flow cytometry: This technique delivers rapid identification and quantification of mul-
tiple cell types in a heterogeneous sample 21. Since its invention in the 1960s, flow 
cytometry has been widely applied to characterize and quantify immune cells 22. Flow 
cytometry is a technology that utilizes lasers to produce light signals that are converted 
into electronic signals, which can be analyzed with a computer. Based on the fluorescent 
or light-sca�ering characteristics, cell populations can be identified and quantified 23. It 
allows for the simultaneous characterization of mixed populations of cells from blood 
and bone marrow as well as solid tissues that can be dissociated into single cells such as 
lymph nodes, spleen, mucosal tissues, solid tumors, etc. In addition to the identification 
and quantification of populations of cells, a major utility of flow cytometry is sorting 
cells into uniform populations to be used for further downstream analysis 23. The auto-
mation systems for sample preparation and sample acquisition provide a more reproduc-
ible platform and increase the throughput of processed samples. These developments 

have enabled high-resolution quantification of cell types, analysis of cell surface and 
intracellular molecules, immunophenotyping analysis, functional characteristics of dif-
ferent cell populations, and drug discovery for a variety of diseases 24,25. 

Mass spectrometry (MS): This is a method to detect and quantify changes in the pro-
teome of clinical samples 26. Since the foundation of mass spectroscopy in 1898, mass 
spectrometry has been used to identify chemical substances. MS traces ions through an 
ion source, analyses the ion beam according to their mass-to-charge ratio, and uses 
detectors that are capable of measuring/recording the currents of the beams. This prin-
ciple makes it possible to characterize T cells, the tumor-infiltrating lymphocytes (TILs) 
as well as biofluids 27. MS is emerging as a tool for rapid diagnostics.

Spatial proteomics: Over the last few years, spatial proteomics has been developed to 
study the spatial architecture of tissues. Spatial proteomics provides a technology for 
the visualization of proteins in their native cellular environment without the need for cell 
lysis or the physical separation of compartments or organelles before proteomic analysis 
28. This allows for studying the spatial distribution of the immune cells in the TIME. 
Currently, there are several spatial profiling approaches. The approaches are based on 
antibodies linked to photocleavable oligonucleotide tags (GeoMx® Protein Assays), use 
an agonistic approach by detection of isotope-labeled antibodies with mass spectrometry 
(Phenolmager™), or use a combination of DNA-conjugated antibodies and multicyclic 
addition of complementary fluorescently labeled DNA probes (PhenoCycler™-Fusion). 
Using spatial proteomics to study the TIME of PDAC could enhance our understanding of 
the spatial composition and interactions between cells in a high-throughput manner.
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transcriptomics: from bulk to a single-
cell description of the pdac time

Transcriptomics technologies are used to study ribonucleic acids (RNA), which have 
diverse cellular and biological functions. The measurement of RNAs gives information 
on how genes are regulated and gives a perspective on the molecular activity in cells. 
Thus, transcriptomics can give us an insight into the activity of cells in the PDAC TIME. 
Bulk transcriptomics and targeted gene transcriptomics are the two major approaches 
for transcriptome studies.

Bulk transcriptomics: The PDAC TIME can be described from bulk transcriptomics data. 
Bulk omics studies are important to describe tumor pathogenesis and for the identifica-
tion of different phenotypes. The main downside of using bulk omics data is that this 
data represents an average expression of the tumor, ignoring possible intratumor heter-
ogeneity 29. Bulk transcriptomics gives us a general understanding of what is going on in 
PDAC. Tools have been developed to identify the abundance of immune cell populations 
within the TIME. In heterogeneous tissue samples, transcriptomic measurements aver-
age signals originating from the individual cells. The deconvolution of these signals can 
yield estimates of cell population proportions in samples 30. CIBERSORT is a method for 
enumerating cell compositions from bulk transcriptomics 31. By using cell type expression 
signatures CIBERSORT allows you to measure intra-sample proportions of immune cells 
from bulk RNA admixtures without physical isolation. MCP-counter calculates an abun-
dance estimate per cell population. This allows you to perform inter-sample comparisons 
32. The development of long-read RNA sequencing enabled the sequencing of full-length 
cDNA transcripts without clonal amplification or transcript assembly 33. Therefore, 
amplification and read mapping steps introduce fewer false positive splice sites and can 
detect transcript isoforms. Furthermore, the introduction of single-cell sequencing has 
made it possible to profile the transcriptome at single-cell resolution 34. Although sin-
gle-cell transcriptomics introduced a method to study the intra-sample differences, it 
cannot capture spatial information 35. 

Targeted gene expression: Using targeted gene expression, genes can be measured 
based on probes or primers. Conventional PCR can be used to detect the number of PCR 
products generated. In reverse transcription PCR (RT-PCR), RNA is first reverse tran-
scribed into cDNA and then amplified. This allows us to measure the amount of RNA. 
Later real-time quantitative RT-qPCR was developed, which counts how many reaction 
cyclers are used to reach an amplification slope. It consists of four steps, (1) reverse 
transcription of the mRNA template, (2) primer pair annellation to the target cDNA 
template and a DNA polymerase extends from the ligated primer, (3) thermal cycler varies 
the temperature se�ings to perform the three stages of the PCR: denaturation, anneal-
ing, and extension, (4) a standard dissociation curve can be studied to determine the 
initial amount of RNA (cDNA) transcripts 36. A�er PCR an array technology, microarray, 
was developed in the late 1990s. Microarrays have been used for the quantification of 

RNA (and DNA) using fluorescence. Fluorescent-labeled RNA hybridizes on the surface of 
the slide and the absolute intensity of the hybridization signal is measured 37. Recently 
the nCounter® technology was developed by NanoString Technologies, which is a varia-
tion on the microarrays. It employs two ~50 base probes per mRNA that hybridize in 
solution. The mRNA is immobilized by the capture probe, while the reporter probe carries 
the signal. This allows for the detection of the color codes by the Digital Analyzer. The 
Digital Analyzer detects the color-coded probes and captures the signal intensities as 
gene expression mRNA levels. Reverse transcription of the RNA to cDNA is not needed, 
as the probes anneal directly to the RNA 38. As earlier described CIBERSORT and MCP-
counter can be used to enumerate cell compositions from bulk transcriptomics and are 
therefore also applicable to microarray data 32,39. To estimate the abundance of immune 
cell populations in nCounter data, marker genes are used 40,41. 

Spatial transcriptomics: A new development in transcriptomics is the addition of spatial 
information. Spatial transcriptomics, like spatial proteomics, uses technologies to visu-
alize the cellular environment 42. Techniques such as GeoMx43 and CosMx by NanoString 
or Visium by 10X Genomics were developed. These three techniques stain slides with 
morphological markers. GeoMx creates high-quality images with single-cell visibility. 
Regions of interest are selected and illuminated. These regions are collected in wells and 
sequenced. CosMx takes this a step further by generating detailed cell segmentations 
and can perform sequencing on single-cell level. Visium permeabilizes the tissue to 
release RNA which binds to adjacent capture probes which can be sequenced. Using 
spatial transcriptomics to study the TIME of PDAC could further enhance our under-
standing of the spatial composition and interactions between cells in a high-throughput 
manner.

In this thesis, we investigated the use of multiple omics techniques in tissue samples to 
determine the heterogeneous PDAC TIME. Furthermore, with these techniques, we 
analyzed peripheral blood samples of PDAC patients to identify alterations in the immune 
cell profile during chemotherapy.
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outline of this thesis
A�er an introduction in Chapter one, where we describe, among other things, different 
multiple omics techniques, in chapter two we describe a method to identify different 
subtypes of immune cells specifically in PDAC tissue samples with the use of marker 
genes. In chapter three, blood samples collected at baseline and a�er the first 
FOLFIRINOX cycle of 68 patients were used to develop an immune gene signature from 
the targeted gene expression measurements to predict response a�er a single cycle of 
FOLFIRINOX. Chapter four presents a study that investigates the safety of adding IMM-
101 to SBRT and the immuno-modulatory effects of the combination treatment in the 
peripheral blood of locally advanced pancreatic cancer PDAC patients. Targeted 
gene-expression profiling and multicolor flow cytometry were performed for longitudi-
nal immune monitoring of the peripheral blood. Chapter five describes the identification 
of the peripheral immune cell profile alterations a�er one cycle of FOLFIRINOX in PDAC 
patients using the gold standard, flow cytometry, and further explore these results with 
targeted gene expression profiling. In chapter six we discuss the pros and cons of using 
RNA-sequencing for fresh frozen samples and targeted gene expression immune profiles 
for formalin-fixed, paraffin-embedded samples to characterize the tumor immune 
microenvironment. The results presented in this thesis and a future perspective are dis-
cussed in chapter seven. A summary of the work is given in chapter eight, and detailed 
information about the author can be found in chapter nine. In chapter ten everybody 
who was involved in the process of creating this thesis was thanked.
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abstract
The immune response affects tumor biological behavior and progression. The specific 
immune characteristics of pancreatic ductal adenocarcinoma (PDAC) can determine 
the metastatic abilities of cancerous cells and the survival of patients. Therefore, it is 
important to characterize the specific immune landscape in PDAC tissue samples, and 
the effect of various types of therapy on that immune composition. Previously, a set of 
marker genes was identified to assess the immune cell composition in different types of 
cancer tissue samples. However, gene expression and subtypes of immune cells may 
vary across different types of cancers. The aim of this study was to provide a method to 
identify immune cells specifically in PDAC tissue samples. The method is based on 
defining a specific set of marker genes expressed by various immune cells in PDAC 
samples. A total of 90 marker genes were selected and tested for immune cell type-spe-
cific definition in PDAC; including 43 previously used, and 47 newly selected marker 
genes. The immune cell-type specificity was checked mathematically by calculating the 
“pairwise similarity” for all candidate genes using the PDAC RNA-sequenced dataset 
available at The Cancer Genome Atlas. A set of 55 marker genes that identify 22 differ-
ent immune cell types for PDAC was created. To validate the method and the set of 
marker genes, an independent mRNA expression dataset of 24 samples of PDAC patients 
who received various types of (neo)adjuvant treatments was used. The results showed 
that by applying our method we were able to identify PDAC-specific marker genes to 
characterize immune cell infiltration in tissue samples. The method we described ena-
bled identifying different subtypes of immune cells that were affected by various types 
of therapy in PDAC patients. In addition, our method can be easily adapted and applied 
to identify the specific immune landscape in various types of tissue samples.

Keywords: pancreatic ductal adenocarcinoma, marker genes, immune cells, immune 
microenvironment, mRNA expression

introduction
Pancreatic cancer is one of the deadliest diseases with a 5-year survival rate of 9% 1. The 
most prevalent neoplastic disease of the pancreas is pancreatic ductal adenocarcinoma 
(PDAC) 2. Failure of treatment is partially due to the high heterogeneity of the disease 3. 
The interaction between cancer and immune cells, known as the immune microenviron-
ment (TME), leads to diverse mechanisms of immune evasion 4. The abundance and 
composition of tumor-infiltrating lymphocytes (TILs) are fundamental to tumor immu-
nogenicity 5,6. The variety of TILs and their interaction with pancreatic cancer cells 
influence tumor progression 7. During the early stages of tumor development, immune 
cells such as natural killer (NK) and CD8+ T cells facilitate the destruction of immuno-
genic cancer cells 8. As the tumor evolves, different immune cells infiltrate and have an 
impact on the tumor’s fate. For instance, high infiltration of CD4+ T cells correlates with 
a good prognosis 9, while high infiltration levels of regulatory T cells (Tregs) correlate 
with a poor prognosis 10. In addition, TME and TILs influence the survival of PDAC 
patients. The high levels of CD8/Tregs ratio correlate with longer survival of the patients 
11. Taken together, the accurate determination of the immune infiltration in PDAC tissue 
samples is important because it provides valuable information regarding how the host 
immune response interacts with cancer cells. This information can be used in guiding 
the immunomodulatory approaches to treat PDAC patients. 

The gold standard to identify and quantify immune cells in blood samples is Flow cytom-
etry. Immune cells in the blood samples do not need enzymatic disassociation and they 
can be detected relatively easily a�er binding to antibodies. However, immune cells in 
fixed tissue samples, like Fresh-Frozen (FF) or Formalin-Fixed, Paraffin-Embedded (FFPE) 
samples, are more difficult to quantify by flow cytometry. The methods and enzymes 
used to dissociate cells in tissue severely harm membranous antigens making it more 
challenging to bind to the antibodies. The preferred method to use for tissue samples is 
immunohistochemistry (IHC) which showed to be clinically useful 12. However, relatively 
a lot of tissue sections are needed to measure only a few immune markers. The recent 
development of this technique enabled multiplexing measurements of various antibod-
ies using one section sample 13. Nevertheless, the number of immune cells that can be 
identified using IHC-based techniques is still limited and dependent on the availability 
and accuracy of the antibodies. Alternatively, gene expression profiling is a promising 
and clinically applicable method for measuring the diversity of TILs in FFPE samples. 
Various techniques can be used to measure the gene expression profiles of tissue sam-
ples. Most of the techniques are based on using enzymatic reactions to synthesize cDNA 
and amplify it, prior to measuring the expression of the genes or sequence of the frag-
ments of RNA. However, the targeted gene expression measurements using nCounter® 
technology (NanoString) enable counting the copies of RNA fragments of tissue samples 
directly without any enzymatic reactions or amplification steps. It facilitates detecting 
low abundance targets, down to 0.1–0.5 fM RNA targets, with high sensitivity and high 
reproducibility (R2 > 0.98) 14,15). These features enable determining the immune cell 
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repertoires in FFPE samples. Moreover, many mRNA expression profile databases are 
available online and can be re-analyzed either to identify the immune cells in a specific 
cancer type or to validate the findings of a specific analysis. However, an accurate 
method to identify the TILs based on gene expression per cancer subtype is needed. 

To accurately estimate the abundance of the various immune cell populations within the 
TME, a set of marker genes is needed for each cell type. Previously, a set of immune-spe-
cific marker genes were identified to determine cell type across various types of cancer 
16,17. However, gene expression levels are highly affected by the type of tumor. In addition, 
the marker genes used to identify immune cells may differ in various types of cancer. The 
aim of this study was to identify a set of marker genes that can be used to characterize 
the immune landscape in PDAC tissue samples. To that aim, we selected a set of candi-
date genes (PDAC-cMG), then checked their accuracy to identify immune cells in PDAC 
samples. Genes that passed our definition criteria were chosen to create the set of 
marker genes to identify immune cells in PDAC tissue samples (i.e., PDAC-MGICs). To 
demonstrate the utility of PDAC-MGICs, we applied them to evaluate the effect of ther-
apy on the immune cell infiltration between PDAC patient groups that have been treated 
with a combination of surgery and neoadjuvant therapy.

materials and methods
Selecting PDAC candidate marker genes (PDAC-cMG)

A set of PDAC-specific candidate marker genes (PDAC-cMG) were selected based on 
genes that were previously used to identify immune cells across different types of cancer 
(n=43) 16. The PDAC-cMG gene list was enriched by genes that were found to identify 
immune cells in the literature (n=47) (Table 1, Column 2). A total of 90 candidate genes 
were included in the PDAC-cMG, representing 23 immune cell types.

Table 1 Summary of the candidate gene set and the selected marker genes used to identify immune 
cell types in PDAC tissue samples.

Column 1 Column 2 Column 3 Column 4

Cell type Candidate marker genes

(PDAC-cMG)

Selected marker 
genes

(PDAC-MGICs)

Default marker 
genes used in the 
nSolver® Advanced 
Analysis

B cells BLK
 
16

, 
BLNK

 
16

, 
CCR9

 
16

, 
CD19

 
16

, 
CD22

 
18

, 

CD24
 
19

, 
CR2

 
16

, 
HLA-DOB

 
16

, 
HLA-DQA1

 
16

, 

MEF2C
 
16

, 
MS4A1

 
16

BLK, CD19, CD22, 
CR2, MS4A1

BLK, CD19, MS4A1, 
TNFRSF17, FCRL2*, 
KIAA0125*, PNOC*, 
SPIB*, TCL1A*

Plasma B cells CD27
 
20

, 
CD38

 
21

, 
SLAMF7

 
22

, 
TNFRSF17

 
22 CD27

, 
CD38

, 

SLAMF7
, 

TNFRSF17

Regulatory B cells CD1D
 
23

, 
CD5

 
23

, 
IL10

 
23 CD1D

, 
CD5

Cytotoxic cells GZMA
 
16

, 
GZMB

 
16

, 
GZMH

 
16

, 
KLRB1

 
16

, 

KLRD1
 
16

, 
KLRK1

 
16

, 
PRF1

 
16

, 
CTSW

 
16

, 
GNLY

 
16

GZMA, GZMB, 
GZMH, KLRB1, 
KLRD1, KLRK1, 
PRF1

GZMA, GZMB, 
GZMH, KLRB1, 
KLRD1, KLRK1, 
PRF1, CTSW, GNLY, 
NKG7*

Dendritic cells CCL13
 
16

, 
CD1A

 
24

, 
CD1C

 
24

, 
CD209

 
16

, 

HSD11B1
 
16

CD1A
, 
CD1C CCL13, CD209, 

HSD11B1

Conventional Dendritic 
cells 1

BTLA
 
24

, 
XCR1

 
24

, 
DPP4

 
24

, 
THBD

 
24 BTLA

, 
XCR1

Conventional Dendritic 
cells 2

CD2
 
24

, 
ITGAM

 
24

, 
ITGAX

 
24 ITGAM

, 
ITGAX

Plasmacytoid Dendritic 
cells

CLEC4C
 
24

, 
IL3RA

 
25

, 
NRP1

 
24

Macrophages CD68
 
16

, 
FCGR2A

 
26 CD68, FCGR2A CD163, CD68, 

CD84, MS4A4A*

Antigen-presenting cells CCR7
 
27

, 
CD80

 
28

, 
CD86

 
26 CD80

, 
CD86

M2 Macrophages CD163
 
29

, 
CD36

 
27

, 
MRC1

 
27 CD163

, 
MRC1

Mast cells C2
 
30

, 
CMA1

 
16

, 
CTSG

 
16

, 
FCER1A

 
30

, 
MS4A2

 
16

, 

PLAU
 
30

, 
TPSAB1

 
16

MS4A2, TPSAB1 MS4A2, TPSAB1, 
CPA3*, HDC*, 
TPSB2*
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Column 1 Column 2 Column 3 Column 4

Monocytes CD14 27
, 
CD33 30

, 
TLR2 31 CD14

, 
CD33

, 
TLR2

Natural Killer cells NCR1 16
, 
XCL2 16 NCR1 NCR1, XCL1*, XCL2

Natural Killer CD56+ 
dim cells

IL21R 16
, 
KIR3DL1 16 KIR3DL1 IL21R, KIR3DL1, 

KIR2DL3, KIR3DL2

Neutrophils CSF3R 16
, 
FCGR3A 30

, 
S100A12 16 CSF3R, FCGR3A CEACAM3*, CSF3R, 

FCAR*, FCGR3B*, 
FPR1*, S100A12, 
SIGLEC5* 

T cells CD3D 16
, 
CD3E 16

, 
CD3G 16

, 
CD6 16

, 
SH2D1A 16 CD3D, CD3E, 

CD3G, CD6, 
SH2D1A

CD3D, CD3E, CD3G, 
CD6, SH2D1A, 
TRAT1*

CD4+ T cells CD4 32
, 
SELL 25 CD4

, 
SELL

CD8+ T cells CD8A 16
, 
CD8B 16 CD8A, CD8B CD8A, CD8B

Exhausted CD8+ T 
cells

CD244 16
, 
HAVCR2 33

, 
LAG3 16

, 
PDCD1 33

, 

TIGIT 33

LAG3, PDCD1, 
TIGIT

CD244, EOMES, 
LAG3, PTGER4

Helper 1 T cells TBX21 16
, 
ALCAM 25

, 
CD70 16 TBX21 TBX21

Regulatory T cells FOXP3 16
, 
CD274 34

, 
IDO1 35

, 
IL2RA 30

, 

TNFRSF18 30

FOXP3, IL2RA FOXP3

CD45+ PTPRC 16 PTPRC PTPRC

Downloading data from The Cancer Genome Atlas (TCGA)

The gene expression profiling data of pancreatic adenocarcinoma (PAAD) from the TCGA 
database (Level 3 RSEM-normalized, Illumina RNA-seq, Version2) was downloaded 36. 
The TCGA PAAD dataset is filtered for patients with PDAC primary tumors that received 
no treatment prior to surgery (n=147). The expression data were log2-transformed prior 
to pairwise similarity calculations.

Calculating the pairwise similarity

The pairwise similarity statistic between all pairs in the PDAC-cMG per cell type was 
calculated using an adaptation of Pearson’s correlation metric. The adapted Pearson’s 
correlation metric was proven to be be�er than the simple Pearson correlation 16:

The log2-transformed vectors of the gene expression of two genes are denoted by x and 
y, where the sample means are denoted by and . The sample variance is indicated by var 
(x) and var (y). This adaptation takes the slope of the correlation into account; hence two 
ideal cell type marker genes would have a similarity of 1. All calculations were completed 
using R version 4.0.3.

Identifying immune cells in PDAC data

The pairwise similarity for all 90 candidate genes was calculated, and genes with high 
pairwise similarity (≥ 0.6) were selected to be included per cell type in the PDAC-MGICs 
(Table 1, Column 3) 16. Each immune cell type was represented by at least two unique 
genes included in the PDAC-MGICs 37–40. The specificity of the selected gene markers was 
confirmed by creating heatmaps showing the pairwise similarity of all selected marker 
genes per immune cell type. 

Validating the immune cell marker genes using published PDAC profile data

Previously published data (Farren et al., 2020, GEO accession: GSE129492) from 6 PDAC 
patients who received no systemic therapy prior to surgery (i.e. Surgery Only) were used 
to validate that PDAC-MGICs are robust and valid immune marker genes in other PDAC 
cohorts. The database was created by measuring the PanCancer Immune profiles panel. 
It contained gene expression profiles of 730 immune-related genes and 40 housekeeping 
genes measured by using the nCounter® platform of NanoString technology (Platform 
GPL19965). The expression level of the 55 genes of the PDAC-MGICs set was checked 
and confirmed to be higher than the detection threshold in at least 50% of the samples. 
The gene expression was normalized and log2-transformed using nSolver® (version 4.0) 
and the Advanced Analysis module (version 2.0) of NanoString technology (NanoString, 
Sea�le, WA, USA). The mean pairwise similarities for the PDAC-MGICs were calculated 
following the same method that was described earlier.

Concordance of the new PDAC-MGICs

We validated the marker genes’ concordance by calculating p-values for the cell type 
gene sets as implemented in the nSolver® Advanced Analysis module (version 2.0). The 
null hypothesis that a given gene set exhibits no greater cell type-specific-like behavior 
than a randomly selected gene set of similar size was tested. Therefore, the concordance 
was calculated for each cell type (i.e., a metric of a gene set’s adherence to the assump-
tion of cell type-specific and consistent expression):

The matrix of log2-transformed expression values of the gene set for a specific cell type 
is denoted by X, and p is the number of genes. The concordance function returns 1 if all 
genes are perfectly correlated with a slope of 1 and degrade to 0 as this pa�ern weakens. 
This concordance is compared to the concordance of 1000 random gene sets of size p, 
denoted by X0’. The p-value equals the proportion of concordance (X0’) values greater 
than concordance(X0), where concordance(X0) is the concordance of the selected 
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marker genes. The concordance of the gene markers was compared to the default gene 
markers in the nSolver® Advanced Analysis module. 

