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Abstract—Vascular dementia is the second most common 

form of dementia and a leading cause of death. Brain stroke and 

brain atrophy are the major degenerative pathologies associated 

with vascular dementia. Timely detection of these progressive 

pathologies is critical to avoid brain damage. Brain imaging is an 

important diagnostic tool and determines future treatment 

options available to the patient. Traditional medical technologies 

are expensive, require extensive supervision and are not easily 

accessible. This paper presents a novel concept of low- 

complexity wearable sensing system for the detection of brain 

stroke and brain atrophy using RF sensors. This multimodal RF 

sensing system provides a first-of-its-kind RF sensing solution for 

the detection of cerebral blood density variations and blood clots 

at an initial stage of neurodegeneration. A customized microwave 

imaging algorithm is presented for the reconstruction of images 

in affected areas of the brain. Designs are validated using 

software simulations and hardware modeling. Fabricated sensors 

are experimentally validated and can effectively detect blood 

density variation (1050 ± 50 Kg/m3), artificial stroke targets with 

a volume of 27 mm3 and density of 1025-1050 Kg/m3, and brain 

atrophy with a cavity of 58 mm3 within a realistic brain phantom. 

The safety of the proposed wearable RF sensing system is studied 

through the evaluation of the Specific Absorption Rate (SAR < 

1.4 W/Kg, 100mW) and thermal conductivity of the brain (< 

0.152 °C). The results indicate that the device is viable as an 

efficient, portable, and low-cost substitute for vascular dementia 

detection. 

Index Terms— Brain imaging, Microwave sensing system, 

Medical imaging, Multimodal sensing, Non-invasive sensors, 

Radio Frequency sensors, Ultra-wideband, Vascular dementia 

I. INTRODUCTION 

Around one million people are living with a 

neurodegenerative disease in the UK. Neurodegenerative 

disease is strongly linked with age and the primary elements 

that lead to neurodegeneration include cognitive impairment, 

brain tumor, dementia, Alzheimer’s disease (AD) and brain 

stroke [1].  
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Neurodegenerative diseases range from acute conditions 

like a stroke to progressive and degenerative conditions like 

vascular dementia. Cognitive impairment is an intermediate 

stage between minor neurodegeneration and severe diseases 

like dementia [2]. Other than the age factor, cognitive 

impairment is normally triggered by hypertension, diabetes, 

cardiovascular anomalies and hyperlipidemia. These 

underlying health conditions affect cerebral blood density 

which results in an increased risk of blood clots, stroke, 

hemorrhage, and neuronal damage. Early detection is 

important to slow down the neurodegenerative process and 

more severe decline to dementia. Delay in the diagnosis 

usually results in cognitive decline with progressive loss of 

brain neurons [3]. In some cases, it may lead to vascular 

dementia with an increased probability of brain stroke and 

brain hemorrhage.  

