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Differential Absorption based Imaging
Basics Working Principle

Problem: Determine the 3D spatial concentration profile of a
known trace gas using differential absorption Lidar.

Measure (back-)scattered
light at wavelengths, λon
and λoff , with identical
scattering but different
absorption by the trace gas.

3D imaging requires scan of
a cone. (→ Lidar cube)

Additional atmospheric data
is sometimes necessary or
useful.
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Figure 2. DIAL system diagram. 

(a) (b)

Figure 3. (a) Schematic showing how the emission rate is calculated combining DIAL concentration
and wind vector measurements; (b) example of the fixed meteorological mast used to measure wind 
conditions at different heights.
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Mobile Lidar scanning a plume cross
section1

1Illustration taken from Innocenti, F and Robinson, R and Gardiner, T and Finlayson, A and

Connor, A. Differential Absorption Lidar (DIAL) measurements of landfill methane emissions, Remote

Sensing, 2017.



Differential Absorption based Imaging
Wide vs. Narrow FOV

Figure: FOV-1 captures a very narrow cone and thus light that corresponds mostly to
single scattering. The wider FOV-2 captures light that scattered multiple times which
isn’t modelled by the Lidar equation and doesn’t have the same absorption profile as
single scattering.



The two ingredients
Radiative Transfer

The dynamics of light in heterogeneous scattering media can
be modelled via the Radiative Transfer Equation (RTE)(

∂

∂t
+ v · ∇x + σ

on/off
a + σs

)
Hon/off = σs

∫
S2
Hon/off fpdv ′

where σs , σ
on/off
a are heterogeneous scattering/absorption

parameters and fp is a phase function.

The source term is δ(v − vj)δ(t) and differs for each direction
vj within the scanned cone.
The measurement is taken at a single point on the boundary
separately for each vj .



The two ingredients
Low-dimensional Dispersion

We consider the advection-diffusion equation given by

∂

∂t
u +∇ · (ηu)− Q +

1
2
∇ · (κ∇u) = 0 (1)

with Q = ρQ · δ(x⃗ − q⃗)δ(t) is an instantaneous source term at
q⃗ while η, κ model drift and diffusion respectively and shall be
functions of time only.

The plume can be modelled as a superposition of puffs ϕ

N∑
j=1

wjϕ

(
∥x −mj∥2

hj

)
(2)

for wj , hj and mj which depend on the dispersion quantities
and regularise the inverse problem by imposing PDE
based constraints.



Parameter Uniqueness under RTE Assumption
Single vs. Multiple Scattering

For functions such as (2) we can exploit the existence of a “first
impact point“ and use that single scattering is more singular and
can be measured earlier than higher order scattering to show:

Theorem (uniqueness)

Assuming the optical forward model is governed by the RTE, then,
given σa, σs and fp, a differential absorption field σon

a − σoff
a of akin

to the form (2) is, for continuous optical parameters, uniquely
determined by the on and off intensities regardless of the
field-of-view.

In other words, given the scattering, there is only a difference
between wide and narrow FOVs when we consider noisy data:

Discrepancies between the average model used in the inverse
problem and the true concentration profile
Optical noise due to limited photon counts in each bin



Optical Problem
Likelihood and noise

Poisson noise model for the optical yields log-likelihood for data
binned at mid-points ti

L(θ | m,n) =
∑
i ,j

Hon(ti , vj) + Hoff(ti , vj)

− mvj ,ti log(H
on(ti , vj))− nvj ,ti log(H

off(ti , vj))

where θ = (αψ,Qψ,H
off) and Hon = HoffEp∼Qψ [αψ(p)]

The effect of high-dimensional scattering parameters is
captured within Hoff while α,Q are parameterised by
low-dimensional dispersion related parameters ψ.

Closed form solutions for Hoff alongside low-dimensionality of
gradients lead to tractable reconstruction process.



Optical Problem
Parameter fitting

Maximum of L(· | m,n) w.r.t. Hoff is at Hoff
ψ =

mvj ,ti
+nvj ,ti

1+Ep∼Qψ
[αψ(p)]

so

we can find ψ by iterating

ψr+1 = ψr + I(ψr )
−1∂ψL(αψr ,Qψr ,H

off
ψr

| m,n)

and I(ψ) approximates the Hessian and is of the form

I(ψ) =
∑
i ,j

(mvj ,ti + nvj ,ti )

(
∂ψP(ψ)∂ψP(ψ)

T

P(ψ)2
+
∂ψP(ψ)∂ψP(ψ)

T

(1 − P(ψ))2

)

Only first derivatives! Limits number of RTE evaluations.

Matrix concentration inequalities provide bounds on
approximation quality for approximate RTE evaluations
(low-dimensionality of ψ!)



Dispersion problem
Turbulence induced noise

Use a super-position of branching jump diffusion processes to get
centres for functions of the form (2) by:

Making use of Fokker–Planck equation for

dXt = ηdt + κdBt

where κ, η as in (1) and Bt standard Wiener process.

Adjusting kernel weights and widths such that expectation
matches that of low-dimensional smooth component

Taking affine combinations to mimic the empirical observation
that “Big whorls have little whorls which have lesser whorls...“



Simulations
Reconstruction of Smooth Image and Parameters of Interest

Simulated reconstruction from 80 × 20 × 50 Lidar scan of 9
parameter dispersion which can be recovered when
conventional reconstruction fails due to the low SNR.

The reference point: Low-dimensional (regularised) vs.
High-dimensional (noisy) concentration profiles

Figure: Low vs. High-dimensional difference ≈ 0.5 relative L1 error



Simulations
Reconstruction1 from 80 × 20 × 50 Lidar scan: Release amount ρQ

The parameter that controls the release rate is the ideal case
for wide FOVs.
Most photons are useful and separation of FOVs is of limited
use here.

110 plumes with 2 optical data sets each = 20 runs



Simulations
Reconstruction1 from 80 × 20 × 50 Lidar scan: Source location q⃗

The source parameter controls the overall positioning of the
gas plume.
Most photons are again useful and but separation of FOVs is
of use here.
Different properties of x and y component result in
non-isotropic error distribution.

110 plumes with 2 optical data sets each = 20 runs



Quantifying uncertainties
Problems with the likelihood & possible solutions

The difference in L1 errors2 is largely determined by the previous
two quantities underlining complex relationship of errors and data.

Quadratic expansion involving I under-estimates errors.

MCMC based approaches can work but require RTE
evaluations for high dimensional parameters.

The non-parametric nature of dHon

dHoff = Ep∼Qψ [αψ(p)] may be
dealt with by considering dHon

dHoff ≈ Ep∼Qψ [αψ(p)].

(pro) Laplace approximations of marginal posterior may be
obtained more quickly than MCMC samples.

(con) Hyper-parameters for the distribution of dHon

dHoff to “match“
a prior for dispersion are hard to determine.

20.61, 0.48 and 0.41 respectively
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