Validation using PDAC samples affected by various types of neoadjuvant therapy

The performance of PDAC-MGICs for samples affected by treatments is tested for 18 
samples of patients that were subjected to different neoadjuvant therapy prior to sur-
gery: 6 patients received FOLFIRINOX chemotherapy, 6 patients received FOLFIRINOX + 
stereotactic body radiotherapy (SBRT), and 6 patients received FOLFIRINOX + conven-
tional radiotherapy (XRT) 41. The samples were matched based on lymphovascular inva-
sion and perineural invasion. The database was created by measuring the PanCancer 
Immune profiles panel. It contained gene expression profiles of 730 immune-related 
genes and 40 housekeeping genes measured by using the nCounter® platform of 
NanoString technology (GEO accession: GSE129492). Gene expression profiles were 
normalized and log2-transformed using nSolver® and the Advanced Analysis module, 
and the pairwise similarity and concordance were calculated as described earlier. 

To identify immune cells within the nSolver® advanced analysis module, genes that are 
annotated to define immune cells within the probe annotation file (provided by 
NanoString) were changed. A�er that, the modified probe annotation file was uploaded 
to a new analysis file, and the average of all genes confirmed to identify a specific immune 
cell was calculated resulting in a score of a cell type. The scores of cells were compared 
between the groups of interest, and the significance was calculated using a t-test 
between the groups. 

Utilization of PDAC-MGICs

The clinical utility is demonstrated by uploading our defined marker genes PDAC-GMICs 
in the nSolver® Advanced Analysis module to identify immune cells in the “cell type 
profiling” section. The PDAC-GMIC set was used to assess the composition of the 
immune microenvironment for all patients in GSE129492 41. The abundance of the 
immune cell types is represented by a cell score which is the average log2-transformed 
expression value of their corresponding marker genes. To correct for the total tumor-in-
filtrating immune cells per patient, the abundance was calculated relatively to the CD45+ 
cells. The relative abundance of a cell type in a group of patients is the average log2-scale 
expression of the marker genes divided by the average log2-scale expression of CD45+. 
To demonstrate the impact of changing the definition of cells, the relative cell abun-
dances based on the default marker genes of the nSolver® Advanced Analysis module 
were compared to the relative cell abundance based on PDAC-MGICs. 

An overview of our method is presented in (Figure 1).

Figure 1 An overview of the method used to determine the definition of immune cells in PDAC tissue 

samples.
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results
PDAC-MGICs enabled identifying 22 immune cell types

The PDAC-cMGs with a pairwise similarity ≥ 0.6 were selected and summarized in (Table 
1, Column 3). For example, 11 genes were chosen as candidate genes to define B cells. 
Calculating the pairwise similarity of all 11 genes showed that 5 genes had a high pairwise 
similarity (≥ 0.6), while the other 6 genes had a low pairwise similarity (< 0.6). Therefore, 
B cells were defined using the 5 genes with high pairwise similarity (Figure 2). Following 
the same method, a total of 55 genes were selected as marker genes to identify 22 
immune cells in PDAC (Supplementary file 1).

Figure 2 Correlation plot of the pairwise similarity of candidate marker genes tested to identify B cells. 
The pairwise similarity varies between the 11 selected genes. Five genes (blue) showed a high pairwise 
similarity (≥ 0.6). These genes were selected to identify B cell infiltration in PDAC tissue samples. Six 
genes (yellow) showed a low pairwise similarity (< 0.6). these genes were not used to identify B cell 
infiltration in PDAC tissue samples. The red color in the correlation plot presented the highest 
correlation score between the genes (R2 = 1); the green color presented the lowest correlation score 
(R2 = 0).

Enriching the PDAC-MGICs list with additional genes from the literature enabled identi-
fying 8 additional immune cells that were not included in the default se�ing of the 
nSolver® Advanced Analysis module. These cells are plasma B cells, regulatory B cells 
(Bregs), 2 types of conventional dendritic cells (cDC), antigen-presenting cells (APCs), 
M2 macrophages, monocytes, and CD4+ T cells. In addition, the enrichment of the 
PDAC-MGICs increased the accuracy to identify Tregs cells, B cells, and macrophages, 

because more genes were used to identify these cells as compared to the default set-
tings. To validate the specificity of the selected markers, pairwise similarities were calcu-
lated across all marker genes. The results are shown as a correlation plot for all the 
marker genes (Figure 3). The highest correlation was achieved between marker genes 
that were used to identify a specific immune cell. However, a relatively high correlation 
was also seen across other types of cells. For example, the 5 genes that identified B cells 
showed the highest correlation for B cells. But they also showed a lower but still good 
correlation in identifying T cells. This highlights the importance of trusting marker genes 
that have the highest pairwise similarity to identify a specific cell type. Marker genes that 
were used to identify cDC2 showed a relatively high correlation in Monocytes and M2 
macrophages, highlighting that the definition of cDC2 is challenging using gene expres-
sions of the PanCancer Immune profile panel in PDAC tissue samples, and can be 
improved by selecting additional marker genes.

Figure 3 Correlation plot of the pairwise similarity of all 55 marker genes selected to identify the 
immune repertoire in the PDAC tissue sample. The pairwise similarity plot shows a high correlation 
between marker genes that identify a specific immune family and the subtype of that family. The 
highest correlation is shown between the marker genes that identify a specific type of immune cell. In 
addition, a relatively high correlation is shown between the subtypes of immune cells of the same 
family (B cells and various subtypes of B cells; T cells and various subtypes of T cells). The correlation 
between T cells and cytotoxic cells is lower than the other subtypes of T cells because cytotoxic cells 
include both T and NK cells. The correlation plot also shows a high pairwise similarity and a high 
specificity of marker genes that identify macrophages and their subtypes in PDAC tissue samples. 
However, the various types of dendritic cells (DCs)are more difficult to identify. Genes used to identify 
DCs show a good correlation with T cells and macrophages, highlighting the need to use other marker 
genes (not measured by the PanCancer Immune profile panel) to increase the accuracy of identifying 
DCs in PDAC tissue samples.
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Validation of PDAC marker genes

To validate the accuracy of the PDAC-MGICs, the mean pairwise similarities between the 
corresponding marker genes were calculated in the TCGA PAAD dataset (Table 2, Column 
2) and the Surgery Only dataset (Table 2, Column 4). These similarities were compared to 
those calculated between the cell types defined by the default gene markers in nSolver® 
Advanced Analysis (Table 2, Columns 3 & 5). Using the PDAC-MGICs resulted in an 
improved pairwise similarity (≥ 0.6) in both datasets for B cells, cytotoxic cells, DCs, 
neutrophils, and T cells. From the eight newly defined immune cells, five have a mean 
pairwise similarity ≥ 0.6 in both datasets. The exceptions were Bregs and the 2 types of 
cDCs. Furthermore, the concordance per cell type of the PDAC-MGICs in the Surgery 
Only was calculated (Table 2, Column 6) and was compared to the default gene markers 
(Table 2, Column 7). The p-value for concordance improved for all PDAC-MGICs 

Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 Column 9 Column 10 Column 11

Cell type PDAC-MGICs 
mean pairwise 
similarity in the 
TCGA PAAD 
dataset

Default marker 
genes mean 
pairwise 
similarity in the 
TCGA PAAD 
dataset

PDAC-MGICs 
mean pairwise 
similarity in 
GSE129492 
Surgery Only

Default marker 
genes mean 
pairwise 
similarity in 
GSE129492 
Surgery Only*

PDAC-MGICs 
concordance in 
GSE129492 
Surgery Only

Default marker 
genes 
concordance in 
GSE129492 
Surgery Only*

PDAC-MGICs 
mean pairwise 
similarity in 
GSE129492 
Neoadjuvant

Default marker 
genes mean 
pairwise 
similarity in 
GSE129492 
Neoadjuvant*

PDAC-MGICs 
concordance in 
GSE129492 
Neoadjuvant

Default marker 
genes concord-
ance in 
GSE129492 
Neoadjuvant*

B cells 0.84 0.71 0.92 0.87 0.00 0.00 0.70 0.59 0.00 0.01

Plasma B cells 0.71 0.90 0.00 0.71 0.00

Regulatory B cells 0.72 0.44 0.24 0.60 0.06

Cytotoxic cells 0.7 0.64 0.59 0.54 0.00 0.01 0.43 0.46 0.01 0.01

Dendritic cells 0.7 0.48 0.80 0.19 0.04 0.43 0.37 0.08 0.21 0.58

Conventional Dendritic cells 1 0.68 0.53 0.18 0.71 0.02

Conventional Dendritic cells 2 0.75 0.48 0.21 0.37 0.20

Macrophages 0.55 0.64 0.49 0.55 0.23 0.07 0.68 0.59 0.03 0.01

Antigen-presenting cells 0.8 0.85 0.02 0.58 0.08

M2 Macrophages 0.84 0.67 0.09 0.76 0.01

Mast cells 0.73 0.76 0.67 0.67 0.09 0.10 0.59 0.59 0.08 0.06

Monocytes 0.71 0.62 0.04 0.48 0.06

Natural Killer cells 0.42 0.25 1.00 0.45 0.18

Natural Killer CD56+ dim cells 0.26 0.37 0.70 0.28 0.13

Neutrophils 0.67 0.52 0.68 0.46 0.09 0.22 0.24 0.43 0.35 0.16

T cells 0.88 0.87 0.82 0.82 0.00 0.00 0.51 0.51 0.01 0.01

CD4+ T cells 0.61 0.66 0.10 0.48 0.14

CD8+ T cells 0.86 0.86 0.07 0.07 0.58 0.546 0.73 0.73 0.02 0.02

Exhausted CD8+ T cells 0.68 0.43 0.54 0.59 0.11 0.074 0.21 0.06 0.35 0.56

Regulatory T cells 0.73 0.81 0.04 0.70 0.04

compared to the default markers in nSolver® except for macrophages, CD8+ T cells, and 
exhausted CD8+ T cells.

Validation of PDAC-MGICs in PDAC samples subjected to neoadjuvant therapy

The usability of the PDAC-MGICs was checked by calculating the pairwise similarity 
(Table 2, Column 8) and concordance (Table 2, Column 10) in 18 samples of patients that 
received neoadjuvant therapy prior to surgery and compared to the default gene markers 
(Table 2, Column 9, 11). Similar results to the Surgery Only group were achieved. An 
improvement of the pairwise similarity and concordance was shown for all PDAC-MGICs 
except for neutrophils that were not robustly identified in the default se�ings. 
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Utilization of PDAC marker genes

The composition of the immune microenvironment for all samples published previ-
ously 41 was assessed by the nSolver® Advanced Analysis module (NanoString). The rela-
tive abundance of the immune cell types is compared between PDAC-MGICs and the 
default marker genes in the Surgery Only samples (Figure 4). Defining immune cells 
based on the PDAC-MGICs showed a significant effect in the relative scores of mac-
rophages, neutrophils, natural killer cells (NK), and Tregs compared to the default set-
tings (Figure 4). The effect of neoadjuvant therapy on the relative scores of cells was 
tested and shown in (Figure 5). Defining immune cells using PDAC-GMICs revealed that 
FOLFIRINOX + SBRT had the biggest effect on immune cells compared to the Surgery 
Only group. The results indicate an elevation of the cells as an effect of various types of 
neoadjuvant treatments, except for Bregs. The results are coherent with the previously 
reported results 41, but more immune subtypes were identified.

Figure 4 The impact of using PDAC-MGICs to identify immune cells in PDAC tissue samples. 
Comparing the relative immune scores using mRNA expression data of 6 tissue samples of patients 
who were subjected to surgery before receiving any treatment (Surgery Only). Immune cells were 
identified using the PDAC-MGICs set (purple) or the default marker genes in the nSolver® Advanced 
Analysis module of NanoString technology (yellow). All cell types were relative to the total infiltration 
of CD45+ expression. Identifying immune cells based on the PDAC-MGICs shows a significant 
variation (p-value < 0.05) in Macrophages, Neutrophils, Natural Killer cells, and Tregs cells.

Figure 5 The relative immune abundance in PDAC tissue samples that received neoadjuvant therapy 
compared to treatment naïve samples using PDAC-MGICs. Comparing the relative immune scores 
using mRNA expression data of 18 PDAC tissue samples of patients who receive three types of 
neoadjuvant therapy compared to patients who were subjected to surgery before receiving any 
treatment (Surgery Only). Immune cells were identified using the PDAC-GMICs set and were 
presented relative to the total infiltration of CD45+ expression. The treatment effect of FOLFIRINOX 
+ SBRT treated samples is most apparent. The p-values are the result of two-sided t-tests between 
Surgery Only and the other treatment groups individually. Surgery only (purple); neoadjuvant 
FOLFIRINOX (blue), FOLFIRINOX + SBRT (green), FOLFIRINOX + XRT (yellow).
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discussion
We have identified and validated specific marker genes to define immune cells in PDAC 
tissue samples (PDAC-MGICs). The PDAC-MGCI are more PDAC-specific than the marker 
genes used to define immune cells across various types of tumor tissue samples 
(PanCancer marker genes). In addition, PDAC-MGICs enabled identifying eight addi-
tional immune cells (Table 1). To the best of our knowledge, our method is the only 
PDAC-specific method that enables identifying 22 immune cells from 730 genes only. 
Moreover, it is the only method to describe the effect of (neo)adjuvant therapy in all 22 
immune cells of PDAC tissue samples.

The method we provided is adapted from the previously published method based on the 
mathematical calculation of the pairwise similarities between the marker genes 16. Our 
method is based on using genes that are expressed above the background threshold. It 
differs in the number of genes used to identify immune cell types. We identified cells 
based on using at least two unique marker genes for each cell type. In addition, to 
increase the accuracy of cell definition, we chose a higher cut-off for the pairwise simi-
larity (≥ 0.6) 42 compared to > 0.2 that was used in the previous publication. By increasing 
the threshold of the pairwise similarity, some important genes may not be used to iden-
tify an immune cell type. However, the accuracy of the identified immune cells will 
increase, which will be reflected in the time and money that will be spent on validating 
immune cells. The threshold can be adjusted to different levels in each experiment. We 
used ≥ 0.6 to identify immune cells with a high level of accuracy that will minimize the 
amount of future validation. The set of genes used to identify immune cells has been 
reported to be expressed by a specific type of immune cells and showed a similar pa�ern 
of expression in the PDAC database which increases the cumulative evidence to be 
included as a marker gene in the PDAC-MGIC. The identification of immune cells infil-
trating the tumor is very important to understand the underlying mechanisms of tumor 
immunogenicity 5,6. While the previously described PanCancer marker genes 16 can give a 
comprehensive understanding of the relative immune cells’ abundance in various types 
of tumor tissue samples, it is highly important to check the pairwise similarity in a given 
database to ensure the accurate definition of immune cells. This importance becomes 
clear by checking DCs. The previously reported marker genes for DCs are shown to be 
insufficient for PDAC samples in contrast to pan-cancer samples (Table 1). Incorporating 
the PDAC-MGIC in nSolver® Advanced Analysis so�ware enabled discovering the effect 
of neoadjuvant therapy on the immune profiling of PDAC tissue samples. Our method 
showed the same effect of neoadjuvant therapy in PDAC samples as was reported before 
41. However, it highlighted more clearly that the addition of a radiotherapy regimen to 
FOLFIRINOX induces more profound changes in gene expression than FOLFIRINOX 
alone. This was reflected in the relative scores of B cells, exhausted CD8+ T cells, mac-
rophages, and neutrophils. The same types of cells had similar scores comparing the 
Surgery Only group to the FOLFIRINOX group, (Supp Figure S1-S5). Taken together, the 

results indicate that the addition of radiotherapy is necessary to stimulate immune cell 
infiltration in PDAC patients. 

It should be noted that our method should be used to describe the relative scores of 
immune cells in two or more groups of samples, but it does not support estimating the 
absolute number of immune cells. Using a gene expression-based method to identify 
immune cells does not allow distinguishing between the number and the activity of 
cells. In addition, the definition of immune cells based on using one marker gene only 
like NK cells, NK CD56+ dim cells, and Helper 1 T cells, or cells that showed pairwise 
similarity < 0.6, remains not very accurate. However, in this study, we showed that the 
pairwise similarity is consistent between different databases (Table 2). Few exceptions 
were found, for example in CD8+ T cells, which highlights the huge effect of neoadjuvant 
therapy on the expression of genes that identify CD8+ T cells. CD8+ T cells were identi-
fied by using very specific and accurate genes: CD8A and CD8B genes. Therefore, the 
results reflect the effect of neoadjuvant therapy on the relative scores of CD8 cells. A 
recent publication described the immune landscape by estimating 22 different immune 
cells in PDAC samples using CIBERSORTx 43. The immune estimation was correlated to 
the molecular subtypes and the survival of the patients. Interestingly, the number of 
estimated immune cells was the same as we identified in our method. However, the 
immune subtypes do not completely overlap (Supp Table S1). In the study of Liu et al. 43, 
immune cells were computed by using the LM22 gene signature containing 547 genes as 
a reference. Opposite to our method, genes are not mutually exclusive. Although an 
assumption is made by using mutually exclusive genes, our method can be used to esti-
mate the relative abundance of 22 immune cells using 55 genes only. Furthermore, all 
marker genes described in our method are specifically measured in PDAC tissue samples, 
contrary to the LM22 gene signature reference. In addition, our method can be applied 
using gene expression data generated from samples that were preserved differently like 
FF and FFPE tissue samples or blood samples. Identifying PDAC-specific immune cells 
using the PDAC-MGICs enables revealing the effect of any type of therapy in various 
clinical se�ings and clinical trials. Moreover, applying the method to data generated 
from blood samples supports monitoring the progression of patients, and may be 
informative to direct therapeutic decisions. 

Our method is easily tailored and applicable to identify specific immune cells in any type 
of tissue sample. Nevertheless, we highlight the importance of selecting and testing the 
marker genes critically for each tissue type. It has been shown that marker genes can be 
specified for each type of tissue sample 17. The candidate marker gene list can be checked 
and narrowed down to a more specific marker gene list by calculating the pairwise simi-
larity between all pairs of genes to ensure the accurate identification of immune cells in 
any type of tissue sample. Once the marker genes for each immune cell have been iden-
tified and checked, the expression of the genes for each immune cell type can be com-
pared between the groups of interest. This method can be applied using any RNA data-
bases (sequencing or gene expressions). The use of single-cell sequencing has shown 
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that cells of the same type can have different gene expressions present 44. Furthermore, 
the assumption that the gene markers are exclusively expressed by one specific cell type 
is in many cases hard to prove. Therefore, we believe that the described method can 
accurately estimate the relative score of immune cells based on their marker genes 
definition.

conclusion
We provided a method to identify specific immune cells in PDAC tissue samples based on 
using mRNA expression of marker genes (PDAC-MGICs). In addition, we validated and 
utilized the PDAC-MGICs to delineate the effect of various (neo)adjuvant treatments on 
the immune landscape in PDAC tissue samples. The PDAC-MGICs set reflects the immune 
microenvironment of the PDAC tumor tissue sample, however, it can be easily tailored 
and applicable to identify specific immune cells in any type of tissue sample.
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abstract
Introduction: 5-fluorouracil, folinic acid, irinotecan and oxaliplatin (FOLFIRINOX) is 
promising in treating patients with pancreatic ductal adenocarcinoma. However, many 
patients and physicians are reluctant to start FOLFIRINOX due to its high toxicity and 
limited clinical response rates. In this study, we investigated the effect of a single 
FOLFIRINOX cycle, in combination with a granulocyte colony-stimulating factor, on the 
blood immune transcriptome of patients with pancreatic ductal adenocarcinoma. We 
aimed to identify an early circulating biomarker to predict the lack of FOLFIRINOX 
response.

Methods: Blood samples of 68 patients from all disease stages, who received at least 
four FOLFIRINOX cycles, were collected at baseline and a�er the first cycle. The 
response to treatment was radiologically evaluated following the Response Evaluation 
Criteria in Solid Tumours criteria 1.1. Targeted immune-gene expression profiling (GEP) 
was performed using NanoString technologies. To predict the lack of FOLFIRINOX 
response, we developed a FOLFIRINOX delta GEP (FFX-ΔGEP) score.

Results: A single FOLFIRINOX cycle significantly altered 395 genes, correlating to 30 
significant alterations in relative immune cell abundances and pathway activities. The 
eight-gene (BID, FOXP3, KIR3DL1, MAF, PDGFRB, RRAD, SIGLEC1 and TGFB2) FFX-ΔGEP 
score predicted the lack of FOLFIRINOX response with a leave-one-out cross-validated 
area under the curve (95% confidence interval) of 0.87 (0.60–0.98), thereby outper-
forming the predictiveness of absolute and proportional Δ carbohydrate antigen19-9 
values. 

Conclusions: A single FOLFIRINOX cycle, combined with granulocyte colony-stimulat-
ing factor, alters the peripheral immune transcriptome indisputably. Our novel FFX-
ΔGEP is, to our knowledge, the first multigene early circulating biomarker that predicts 
the lack of FOLFIRINOX response a�er one cycle. Validation in a larger independent 
patient cohort is crucial before clinical implementation.

Keywords: Pancreatic ductal adenocarcinoma (PDAC), FOLFIRINOX chemotherapy, 
Lack of response, Blood immune transcriptome, FFX-ΔGEP score, Precision medicine

introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and aggressive solid 
malignancies with a poor prognosis 1,2. The 5-year overall survival (OS) rate for all stages 
of PDAC is only 9% 3. The poor prognosis is, among other things, related to the lack of 
distinctive symptoms, the lack of reliable biomarkers for early diagnosis, progressive 
metastatic spread, and the complex tumor (immune) microenvironment (TME) 4. Surgical 
resection with or without chemotherapy is the only curative treatment for early-stage 
PDAC, but only 20% of the tumors are resectable at diagnosis, and more than 50% of 
patients present with metastatic disease 5–7.

The combined chemotherapeutic regimen of 5-fluorouracil, folinic acid, irinotecan, and 
oxaliplatin (FOLFIRINOX) is considered one of the most effective adjuvant chemotherapy 
and first-line treatment for patients with locally advanced (LAPC) and metastatic pan-
creatic cancer 8. Multiple studies have demonstrated that FOLFIRINOX treatment is 
associated with prolonged OS compared to gemcitabine treatment in all stages of the 
disease 9–11. A meta-analysis combining 11 studies reported improved OS in LAPC (24.2 
months vs. 6-13 months) 9; a multicenter, randomized, phase 2-3 trial reported improved 
OS in metastatic patients (11.1 months vs. 6.8 months) 10; and a multicenter, randomized, 
phase 3 trial reported the most prolonged OS in patients with stage I-II or borderline 
resectable patients 11. In addition, neoadjuvant FOLFIRINOX followed by surgical resec-
tion showed favorable outcomes in resectable pancreatic cancer patients 12. Despite the 
generally improved FOLFIRINOX response rates, 25% of PDAC patients experience dis-
ease progression during treatment 10,13. 