Vascular dementia is the second most common form of 

dementia after Alzheimer’s disease. Vascular dementia is 

usually triggered by decreased blood flow to the brain, either 

due to blood clots or cerebrovascular anomalies. The initial 

pathophysiological changes appear in the white matter of the 

brain. The increase in blood flow to the brain may result in a 

blood stroke or hemorrhage. In some cases, macro and micro-

infarcts may develop due to blood clots, which lead to brain 

atrophy, cerebrovascular impairment, and a permanent 

condition of reduced blood flow to the brain [4]. The 

neurodegeneration that results from infarction and stroke is 

generally irreversible. A timely diagnosis is therefore critical 

to avoid the disease progression. Some medical imaging 

technologies, like Magnetic Resonance Imaging (MRI), 

Positron Emission Tomography (PET), and Computerized 

Tomography (CT), can detect neurodegeneration at advanced 

stages but require extensive medical supervision and are 

expensive. Brain MRI-based imaging can detect, monitor and 

quantify changes associated with microbleeds [5], white 

matter atrophy [6] and ischemic stroke [7]. A PET scan can be 

used to detect cerebral metabolism [8], stroke [9] and brain 

atrophy [10], but it requires injection of a radioactive tracer 

into the patient’s blood. CT scan is a relatively fast, accurate 

and widely available imaging technique that is commonly 

used for stroke detection [11] and has a high sensitivity to 

visualize the blood vessels in the brain using CT angiography 

(CTA) [12]. Electroencephalogram (EEG) and magneto 

encephalogram (MEG) are low-cost, widely available and 

non-invasive alternative to these traditional medical 

technologies. Although EEG and MEG can detect vascular 

cognitive impairment, but can only accurately sense brain 

activity at the surface level, which limits their sensitivity in 
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detecting early states of dementia [13], [14]. Along with an 

early dementia diagnosis, customized multimodal solutions 

like smart assistive living, mobility aids and cognitive 

stimulation therapy can effectively limit the progression of 

dementia [15]. Some recent studies have investigated 

dementia detection through commercial-grade wearable 

multimodal sensors like blood volume pulse, electrodermal 

activity, skin temperature and accelerometer sensor. 

Personalized machine learning models were developed to 

detect dementia based on behavioral symptoms and agitation 

biomarkers [16], [17]. This approach has limitations and 

necessitates synchronized multi-sensor data collection and 

large data set to validate the generalizability of machine 

learning algorithms. 

Microwave sensing and imaging techniques provide a 

portable, flexible and low-exposure solution, which can 

substitute these traditional and off-the-shelf multimodal 

diagnostic technologies. Electromagnetic (EM) waves in the 

Ultra-wideband (UWB) frequency region are non-ionizing and 

can penetrate the skull, skin and tissues, which makes them 

ideal for diagnostic applications. In recent years, microwave 

sensing and imaging solutions have been developed for the 

detection of stroke, Alzheimer’s disease and brain tumor. 

Vivaldi antenna array was proposed for the detection of stroke 

with multiple antenna elements interconnected using 

microwave coaxial switches [18]. A flexible 8-element 

monopole antenna array was presented for hemorrhagic stroke 

detection, operable at frequencies between 1.3 GHz and 3.5 

GHz [19]. This device was suitable for wearable applications 

due to its flexible substrate material. A flexible 

electromagnetic cap with a 16-element antenna array was 

developed for brain stroke detection [20]. The antenna 

elements were integrated with a multilayer cap, and the device 

was validated by using stroke-mimicking targets in an 

artificial brain phantom. In another study, a three-dimensional 

(3D) electromagnetic head imaging system was presented for 

brain stroke diagnosis [21]. The designed 24-element planar 

antenna array was arranged in a dual elliptical ring 

configuration inside a compact flexible cap. A wearable hat-

shaped device with integrated flexible microwave antennas 

was proposed to detect brain atrophy and lateral ventricle 

enlargement [22]. Brain atrophy was replicated on an artificial 

head phantom through an even reduction in white and grey 

matter volume and the replacement of gaps with cerebrospinal 

fluid. The wearable device was able to detect various degrees 

of brain atrophy and lateral ventricle enlargement in 

transmission and reflection modes.  

Although the above-mentioned wearable RF technologies 

can detect neurodegeneration, most of them are designed for a 

specific neurodegenerative disease and require an array of 

antennas for the detection of those anomalies. However, this 

research work explores the multimodal detection of 

neurodegenerative and cerebrovascular anomalies through 

smart RF glasses. The portable sensing system operates with 

only two sensors and an unobtrusive design makes it an ideal 

product for a flexible healthcare system. The primary 

contributions of this work are as follows: 

• This paper presents a customized meander line sensor 

with a low profile, high sensitivity and improved 

bandwidth. The enhanced gain is achieved through 

defected ground structure and optimization of the 

meander shape, width of the meander trace, and the 

number of meander sections.  