FOLFIRINOX treatment has also been associated with a higher incidence of toxicity-re-
lated events compared to gemcitabine treatment 10,14. To prevent FOLFIRINOX-induced 
neutropenia, patients are frequently treated with a prophylactic granulocyte colo-
ny-stimulating factor (G-CSF) which stimulates granulocyte production in the bone 
marrow 15–18. Currently, treatment response is evaluated through computed tomography 
(CT) imaging, but not until a�er four cycles of FOLFIRINOX. Exposure to ineffective but 
toxic treatment reduces patients’ quality of life, carries unnecessary costs, and withholds 
patients from a potentially effective treatment. Hence, it is desirable to identify a bio-
marker that predicts the lack of response to FOLFIRINOX at an early stage. Carbohydrate 
Antigen 19-9 (CA19-9) is the only FDA-approved biomarker for routine management of 
PDAC 19 but has only been shown to predict FOLFIRINOX response a�er multiple cycles 
20.

Several studies have demonstrated that oxaliplatin, 5-FU, and irinotecan can enhance 
tumor antigen presentation in poor immunogenic cancer types such as PDAC 21,22. The 
increase in HLA-I and programmed death-ligand 1 (PD-L1) could synthesize the tumor for 
immune checkpoint (IC)-based immunotherapy and stimulates CD8+ cytotoxic T lym-
phocyte activation 23. Particularly oxaliplatin has been shown to induce immunogenic 
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cancer cell death and modulate the immune response, resulting in increased antigenicity 
and enhanced adaptive immune responses 24–26. Additionally, oxaliplatin has been shown 
to elicit a systemic immune response against the tumor 27. However, the peripheral 
immune effects of FOLFIRINOX have not been studied.

We hypothesized that the immune-modulating effects of FOLFIRINOX may be detecta-
ble in the peripheral blood a�er a single cycle of treatment. To test this hypothesis, we 
conducted targeted immune-gene expression profiling on the blood of PDAC patients. 
The aim of this study was to investigate the impact of a single FOLFIRINOX cycle on the 
peripheral immune transcriptome and to identify an early circulating biomarker predic-
tive of the lack of FOLFIRINOX response in PDAC patients.

materials and methods
Patient population

A total of 80 PDAC patients were included in this study. Patients were hospitalized at the 
Erasmus University Medical Centre Ro�erdam between February 2018 and February 
2021. Twenty-three patients with (borderline) resectable PDAC participated in the rand-
omized clinical trial PREOPANC-2 (Dutch trial register NL7094), and 57 patients with 
locally advanced or metastasized PDAC participated in the prospective cohort study 
iKnowIT (Dutch trial register NL7522). Exclusion criteria were < 18 years of age, previous 
treatment with FOLFIRINOX, or co-treatment with another chemotherapeutic

Clinical procedure

Following histological confirmation of the primary tumor or metastases, patients were 
treated with FOLFIRINOX chemotherapy. All patients were prophylactically treated with 
the long-acting G-CSF lipegfilgrastim (Lonquex®; Teva Ltd, Petach Tikva, Israel), 24 hours 
a�er each cycle, to reduce FOLFIRINOX-induced neutropenia 18,28. Two whole blood 
samples from each patient were collected: at baseline (immediately before the first cycle) 
and 14 days a�er the first but just before the second FOLFIRINOX cycle. As part of the 
standard clinical routine, serum CA19-9 concentrations were determined at the same 
time points using an enzyme-linked immunosorbent assay (ELISA). A patient’s response 
to FOLFIRINOX was assessed based on a CT scan made a�er four cycles, following the 
Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria (Figure 1) 29.

Figure 1 Schematic description of clinical procedure. Cycles of FOLFIRINOX chemotherapy (blue), 
lipegfilgrastim injection 24 hours a�er each cycle (grey), blood draw time points (red), and patient 
evaluation time points using CT scan (green).

Clinicopathological groups

To compare immune profiles, patients were grouped based on their clinicopathological 
characteristics. Disease stages at baseline included resectable, locally advanced pancre-
atic cancer (LAPC), and metastatic patients. Baseline CA19-9 values included patients 
with low (35-150 μmol/L) and high (> 1500 μmol/L) values. Patients who showed stable 
disease, partial response, or complete radiological response were defined as “disease 

33



48 49

control”. Patients showing disease progress were defined as “progressive disease”. All 
patients that were radiologically evaluated received at least four cycles of FOLFIRINOX.

Whole blood sample collection and RNA isolation 

Whole blood samples were collected in Tempus tubes (Applied Biosystems, Foster City, 
CA, USA) and stored at -80°C. Tempus tubes contain an RNA stabilizing reagent, which 
preserves the RNA quality and enables measuring gene expression profiles without iso-
lating the peripheral blood mononuclear cells 30. Total RNA was extracted from blood in 
Tempus tubes using the Tempus Spin RNA Isolation Kit of Thermo Fisher Scientific 
(Waltham, MA, USA) following the manufacturer’s instructions. RNA quality control was 
done using the Agilent 2100 BioAnalyzer (Santa Clara, CA, USA). Samples with RNA 
concentrations less than 35 mg/mL were excluded. Corrected RNA concentrations were 
calculated based on the percentage of fragments of 300-4000 nucleotides to correct 
RNA degradation.

Targeted multiplex gene expression

Targeted gene expression profiling was performed using the nCounter® FLEX system and 
PanCancer Immune profiling panel, which includes 40 housekeeping genes and 730 
immune-related genes 31. A total of 200 ng RNA per sample in a maximum of 7 μL was 
used for hybridization, which was performed at 65°C for 17 hours using the SimpliAmp 
Thermal Cycler (Applied Biosystems). Gene expression was counted by scanning 490 
Fields of View (FOV).

Data processing and analysis

Data quality control, normalization, and analysis were performed using the nSolver™ 
so�ware (version 4.0) and the Advanced Analysis module (version 2.0) of NanoString 
Technology Inc. 32. A patient’s gene expression profile was included if all positive and 
negative control genes were within the expected values and if binding density values 
ranged between 0.5 and 3.0. Raw gene counts were normalized based on the most stable 
34 housekeeping genes, identified by the geNorm algorithm 33, and all normalized data 
were log

2
 transformed. Genes were included when they were higher than the limit of 

detection of 4.384 log
2
, calculated as the average of all eight negative control genes 

multiplied by two, in > 80% of the gene expression profiles. Differentially expressed 
genes (DEGs) were identified using simplified negative binomial models, a mixture of 
negative binomial models, or log-linear models based on the convergence of each gene. 
Genes with a P-value < 0.05 a�er correction for multiple testing with the Benjamin-
Hochberg (BH) method were considered DEGs.

Immune cell type analysis with the NanoString nSolver module

The peripheral abundance of various immune cell types was quantified using the nSolver 
Advanced Analysis module, which assigns relative immune cell type scores to each 
sample 34. Marker genes, that identify specific immune cell types, were selected based on 
the pairwise similarities method tailored specifically for PDAC 35. Marker genes were 
accepted to define an immune cell type when pairwise similarity was sufficient (R2 ≥ 0.6). 
Accordingly, the relative abundance of immune cells was calculated between the tested 
groups (Table S2).

Pathway analysis with the NanoString nSolver module and the Cytoscape plug-in 
ClueGO 

Genes were clustered into predefined pathways using the nSolver Advanced Analysis 
module to examine immune-associated pathway alterations. We calculated the square 
root of the average squared t-statistic of all genes in the corresponding pathway 34, 
resulting in a pathway score for each sample. In addition, to explore the potential role of 
unique DEGs in disease control and progressive disease patients, we performed func-
tional enrichment analysis using the Cytoscape plug-in ClueGO 36. DEGs were included in 
the ClueGO analysis if they met two criteria: (1) a log

2
 fold-of-change (FOC) > |0.5| a�er 

a single FOLFIRINOX cycle and (2) a log
2
 FOC > |0.5| difference between disease control 

and progressive disease patients.

Statistical analysis

Statistical testing and data visualization were performed with R Statistical So�ware 
(v.4.1.2) 37. Data were tested for normality with Shapiro-Wilk tests. We used paired or 
unpaired two-sided student t-tests for parametrical data and paired Wilcoxon tests or 
unpaired Mann-Whitney U tests for non-parametrical data. All tests were corrected with 
the BH correction for multiple testing. We used the R packages ggplot2 38 and 
EnhancedVolcano 39 for data visualization.

The FOLFIRINOX delta gene expression profiling (FFX-ΔGEP) score

A gene signature representing an early predictive circulating biomarker of the lack of 
FOLFIRINOX response was identified (the FFX-ΔGEP score). Briefly, log

2
 normalized gene 

expression counts of baseline samples were subtracted from the log
2
 normalized gene 

expression counts of samples a�er a single FOLFIRINOX cycle, resulting in Δ expression 
counts for each gene. Genes that showed statistically significant differences (BH.P < 
0.05) in Δ expression count between disease control and progressive disease patients 
were identified as candidate genes for the FFX-ΔGEP score. Patients were randomly split 
into training and test sets (75%/25%). To find the combination of candidate genes pre-
dicting the lack of FOLFIRINOX response most accurately, the least absolute shrinkage 
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and selection operator (LASSO) multivariate regression analysis was conducted on the 
training set with leave-one-out cross-validation. Weights (regression coefficient) were 
assigned to the candidate genes to improve model robustness and avoid overfi�ing. 
Genes weighted with a regression coefficient of 0 were excluded from the FFX-ΔGEP 
score. The fi�ed model was used in the corresponding test set to predict the lack of 
FOLFIRINOX response. The overall predictive performance was assessed by receiver 
operating characteristic (ROC) analysis depicting the area under the curve (AUC) value 
with a 95% confidence interval (CI). 

The absolute (μmol/L) and proportional (%) change in CA19-9 was calculated to compare 
the predictive performance to the FFX-ΔGEP score. CA19-9 values of baseline samples 
were subtracted from those a�er a single FOLFIRINOX cycle to obtain absolute Δ CA19-9 
values. The proportional Δ CA19-9 values were calculated by dividing the absolute Δ 
CA19-9 values by their baseline Δ CA19-9 values. ROC analysis was performed for both 
absolute and proportional Δ CA19-9 values, and the AUC value was compared to the AUC 
value of the FFX-ΔGEP score.

results 
Samples and patient characteristics

Blood samples from 80 patients were collected at baseline and a�er the first cycle (Figure 
1). RNA isolation was performed for all 160 blood samples. However, eight were excluded 
due to poor RNA concentration (< 35 mg/mL) and four were excluded due to poor binding 
density (< 0.5 or > 3.0). A�er removing corresponding pairs, 68 patients (136 samples) 
were included in the data analysis. The response to four FOLFIRINOX cycles was assessed 
by CT scan evaluation in 58 out of 68 patients, which resulted in 48 disease control and 
10 progressive disease patients. No CT scan was performed in ten patients due to toxicity 
or early progression during FOLFIRINOX treatment. The overall survival [95% CI] for the 
disease control and the progressive disease patients was 40.2 months [32.7 – 46.5] and 
13.8 months [11.2 – 15.5]. All clinicopathological characteristics are summarized in Table 1.

Table 1 Clinicopathological characteristics of patients in the study.

All patients Treatment response

(n = 68) Disease control  
(n = 48)

Progressive 
disease 
(n = 10)

Age (y), mean (range) 65 (47 – 81) 65 (49 – 78) 60 (47 – 69)

Sex, no (%)

Male 35 (51%) 25 (52%) 5 (50%)

Female 33 (49%) 23 (48%) 5 (50%)

Alcohol, no (%)

Yes 35 (51%) 22 (46%) 3 (30%)

No 33 (49%) 26 (54%) 7 (70%)

Smoking, no (%)

Yes 40 (59%) 28 (58%) 6 (60%)

No 28 (41%) 20 (42%) 4 (40%)

Diabetes Mellitus (DM), no (%)

Yes 14 (11%) 11 (33%) 2 (20%)

No 54 (79%) 37 (77%) 8 (80%)

Disease stage, no (%)

Resectable disease 21 (31%) 17 (35%) 2 (20%)

LAPC 28 (41%) 19 (40%) 5 (50%)

Metastatic disease 19 (28%) 12 (25%) 3 (30%)

Baseline CA19-9 (U/mL), no (%)

Mean (± SD) 2919 (± 10893) 1352 (± 4182) 10503 (± 25859)
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All patients Treatment response

(n = 68) Disease control  
(n = 48)

Progressive 
disease 
(n = 10)

No expression (< 35) 13 (19%) 9 (19%) 3 (30%)

Low expression (35-150) 15 (22%) 13 (27%) 0 (0%)

Moderate expression (150-1500) 25 (37%) 19 (39.5%) 3 (30%)

High expression (> 1500) 15 (22%) 7 (14.5%) 4 (40%)

CA19-9 difference a�er a single cycle, compared to baseline 

Mean (U/mL) (± SD) 225.5 (± 1883) 128.1 (± 1777) 242.5 (± 2042)

Mean (%) (range) 15 (-62 – 304) 20% (-53 – 304) 5% (-62 – 49)

Baseline clinical parameters, mean (± SD)

CEA (μg/L) 19.09 (± 49) 11.86 (± 24) 32.70 (± 69)

Bilirubin (μmol/L) 13 (± 12) 13 (± 8.0) 20 (± 23)

CRP (mg/L) 16 (± 24) 17 (± 25) 17 (± 24)

SII 1182 (± 1151) 1116 (± 1067) 1189 (± 713)

NLR 4.0 (± 2.8) 4.0 (± 3.0) 3.8 (± 1.8)

Total cycles of FOLFIRINOX, mean (± SD) 7.0 (± 3.0) 8.0 (± 2.0) 4.0 (± 2.0)

Median OS (months), mean (± SD) 11.7 (± 6.6) 13.0 (± 5.2) 8.27 (± 7.3)

Overall survival (OS) is defined as the difference in months (±SD) between the date of the 
first FOLFIRINOX cycle and the date of death. Abbreviations CT: Computed Tomography; 
LAPC: Locally Advanced Pancreatic Cancer; CA19-9: Carbohydrate Antigen 19-9; CEA: 
Carcinoembryonic Antigen; CRP: C-Reactive Protein; SII: Systemic Immune-inflammation 
Index; NLR: Neutrophil-to-Lymphocyte Ratio; SD: Standard Deviation; OS: Overall Survival.

PDAC patients with different disease stages or different baseline CA19-19 values show 
comparable immune profiles 

Immune profiles based on the three disease stages (resectable, LAPC, metastatic) and 
based on the two baseline CA19-9 values (low and high) were compared at baseline and 
a�er a single FOLFIRINOX cycle. Baseline immune profiles revealed eight DEGs between 
the three disease stages and no DEGs between low and high baseline CA19-9 values 
(Figure S1). The pathway activity in baseline samples was not altered in any of the com-
parisons (BH.P > 0.05). Two immune cell types were relatively different between the 
three disease stages (BH.P < 0.05). Resectable patients showed relatively lower NK cells 
compared to LAPC and metastatic patients, and relatively lower conventional dendritic 
cells type 2 (cDC2s) compared to metastatic patients (BH.P < 0.05). No immune cell types 
were relatively different between the two baseline CA19-9 values (BH.P > 0.05; Figure 
S1). 

A single FOLFIRINOX cycle altered the peripheral immune transcriptome of PDAC 
patients

Data analysis revealed 395 DEGs (BH.P < 0.01) in samples a�er a single FOLFIRINOX cycle 
compared to baseline samples (Figure 2A). Filtering the DEGs based on a log

2
 FOC ≥ |1.0| 

revealed 36 upregulated genes and three downregulated genes a�er a single FOLFIRINOX 
cycle (Figure 2B).

Figure 2 Identified DEGs a�er a single FOLFIRINOX cycle. A: Volcano plot of the identified DEGs using 
the paired analysis embedded in the Advanced Analysis module. Each dot is a gene, all DEGs genes 
(blue), upregulated DEGs with FOC < -1.0 in baseline samples (red), upregulated DEGs with FOC > 1.0 
in samples a�er a single FOLFIRINOX cycle (green), and non-significant genes (grey). B: Waterfall 
plot displaying DEGs of BH.P < 0.05 & Log

2
 FOC ≥ |1.0|. Upregulated DEGs with FOC < -1.0 in baseline 

samples (red), and upregulated DEGs with FOC > 1.0 in samples a�er a single FOLFIRINOX cycle 
(green). Abbreviations: BH.P: Benjamin-Hochberg P value; FOC: Fold Of Change.
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Pathway analysis revealed alterations among all immune-associated pathways (BH.P < 
0.001; Figure 3A-3C). Pathway-specific genes with log

2
 FOC ≥ |1.0| were considered key 

pathway drivers (Table S1). The pathways of adhesion, chemokines, cytokines, interleu-
kins, macrophage function, pathogen defense, toll-like receptor (TLR), and tumor 
necrosis factor (TNF) superfamily were enhanced a�er a single FOLFIRINOX cycle while 
the immune-associated pathways of antigen processing, B cell, NK cell, and T cell func-
tions, and cytotoxicity were diminished. Immune cell type analysis revealed alterations 
among all relative peripheral immune cell type abundances (BH.P < 0.05). The total 
immune cells (PTPRC, CD45+), cDC2, monocytes, NK cells, and neutrophils increased 
while the B cells, cytotoxic cells, NK CD56dim cells, total T cells, T regulatory (Treg) cells, 
and CD8+ T cells decreased a�er a single FOLFIRINOX cycle (Figure 3D).

A single FOLFIRINOX cycle altered the expression of IC regulatory genes

The expression of the IC inhibitory genes PDCD1 (PD-1), CD274 (PD-L1), and PDCD1LG2 
(PD-L2) were upregulated a�er a single FOLFIRINOX cycle compared to baseline with an 
average log

2
 FOC of 1.1 (BH.P < 0.001). In contrast, the IC inhibitory genes BTLA, CTLA4 

and its ligand CD86 (B7-2), HAVCR2 (TIM-3), and TIGIT were statistically significantly 
downregulated (BH.P < 0.001; Figure 3E). The IC inhibitory gene LAG3 was not altered 
(Figure S4).

Figure 3 Immune profile alterations a�er a single FOLFIRINOX cycle. Samples at baseline 
(blue) and a�er one FOLFIRINOX cycle (brown). A: Heatmap of pathway scores showing 
sample clustering based on time of collection. B and C: Boxplots of pathways with enhanced 
(B) and diminished (C) activity. D: Boxplots of relative immune cell type abundance. E: Boxplots 
of IC regulatory genes. Statistical significance: *BH.P < 0.05, ***BH.P < 0.001. Abbreviations: 
NK: Natural killer; TLR: Toll-like receptor; TNF: Tumor Necrosis Factor; BH.P: Benjamin-
Hochberg P value; IC: Immune Checkpoint; PD: Programmed Cell Death.
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Subtle differences in the immune transcriptome of disease control and 
progressive disease patients a�er a single FOLFIRINOX cycle

Immune profiles of the disease control and progressive disease patients were compared 
at baseline and a�er a single FOLFIRINOX cycle. Baseline immune profiles revealed no 
differences in pathway activities between the two groups. However, a relatively high 
abundance of the total immune cells and Treg cells were observed in progressive disease 
patients (Figure 4A). Immune profiles a�er a single FOLFIRINOX cycle revealed 400 DEGs 
in disease control and 256 DEGs in progressive disease patients (Figure S3), which were 
used in the ClueGo analysis based on the criteria in the materials and method section. 
Two key genes involved in the negative regulation of type-I interferon-mediated (IFN-I) 
signaling pathway were downregulated in disease control but not in progressive disease 
patients (BH.P < 0.01; Figure 4C). The change in IC regulatory gene expression, pathway 
activity, and immune cell type abundance was comparable in both groups (Figure S4), 
with one immune cell type exception. Driven by its solitary marker KIR3DL1, the relative 
abundance of NK CD56dim cells was decreased in disease control but increased in pro-
gressive disease patients (BH.P < 0.05; Figure 4B).

Figure 4 Differences in immune profiles between disease control (n = 48, yellow) and progressive 
disease (n = 10, purple) patients. A: Boxplots of samples at baseline displaying relative immune cell 
type abundances. B: Boxplots of the change in relative immune cell type abundances a�er a single 
FOLFIRINOX cycle. C: Boxplots of OAS3 and ISG15 expression counts (Log

2
), involved in the negative 

regulation of the IFN-I signaling pathway, in baseline and a�er a single FOLFIRINOX cycle samples. 
Statistical significance: *BH.P < 0.05. Abbreviations: BH.P: Benjamin-Hochberg P value.

An eight-gene FFX-ΔGEP score predicted the lack of response a�er a single 
FOLFIRINOX cycle

To identify an early circulating biomarker that predicts the lack of FOLFIRINOX response, 
we developed an FFX-ΔGEP score. The Δ gene expression count, which results from 
subtracting the log

2
 normalized gene expression counts of baseline samples from sam-

ples a�er a single FOLFIRINOX cycle, revealed fourteen candidate genes that differed 
significantly between disease control and progressive disease patients (BH.P < 0.05; 
Table 2). 

Table 2 The fourteen candidate genes selected for the FFX-ΔGEP score

Gene Disease control mean (± SD) Progressive disease Mean (± SD) BH.P value Weights 

BID 0.030 (± 0.48) -0.237 (± 0.42) 0.030 -1.63

FOXP3 0.012 (± 0.67) -0.518 (± 0.43) 0.012 -0.10

KIR3DL1 0.018 (± 0.59) 0.255 (± 0.78) 0.018 0.26

KLRC1 0.035 (± 0.56) 0.075 (± 0.71) 0.035 0

KLRD1 0.044 (± 0.46) -0.293 (± 0.53) 0.044 0

KLRG1 0.041 (± 0.46) -0.204 (± 0.47) 0.041 0

MAF 0.023 (± 0.44) -0.111 (± 0.47) 0.023 0.54

NFATC2 0.024 (± 0.43) -0.136 (± 0.37) 0.024 0

PDGFRB 0.038 (± 0.60) 0.011 (± 0.49) 0.038 0.31

PLAU 0.043 (± 0.99) 0.611 (± 0.71) 0.043 0

REL 0.028 (± 0.32) 0.278 (± 0.37) 0.028 0

RRAD 0.008 (± 0.46) 1.412 (± 0.70) 0.008 0.97

SIGLEC1 0.020 (± 0.84) 0.403 (± 1.24) 0.020 0.21

TGFB2 0.020 (± 0.64) 0.790 (± 0.60) 0.020 0.81

The mean values of the Δ gene expression counts (± SD) per response group. The BH.P 
value between disease control and progressive disease patients. The assigned weights 
are calculated using LASSO multivariate regression analysis. Abbreviations: SD: Standard 
Deviation; BH.P: Benjamin-Hochberg P value; LASSO: Least Absolute Shrinkage and 
Selection Operator.
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LASSO multivariate regression analysis, which constructed the most optimal combina-
tion of candidate genes by assigning a regression coefficient (weight) to all candidate 
genes, was conducted. Six candidate genes were assigned a weight of zero and the FFX-
ΔGEP score was composed of the remaining eight genes (Figure 5):

Figure 5 The eight genes that compose the FFX-ΔGEP score. All boxplots compare disease control (n = 
48, yellow) and progressive disease patients (n = 10, purple). A: Boxplots of gene expression counts 
(Log

2
) in baseline and a�er a single FOLFIRINOX cycle samples. B: Boxplots of the change (Δ) in gene 

expression count a�er a single FOLFIRINOX cycle and baseline samples. Statistical significance: 
*BH.P < 0.05, **BH.P < 0.01, ***BH.P < 0.001. Abbreviations: BH.P: Benjamin-Hochberg P value. 
FFX-ΔGEP: FOLFIRINOX-delta Gene Expression Profiling.

The eight-gene FFX-ΔGEP score ranged from 3.82 to -1.76 among all patients, and the 
performance to predict lack of FOLFIRINOX response a�er a single cycle was assessed by 
ROC analysis (Figure 6A). The leave-one-out cross-validated AUC [95% CI] was 0.87 
[0.60 – 0.98], indicating that the FFX-ΔGEP score could distinguish between disease 
control and progressive disease patients. The predictive performance of the currently 
used absolute and proportional Δ CA19-9 values [95% CI] were 0.70 [0.27 – 1.0] and 0.52 
[0.24 – 0.80]. Importantly, the FFX-ΔGEP score outperformed Δ CA19-9 values with less 
overlap in the designation of disease control and progressive disease patients (Figures 
6B-6D).

Figure 6 The FFX-ΔGEP score. A: The ROC of the FFX-ΔGEP score (orange), absolute (μmol/L) log
2

ΔCA19-9 score (dark blue), proportional (%) ΔCA19-9 score (light blue), and the random classifier 
(green). B-D: Boxplots of the FFX-ΔGEP score (B), the absolute (μmol/L) log

2
 ΔCA19-9 score (C), and 

the proportional (%) ΔCA19-9 score (D) for disease control (n = 48, yellow) and progressive disease (n 
= 10, purple) patients. Abbreviations AUC: Area Under the Curve; CI: Confidence Interval; ROC: 
Receiver Operating Characteristic; FFX-ΔGEP: FOLFIRINOX-delta Gene Expression Profiling; CA19-9: 
Carbohydrate Antigen 19-9.

33



60 61

discussion
In this study, we used paired blood samples of 68 PDAC patients to investigate the effect 
of a single FOLFIRINOX cycle on the immune profile. We aimed to identify an early circu-
lating biomarker to predict the lack of response to FOLFIRINOX. We revealed an eight-
gene FFX-ΔGEP score that predicted the lack of FOLFIRINOX response only a�er the first 
cycle, independent of disease stage or change in CA19-9. This novel multigene FFX-ΔGEP 
score is, to our knowledge, the first gene expression-based early circulating biomarker 
predicting the lack of FOLFIRINOX response in PDAC patients from all disease stages. 

The FFX-ΔGEP score is composed of eight immune-related genes. Four of these genes 
(FOXP3, KIR3DL1, MAF, and SIGLEC1) are associated with immune cell types 40–43, while 
the other four (BID, PDGFRB, RRAD, and TGFB2) are associated with the tumor or chem-
otherapeutic efficacy 44–47. FOXP3, a marker for Tregs, is associated with poor PDAC 
prognosis 40,48 but their peripheral abundance could be reduced by neoadjuvant 
FOLFIRINOX 49,50. KIR3DL1 inhibits NK cell activity 41 and is associated with PDAC progres-
sion 51. In this study, KIR3DL1 expression decreased indeed only in disease control 
patients. MAF is a transcription factor that can impair CD8+ T cell function 42 and is o�en 
highly expressed in M2 macrophages 52, which are associated with poor prognosis in 
PDAC 53. Correspondingly, our results showed a decrease in MAF expression in disease 
control patients only. SIGLEC1 is a protein that mediates phagocytosis and endocytosis 
54 and is expressed in the blood by activated CD14+ monocytes in reaction to IFN-I 43,55. In 
contrast, our results showed downregulation of SIGLEC1 but increased activation of the 
IFN-I pathway in disease control patients. BID encodes pro-apoptotic proteins 44 and 
their deregulated expression is associated with apoptotic resistance in PDAC 56. 
Accordingly, our results showed downregulation in BID expression in progressive disease 
patients only. PDGFRB is associated with poor disease-free survival, cancer cell invasion, 
and metastasis in PDAC 45,46. These pro-tumoral effects are in line with our results show-
ing no change in PDGFRB expression in progressive disease but downregulation in dis-
ease control patients. In gastric and colorectal cancer, 5-FU and oxaliplatin, two chemo-
therapeutic agents of FOLFIRINOX, displayed increased efficacy when combined with 
RRAD inhibition 57. Transforming growth factor- 2 (TGFB2) plays a complex role in PDAC 
and can both promote and inhibit tumor growth 58,59. 

This study has some limitations. Firstly, our FFX-ΔGEP score needs to be validated in a 
larger cohort of patients because the current sample was not sufficient to accurately 
calculate a cut-off value for response or lack of response to FOLFIRINOX treatment. 
Secondly, the patients in this study received FOLFIRINOX in combination with G-CSF, 
but it would have been ideal to also include a patient group who received FOLFIRINOX 
only. However, at least in the Netherlands, the combination of G-CSF and FOLFIRINOX is 
standard practice due to the high risk of neutropenia. Therefore, we have accepted this 
omission and did not evaluate the performance of the FFX-ΔGEP score in patients who 
did not receive G-CSF. Thirdly, we did not evaluate the specificity of the FFX-ΔGEP score 

for FOLFIRINOX by comparing its predictive ability in a control cohort of patients treated 
with another chemotherapy regimen, such as Nab-Paclitaxel-Gemcitabine. While this 
would have been ideal, the availability of patients treated with these regimens is limited 
due to the superior effectiveness of FOLFIRINOX. However, we plan to conduct a multi-
center clinical trial to validate our results. Lastly, treatment response was evaluated 
using CT scans, but some patients experience prolonged OS without showing an imag-
ing response. Therefore, it is important to determine whether the FFX-ΔGEP score can 
predict FOLFIRINOX-induced prolonged OS.

To our knowledge, this study is the first to describe the effect of a single FOLFIRINOX 
cycle, in combination with G-CSF, on the immune transcriptome of PDAC patients. We 
discovered that this treatment significantly changed the expression of 395 immune-re-
lated genes, even a�er two weeks of recovery. Our results showed that the relative 
peripheral abundance of total immune cells (CD45+), B cells, cDC2, cytotoxic cells, 
monocytes, NK CD56dim cells, and all T cell subsets (total, CD8+, and Treg) were reduced 
while the relative neutrophil abundance was increased a�er a single cycle of treatment. 
The increase in granulocyte-derived cells could be due to G-CSF which can affect the 
relative abundance of the other immune cells. In line with our results, previous studies 
described a rapid recovery of total lymphocytes, cDCs, and monocytes a�er two weeks 
of chemotherapy 47,60 and increased cDC2s a�er G-CSF treatment 61. 

Importantly, the immune transcriptome in patients with different disease stages or dif-
ferent baseline CA19-9 values was similar. This suggests that the progression of PDAC 
does not stimulate the systemic immune response. Additionally, we could not predict 
the lack of FOLFIRINOX response using baseline samples only. This highlights the chal-
lenges we phase in applying precision medicine protocols or stratifying PDAC patients to 
receive their most suitable treatment. Based on our results, at least one cycle of 
FOLFIRINOX is needed to predict the lack of response in PDAC patients.
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conclusions
In this study, we developed a novel multigene FFX-ΔGEP score using targeted immune-
gene expression profiling and found that it could predict the lack of FOLFIRINOX 
response in pancreatic cancer patients a�er only one cycle. In our cohort, the FFX-ΔGEP 
score predicted the lack of FOLFIRINOX response with more accuracy than the absolute 
or proportional change in CA19-9 levels. In addition, we were the first to describe the 
pronounced effect of a single FOLFIRINOX cycle on the immune transcriptome in the 
blood of PDAC patients from all disease stages. Further research is needed to validate our 
results in a larger cohort of patients, preferably including those who did not receive 
C-GSF treatment or were treated with another type of chemotherapeutic regimen.
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abstract
Background: Patients with locally advanced pancreatic cancer (LAPC) are treated with 
chemotherapy. In selected cases, stereotactic body radiotherapy (SBRT) can be added 
to the regimen. We hypothesized that adding an adjuvant containing a heat-killed 
mycobacterium (IMM-101) to SBRT may lead to beneficial immuno-modulatory effects, 
thereby improving survival. This study aims to investigate the safety of adding IMM-101 
to SBRT and to investigate the immuno-modulatory effects of the combination treat-
ment in the peripheral blood of LAPC patients.

Methods: LAPC patients were treated with SBRT (40 Gy) and six intradermal vaccina-
tions of one milligram IMM-101. The primary endpoint was an observed toxicity rate of 
grade 4 or higher. Targeted gene-expression profiling and multicolor flow cytometry 
were performed for longitudinal immune-monitoring of the peripheral blood.

Results: Twenty patients received study treatment. No treatment-related adverse 
events of grade 4 or higher occurred. SBRT/IMM-101 treatment induced a transient 
decrease in different lymphocyte subsets and an increase in CD14+CD16-CD11b+HLA-
DRlow myeloid-derived suppressor cells. Importantly, treatment significantly increased 
activated ICOS+, HLA-DR+ and Ki67+PD1+ T and NK cell frequencies. This was not 
accompanied by increased levels of most inhibitory markers, such as TIM-3 and LAG-3. 

Conclusions: Combination therapy with SBRT and a heat-killed mycobacterium vaccine 
was safe and had an immune-stimulatory effect.

Keywords: pancreatic ductal adenocarcinoma (PDAC); locally advanced pancreatic 
cancer (LAPC); stereotactic body radiotherapy (SBRT); mycobacterium vaccines; cancer 
immunotherapy; immuno-oncology

introduction
Pancreatic ductal adenocarcinoma (PDAC) is a notoriously lethal malignancy with a five-
year survival rate of less than 5% 1. About thirty-five percent of patients present with 
locally advanced pancreatic cancer (LAPC) 2. LAPC is treated with induction chemother-
apy, preferably with the multi-agent FOLFIRINOX regimen in young and fit patients 3. 
Next to FOLFIRINOX, gemcitabine combined with nab-paclitaxel is another adequate 
first-line treatment option, which is o�en be�er tolerated than FOLFIRINOX 3. 
Stereotactic body radiotherapy (SBRT) can be added to the treatment regimen if there 
are no signs of disease progression a�er the chemotherapy 4–6. 

Radiation therapy is the cornerstone of treatment for many cancer types, with fi�y per-
cent of cancer patients being treated with some form of radiotherapy throughout their 
illness 7. Traditionally, radiation therapy has been utilized for its direct cytotoxic proper-
ties, inducing tumor cell apoptosis 8. However, besides the direct cytotoxic effect, there 
is emerging evidence that radiation, particularly SBRT, has potential immuno-modula-
tory effects. Upregulation of immunogenic cell surface markers such as ICAM-1, MHC-1 
and Fas on tumor cells has been described following radiotherapy 9–13. Cancer cells may 
escape immune surveillance trough the downregulation of MHC-1 molecules 14. The 
upregulation of MHC-1 molecules by radiation therapy may revert this escape mecha-
nism. Additionally, irradiation can induce an upregulation of FAS molecules on tumor 
cells, thereby improving the cytotoxic efficacy of T cells 12. Moreover, radiotherapy has 
been demonstrated to be able to induce immunogenic cell death 15, thereby reinforcing 
the cancer-immunity cycle 16,17. In our previous LAPC-1 trial, LAPC patients were treated 
with FOLFIRINOX followed by SBRT 5. The SBRT treatment was found to be safe, and the 
median overall survival (OS) in patients who received SBRT a�er FOLFIRINOX was 17 
months (95% CI 14–21). As PDAC is considered an immunological cold tumor, the anti-tu-
mor immune response in LAPC patients treated with SBRT monotherapy a�er systemic 
chemotherapy is probably not optimal. Adding an adjuvant to SBRT could improve the 
immunological conditions for an effective immune response. In this first-in-human trial, 
the addition of a vaccine containing a heat-killed mycobacterium obuense (IMM-101), to 
SBRT was investigated. IMM-101 has been demonstrated to induce the activation and 
maturation of dendritic cells in vitro 18. Moreover, in a pancreatic cancer murine model, 
IMM-101 demonstrated to be able to produce protective CD8+ T cell responses 19. A pre-
vious randomized controlled trial in patients with advanced pancreatic cancer investi-
gated the value of adding IMM-101 to gemcitabine treatment 20. The addition of IMM-101 
to gemcitabine was associated with an improvement in OS from 4.4 to 7.0 months (95% 
CI 0.33–0.87, p = 0.01) in a pre-defined metastatic subgroup 20. Next to this, an interesting 
case report presented a case of a patient with metastasized pancreatic cancer who 
underwent a synchronous resection of the primary tumor and liver metastases, a�er 
multimodality treatment with chemotherapy, IMM-101 and chemoradiation. This patient 
was free of disease four years a�er diagnosis 21. Additionally, promising outcomes have 
been reported in melanoma patients treated with IMM-101 as well 22,23. We hypothesize 
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that IMM-101 vaccinations can enhance a host’s innate immune response, improving the 
immuno-modulatory effects and in situ vaccination efficacy of SBRT.

In this study, we present the results of the immuno-monitoring of the peripheral blood 
in patients with locally advanced pancreatic cancer treated with SBRT and IMM-101, as 
well as their clinical outcome.

treatment scheme and methods
Study Design and Participants

The LAPC-2 trial was a single-center, single-arm, non-randomized, open-label, phase I/II 
trial treating biopsy proven LAPC patients with SBRT and IMM-101, a�er prior treatment 
with at least 4 cycles of FOLFRINOX. LAPC was defined according to the guidelines of the 
Dutch Pancreatic Cancer Group as >90 contact with the superior mesenteric artery, the 
celiac axis and/or any hepatic artery and/or >270 contact with the superior mesenteric 
vein or the portal vein and/or occlusion of these veins 24. Main inclusion criteria were (1) 
age > 18 years and < 75 years, (2) WHO performance status of 0 or 1, (3) normal renal and 
liver function, (4) largest tumor size <7 cm x 7 cm x 7 cm, and (5) no evidence of meta-
static disease. Main exclusion criteria were (1) prior radiotherapy, chemotherapy other 
than FOLFIRINOX or pancreatic resection, (2) current or previous treatment with immu-
notherapeutic drugs, and (3) use of corticosteroids. The study was approved by the 
Central Commi�ee on Research involving Human Subjects (NL68762.078.19) as defined 
by the Medical Research Involving Human Subjects Act. Procedures followed were in 
accordance with the ethical standards of these commi�ees on human experimentation 
and with the Helsinki Declaration of 1975, as revised in 2008. The trial is registered with 
the Netherlands Trial Register, NL7578. Wri�en informed consent was obtained from 
each subject. All detailed inclusion and exclusion criteria are listed in Supplementary 
Table S1.

SBRT and IMM-101 Vaccination

The tumors were irradiated with the Cyberknife (Accuray Incorporated, Sunnyvale, CA, 
USA). To accurately guide the radiation, the gastroenterologist placed three radiopaque 
markers in or near the tumor (within 3cm of the tumor). Patients received a total of 40 
Gray (Gy) of SBRT in five fractions on consecutive days. Radiation started at week 2, just 
a�er patients received the second vaccination of IMM-101. Immodulon Therapeutics 
Ltd. (Uxbridge, UK) produced and shipped pre-labelled IMM-101 vials to the pharmacy of 
the Erasmus MC University Medical Center. IMM-101 was injected intradermally over the 
deltoid muscle by the standard Mantoux intradermal injection technique. One mL was 
injected, which contained one milligram of IMM-101. IMM-101 was administered six 
times: i.e., on week 0, week 2, week 4, week 8, week 10 and week 12. Figure 1 illustrates 
the treatment schedule. At week 0, week 2, week 4, week 8 and week 14 blood draws 
were performed for immune-monitoring;, i.e., before planned study drug administration 
or SBRT treatment. One red 10 mL clot activator tube from BD Vacutainer®, one 3 mL 
TempusTM RNA stabilisator tube and two 10 mL EDTA tubes from BD Vacutainer® were 
collected. The blood was processed within six hours a�er collection. Plasma, serum and 
peripheral blood mono-nuclear cells (PBMCs) were isolated and cryopreserved.
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Figure 1 Schematic treatment schedule. A�er discontinuation of FOLFIRINOX treatment, patients 
were included in the trial. Patients received three bi-weekly intradermal vaccinations of IMM-101 at 
weeks 0, 2 and 4. At week 2, a�er the second vaccination, stereotactic body radio-therapy (SBRT) 
treatment started. Patients received 5 × 8 Gy of SBRT. They received three more vaccinations at 
weeks 8, 10 and 12. At week 14, the first resectability assessments was per-formed. Some patients 
were offered an explorative laparotomy with possible resection.

Follow up and Resectability Assessments

At week 14, resectability was assessed based on CT scans, biochemical response and the 
patients’ clinical situation. An explorative laparotomy was performed in fit patients with 
a possibly resectable tumor and a >50% decrease in CA 19.9. In case of local and distant 
tumor progression, the patient was referred to the medical oncologist. The decision for 
an explorative laparotomy was made by a multidisciplinary tumor board consisting of at 
least a radiologist specialized in abdominal radiology, an experienced pancreas surgeon 
and a medical oncologist. A�er completion of IMM-101 treatment, routine follow-up was 
started until the time of death or 5 years a�er completion of SBRT. Follow-up visits 
included regular CT scans and tumor-marker assessments.

Objectives and Endpoints

The primary objective of the phase I study was to determine the safety of adding IMM-
101 to SBRT. The endpoint for this objective was an observed toxicity rate of grade 4 or 
higher related to the study treatment. Toxicities were scored according to CTCAE criteria 
version 5.0 25. The secondary objective was to investigate the immuno-modulatory 
effects of the combination treatment in the peripheral blood. Endpoints for this were the 
changes in the circulating immune cell compartment on RNA and protein level.

Targeted Gene-Expression Profiling

RNA was isolated from Tempus blood tubes using Tempus TM Spin RNA Isolation 
Reagent Kit (Thermo Fisher Scientific, Breda, The Netherlands). Isolated RNA was puri-
fied using RNeasy® MinElute® Cleanup Kit (Qiagen, Leiden, The Netherlands). The RNA 
quantity and quality were measured using the Agilent 2100 BioAnalyzer (Santa Clara, CA, 
USA). The RNA concentration was corrected to include the fragments ≥300 bp. For each 
sample, 200 ng of RNA was hybridized with probes of the PanCancer Immune profiling 
panel (730 innate and adaptive immune related genes and 40 housekeeping genes) for 17 

h at 65 °C, following the manufacturing procedure (NanoString Technologies Inc., 
Sea�le, WA, USA). The nCounter® FLEX platform was used to wash the extra probes, and 
genes were counted by scanning 490 Fields-of-view (FOV). The raw data of gene counts 
were uploaded to the nSolver™ Data Analysis so�ware (version 4.0, NanoString, Sea�le, 
WA, USA). The gene counts were normalized using the Advanced Analysis module (ver-
sion 2.0) of nSolver™.

Flow Cytometry Immuno-Monitoring

For the enumeration of immune subsets, whole blood was freshly stained for flow 
cytometry. In addition, longitudinal immuno-monitoring was performed on liquid nitro-
gen stored PBMCs. Cell surface staining was carried out a�er blocking Fc receptors by 
incubating cells with fluorescently conjugated mAbs directed against CD4 (SK3), CD11b 
(ICRF44), CD14 (M5E2), CD19 (HIB19), CD20 (2H7) CD56 (NCAM16.2), CD86 (FUN-1), 
HLA-DR (G46-6), ICOS (DX29) and ICOS-L (2D3/B7-H2) (all BD Biosciences, Erebodegem, 
Belgium); CD8 (SK1), CD11c (BV605), CD15 (HI98), CCR7 (G043H7), LAG-3 (11C3C65), PD-1 
(EH12.2H7), TIM-3 (F38-2E2) (all BioLegend, Amsterdam, The Netherlands); and CD3 
(UCHT1), CD33 (WM-53), CD45RA (MEM-56), CTLA-4 (14D3), FOXP3 (236A/E7), Ki-67 
(20Raj1) (all Thermo Fisher Scientific). Intracellular transcription factor staining was 
performed using the FoxP3 Staining Buffer Set (Thermo Fisher Scientific). Cells were in 
addition stained for viability using fixable LIVE/DEAD aqua cell stain (Thermo Fisher 
Scien-tific). Data were acquired using the Symphony flow cytometer (BD Biosciences) 
and analyzed with FlowJo v10.7. Cell subsets are gated as previously described 26,27.

Statistical Analysis—Sample Size Calculation

The primary objective of the phase I trial was to determine the safety of adding IMM-101 
to SBRT. In our previous LAPC-1 trial, the grade 4 toxicity rate of SBRT was 10% 5. With a 
sample size of 20 for the phase I trial, we were able to estimate a toxicity rate of 10% 
within a 95% confidence interval of [1.2–31.7%] using the binomial exact method. This 
means that a maximum of 6/20 (30%) patients were allowed to have grade 4 toxicity or 
higher for the treatment to be regarded as safe and before proceeding to the phase II 
trial.

Statistical Analysis—Data Analysis and Visualisation

Baseline patient characteristics are summarized using the median and interquartile 
range for continuous variables and using counts and percentages for categorical varia-
bles. PFS and OS were calculated from start date of FOLFIRINOX chemotherapy to the 
first documented event. Survival estimates were calculated using Kaplan–Meier method. 
Flow cytometry data were normalized for baseline. Paired Wilcoxon signed-ranks tests 
were used to test for significance between baseline measurements and other time points. 
Figures were made using GraphPad Prism so�ware v8.0. Gene-expression data were 
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corrected for multiple testing using the Benjamini–Hochberg procedure. In all cases, a 
p-value of 0.05 and below was considered significant (*), p < 0.01(**) and p < 0.001 (***) 
as highly significant. The heat map was generated using the average log2 normalized 
gene expression of the significant differentially expressed genes per week. The heat map 
was visualized using the web-based tool Morpheus 28. The Spearman correlations were 
calculated using the PFS or OS and the absolute difference between baseline and week 4 
(a�er IMM101/SBRT) of activated cell frequencies. The volcano plots and correlations 
were visualized in R (version 4.1.1).

results
Patient and Treatment Characteristics

A total of 21 patients were included in the phase I, LAPC-2 trial, between October 2019 
and June 2020. The first included patient (IMM001) had a liver metastasis, which was 
found during endoscopic ultrasound that was performed to place the radio-opaque 
markers for the SBRT. This patient was, therefore, excluded. Eventually, 20 patients 
received study treatment. Patients were treated with a median of 8 (8–9) cycles of FOLFI-
RINOX before inclusion in the trial. The median time between FOLFIRINOX and the first 
IMM-101 vaccination was 6.4 (5.2–7.8) weeks. The median age was 63 (60–68) years and 
11 (55%) were male. Their median body mass index was 24 (21–28) kg/m2. All patients 
received the total dose of 40 Gy of SBRT. Nineteen patients received the six planned 
vaccinations with IMM-101 and one patient received only three vaccinations due to dis-
ease progression. Immune analyses of the PBMCs were performed in 19/20 patients due 
to the absence of sufficient PBMCs in patient IMM016. Gene expression analyses were 
performed in 19/20 patients because we were not able to isolate RNA from IMM017. 
Detailed patient and treatment characteristics are shown in Table 1.

Table 1 Patient and treatment characteristics. Statistics: Continuous variables are shown as medians 
with interquartile range and categorical variables are shown as counts with percentages. 
Abbreviations: BMI = body mass index, ECOG = Eastern Cooperative Oncology Group, CA 19.9 = 
carbohydrate antigen 19.9, CEA = carcinoembryonic antigen, SII = Systemic-Immune-Inflammation 
index, NLR = neutrophil to lymphocyte ratio, PLR = platelet to lymphocyte ratio, SBRT = stereotactic 
body radiotherapy, N = neutrophils, P = platelets, L = lymphocytes. * ECOG performance status 0 = 
Fully active, able to carry on all pre-disease performance without restriction. ECOG performance 
status 1 = Restricted in physically strenuous activity but ambulatory and able to carry out work of a 
light or sedentary nature, e.g., light housework, office work.

Patient Characteristics N = 20 (IQR) or [%]

Age, years 63 (60–68)

Male sex 11 [55]

BMI, kg/m² 24 (21–28)

ECOG performance status * 

0 4 [20]

1 16 [80]

CA 19.9 at inclusion, kU/L 101 (43–137)

CEA at inclusion, μg/L 4.4 (3.5–5.8)

Leukocyte count at inclusion, ×109/L 6.7 (4.7–9.9)

Platelet count at inclusion, ×109/L 195 (133–232)

Neutrophil count at inclusion, ×109/L 3.6 (2.7–7.2)

Lymphocyte count at inclusion, ×109/L 1.4 (1.2–1.8)

SII, (N x P) / L 624 (311–889)
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Patient Characteristics N = 20 (IQR) or [%]

NLR 3.1 (2.3–5.0)

PLR 147 (87 – 171)

Treatment characteristics

Biliary stenting at diagnosis 9 [45]

Diagnostic laparoscopy at diagnosis 6 [30]

FOLFIRINOX treatment 20 [100]

FOLFIRINOX, cycles 8 (8–9)

Interval stop FOLFIRINOX and start IMM-101, weeks 6.4 (5.2–7.8)

40 Gray of SBRT 20 [100]

IMM-101 20 [100]

Six vaccinations 19 [95]

Three vaccinations 1 [5]

Resection 4 [20]

Safety and Clinical Outcome

In 6/20 patients, we observed eleven grade 3 adverse events, of which three were con-
sidered to be possibly related to SBRT. None were related to IMM-101. Toxicity of grade 4 
or higher was not observed. All patients experienced mild injection-site reactions, 
ranging from erythema to skin abscesses, with none resulting in systemic symptoms. 
Table 2 shows all grade 3 or higher toxicities. At present, (i.e., May 2022), 18/20 (90%) 
patients have experienced progression (local or distant) of disease and 17/20 (85%) 
patients have died. In all patients, the median PFS was 11.7 months (95% CI: 10.2–13.3) 
and the median OS was 17.8 months (95% CI: 11.3–24.4). The median PFS and median OS 
of the unresected patients (n = 16) was 11.2 (95% CI: 8.0–14.4) and 17.8 (95% CI: 12.0–23.6) 
months, respectively. Four (20%) patients underwent a resection of the tumor. In one 
patient, a small, solitary liver metastasis was found during explorative laparotomy and 
the primary tumor and the metastasis were both resected. This patient was free of dis-
ease 15 months a�er the operation. Another patient experienced local recurrence of 
disease four months a�er the resection. This was treated with systemic chemotherapy. 
In the absence of disease progression, a re-resection was performed 12 months a�er the 
initial resections. This patient was free of disease 8 months a�er the re-resection. Two 
patients died from complications from the operation.

Table 2 Grade 3 or higher adverse events. Toxicities were scored according to Common 
Terminology Criteria for Adverse Events (CTCAE) version 5.0 [25]. The treating physicians 
judged the possibility of a relation to the study treatment. Adverse events not related to 
SBRT or IMM-101 were considered to be related to pancreatic ductal adenocarcinoma. 
Abbreviations: SBRT = stereotactic body radiotherapy.

Subject Adverse Event Term Grade Relation to SBRT Relation to IMM-101

IMM003 Gastro-intestinal haemorrhage 3 Possibly Unrelated

IMM006 Gastro-intestinal haemorrhage 3 Possibly Unrelated

IMM007 Gastro-intestinal haemorrhage 3 Unrelated Unrelated

IMM007 Gastro-intestinal haemorrhage 3 Possibly Unrelated

IMM007 Stent disfunction 3 Unrelated Unrelated

IMM007 Cholangitis 3 Unrelated Unrelated

IMM007 Stent disfunction 3 Unrelated Unrelated

IMM008 Cholestatis 3 Unrelated Unrelated

IMM008 Cholangiosepsis 3 Unrelated Unrelated

IMM009 Vertigo 3 Unrelated Unrelated

IMM014 Duodenal obstruction 3 Unrelated Unrelated

Downregulation of Genes Related to Lymphocyte Subsets and Immune inhibition 
a�er IMM-101/SBRT

Targeted gene expression profiling was performed to investigate the effect of IMM-101 
and SBRT on the immune cells. Apart from increased expression of three genes (i.e., LTF, 
CAMP and LCN2) at baseline, no significant differences were observed between baseline 
(week 0) and a�er one vaccination IMM-101 (week 2) (Supplementary Figure S1). 
However, in week 4, a�er SBRT combined with IMM-101, profound changes were 
observed in immune-related gene expression (Figure 2A,B). Various genes related to 
lymphocyte subsets were downregulated (i.e., CD8a, MS4A1, CD22, CD79A, KLR family 
genes). Furthermore, genes related to lymphocyte inhibition/exhaustion (i.e., BTLA, 
TBX21, KLRC1) were also downregulated a�er IMM101/SBRT treatment. These results 
indicate changes in the circulating lymphoid compartment of LAPC patients specifically 
a�er combined IMM-101/SBRT treatment.

Figure 2 SBRT/IMM-101 
induced gene 
expression. (a) Volcano 
plot demon strating 
genes upregulated at 
baseline versus week 4. 
Highlighted genes 
underwent a log2fold 
change <−0.5 or >0.5 
and p-value < 0.05. (b) 
Heat map of 
significantly 
differentially expressed 
genes between week 0, 
week 2 and week 4.
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Reduced Peripheral Lymphocyte Numbers following IMM-101/SBRT

We additionally assessed various immune subsets in the peripheral blood using flow 
cytometry. No significant changes in immune subsets were observed two weeks a�er 
the first vaccination with IMM101. The addition of SBRT transiently reduced CD4+ and 
CD8+ T cells, CD19+ B-lymphocytes and CD56+ NK cells (Figure 3). SBRT did not curtail 
the myeloid compartment (i.e., CD15+CD16- eosinophils, CD15+CD16+ neutrophils, 
CD14+CD16- monocytes, CD14-CD16-CD11c+ dendritic cells). Additionally, the number 
of CD14+CD16-CD11b+HLA-DRlow MDSCs increased a�er combining SBRT and IMM-101 
(Supplementary Figure S2). Lymphocyte cell numbers recovered at week 8, within 6 
weeks a�er SBRT.

Figure 3 SBRT/IMM-101 induced transient lymphodepletion. Number of CD4+, CD8+, CD3−CD19+ 
and CD3−CD56+CD16+/−peripheral blood lymphocytes per μL blood. N = 19. Data were normalized 
for baseline (week 0) and paired per patient. Percentage in the bo�om le� corner is the average 
frequency at baseline. Significance was determined using the paired Wilcoxon signed-rank test. * p < 
0.05, ** p < 0.01, *** p < 0.0001.

IMM-101/SBRT Increased Proportions of Activated Lymphocytes

In-depth longitudinal immune monitoring was performed to further describe the phe-
notypic characteristics of immune cells following study therapy. We did not find changes 
in activation or inhibitory marker expression on CD4+ regulatory T cells or CD4+ T helper 
cells or cytotoxic CD8+ T cells a�er one vaccination with IMM-101 in week 2. In contrast, 

the addition of SBRT significantly increased the frequencies of activated CD4+ and CD8+ 
T cells and CD56+ NK cells in week 4 as indicated by the markers ICOS, HLA-DR as well 
as the combined increase in Ki67 and PD-1 levels. Notably, this increase was not observed 
for the inhibitory markers PD-1, TIM-3 and LAG-3, although we did observe significantly 
upregulated CTLA-4 levels on the CD4+ Non-Tregs a�er combination therapy. 
Furthermore, the increase in activated CD4+ and CD8+ T cell frequencies was mainly 
driven by the memory compartment (i.e., CCR7+CD45RA- central memory and CCR7-
CD45RA- effector memory) [Not shown]. One vaccination of IMM-101 did significantly 
increase activated CD86+CD19+ B cell frequencies in week 2. The addition of SBRT fur-
ther activated these CD19+ B cells demonstrated by increased Ki67+PD-1+ and CD86+ 
frequencies. Lastly, IMM-101/SBRT transiently induced higher frequencies of CD11c+ 
dendritic cells, HLADR+ CD14+ macrophages and HLA-DR-CD14-CD15- DN-MDSCs. 
Data are shown in detail in Figures 4 and S3.

Figure 4 SBRT/IMM-101 induced T-cell activation. (a) Percentage of ICOS+, HLA-DR+, PD-1+/Ki67+ 
subsets of CD4+ Non-Tregs and CD8+ cells. (b) Percentage of PD-1+, TIM-3+, LAG-3, CTLA-4+ 
subsets of CD4+ Non-Tregs and CD8+ cells. N = 19. Data were normalized for baseline (week 0) and 
paired per patient. Percentage in the bo�om le� corner is the average frequency at baseline. 
Significance was determined using the paired Wilcoxon signed-rank test. * p < 0.05, ** p < 0.01, *** p 
< 0.0001.
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Treatment-Induced Increase in Activated Lymphocytes Is Correlated with Survival

To explore if treatment-induced effects could be translated to clinical outcome, we 
analyzed if absolute differences in immune cell status between treatment-naïve (week 0) 
and study treatment samples (week 4) were correlated with survival. Patients who 
underwent a resection (n = 4) were excluded from this analysis, since a resection possibly 
influences PFS and OS outcomes. Another patient (IMM016) was excluded from the 
analysis due to an absence of sufficient PBMCs. Therefore, eventually 15 patients were 
included in the analysis. We found that increased levels of CD28+ effector memory 
(CCR7−CD45RA+) cytotoxic T cells correlated with improved PFS and OS (Figure 5).

Figure 5 Treatment-induced T-cell activation correlated with improved progression-free survival. 
Spearman correlation plots demonstrating a positive correlation between IMM101/SBRT-induced 
absolute difference of CD28+ CCR7− CD54RA+ cytotoxic T cells and progression-free survival and 
overall survival. N = 15.

discussion
In this first-in-human trial, we firstly assessed the safety of IMM101/SBRT 
treatment, in patients with LAPC a�er prior treatment with FOLFIRINOX 
chemotherapy. 

All patients experienced injection site reactions, which were uncomfortable for some 
patients. Eleven grade 3 toxicities were observed, of which three were possibly related to 
SBRT treatment. No grade 4 or higher toxicities were reported and none of the observed 
toxicities were considered to be related to IMM-101. This treatment approach demon-
strated to be safe, and the trial proceeded to the phase II trial. 

Secondly, we investigated the immunomodulatory effects of IMM-101/SBRT treatment 
in the peripheral blood. Two weeks a�er the first vaccination with IMM-101, no explicit 
changes on gene expression and protein level in the immune system of LAPC patients 
could be demonstrated. A�er treatment with IMM-101 with SBRT, we observed a down-
regulation of genes related to lymphocyte subsets, and this lymphodepletion was con-
firmed by flow cytometry. Interestingly, IMM-101/SBRT treatment did induce a rise in the 
number of MDSCs. Radiotherapy-induced MDSC expansion in patients with PDAC has 
previously been described 29. It is also likely that SBRT and not IMM-101 induced the 
lymphodepletion, seeing that, in a previous study, external beam radiotherapy caused 
systemic immune-cell depletion 30. Except MDSCs, cell numbers of other cell subsets 
within the myeloid compartment did not significantly increase. The la�er may be 
explained by the fact that the radio-resistance of suppressive myeloid cells is stronger 
than that of lymphocytes 31.

Our combined gene expression and flow cytometry analyses demonstrated therapy-in-
duced activation of T cell and NK cell subsets, with no increase in most inhibitory markers 
(i.e., PD-1, TIM-3 and LAG-3). Interestingly, therapy-induced activation of T cells occurred 
mainly in the memory compartment, which may be beneficial for seeding the tumor with 
antigen-specific T cells to mount successful anti-tumor responses. In agreement with 
this notion, improved PFS and OS were correlated with increased levels of activated 
effector memory cytotoxic T cells. In pre-clinical models, ablative doses of radiotherapy 
have been associated with improved intratumoral CD8+ T cell infiltration due to increased 
antigenicity of malignant cells, or by promoting immuno-stimulatory signals to recruit 
and activate antigen-presenting cells 32,33.

We found limited significant changes 2 weeks a�er the first vaccination with IMM-101. 
Still, the CD86+ expression on B cells increased. Adding SBRT further augmented the B 
cell activation, as demonstrated by the increase in Ki67+PD-1+ and CD86+ frequencies. A 
higher B cell activation may be beneficial, as B cell activation has been associated with 
positive responses to cancer-immunotherapy 34,35.
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SBRT may hypothetically improve the anti-tumor efficacy of IMM-101 through anti-gen 
release upon tumor destruction, inducing in situ vaccination. IMM-101 could concur-
rently provide enhanced innate immunity to engage robust T cell responses. 
Unfortunately, the current study design did not allow for us to investigate this mecha-
nism. Next to this, the common limitations of phase I/II trials, such as a small sample size 
and the lack of a control group, also applied to this study. However, the sample size was 
adequate to prove the safety of the combination treatment. Moreover, despite the low 
number of patients, a clear trend in immunological changes could be observed in most 
patients, which strengthens the hypothesis that treatment-induced immune modulation 
existed. Due to the lack of a control group, the observed changes could theoretically be 
be�er explained by time than by a cause–effect phenomenon caused by the treatment. 
However, certain factors argue against this. Firstly, between week 0 and 2, no significant 
changes occurred. In contrast, between week 2 and week 4, drastic changes were 
observed in the peripheral immunity. This occurred a�er the second vaccination and the 
SBRT treatment. The lack of changes in the first two weeks, compared to the extensive 
changes that occurred between week two and four, combined with the timing of treat-
ment, argue against the hypothesis that the immunological changes were mostly 
impacted by time. Secondly, the observed immunological changes a�er SBRT/IMM-101 
treatment tended to restore mostly to base-line a�er time progressed. If time and, thus, 
disease progression was the main factor ex-plaining the changes in the immune system, 
one would expect these changes to persist as time progressed. Another limitation of this 
study is that our analysis was only focused on peripheral immunity. A local assessment of 
the immune composition would have improved understanding of the study–treatment 
effect, as SBRT acts directly on the tumor. Nonetheless, the upregulation of immune 
checkpoints on circulating T cells, including CTLA-4, endorse the addition of 
immune-checkpoint blocking antibodies in future studies. Moreover, combining check-
point-blocking antibodies with radiotherapy alone, or possibly with IMM-101, has shown 
promising results in pre-clinical models 36,37. In addition to combination with 
immune-checkpoint-blocking antibodies, intratumoral administration of IMM-101 could 
improve its clinical efficacy. The most-used mycobacterium vaccine is the live-a�entu-
ated Mycobacterium Bovis Bacillus Calme�e-Guérin (BCG) vaccine 38. This tuberculosis 
vaccine was demonstrated to be able to induce potent anti-tumor immunity and adju-
vant intravesical BCG instillations a�er a transurethral resection of bladder cancer, and 
was proved to be effective in preventing bladder cancer recurrence 39–43. The administra-
tion of the vaccine at the disease site might be important to its efficacy.

conclusions
In this open-label, single-center, phase I study, the safety and immunomodulatory 
effects of intradermal IMM-101 with SBRT were investigated in patients with LAPC. We 
observed transient lymphodepletion and enhanced T cell activation in the peripheral 
blood. Increased levels of activated T cells a�er treatment correlated with improved PFS 
and OS. Future studies are needed to provide mechanistic insights into how these obser-
vations are linked to clinical efficacy. The intratumoral administration of IMM-101 and 
combinations with other immunotherapeutic agents focusing on adaptive responses 
(e.g., immune checkpoint blockade, adoptive cell transfer therapy) may lead to improved 
efficacy for this group of patients with limited treatment options.
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abstract
Introduction: Monitoring the therapeutic response of pancreatic ductal adenocarci-
noma (PDAC) patients is crucial to determine treatment strategies. Several studies have 
examined the effectiveness of FOLFIRINOX as a first-line treatment in patients with 
locally advanced pancreatic cancer, but li�le a�ention has been paid to the immuno-
logic alterations in peripheral blood caused by this chemotherapy regimen. Furthermore, 
the influence of the measurement type (e.g., flow cytometry, and targeted gene expres-
sion) on the clinical discoveries is unknown. Therefore, we aimed to scrutinize the 
influence of using flow cytometry or targeted immune-gene expression to study the 
immunological changes in blood samples of PDAC patients who were treated with a 
single-cycle FOLFIRINOX combined with lipegfilgrastim (FFX-Lipeg).

Material & Methods: Whole blood samples from 44 PDAC patients were collected at 
two time points; before the first FOLFIRINOX cycle and 14 days a�er the first cycle. 
EDTA blood tubes were used for multiplex flow cytometry analyses to quantify 18 
immune cell populations and for complete blood count tests as standard clinical rou-
tine. The flow cytometry data were analyzed with FlowJo so�ware. In addition, Tempus 
blood tubes were used to isolate RNA and measure 1,230 immune-related genes using 
the NanoString Technology®. Data quality control, normalization, and analysis were 
performed using the nSolver™ so�ware and the Advanced Analysis module.

Results: FFX-Lipeg treatment increased the number of neutrophils and monocytes as 
shown by flow cytometry and complete blood count in concordance with elevated gene 
expression measured by targeted gene expression profiling analysis. Interestingly, flow 
cytometry analysis showed an increase in the number of B and T cells a�er treatment, 
while targeted gene expression analysis showed a decrease in B and T cell-specific gene 
expression.

Conclusion: Targeted gene expression complements the flow cytometry analysis to 
provide a comprehensive understanding of the effect of FFX-Lipeg. Flow cytometry and 
targeted gene expression showed an increase in the neutrophils and monocytes a�er 
FFX-Lipeg. The number of lymphocytes is increased a�er treatment, nevertheless, their 
cell-specific gene expression levels are downregulated. This highlights that different 
techniques influence clinical discoveries. Therefore, it is important to carefully select 
the measurement technique to study the effect of treatment.

Keywords: Pancreatic ductal adenocarcinoma (PDAC), FOLFIRINOX, Flow cytometry, 
Targeted gene expression, Peripheral immune cell profile

introduction
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy that develops from the epi-
thelial cells that line pancreatic ducts and is one of the most lethal cancer types 1. The 
complex tumor (immune) microenvironment, the ecosystem that surrounds the tumor 
cells, is composed of many cell types and the extracellular matrix. It includes immune 
cells, blood vessels, cancer-associated fibroblasts, and other cells that constantly inter-
act and influence each other. The first-line treatment for patients with locally advanced 
and metastatic PDAC is a chemotherapeutic regimen of either a combination of gemcit-
abine with nab-paclitaxel or 5-fluorouracil, folinic acid, irinotecan, and oxaliplatin 
(FOLFIRINOX) 2. FOLFIRINOX is considered the optimal adjuvant treatment in resected 
patients with good performance status and is currently being investigated as neoadju-
vant therapy in several randomized control clinical trials 3. However, FOLFIRINOX is 
associated with increased toxicity, specifically neutropenia 3–8. Prophylactic treatment 
with a granulocyte-colony stimulating (G-CSF), such as lipegfilgrastim, could prevent 
FOLFIRINOX-induced neutropenia and is therefore considered standard therapy by most 
medical oncologists 9–11.

FOLFIRINOX has been shown to alter the intra-tumoral immune cell profile of PDAC 
patients. Increased effector T cells and reduced suppressor cells were reported in the 
pancreatic tumor a�er neoadjuvant FOLFIRINOX treatment 12. Furthermore, FOLFIRINOX 
enhanced tumor antigen presentation, potentially synthesizing the pancreatic tumor for 
treatment with immune checkpoint inhibitors 13,14. Nevertheless, the effect of 
FOLFIRINOX-lipegfilgrastim (FFX-Lipeg) on the patient’s peripheral immune profile 
remains unclear. More knowledge on the immunological changes caused by FOLFIRINOX 
could pave the way to improved immunotherapeutic approaches and are therefore of 
clinical interest.

Flow cytometry is one of the most used techniques to determine the immune cell com-
position of the peripheral blood. This laser-based technique is used to detect and analyze 
the chemical and physical characteristics of cells or particles in fluids 15. Flow cytometry 
allows for the precise quantification of immune populations from peripheral blood. It has 
the advantage of a more detailed, single-cell analysis. Subpopulations can be distin-
guished although common protein markers are present, and cells can be assigned to 
subpopulations based on negative protein markers. However, flow cytometry does not 
allow for robust quantification of subpopulations based on intracellular characteristics 
16. Furthermore, flow cytometry requires viable cells that require costly and time-con-
suming processing and storage. Longitudinal sample collection needs cryopreservation, 
which has been shown to alter the expression of important markers for immune subsets 
17–19. 

Another emerging technique to study different cellular processes, such as immune 
responses and cell types that are present in the peripheral blood, is RNA-based 
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transcriptome analysis 20. Targeted gene expression profiling provides a more compre-
hensive immune-related data set compared to flow cytometry. The composition of the 
immune cell subpopulations with RNA-based transcriptome analysis is inferred from the 
generated bulk gene expression dataset and can be defined based on intracellular char-
acteristics 21,22. Furthermore, gene expression analysis is possible even when far fewer 
viable cells are available, as it only requires 25-100 ng of total RNA.

Recently, we identified the FOLFIRINOX delta Gene Expression Profiling (FFX-ΔGEP) 
score that predicts the lack of FOLFIRINOX response in PDAC patients a�er only one 
cycle of FFX-Lipeg treatment 23. In this study, we aimed to scrutinize the influence of 
using flow cytometry or targeted immune-gene expression to study the immunological 
changes in blood samples of PDAC patients who were treated with a single cycle of FFX-
Lipeg. 

material and methods
Patient cohort and blood collection

The 44 PDAC patients included in this study were hospitalized at the Erasmus University 
Medical Centre Ro�erdam between February 2018 and October 2020. Fourteen of those 
patients had (borderline) resectable PDAC and participated in the randomized clinical 
trial PREOPANC-2 (Dutch trial register NL7094). Thirty patients participated in the pro-
spective cohort study iKnowIT (Dutch trial register NL7522) of which 19 had locally 
advanced and 11 had metastasized PDAC. Exclusion criteria were < 18 years of age, previ-
ous treatment with FOLFIRINOX, or co-treatment with another chemotherapeutic. The 
medical ethics commi�ee of the Erasmus University Medical Centre Ro�erdam approved 
both studies (MEC-2018-087 and MEC-2018-004), and patient samples were only used 
when wri�en informed consent was provided. Following histological confirmation of the 
primary tumor or metastases, patients were treated with FOLFIRINOX chemotherapy. In 
addition, all patients were prophylactically treated with the long-acting G-CSF lipegfil-
grastim (Lonquex®; Teva Ltd, Petach Tikva, Israel), 24 hours a�er each cycle, to reduce 
FOLFIRINOX-induced neutropenia 9,24. Two types of whole blood samples (2 EDTA and 1 
Tempus) were collected from the 44 PDAC patients at two time points: at baseline (on the 
same day, but before the first cycle) and 14 days a�er the first cycle, but before the second 
FOLFIRINOX cycle (Figure 1).

Figure 1: Schematic overview of the sample collection and measurements. The cycles of FOLFIRINOX 
chemotherapy (black), lipegfilgrastim injections (orange), and the blood draw time points (red). The 
blood is collected in EDTA and Tempus tubes. A�er the blood draw, flow cytometry, and complete 
blood count are performed on the EDTA tubes. The Tempus tubes are used for gene expression 
profiling.
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Flow cytometry and complete blood count

The whole blood samples for flow cytometry and complete blood count (CBC) were 
collected in EDTA tubes. As part of the standard clinical routine, CBC tests were per-
formed to evaluate lymphocyte, neutrophil, and thrombocyte counts. To quantify 18 
immune cell populations, whole blood was stained and analyzed by multiplex flow 
cytometry as described previously 25. In short, granulocytes, monocyte, lymphocytes, 
and T cell populations were gated separately in a sca�er plot of CD45+ staining versus 
side sca�er. Immune cell populations were further defined using markers for eosinophils 
(CD15+ CD16-), mature neutrophils (CD15high CD16high), immature neutrophils (CD15+ CD16+), 
classical monocytes (CD14+ CD16-), intermediate monocytes (CD14+ CD16+), non-classical 
monocytes (CD14- CD16+), dendritic cells (CD14- CD16- CD11c+), myeloid-derived suppres-
sor cells (CD14+ CD16- CD11b+ HLA-DRlow), B cells (CD3- CD19+), natural killer cells (CD3- 
CD56+ CD16+/-), T cells (CD3+), T cells (CD3+ TCR+), CD4+ T cells (CD3+ TCR - CD4+) and 
CD8+ T cells (CD3+ TCR - CD8+). Flow-Count Fluorospheres (Beckman Coulter, Brea, CA, 
USA) were used to determine the absolute cell counts. Data were analyzed with FlowJo 
so�ware (Tree Star, San Carlos, CA, USA).

Targeted immune-gene expression profiling

The whole blood samples for targeted gene expression analysis were collected in Tempus 
tubes (Applied Biosystems, Foster City, CA, USA) and stored at -80°C. Tempus tubes 
contain an RNA stabilizing reagent, which preserves the RNA quality and enables meas-
uring gene expression profiles without isolating the peripheral blood mononuclear cells 
26. Total RNA was extracted from blood in Tempus tubes using the Tempus Spin RNA 
Isolation Kit of Thermo Fisher Scientific (Waltham, MA, USA) following the manufactur-
er’s instructions. RNA quality control was done using the Agilent 2100 BioAnalyzer (Santa 
Clara, CA, USA). Samples with RNA concentrations less than 35 mg/mL were excluded. 
Corrected RNA concentrations were calculated based on the percentage of fragments of 
300-4000 nucleotides to correct RNA degradation. The nCounter® PanCancer Immune 
Profiling (IP) Panel and nCounter® Myeloid Innate Immunity (MII) Panel, consisting each 
of 730 genes and 40 housekeeping genes, were used for NanoString targeted gene 
expression analysis of the 88 whole blood samples. The IP panel targeted different 
immune-related pathways as well as immune and adaptive immune cell-related genes. 
The MII panel targeted genes involved in the innate immune response of myeloid-de-
rived cells. A total of 200 ng RNA per sample in a maximum of 7 μL was hybridized with 
the two panels for 17 hours at 65⁰C, following the manufacturing procedure (NanoString 
Technologies Inc., Sea�le, WA, USA). The nCounter® FLEX platform was used to wash 
the unbound probes, and genes were counted by scanning 490 Fields-of-view (FOV). 
Data quality control, normalization, and analysis were performed using the nSolver™ 
so�ware (version 4.0) and the Advanced Analysis module (version 2.0) of NanoString 
Technology Inc. 27. Raw gene counts were normalized based on the most stable 19 house-
keeping genes, identified by the geNorm algorithm 28, scaling was performed based on 

the 265 overlapping genes between the two panels, and all normalized data were log
2
 

transformed. Genes were included when they were higher than the limit of detection of 
4.35 log

2
, calculated as the average count of the negative controls plus two standard 

deviations in > 50% of the gene expression profiles. Differentially expressed genes 
(DEGs) were identified using simplified negative binomial models, a mixture of negative 
binomial models, or log-linear models based on the convergence of each gene. Genes 
with a P-value < 0.05 a�er correction for multiple testing with the Benjamin-Hochberg 
(BH) method were considered DEGs. To characterize the immune cell abundance, candi-
date cell-specific gene markers were identified as described previously 22. In short, gene 
markers were selected by calculating the pairwise similarity between all pairs of the 61 
candidate marker genes that were above the detection. The gene pairs with a pairwise 
similarity above 0.6 were selected to describe the immune cells. Each immune cell type 
needed at least two unique genes. The abundance of the immune cell types is the aver-
age expression value of their corresponding marker genes corrected for the total CD45+ 
infiltration. Pathway scores were extracted from the Advanced analysis of the nSolver 
so�ware. Pathway enrichment analyses were performed with the differentially expressed 
genes (|Log

2
 fold change| > 0.5, P.BH < 0.05) using Metascape 29 and ClueGo 30.

Statistical analysis

Statistical testing and data visualization were performed with R Statistical So�ware 
(v.4.1.2) 31. We used paired two-sided student t-tests as a parametric test. We used the R 
packages ggplot2 32 and EnhancedVolcano 33 for data visualization. Heatmaps were gen-
erated using the Log

2
-normalized count data of significantly differentially expressed 

(|Log
2
 Fold change| > 0.5, P.BH < 0.05). Genes that were determined to be outliers using 

Tukey’s rule were removed 34. The heatmap was visualized using the web-based tool 
Morpheus by Broad Institute (RRID: SCR_017386).
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results
Patients’ characteristics

A total of 44 patients were included who received one FFX-Lipeg cycle. Three whole 
blood samples (2 EDTA, 1 Tempus) were collected at baseline (on the same day before the 
first cycle) and 14 days a�er the first cycle but before the second cycle. The mean overall 
survival [95% CI] was 9 [11 – 14] months, calculated as the months between the first FFX-
Lipeg cycle and the date of death. All clinicopathological characteristics are summarized 
in Supplementary Table 1.

FFX-Lipeg therapy results in enhanced frequencies of granulocytes and 
monocytes in the blood

Flow cytometry analyses showed that one cycle of FFX-Lipeg significantly increased 17 
out of 18 immune cell types. The most pronounced increase was observed in the number 
of granulocytes and monocytes (Figure 2). The only cell type that was not significantly 
altered were the CD16+ NK cells (Supp Fig. 1). The CBC measurements showed a signifi-
cant increase in lymphocytes and neutrophils but a significant decrease in thrombocytes 
a�er treatment (Supp Fig. 2).

Figure 2: The effect of 
one cycle FFX-Lipeg 
on the immune cells 
measured by flow 
cytometry. (A) The 
number of 
granulocytes (pink) 
including the 
subtypes that were 
significantly 
increased a�er 
treatment (blue) in 
comparison with 
before treatment 
(yellow). (B) The 
number of monocytes 
(green) including the 
subtypes that were 
significantly 
increased a�er 
treatment. (C) The 
number of 
lymphocytes (light 
blue) including the 
subtypes that were 
significantly 
increased a�er 
treatment.

Targeted immune expression profiling showed that the total infiltration of CD45+ cells 
significantly increased a�er FFX-Lipeg treatment. The definition of infiltrated immune 
cells was based on 42 genes that showed a pairwise similarity higher than 0.6 and defined 
thirteen different immune cell types. The relative peripheral abundance of neutrophils, 
monocytes, and mast cells significantly increased a�er treatment. In contrast to the flow 
cytometry measurements, the relative peripheral abundance of T cells and B cells signif-
icantly decreased a�er treatment (Figure 3). The relative abundance of Plasma B cells was 
not significantly altered a�er treatment (Supp Fig. 3).

Figure 3: The effect of 
one cycle FFX-Lipeg 
on the immune cells 
measured by targeted 
gene expression. (A) 
The total immune cell 
(dark blue) abundance 
was significantly 
increased a�er 
treatment (blue) in 
comparison with 
before treatment 
(yellow). (B) The 
abundance of mast 
cells (yellow) was 
significantly increased 
a�er treatment. (C) 
The abundance of 
granulocytes’ (pink) 
subtype neutrophils 
was significantly 
increased a�er 
treatment. (D) The 
abundance of 
monocytes (green) 
including the subtypes 
was significantly 
increased a�er 
treatment. (E) The 
abundance of 
lymphocytes (light 
blue) inclu ding the 
subtypes was 
signifi cant ly decreased 
a�er treatment.
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FFX-Lipeg results in an increased number of lymphocytes, yet pathways associated with 
lymphocyte functions are downregulated 

Flow cytometry results showed that T, B, and NK cells and their subtypes were increased 
a�er FFX-Lipeg treatment. On the contrary, pathway analysis using the nSolver so�ware 
revealed decreased scores of natural killer, B cell, and T cell functions. On the other hand, 
both data from flow cytometry and targeted gene expression revealed an increase in the 
myeloid compartment a�er FFX-Lipeg therapy. In concordance, pathway analysis 
resulted in an increased score of the differentiation and maintenance of myeloid cells 
a�er FFX-Lipeg treatment. (Figure 4).

Figure 4: Differential expression of predefined pathway genes a�er one cycle of FFX-Lipeg. A 
significant upregulation of leukocyte functions and the differentiation and maintenance of myeloid 
cells was measured. On the contrary natural killer, B cell, and T cell functions were significantly 
downregulated.

Metascape enrichment analysis using the 39 downregulated (P.BH ≤ 0.05 and log2 fold 
of change ≤ -0.5) genes showed that the FFX-Lipeg treatment negatively affected the 
MHC class II antigen presentation (Supp Fig. 4A). The 170 upregulated (P.BH ≤ 0.05 and 
log

2
 fold of change ≥ 0.5) genes showed an enriched neutrophil degranulation, IRAK4 

deficiency (TLR5), leukotriene metabolic pathway, IL-4 signaling pathway, and activation 
of matrix metalloproteinases (Supp Fig. 4B). ClueGo functional analysis using the 39 
downregulated (P.BH ≤ 0.05 and log2 fold of change ≤ -0.5) showed a negative regulation 
of T cell-mediated immunity and the innate immune response (Supp Fig. 5A). On the 
contrary, myeloid, and neutrophil cell-related functions were stimulated and genes 
related to lymphocyte proliferation were enriched in the 170 upregulated (P.BH ≤ 0.05 
and log

2
 fold of change ≥ 0.5) genes (Supp Fig. 5B).

In order to scrutinize the differences in the results between flow cytometry and gene 
expression, we performed a correlation analysis of proteins targeted by flow cytometry 
with their corresponding marker genes in the targeted immune-gene expression profile 
for the two time points separately. Lymphocyte subtypes showed a higher correlation 
before FFX-Lipeg treatment in comparison to the correlation a�er treatment  
(Supp Fig. 6).

FFX-Lipeg induces a distinct gene expression profile in the peripheral blood

A distinct genetic profile was observed between baseline and a�er a single FFX-Lipeg 
cycle (Figure 5A). Out of the 870 genes that were above the detection limit, 209 were 
differentially expressed (|Log

2
 Fold change| > 0.5, P.BH < 0.05), of which 170 genes were 

upregulated and 39 genes were downregulated a�er FFX-Lipeg treatment (Figure 5B).

Figure 5: The effect of one cycle FFX-Lipeg on the gene expression profile. (A) The clustering of the 
genes showed an almost distinct genetic profile a�er one cycle. (B) A volcano plot highlighting the 
genes that got significantly altered (243 genes upregulated and 213 genes downregulated) a�er one 
cycle.
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The most upregulated differentially expressed genes include Matrix metalloproteinase-8 
(MMP8, P.BH = 3.38E-20, FOC = 4.99), Lactotransferrin (LTF, P.BH = 1.09E-18, FOC = 3.97) 
and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 8 (CEACAM8, P.BH = 
1.58E-19, FOC = 3.16), which are mainly expressed by neutrophils. MMP8 is involved in the 
breakdown of extracellular matrix and cleaves numerous substrates, including collagens 
and cytokines 35–37. LTF is an iron-binding protein, uniquely abundant in polymorphonu-
clear neutrophils 38. CEACAM8 is a surface glycoprotein that plays a role in heterophilic 
cell adhesion within activated neutrophils together with other carcinoembryonic anti-
gen-related cell adhesion molecules, such as CEACAM6 39. Furthermore, Integrin Subunit 
Beta 4 (ITGB4, P.BH = 8.05E-20, FOC = 3.29) and Lipocalin 2 (LCN2, P.BH = 3.12E-18, FOC 
= 3.35) were also found upregulated. ITGB4 promotes cell migration and invasion in 
pancreatic cancer, however, the exact role in these processes remains unclear 40. LCN2 is 
an iron-trafficking protein involved in multiple processes such as apoptosis, innate 
immunity, and renal development 41. 

On the other hand, (cytotoxic) T-cell and natural killer cell-specific genes, RUNX Family 
Transcription Factor 3 (RUNX3, P.BH = 1.37E-12, FOC = -0.549), Granzyme B (GZMB, P.BH 
= 2.43E-11, FOC = -0.527), and Killer Cell Lectin Like Receptor D1 (KLRD1, P.BH = 1.96E-11, 
FOC = -0.525) were downregulated consistently in all samples a�er treatment. 
Furthermore, HLA class genes like Major Histocompatibility Complex, Class II, DP Beta 1 
(HLA-DPB1, P.BH = 1.30E-11, FOC = -0.704), and Major Histocompatibility Complex, Class 
II, DR Beta 3 (HLA-DRB3, P.BH = 1.96E-11, FOC = -0.704) were also downregulated.

discussion
In this study, we used paired blood samples of 44 FFX-Lipeg treated PDAC patients to 
scrutinize the influence of using flow cytometry or targeted immune-gene expression to 
study the immunological changes. Flow cytometry and targeted gene expression profil-
ing revealed a similar effect caused by a single cycle of FFX-Lipeg regarding granulocytes 
and monocytes. However, the measurement technique affects the observed changes 
regarding lymphocytes.

FFX-Lipeg treatment increased the number of neutrophils and monocytes as shown by 
flow cytometry and complete blood count in concordance with elevated gene expression 
measured by targeted gene expression profiling analysis. Contrarily, previously reported 
results showed a reduction of granulocytes and monocytes due to FOLFIRINOX treat-
ment 12. Nevertheless, studies on the effect of modified FFX-Lipeg show an increase in 
granulocytes, caused by lipegfilgrastim. The addition of lipegfilgrastim has been shown 
to decrease the incidence of neutropenic events and prolonged the progression-free 
survival of the patients 42,43. 

Interestingly, flow cytometry analysis showed an increase in the number of B and T cells 
a�er treatment, while targeted gene expression analysis showed a decrease in B and T 
cell-specific gene expression. Both granulocytes and monocytes are potent suppressors 
of T cell functions and inhibit anti-tumor immune responses 44,45. This could explain that 
even though the number of lymphocytes showed an increase a�er treatment in the flow 
cytometry data and complete blood count measurements, there is a decrease in cell-spe-
cific gene expression based on the gene expression analysis. 

The correlation analysis highlights that the effect of FFX-Lipeg therapy influences the 
number of cells differently than the cell-specific gene expression. This could indicate 
that regardless of the number of lymphocytes, the function of those immune cells can-
not be fulfilled. The pathway analyses further highlighted this downregulation of the 
functions of the lymphocytes. Based on the gene expression analysis, it seems that 
lymphocytes have a lower expression of functional genes a�er FFX-Lipeg treatment. 

In this study, we measured 1,230 immune-related genes by targeted gene expression 
profile and 18 immune cell types by flow cytometry. The added value of targeted gene 
expression analysis is shown by the discovery that a single FFX-Lipeg cycle changed the 
expression of 209 immune-related genes significantly and caused a distinct genetic 
profile between the samples before and a�er treatment. Targeted gene expression pro-
files that specifically measure part of the immune-related genes enabled us to identify an 
FFX-ΔGEP score to predict the lack of treatment response a�er a single FFX-Lipeg cycle, 
as described 23. As far as we know, measuring with flow cytometry did not lead to a simi-
lar discovery. 
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Besides the biological explanation, several technical factors might influence the discrep-
ancy between the two measurement techniques. The higher detection of lymphocytes 
measured by flow cytometry could be due to non-specific bindings of lower-quality 
antibodies. Whereas the lower detection of immune cell-specific gene expression could 
be caused by the amount of RNA present in the samples, as well as mRNA stability. 
Furthermore, the comparison was performed on heterogenous samples and different 
types of blood samples (EDTA/Tempus).

conclusion
Flow cytometry could be used for precise quantification of immune cell populations, 
whereas gene expression analysis gave a broader understanding of the immune expres-
sion activity of those cells. This highlights that measuring the number of cells in the 
blood does not reflect the immune functionality of these cells. To study the effect of 
treatment, different techniques must be used to get a more complete overview. This 
study revealed that the measurement technique influences clinical discoveries. 
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abstract
Background: Defining the tumor immune microenvironment (TIME) of patients using 
transcriptome analysis is gaining more popularity. Here, we examined and discussed 
the pros and cons of using RNA sequencing for Fresh Frozen (FF) samples and targeted 
gene expression immune profiles (NanoString) for Formalin-Fixed, Paraffin-Embedded 
(FFPE) samples to characterize the TIME of ependymoma samples.

Results: Our results showed a stable expression of the 40 housekeeping genes through-
out all samples. The Pearson correlation of the endogenous genes was high. To define 
the TIME, we first checked the expression of the PTPRC gene, known as CD45, and 
found it was above the detection limit in all samples by both techniques. T cells were 
identified consistently using the two types of data. In addition, both techniques showed 
that the immune landscape was heterogeneous in the 6 ependymoma samples used for 
this study.

Conclusions: The low abundant genes were detected in higher quantities using the 
NanoString technique, even when FFPE samples were used. RNA sequencing is be�er 
suited for biomarker discovery, fusion gene detection, and ge�ing a broader overview 
of the TIME. The technique that was used to measure the samples had a considerable 
effect on the type of immune cells that were identified. The limited number of tumor-in-
filtrating immune cells compared to the high density of tumor cells in ependymoma can 
limit the sensitivity of RNA expression techniques regards the identification of the 
infiltrating immune cells. 

Keywords: Tumor immune microenvironment, Targeted gene expression immune pro-
files, RNA sequencing, NanoString, Transcriptome analysis, Ependymoma

background
In the past years, the interest in molecular targeted therapy is rising. However, it has 
primarily focused on genomics. Transcriptome analysis is a high-accuracy strategy to 
define the tumor immune microenvironment (TIME) of patients based on RNA 1. The 
TIME is known to be related to cancer progression and therapeutic outcomes 1. 
Transcriptome analysis is a useful technique to study different cellular processes, such as 
immune responses and cell types that are present in the TIME 1. 

Over the last decades, RNA sequencing is the most used transcriptomic analysis to 
understand genomic functions 2,3. Fresh frozen (FF) samples are used to sequence the 
whole transcriptome via amplification. RNA sequencing can be used to find biomarkers 
since it does not require specific probes 4. Profiling tumors with RNA sequencing can 
provide insights regarding classification and progression. The four main steps are [1] 
mRNA transcript fragmentation, followed by random primer binding, [2] cDNA synthesis 
via reverse transcription of the mRNA, [3] tagging the ends with a phosphate group and 
poly(A) tail and [4] ligation of adapters which enables PCR amplification and sequencing. 
Although this method is the most used, it has several disadvantages. High-quality RNA 
is needed for the amplification step of RNA sequencing, and due to the low signal/noise 
ratio, some transcripts are difficult to detect 4. Furthermore, analyzing these RNA 
sequence data could be expensive, and it needs technical and bioinformatical skills 5. 

In contrast to RNA sequencing, NanoString gene expression analysis is targeted and 
measures a selected set of genes. In addition, NanoString targeted gene expression 
analysis does not require amplification, which reduces workflow errors and increases 
reproducibility 6,7. Formalin-fixed paraffin-embedded (FFPE) samples are used to perform 
targeted gene expression analysis 6. This method is used in diagnostics, and it can meas-
ure up to 800 genes and even low counts 5,6. NanoString’s nCounter is a hybridiza-
tion-based method, instead of amplification-based RNA sequencing, to detect RNA 
transcripts 7. Different gene panels can be ordered via NanoString, for instance, the 
PanCancer Immune Profiling Panel 8. NanoString targeted gene expression analysis is 
known to be a robust method with minimal background. This method can identify genes 
regardless of low-quality RNA or less-than-ideal FFPE preparation before gene expres-
sion analysis 5. In addition, only a li�le amount of RNA (approximately 25ng) is needed 
for this method 5. The workflow is more user-friendly than the workflow of RNA 
sequencing since it does not include library preparation4. Furthermore, NanoString pro-
vides so�ware to analyze your RNA data, which is called nSolver™. This nSolver™ so�-
ware can identify cellular processes and cell types based on RNA expression levels 9.

Ependymomas account for 8-10% of pediatric brain tumors, and the standard therapy 
consists of surgery (as radical as possible) and radiation therapy 10–12. However, this treat-
ment remains unchanged for the past two decades 10–12. Although 50-70% of the tumors 
are successfully treated with surgery and radiation therapy, no standard care therapy is 
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available for recurrent or persistent ependymomas resulting in a dismal prognosis for 
these patients 13. In addition, recurrence occurs in almost 50% of ependymoma patients 
10. Therefore, there is a need for alternative treatments for patients with ependymoma. 
Nine different subgroups of ependymomas can be defined based on the location of the 
tumor, genetics, and epigenetic DNA methylation 10,14. The focus of this study is on pos-
terior fossa group A (PF-A) ependymomas, which occur in children (aged 0-18 years old). 
PF-A ependymomas are located in the cerebellum and arise from regional radial glial-like 
cells 15. PF-A ependymomas are known to be aggressive due to low mutation burden and 
high activation of several pathways, such as proliferation and angiogenesis, leading to a 
poor prognosis 13. Another aggressive ependymoma subgroup is located in supertento-
rium (ST). In this study, both subgroups were included for analysis. 

Knowledge of the immune system has great importance for treating cancer patients with 
immune therapies. In recent years, the Food and Drugs Administration (FDA) approved 
immune checkpoint inhibitors for solid tumors in adults and chimeric antigen receptor 
(CAR) T-cell therapy for children with leukemia 11. However, immune therapies are chal-
lenging in brain tumors since the brain is protected by the blood-brain barrier (BBB), 
which is known to limit the infiltration of therapies 16. To date, li�le is known about the 
TIME of ependymomas 17,18. The TIME of pediatric CNS tumors tends to be immune sup-
pressive 19,20, and there are indications that the TIME of ependymomas might also be 
immune suppressive or ‘cold’ TIME, indicating a lack of tumor-infiltrating T-cells 21.

Previous studies have demonstrated the high correlation between RNA sequencing and 
the NanoString gene expression analysis 5,22,23. However, none of these studies focus on 
specific cancer tissue, nor did the studies investigate the TIME. This study aims to high-
light the (dis)concordance in the identification of the TIME in a cold tumor, like ependy-
momas, using gene expression data generated by measuring bulk RNA with the two 
most common techniques: targeted gene expression and RNA sequencing. 

material and methods
Sample collection and processing

Six formalin-fixed paraffin-embedded (FFPE) and fresh frozen (FF) ependymoma tumor 
samples (n=2 ST, n=4 PF-A ependymomas) from the same tumor were collected at the 
Princess Maxima Center (Utrecht, The Netherlands). Each sample is a primary tumor 
before either radiation therapy or chemotherapy and was collected between 2019 and 
2020. The BioBank commi�ee of the Princess Maxima Center approved the application. 
In addition, this study is in line with the declaration of Helsinki. 

NanoString Immune profiling

Six FFPE ependymoma tumor samples were collected. Before RNA isolation the samples 
were sectioned with HM 340E Electronic Rotary Microtome. The whole sample was used 
to include the TIME. First, samples were put at -15°C. Sections of 10μm were cut to finally 
have 100-200μm of each sample. These sections were put in a 42°C water batch and 
a�erward added to a slide. The slides were dried overnight before deparaffinization was 
performed. The nCounter® PanCancer Immune Profiling Panel was used for NanoString 
targeted gene expression analysis of six FFPE ependymoma tumor samples. This panel 
consists of 730 genes and 40 housekeeping genes targeting both innate and adaptive 
immune cells, and different pathways such as checkpoint signaling and antigen process-
ing, which are considered an important part of the TIME (10). The total RNA was isolated 
from tumor tissue using the RNeasy® FFPE isolation kit (Qiagen, Leiden, The Netherlands). 
The RNA quantity and quality were measured using the Agilent 2100 BioAnalyzer (Santa 
Clara, CA, USA). RNA concentration was corrected to include fragments ≥ 300 bp. For 
each sample, 300 ng of RNA was hybridized with the PanCancer Immune Profiling probes 
for 17 hours at 67⁰C, following the manufacturing procedure (NanoString Technologies 
Inc., Sea�le, WA, USA). The nCounter® FLEX platform was used to wash the extra probes, 
and genes were counted by scanning 490 Fields-of-view (FOV). 

Data analysis of NanoString Immune profiling 

The raw data of gene counts were uploaded to the nSolver™ Data Analysis so�ware 
(version 4.0, NanoString, Sea�le, WA, USA). Genes that had an expression level below 
the average count of the negative controls plus two standard deviations are considered 
undetected. The gene counts were normalized using the most stable housekeeping 
genes using the Advanced Analysis module (version 2.0) of nSolver™.

RNA sequencing

Six fresh frozen (FF) ependymoma tumor samples were collected. For all samples, 300 ng 
input material was collected and processed using RNA sequencing transcriptome 
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analysis at the Princess Maxima Center. The RNA sequencing library was prepared with 
the Roche KAPA hyperprep kit, including the amplification step. The library was 
sequenced with Illumina Novaseq 6000 using 2x150bp sequencing. The paired-end 
sequencing reads were aligned to the human reference genome (GRCh38.p12, hg38) 
using STAR 24 and annotated with transcript annotation (Gencode Release 31). Transcript 
quantification was performed using Subread featureCounts 25. The counts were gene 
length trimmed mean of M-values (geTMM) normalized a�erward 26.

Housekeeping genes

The PanCancer Immune Profiling Panel includes 40 housekeeping genes. These house-
keeping genes were tested in the RNA sequencing and NanoString results for their sta-
bility using the geNorm algorithm 27. The algorithm identified a minimum number of 
genes required to calculate a normalization factor as a geometric mean, which was used 
in the NanoString normalization. The most stable housekeeping genes from both tech-
niques were compared by looking at the variation in the gene expression between sam-
ples.

Cell identification

To characterize the immune cell infiltration, gene markers were identified 28. The gene 
markers were selected by calculating the pairwise similarity between all pairs of candi-
date marker genes that were above the detection limit in at least 50% of the samples. 
The gene pairs with a pairwise similarity above 0.6 were selected to describe the immune 
cells. Each immune cell type needed at least two unique genes. The abundance of the 
immune cell types is the average expression value of their corresponding marker genes.

The identification of tumor-infiltrating leukocytes (TILs) with the RNA sequencing data 
was performed using the CIBERSORT method 29 and the MCP-counter 30. CIBERSORT 
combines support vector regression with prior knowledge from expression profiles from 
purified leukocyte subsets to estimate the immune composition. The validated leuko-
cyte gene signature matrix (LM22) including 547 marker genes was used to quantify 22 
human hematopoietic subsets. The absolute mode was run together with 1000 permu-
tations without quantile normalization as recommended by the developer 29. MCP-
counter is a method that allows absolute abundance calculations of eight immune and 
two stromal cell populations with the use of transcriptomics markers 30.

Immunohistochemistry was performed at the UMC Utrecht Pathology department on 
5-μm FFPE tumor tissue sections using a Ventana Immunostainer. 

Statistical analysis

The official gene symbols approved by the HGNC were used to identify matches between 
the NanoString and RNA sequence datasets. The Pearson correlations of the samples 
between the two platforms were computed with R so�ware, version 4.1.1 31. To detect the 
genes that differ the most from the expected correlation a linear model for each sample 
was created and the residuals were reported.
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results
Patients’ characteristics

A total of six patients were included that were diagnosed with ependymoma. The FFPE 
samples and Fresh Frozen samples of the 6 patients were collected and RNA was success-
fully isolated. The patients were between 0 and 13 years old (mean age is 4 years). All 
clinicopathological characteristics are summarized in Table 1.

Table 1 Clinicopathological characteristics at the time of diagnosis from the six patients included. * 
Sample clusters as RELA but a ZFTA or RELA fusion was not detected.

Sample Age Sex Diagnosis Tumor 
location

Resection location Molecular subgroup Fusion 
status

EPN-01 13 F WHO III ST Supratentorial right 
frontal

RELA fusion*

EPN-02 2 F WHO III ST Supratentorial le� 
frontal

RELA fusion

EPN-03 1 M WHO III PF Fossa cranii 
posterior

Group 1 PF-A

EPN-04 2 M WHO III PF Fossa cranii 
posterior

Group 2 PF-A

EPN-05 2 M WHO III PF Fossa cranii 
posterior

Group 2 PF-A

EPN-06 3 M WHO III PF 4th ventricle Group 2 PF-A

Characterization of ependymoma using NanoString

Of the 770 genes included in the nCounter® PanCancer Immune Profiling Panel of 
NanoString Technology, 752 genes were detected in at least one sample. The total num-
ber of genes detected per sample was comparable between the six samples. However, 
the number of the detected genes was lower in three samples, namely EPN-04, EPN-05, 
and EPN-06 (Supplementary Figure 1A).

Characterization of ependymoma using RNA sequencing

In total 49,136 unique RNA molecules were detected in at least one sample by RNA 
sequencing out of the 58,804 features described in the transcript annotation. This 
included 19,051 protein-coding sequences (Table 2). The protein-coding sequences are 
the only features that can be compared to the 770 genes included in the NanoString 
panel.

Table 2 The number of unique RNA molecules detected in at least one sample per RNA molecule 
category by RNA-sequencing.

Category Frequency

Protein coding 19051

Long non-coding RNA 14696

Processed pseudogenes 10219

Others 2860

Small nuclear RNA 1238

Micro RNA 1072

The total number of features detected per sample was comparable between the six 
samples. However, the number of detected features was the least in sample EPN-05 
(Supplementary Figure 1B). 

The expression stability of the housekeeping genes

The 40 assigned housekeeping genes in NanoString measurements were checked in the 
NanoString data. The twenty-four most stable housekeeping genes based on the 
expression ratio of the genes between all samples were selected by the geNorm algo-
rithm 27 in the advanced analysis module of NanoString data (Figure 1A). Applying the 
same algorithm to select the most stable housekeeping genes in the RNA sequence data 
resulted in a selection of 26 genes (Figure 1B). Twenty housekeeping genes overlapped in 
the two selections.

Figure 1 (A) The trend line of 

the forty housekeeping genes 

in NanoString samples. (B) 

The trend line of the forty 

housekeeping genes in RNA 

sequence samples.  

Legend: Green labels on the 

x-axis highlight the genes 

that were selected in both 

techniques, yellow is unique 

for the technique, and red 

means it was not selected for 

both techniques.
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The detection level of the nCounter® PanCancer Immune Profiling Panel

The 730 genes included in the nCounter® PanCancer Immune Profiling Panel were exam-
ined in both datasets. From the 730 genes, 722 were identified in the RNA sequencing 
data. Interestingly, 7 of the 8 genes that were not identified in the RNA sequence data 
were above the detection limit in NanoString data. However, one gene (KIR3DS1) was not 
detected in NanoString nor identified in RNA sequencing (Table 3).

Table 3 The NanoString gene expression values of the genes that were not identified with RNA 
sequencing.

Gene 
Symbol

Gene symbol 
NanoString

Alternative 
gene symbol

Average Min. Max. Detected in 
# samples

BAGE BAGE CT2.1, BAGE1 52.7 undetected 101.3 3

HLA-DRB3 HLA-DRB3 HLA-DR3B 11030.93 1020.6 28529.6 6

HLA-DRB4 HLA-DRB4 DR4, DR-4, 
DRB4, 
HLA-DR4B

779.0 undetected 1399.1 3

KIR3DS1 KIR_Activating_
Subgroup_1

nkat10 undetected undetected undetected 0

KIR2DS1 KIR_Activating_
Subgroup_2

CD158H, 
EB6ActI, 
EB6ActII

51.3 undetected 51.3 1

LTBR LTBR D12S370, 
TNFCR, 
TNFR-RP, 
TNFR2-RP, 
TNF-R-III, 
TNFRSF3

317.2 106.7 564.8 6

MCAM MCAM MUC18, 

CD146, 

MelCAM, 

METCAM, 

HEMCAM, 

431.1 103.2 941.8 6

TARP TARP CD3G, TCRG, 
TCRGC1, 
TCRGC2

110.7 47.1 301.3 5

Comparability of NanoString and RNA sequence expression

To determine the comparability between the two techniques, the Pearson correlation 
between genes that were above the detection limit was performed, and the correlation 
coefficient (R2) was calculated. EPN-01 is shown as an example in Figure 2. 

Figure 2 Pearson correlation of the genes that are above the detection limit and overlapping between 
both techniques in sample EPN-01. The three genes that are most divergent negatively (MIF, CD68, 
and CD81) and positively (CLU, ATM, and IL3RA) are highlighted next to the three genes that are the 
least divergent (IGF2R, NOD1, IFNAR1).

Interestingly, some genes like Clusterin (CLU), ATM Serine/Threonine Kinase (ATM), and 
Interleukin 3 Receptor Subunit Alpha (IL3RA) were detected at a higher level with the 
RNA sequence technique in all samples. On the other hand, Macrophage Migration 
Inhibitory Factor (MIF), Cluster of Differentiation 81 (CD81), Cluster of Differentiation 68 
(CD68), and Cluster of Differentiation 81 (CD81) were detected at a higher level with the 
NanoString technique in all samples. The same results were confirmed by calculating the 
residuals, i.e., genes that fail to correlate, of the linear models per sample (Supplementary 
Figure 2, Supplementary Table 1). The average Pearson correlation of the genes detected 
by NanoString, and RNA sequencing was 0.82 (min. 0.78, max. 0.85), with an average R2 
of 0.67 (Supplementary Figure 3-7). 

 Dividing the 722 endogenous genes into bins based on their median expression from 
low to high showed an increased gene-specific inter-sample correlation for the highly 
expressed genes in both techniques. The average Spearman correlation was 0.3 across 
all 722 genes. In the NanoString data, 268 genes showed low expression (0-50 counts), 
120 genes showed intermediate expression (50-200 counts) and 334 genes showed high 
expression (> 200). The Spearman correlation for the low-expressed genes (average R = 
0.13) is significantly lower compared to the intermediate (average R = 0.34, p-value < 
0.0001) and high-expressed genes (average R = 0.40, p-value < 0.0001). In the RNA 
sequence data, 261 genes showed low expression (0-1 count), 120 genes showed inter-
mediate expression (1-3 counts) and 334 genes showed high expression (> 3 counts). The 
Spearman correlation for the low expressed genes (average R = 0.19, p-value < 0.0001) 
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and intermediate expressed genes (average R = 0.27, p-value < 0.001) are significantly 
lower compared to the high expressed genes (average R = 0.39), Supplementary Figure 8.

The detection limit of nCounter in comparison to RNA sequencing

From the 722 identified genes (out of 730 genes) in both platforms, 464 genes were 
expressed above the detection limit and therefore measured by both methods in all 
samples. The gene TLR9 was detected in four samples, but the expression levels were 
below the detection limit in the other two samples for both methods. The other 257 
genes were in at least one sample detected by one method but below the detection limit 
in the other of which four genes were only detected in all samples with RNA sequencing. 
There was not any gene only detected in all samples by NanoString (Supplementary 
Figure 9).

Comparison of the sensitivity of NanoString versus RNA sequencing

To examine the sensitivity of both techniques, genes that were above the detection limit 
for only one technique were investigated. Sixty genes were detected by NanoString 
technology but were under the detection limit by RNA sequencing in at least one sample. 
Remarkably, Macrophage Migration Inhibitory Factor (MIF) was detected with an expres-
sion value higher than 4,000 counts in EPN-06 by the NanoString technique (Figure 3A). 
On the contrary, 223 genes were only detected by RNA sequencing in at least one sample. 
The expression values from these genes vary from zero up to 28 (Figure 3B). The expres-
sion of BLK, CCL28, CMA1, and FUT7 was not detected in any sample with NanoString 
but detected in all samples by RNA sequencing with expression values ranging from zero 
up to six (Figure 3C).

Figure 3 (A) The NanoString gene counts of the genes per sample (n = the number of undetected 
genes) that were undetected by RNA sequencing. The highest expressed genes are highlighted. (B) The 
RNA sequence counts of the genes per sample (n = the number of undetected genes) that were 
undetected by NanoString. The highest expressed genes are highlighted. (C) The RNA sequencing 
gene counts of the four genes were only detected by RNA sequencing in all samples (bo�om).

The identification of immune cells

The protein Tyrosine Phosphatase Receptor Type C (PTPRC) gene, also known as CD45 
was above the detection limit in all samples by NanoString and RNA sequencing, which 
reflects leukocytes infiltrated into the ependymoma tumor (Supplementary Table 2). To 
define the type of immune cells that infiltrated the ependymoma samples measured with 
NanoString, the pairwise similarities for the 55 candidate marker genes were calculated. 
Genes that showed acceptable pairwise similarities (>0.6) were selected as marker genes 
(Supplementary Document 1). In total, 25 genes were selected to identify 11 different 
immune cell types in ependymoma. These marker genes were then used to calculate the 
relative abundance per sample (Figure 4A). The same method was used to identify 
immune cells in the RNA sequencing data. The marker gene-based method was investi-
gated to identify immune cell types using RNA sequencing data. However, the pairwise 
similarities of most cells were below 0.6. (Supplementary Document 2). Therefore, the 
marker gene-based method was only applicable to a small set of immune cell types in the 
RNA sequencing data (Figure 4B). The expression level of the selected marker genes was 
between zero and 2.1 B cells, plasma B cells, cytotoxic cells, and T cells were identified 
using the two types of data. Nevertheless, both techniques show a different pa�ern of 
immune infiltration. The second method, CIBERSORT, was only applicable to RNA 
sequence data, as it expects an expression panel of 547 genes to be measured. This 
mixture-based method resulted in significant estimations for EPN-03 and EPN-06 
(Figure 4C). It showed infiltration of naïve b-cells, M1 macrophages, and neutrophils in 
EPN-03, whereas infiltration of M2 macrophages, monocytes, and resting NK cells was 
shown in EPN-06. A third method, MCP-counter, was used to determine the abundance 
of the immune cells based on the RNA sequence data. Similarly, MCP-counter expects a 
large set of 111 genes to be measured. Therefore, it was only applicable to RNA sequence 
data (Figure 4D). MPC-counter showed the highest immune infiltration in EPN-06, but 
similarly to the gene maker method, a high infiltration of T cells was found in EPN-01. 
Immunohistochemistry showed infiltration of CD3+ cells in EPN-01, but CD3+ cells were 
not found in EPN-05 and EPN-06.
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Figure 4 (A) The marker gene-based immune cell type abundances per sample with NanoString data 
(B) The marker gene-based immune cell type abundances per sample with RNA sequence data.  
(C) The CIBERSORT mixture-based immune cell abundances per sample in the RNA sequence data. 
(D) The MCP-counter mixture-based immune cell abundances per sample in the RNA sequence data. 
(E) The immunohistochemistry staining of CD3+ (EPN-01, EPN-05, and EPN-06), CD8+ (EPN-01, 
EPN-05, and EPN-06), and CD20+ (EPN-02, EPN-05, and EPN-06) cells within the samples.

discussion
The characterization of the ependymoma’s TIME can be done with different techniques, 
each having its advantages and disadvantages. In that regard, the nCounter (PanCancer 
Immune Profiling Panel) of NanoString is compared to RNA sequencing to get a be�er 
understanding of these advantages and disadvantages. NanoString uses probes to 
measure up to 800 genes, whereas RNA sequencing is used to profile transcriptome-wide, 
including approximately 26,000 genes. RNA sequencing can be used to identify novel 
and rare transcripts like noncoding RNA and fusion RNA (Table 2). This makes RNA 
sequencing a suited tool for biomarker detection and measuring a broad scope of sam-
ples. The 40 housekeeping genes studied from both techniques showed a stable expres-
sion throughout all samples. The geNorm algorithm selected a similar number of 
housekeeping genes that were stable (Figure 1). This shows that both methods are 
comparable regarding these housekeeping genes, which is to be expected. Eight out of 
the 730 endogenous genes of the PanCancer Immune Profiling Panel were not available 
in the RNA sequencing data (Table 3). This is most likely due to the complexity of the 
downstream analysis with RNA sequencing. The measurement of mRNA with RNA 
sequencing has FASTQ files as output, a�er which the downstream analysis is started 
including quality control, mapping, and normalization. Each of these steps can introduce 
errors and therefore experienced bioinformatics knowledge is needed. The complexity 
of the downstream analysis of RNA sequencing can cause important information to be 
lost. Especially the quality control and mapping steps are tedious work. NanoString uses 
pre-defined panels with identifiers for each barcode detected, therefore the processing 
of the measurements is less error-prone. 

The significant Pearson correlations of the genes detected by both techniques (avg. 
Pearson correlation of 0.71) show, like the housekeeping genes, that comparable results 
can be found for most of the genes (Figure 2). Nevertheless, there are discrepancies 
found between the two techniques. These discrepancies could be caused by the different 
types of samples used for each technique since FFPE samples were used for nCounter 
NanoString, whereas FF samples were used for RNA sequencing. Due to the frozen state 
of the FF samples, the RNA molecules are be�er preserved than in FFPE samples. The FF 
samples are recommended for RNA sequencing as high-quality RNA in a higher abun-
dance is needed. On the other hand, PCR amplification can cause bias by amplifying 
specific genes. It is shown that the higher expressed genes have a more concordant 
expression between the two methods. The differences in the low abundant genes can be 
due to the high sensitivity of the nCounter from NanoString by using barcodes of 100bp, 
which makes it possible to measure low-abundant and lower-quality RNA more accu-
rately even though FFPE samples were used 32. In addition, RNA can only be measured 
with RNA sequencing a�er the RNA molecules undergo cDNA synthesis via reverse 
transcription of the mRNA and PCR amplification. In case the cDNA synthesis does not 
work properly the genes are less likely to be detected by RNA sequencing. The gene ATM 
(146,036 bases) was higher detected with RNA sequencing whereas CD68 (2,621 bases) 
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was higher detected with NanoString. This could be explained by the amplification bias 
in RNA sequencing. During PCR amplification it is more likely to amplify a gene that has 
more reads present 33. Nevertheless, this does not explain the different detection levels 
for CLU (17,784 bases) and CD81 (21,221 bases). The 464 genes that were above the detec-
tion level in all samples confirm the comparability between the two techniques. The 257 
genes that were detected by one method, but below the detection limit in the other in at 
least one sample, show the discrepancies that are caused by the technique or sample 
type. Although the RNA is expected to be more degraded in the FFPE samples sixty genes 
were detected by NanoString technology but were under the detection limit by RNA 
sequencing in at least one sample with expression values higher than 4,000 counts 
(Figure 3A). That these genes are not detected with RNA sequencing could be due to the 
instability of the RNA molecule, as RNA sequencing needs stable reads over the whole 
exon region to detect the gene. The 223 genes that were only detected by RNA sequenc-
ing in at least one sample had an expression value ranging from zero up to 28 (Figure 3B). 
BLK, CCL28, CMA1, and FUT7 were not detected in any sample with NanoString but 
detected in all samples by RNA sequencing with expression values ranging from zero up 
to six (Figure 3C). These genes are most likely not detected by NanoString due to the 
degradation of the RNA molecule in FFPE.

The detection of CD45 indicates that leukocytes infiltrated into the ependymoma tumor. 
Even though microglia are the most dominant immune cells in the brain (80%), other 
immune cell types have been identified in the brain including B cells, dendritic cells, 
macrophages, monocytes, myeloid cells, natural killer (NK) cells, and T cells 10,34–36. 
Nevertheless, the limited number of tumor-infiltrating immune cells compared to the 
high density of tumor cells can limit the sensitivity of bulk techniques 37. The estimation 
of immune cell types in the samples by NanoString and RNA sequencing shows mostly 
incomparable results (Figure 4). The marker gene method shows that the highest immune 
infiltration is in EPN-01 (Figure A), whereas the same method shows a higher immune 
infiltration in EPN-06 based on the RNA sequencing data. The low expression values in 
the RNA sequence data lead to low pairwise similarities and are therefore expected not 
to be accurate and are not suitable for most cell types using this method. The marker 
genes method cannot detect the absolute abundance of immune cells but can only be 
used to describe the relative abundance between samples. The panel-based method 
CIBERSORT is only applicable to RNA sequencing results as it uses a large panel of genes 
that are not included in the standard panels of NanoString. CIBERSORT results in the 
absolute cell abundance which can be used to examine the relative abundance between 
samples. The RNA sequencing results include more cell types than estimated with the 
NanoString panel. Therefore, a fair comparison regards the immune cell types cannot be 
made. MPC-counter is more comparable to the gene-marker method used for NanoString. 
In the RNA sequencing data, both the marker gene method and MPC-counter describe 
the highest immune infiltration in EPN-06. On the other hand, based on the NanoString 
data analyzed with the marker gene method and the RNA sequencing data analyzed with 

the MPC-counter method show the highest infiltration of T cells in EPN-01. This has 
been confirmed with immunohistochemistry (Figure 4E).

The number of samples is limited in this study. Nevertheless, the aim of this study was to 
highlight the (dis)concordance in the identification of the TIME in a cold tumor, like 
ependymomas, using gene expression data generated by the two most common tech-
niques. Therefore, the variation in the included cohort of samples can be considered 
positive rather than negative because it covers a wider range of immune-cold tissue 
samples. The identification of immune cells is sample-based. Therefore, the number of 
samples included to compare the two techniques has a limited effect on the presented 
results.
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conclusion
In conclusion, both methods have their advantages and disadvantages. RNA sequencing 
is be�er suited for biomarker discovery, ge�ing a broad overview of the samples regard-
ing the TIME, detecting fusion genes, and mutation detection, although the low abun-
dance genes might be missed out. The NanoString technique is easier to understand due 
to the simplified pre-processing steps both in the laboratory and dry lab. Furthermore, 
NanoString allows you to detect low-abundant genes in the panel of interest. The tech-
nique that was used to measure the samples had a considerable effect on the type of 
immune cells that were identified. 
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general discussion
Nowadays multiple omics techniques are applied to various sample types to determine 
the heterogeneity of the TIME 1–5. Bioinformatics can improve the identification and 
quantification of differences between samples.

Immune cell identification

In this thesis, a method to identify and validate specific marker genes to define immune 
cells in any tissue type applied to PDAC tissue samples was shown. These markers were 
more PDAC-specific than the marker genes used to define immune cells across various 
types of tumor tissue samples (PanCancer marker genes) and enabled identifying eight 
additional immune cells. This method can be applied using gene expression data gener-
ated from samples that were preserved differently like FF and FFPE tissue samples or 
blood samples. It highlights the importance of selecting and testing the marker genes 
critically for each tissue type (Chapter 2). This method has been implemented in several 
clinical studies 6–9. In the second study, paired blood samples of 68 PDAC patients were 
used to investigate the effect of a single FOLFIRINOX cycle on the immune profile. An 
application of the previously described method was used to identify the immune cells. 
Furthermore, the first gene expression-based circulating biomarker predicting the lack 
of FOLFIRINOX response in PDAC patients from all disease stages was identified. The 
biomarker entails an eight-gene FFX-ΔGEP score that predicted the lack of FOLFIRINOX 
response only a�er the first cycle, independent of disease stage or change in CA19-9. 
This highlights the value of targeted gene expression analysis on blood samples (Chapter 
3). Furthermore, an application of the same targeted gene expression profiling in combi-
nation with flow cytometry was used to investigate the immune-modulatory effects of 
IMM-101/SBRT treatment in the peripheral blood. The targeted gene expression showed 
a downregulation of genes related to lymphocyte subsets induced by the treatment. This 
was confirmed by the flow cytometry data, which showed a transient decrease in differ-
ent lymphocyte subsets and an increase in CD14+CD16−CD11b+HLA−DRlow myeloid-de-
rived suppressor cells. Importantly, treatment significantly increased activated ICOS+, 
HLA-DR+, and Ki67+PD1+ T and NK cell frequencies (Chapter 4).

Comparing immune cell profiling measuring methods 

As shown in the previous studies multiple techniques can be used to identify immune 
cells. Nevertheless, to get a be�er understanding of the advantages and disadvantages 
a comparison study between targeted gene expression, flow cytometry, and RNA bulk 
sequencing was necessary. The comparison between targeted gene expression and flow 
cytometry was performed on two types of whole blood samples that were collected from 
44 PDAC patients before the first FOLFIRINOX- cycle and 14 days a�er the first cycle. 
EDTA blood samples were used for multiplex flow cytometry analyses and complete 
blood counts, whereas Tempus blood samples were used for targeted gene expression 

analysis. Although similar results were found for granulocytes and monocytes, contra-
dicting results were found for lymphocytes. This shows that different conclusions might 
be drawn based on the technique used. Flow cytometry and complete blood count 
measurements reflect the absolute number of immune cells, whereas gene expression 
analysis measures the total mRNA expression (Chapter 5). The characterization of the 
TIME can also be achieved with bulk RNA sequencing. Six FFPE ependymoma tumor 
samples measured with targeted gene expression were compared with six FF ependy-
moma tumor samples measured with bulk RNA sequencing from the same tumor. The 
low abundant genes were detected in higher quantities using the NanoString technique, 
even when FFPE samples were used. RNA sequencing is be�er suited for biomarker dis-
covery, fusion gene detection, and ge�ing a broader overview of the TIME. The tech-
nique that was used to measure the samples had a considerable effect on the type of 
immune cells that were identified. The limited number of tumor-infiltrating immune 
cells compared to the high density of tumor cells in ependymoma can limit the sensitivity 
of RNA expression techniques regards the identification of the infiltrating immune cells 
(Chapter 6). The comparison between RNA sequencing and targeted gene expression 
was performed in ependymoma, but similar conclusions can be drawn in PDAC samples.

The studies included in this thesis highlight the importance of choosing the right tech-
nique based on a well-defined hypothesis. Furthermore, it is of great importance to 
address the limitations and strengths of each technique in the discussion of each publi-
cation.

77



130 131

the impact on the patients
Improvements in the understanding of the single omics could lead to improved strate-
gies to treat PDAC patients 10. The findings in this thesis do not directly influence the 
treatment strategy. Nevertheless, the strengths and weaknesses of each of the measur-
ing techniques can now be considered when a new study is set up. PDAC is considered to 
be a “cold” tumor, which means that the low quantity of immune cells that is present will 
be harder to detect. Choosing targeted gene expression in combination with the 
improved cell definitions described in this thesis have allowed us to detect that B cells 
were found to be significantly increased in the TIME of long-term survivors 11. This 
emphasizes that studies using the correct measuring technique in combination with 
accurate data analysis led to understanding the importance of B cells and B cell-based 
therapy for future personalized immunotherapy in PDAC patients.

future perspective
Decades of clinical and pre-clinical research have achieved more insight, new treatments, 
and a be�er understanding of PDAC. Nevertheless, the 5-year survival of the patients 
remains low. Further improvements in the research could be made by studying a more 
complete view of the patient, combining multiple measurements in a multi-omics study, 
including genomics and metabolomics. Multi-omics studies rely on large datasets and 
therefore multi-omics studies could benefit from the big steps that are being made in the 
artificial intelligence (AI) methods. Implementation of the findable, accessible, interop-
erable, and reusable (FAIR) principles could facilitate the collection of large datasets 
usable for multi-omics studies. To achieve further progress in the treatment of PDAC 
many collaborations are set up and further collaboration is needed between the patients, 
doctors, and researchers. 

Multi-omics: A spectrum of continuous and highly dynamic interactions with 
different immune and stromal cells

Each type of omics study gives us different insights into the highly heterogeneous PDAC 
TIME as shown in this thesis. Combining these omics studies will create a more complete 
understanding of the structure of the PDAC TIME and how it functions 12–14. The combi-
nation of these omics studies is called multi-omics. Besides combining omics studies 
from research papers, more and more multi-omics technologies are being set up to 
immediately study the PDAC TIME from multiple directions. However, there are still 
limitations and challenges to full-scale multi-omics studies 15. Firstly, when combining 
two or more omics studies, the data needs to be harmonized. The data might be scaled 
or normalized differently. Furthermore, the dimensions of multi-omics datasets quickly 
become very large, leading to the need for dimensionality reduction. A lot of research 
has been commi�ed to the PDAC TIME. A common conclusion from all these studies is 
that the PDAC TIME is very heterogeneous both between different tumors and within a 
single tumor. Moreover, studies have already been commi�ed to incorporating mul-
ti-omics methods to study the PDAC TIME from a broader perspective. Multi-omics 
research is a field with a lot of potential that can create deeper insights into the mecha-
nisms underlying the biological processes, molecular functions, interactions, and cell 
fates in PDAC TIMEs. Further extensive multi-omics studies need to be performed to 
gain a more complete understanding of the heterogeneity in the PDAC TIME, and the 
implications of this heterogeneity. A solution however lies in the use of bioinformatics 
methods to correctly analyze this highly dimensional data. More advanced bioinformat-
ics tools, including the vastly developing AI tools, need to be developed to obtain useful 
information from large multi-omics studies.
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Artificial intelligence: A step towards precision medicine and prevention

Advances in artificial intelligence give a completely new way to analyze multi-omics 
data. Quantification and characterization of the PDAC TIME data including genomics, 
proteomics, transcriptomics, epigenomics, and metabolomics are ge�ing closer to real-
ity, where many aspects play a role. Machine learning (ML) can be used to integrate the 
different omics and together with the clinical information it can be used to create predic-
tive models that identify risk before the condition is apparent 16. This is especially impor-
tant with a disease like PDAC, which does not show clinical symptoms in the early stages. 
A�er the disease gets apparent, we nowadays use evidence-based medicine data to treat 
patients, whereas, in future treatment, regimens might be suggested based on algo-
rithms that use the patient’s phenotype including omics data to individualize treatment. 
Nevertheless, single omics will continue to be used as a diagnostic measure, as it is 
practical and cost-effective. Artificial intelligence is dependent on the input data pro-
vided by the user. A model can only be as accurate as the metadata that is provided with 
the omics data and the understanding of the single omics. In this thesis, an effort has 
been made to get a be�er understanding of these single omics by making different 
comparisons and describing the effect of the technique on the results found. The meta-
data that could further enhance the multi-omics studies includes clinical information, 
technical information, lab processes, and bioinformatics tool information. The FAIR 
principles that emphasize machine-actionability are therefore created.

FAIR(R) data & tools: A framework to assure accurate data and maintained tools 

FAIR data principles describe that the data should be findable, accessible, interoperable, 
and reusable 17. These principles are ge�ing more important, as an enormous amount of 
data is being created. Findability should make it easier for researchers to find data that 
fits research questions. Obviously, a�er finding the right data, it should be accessible. A 
broadly applicable language should be used to accurately compare (meta) data, meaning 
it is interoperable. Furthermore, the data should be of a reusable quality and annotated 
with relevant a�ributes. A term that is missing from this equation is reproducibility. 
Academic articles describe results based on processed data that could be of use to other 
researchers. Nevertheless, many of those articles are not transparent enough about the 
process that they use in the wet and dry lab. Beyond the creation of FAIR data, a similar 
principle should be created for bioinformatics tools to ensure a longer lifespan. Far too 
o�en bioinformatics tools become obsolete, because of several reasons. The main rea-
son is unfortunately that tools are being created in an academic se�ing, where the 
developer focuses on the publication only. Writing and maintaining high-quality code 
takes time but is o�en neglected a�er publication. This leads to bioinformatics tools 
that are not sustainable and difficult to use. Unfortunately, reproducing the results from 
this thesis will not be easy without the help of somebody involved with the original 
research. This is mainly due to the pressure on publishing articles and creating valuable 
results instead of creating sustainable tools.

Collaborations: The Achilles’ heel of translational research

The most important people in translational human disease research are the patients. In 
case the patients give consent to participate in research, the clinicians must have a 
complete record of the patient and use this information to enroll the patient in a research 
study. This research study needs to have a clear hypothesis and aim. Based on the aim of 
the study the clinicians must discuss the technique they will use to measure the samples 
with the bioinformaticians and the time points of measurements and sample size with 
the statisticians. The lab technicians will perform the processing of the samples in the 
lab, a�er which the bioinformatician will process the data. Only when all these steps are 
discussed in a team and understood by the person performing the final analysis the 
research will result in useful information for the patients.
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conclusion
In this thesis, multiple omics techniques were used to determine the heterogeneous 
PDAC TIME in tissue samples. Furthermore, we used these techniques to analyze periph-
eral blood samples of PDAC patients to identify alterations in the immune cell profile 
during chemotherapy. Lastly, comparisons between omics techniques were made. 
Studies aiming to improve the analysis of single omics, but also the implementation of 
multi-omics analysis has to continue and could improve the understanding of the PDAC 
TIME even further.
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summary
In this thesis, the methodology and application of determining the heterogeneous PDAC 
TIME with the use of multiple omics techniques are discussed. In chapter two we pre-
sented a method to identify different subtypes of immune cells specifically in PDAC tis-
sue samples with the use of marker genes. Ninety immune cell-type specific marker 
genes were checked by calculating the pairwise similarity using the PDAC RNA-sequenced 
dataset available at The Cancer Genome Atlas. A set of 55 marker genes that identify 22 
different immune cell types for PDAC were identified and validated with an independent 
mRNA expression dataset of 24 samples of PDAC patients who received various types of 
(neo)adjuvant treatments. In chapter three, blood samples collected at baseline and 
a�er the first FOLFIRINOX cycle of 68 patients from all disease stages of PDAC measured 
with the PanCancer Immune Profiling panel were used to develop an immune gene sig-
nature to predict response a�er a single cycle of FOLFIRINOX. Chapter four describes a 
study that investigates the safety of adding IMM-101 to SBRT and the immuno-modula-
tory effects of the combination treatment in the peripheral blood of locally advanced 
pancreatic cancer PDAC patients. Targeted gene-expression profiling and multicolor 
flow cytometry were performed for longitudinal immune monitoring of the peripheral 
blood. SBRT/IMM-101 treatment induced a transient decrease in different lymphocyte 
subsets and an increase in CD14+CD16−CD11b+HLA−DRlow myeloid-derived suppressor 
cells. Importantly, treatment significantly increased activated ICOS+, HLA-DR+, and 
Ki67+PD1+ T and NK cell frequencies. Combination therapy with SBRT and a heat-killed 
Mycobacterium vaccine was safe and had an immune-stimulatory effect. Chapter five 
showed the effect of one-cycle FOLFIRINOX in combination with lipegfilgrastim on the 
peripheral immune cell profile of pancreatic ductal adenocarcinoma (PDAC) patients 
using flow cytometry and was further explored by targeted immune-gene expression 
profiling. In chapter six we discussed the pros and cons of using RNA-sequencing for 
fresh frozen samples and targeted gene expression immune profiles for formalin-fixed, 
paraffin-embedded samples to characterize the tumor immune microenvironment.

nederlandse samenvatting
In dit proefschri� worden de methodologie en de toepassing van het bepalen van de 
heterogene tumor micro-omgeving van ductaal adenocarcinoom in de avleesklier 
(PDAC) met behulp van meerdere omics technieken besproken. In hoofdstuk twee 
presenteerden wij een methode om verschillende subtypes van immuuncellen te 
identificeren met behulp van specifieke markergenen in PDAC-weefselmonsters. 
Negentig immuuncel specifieke markergenen werden gecontroleerd door de 
paarsgewijze overeenkomst te berekenen met behulp van de PDAC RNA-sequencedataset 
die beschikbaar is in The Cancer Genome Atlas (TCGA). Een set van 55 markergenen die 
22 verschillende typen immuuncellen voor PDAC identificeren, werd geïdentificeerd en 
gevalideerd met een ona�ankelijke mRNA-expressie dataset van 24 monsters van 
PDAC-patiënten die verschillende typen (neo)adjuvante behandelingen kregen. In 
hoofdstuk drie werden met het PanCancer Immune Profiling panel gemeten 
bloedmonsters, verzameld bij baseline en na de eerste FOLFIRINOX-cyclus van 68 
patiënten uit alle ziektestadia van PDAC, gebruikt om een immuun-gen-handtekening te 
ontwikkelen die de respons na één cyclus FOLFIRINOX voorspelt. Hoofdstuk vier 
beschrij� een studie waarin de veiligheid van toevoeging van IMM-101 aan SBRT en de 
immuunmodulerende effecten van de combinatiebehandeling in het perifere bloed van 
lokaal gevorderde PDAC-patiënten met alvleesklierkanker worden onderzocht. Gerichte 
genexpressieprofilering en multicolor flowcytometrie werden uitgevoerd voor 
longitudinale immuunmonitoring van het perifere bloed. Behandeling met SBRT/IMM-
101 veroorzaakte een afname van verschillende lymfocytensubsets en een toename van 
CD14+CD16-CD11b+HLA-DRlow myeloid-derived suppressor cells. Belangrijk is dat de 
behandeling de frequenties van geactiveerde ICOS+, HLA-DR+ en Ki67+PD1+ T- en 
NK-cellen aanzienlijk verhoogde. Combinatietherapie met SBRT en een hi�edood 
Mycobacterium vaccin was veilig en had een immuunstimulerend effect. Hoofdstuk vijf 
toonde het effect van één-cyclus FOLFIRINOX in combinatie met lipegfilgrastim op het 
perifere immuuncelprofiel van PDAC-patiënten met behulp van flowcytometrie en werd 
verder onderzocht door gerichte immuun-gen expressie profilering. In hoofdstuk zes 
bespraken wij de voor- en nadelen van het gebruik van RNA-sequencing voor vers 
ingevroren monsters en gerichte genexpressie-immuunprofielen voor formeel 
gefixeerde, paraffine-ingebedde monsters om de tumor immuunmicro-omgeving te 
karakteri seren.
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phd portfolio
Name PhD candidate:   Willem de Koning 
Erasmus MC department:  Pathology & Clinical Bioinformatics 
PhD period:    April 2019- April 2023 
Promotors:    Prof. Dr. C. H. J. van Eijck 
    Dr. Andrew P. Stubbs 
    Dr. Dana A. M. Mustafa

Year ECTS

Courses, seminars, and workshops

Erasmus MC - ImmuneAID goes Big Data 2019 0,60

Erasmus MC - The NGS in DNA Diagnostics Course 2019 1,00

BioSB - Machine Learning for Bioinformatics & Systems Biology 2019 3,00

Erasmus MC - Survival Analysis 2019 0,60

Erasmus MC - Biomedical English Writing 2020 2,00

Erasmus MC - Basic and Translational Oncology 2020 1,80

Erasmus MC - Molecular Medicine 2021 0,70

Erasmus MC - Digital PhD day 2021 2021 0,20

Erasmus MC - Scientific Integrity 2021 0,30

Erasmus MC - Photoshop and Illustrator CC 2021 Workshop 2021 0,30

National and international conference a�endance and presentations

Galaxy Community Conference, Freiburg, Germany; Poster, Training and Small talk 2019 1,70

BioHackathon Europe, Online; Programming 2020 1,40

“How FAIR are you” Hackathon, Online; A�endance 2021 0,30

Pancreasdag, Online; A�endance 2021 0,20

X-omics festival “the future of multi-omics research is now!”, Nijmegen, The Netherlands; 
A�endance

2022 0,30

The Dutch Bioinformatics & Systems Biology conference (BioSB), Lunteren, The 
Netherlands; Poster presentation

2022 0,75

Year ECTS

Teaching and supervision

Erasmus MC - Galaxy Training Course 2019 0,75

Erasmus MC - RNA-seq for beginners 2019 0,60

Erasmus MC - Gene expression data analysis using R: How to make sense out of your 
RNA-Seq/microarray data

2019 2,00

Avans Hogeschool Breda - Galaxy Training Workshop 2020 0,80

Erasmus MC - Gene expression data analysis using R: How to make sense out of your 
RNA-Seq/microarray data

2020 2,00

Supervision of Dennis Dollée, B. Sc. internship and report (9 months) 2021 15,00

GTN Smörgåsbord: A Global Galaxy Course 2021 0,35

Erasmus MC - Gene expression data analysis using R: How to make sense out of your 
RNA-Seq/microarray data

2021 2,00

GTN Smörgåsbord 2: A Global Galaxy Course 2022 0,30

BioSB - RNA-seq course 2022 0,85

Supervision of Esther Hoogerwerf, M. Sc. internship and review 2022 1,00

MGC course - Next Generation Sequencing Data Analysis 2022 0,30

Total sum of ECTS 41,10
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curriculum vitae

Education

April 2019 – April 2023 Ph.D. at the Department of Pathology & Clinical Bioinformatics at the 
Erasmus Medical Center Ro�erdam, the Netherlands

September 2016 – January 2019 Master of Science degree in Bioinformatics at Wageningen University & 
Research, the Netherlands

September 2012 – June 2016 Bachelor of Science degree in Bioinformatics at Hogeschool Leiden, the 
Netherlands

June 2012 Graduation from high school at Minkema College, Woerden, the 
Netherlands

Working Experience

Ph.D. project

(Four years)

Multiple Omics Profiling of the PDAC Tumor Immune Microenvironment

Promoters: Prof. Dr. Casper van Eijck, Ph.D.; Dr. Andrew Stubbs, Ph.D.; Dr. 
Dana Mustafa, PhD

Master internship

(Four months)

NanoGalaxy - A Galaxy toolkit for the detection of Species, plasmid, and 
antibiotic resistance from Nanopore NGS

Supervisor: Dr. Andrew Stubbs, Ph.D. (Erasmus Medical Center Ro�erdam)

Results: Antimicrobial resistance (AMR) has become one of the biggest 
threats to global health, food security, and development. An AMR 
specialized nanopore sequence analysis toolkit, NanoGalaxy, is incorpo-
rated in Galaxy. It contains 13 tools that cover quality control, de novo 
assembly, species, and assembly detection, AMR detection, and reporting 
of the analysis. This results in a user-friendly environment, with “end-to-
end” workflows.

Master thesis project

(Six months)

Improving microbiome analysis

Supervisor: Dr. Guido Hooiveld, PhD (Wageningen University & Research)

Results: To determine the impact of different diets on the composition of 
the microbiome, 16s rRNA is analyzed. Until now 16s rRNA is only used to 
find the bacteria present in the fecal samples, but a more in-depth study of 
the functionality of those bacteria is desired. Therefore, a specialized 
pipeline for analysis of the microbiome data was created.

Bachelor internship

(Nine months)

Agent-based modeling of maturation of B cells in germinal centers

Supervisor: Dr. Gooitzen Zwanenburg, Ph.D. (University of Amsterdam)

Germinal centers are located within the secondary lymphoid organs and are 
the places where high-affinity antibodies are generated. This occurs by 
proliferation, apoptosis by selection, and migration of the B cell. These 
processes are not well understood. In this study, a germinal center is 
modeled with an agent-based model (made in Compucell3D and NetLogo) 
to gain insight into the events of the germinal center. The germinal center is 
modeled with experimentally determined normalized antibody affinities for 
neutralizing antibodies against the stem epitope of H1N1 influenza 
hemagglutinin and morphology parameters from the literature.

Bachelor external project

(Five months)

Interactions between endothelial cells and pericytes during blood vessel 
formation

Supervisor: Dr. Lisanne Rens, PhD (Centrum Wiskunde & Informatica)

Results: The interaction between pericytes and endothelial cells during 
angiogenesis is researched. Therefore, 2D agent-based models are created 
with the cellular Po�s model. These 2D models are based on existing 
models, but a further elaboration on the influence of the different 
parameters is tested. These models are used to see the influence of both 
cell types on the forming of blood vessels and which cell initiate this 
forming.

Bachelor external project

(Five months)

Analysis of metagenomic contig-binners

Supervisor: Dr. Lex Overmars, Ph.D. (University of Amsterdam)

Results: Binning is making clusters of contigs possibly originating from the 
same organism. We compared two supervised (MetaWa� and VizBin) and 
two unsupervised binning methods (CONCOCT and MaxBin). Synthetic 
data were used to test precision and recall. Biological data was used to 
determine the effectiveness and reliability of the binning methods by 
mapping it to a bacteria database. Based on the gathered information, 
advice is given for future use.

Part-time Job

(Five years)

Service desk at Gamma Utrecht-de Meern, the Netherlands

Skills

Languages Dutch (native), English (fluent)

Computer languages Python, R, Java, Bash, MATLAB, NetLogo

Omics Genomics, Transcriptomics
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