• A novel crescent sensor is proposed with a compact 

structure evolved from a circular and donut-shaped 

monopole. The tapered feed line and slotted ground 

plane resulted in a high sensitivity, improved 

bandwidth and high impedance. 

• This work demonstrates the detection and two-

dimensional imaging of brain atrophy and stroke 

using a tailored microwave beamforming algorithm, 

which requires fewer sensors for full head coverage 

as compared to the literature. 

• The imaging process is improved through multi-

frequency imaging, as each sensor obtains images 

with higher resolution using microwave signals of 

different frequencies. 

    

The rest of this paper is organized as follows: simulation 

and experimental methods are discussed in Section II. Section 

III presents an overview of the design and configuration of RF 

sensors. Section IV provides a detailed analysis of near-field 

software simulations for designed antenna sensors. The 

performance of a multimodal RF sensing system in an 

experimental setup is also investigated. An imaging algorithm 

is implemented for the reconstruction of two-dimensional 

brain images with atrophy and stroke. Future research 

direction along with considerations for improvement is 

discussed in Section V.  

II. METHODS 

This paper presents the design, investigation and 

implementation of novel multimodal, wearable, low-cost, non-

invasive and privacy-preserving smart Radio Frequency (RF) 

glasses for the detection of cerebral blood density, brain 

atrophy and brain stroke through the detection of major 

pathophysiological changes. Fig. 1 provides an insight into the 

design flow of the proposed sensing system. The novel 

concept of smart RF glasses is presented to make this device 

adaptable, conformable, and non-intrusive and to integrate it 

within the next generation of 5G and IoT-enabled hearing aid 

devices, as part of the COG-MHEAR project [23]. These 

multimodal hearing aid devices will be able to estimate the 

listening effort through embedded radiofrequency sensors, 

heart rate sensors, audio-visual cameras, context estimation, 

an eye tracker and a pupillometry sensor. Hearing loss may 

contribute to a fast progression of brain atrophy and mild 

hearing loss doubles the risk of developing dementia [24]. 

Therefore, the proposed RF sensing system will provide rapid 

detection and diagnosis for neurodegeneration that is 

associated with hearing loss. The RF sensors are integrated 

around the glasses to target, scan and monitor various areas of 

the brain.  The integration of sensors around the glass frame 

helps to make the device non-invasive, conformable and



 
 

Fig. 1.  Design flow of the proposed multimodal Radio Frequency (RF) sensing system 

 

convenient for the elderly. This design also offers a 

minimalistic approach with two RF sensors attached to the 

side hinges of the glasses that are sufficient to scan the frontal, 

temporal and anterior parts of the brain. These RF sensors can 

detect the blood density variations in the middle cerebral, 

posterior cerebral, vertebral and internal carotid arteries that 

terminates at the circle of Willis junction. The proposed RF 

sensing system can also detect brain stroke and atrophy, which 

validates the multimodal detection capability of the embedded 

sensors. 

In the first phase of this research, simulations were 

performed on CST Microwave Studio and two antenna sensors 

were designed for integration with the proposed RF glasses. 

Near-field analysis was performed to investigate the 

effectiveness of RF sensors in the detection of brain stroke, 

brain atrophy and blood density variations in the brain. 

Various computational brain models were designed to emulate 

these neurodegenerative conditions. To capture changes in 

various brain segments, RF glasses were placed near a head 

voxel model. In the second phase, RF sensors were fabricated 

and the artificial phantom was prepared using brain-

mimicking material with the placement of artificial arteries, 

ventricles, atrophy and stroke targets. In the final phase of 

research, experiments were performed on fabricated realistic 

brain phantoms. Reflection data (S11) was gathered from 

sensors after each physical alteration in the fabricated 

phantom. Simulated and measured results were compared and 

analyzed to assess the integrity of obtained diagnosis. Health 

and safety parameters like Specific Absorption Rate (SAR) 

and temperature of the target brain areas were analyzed to 

validate the safety of the wearable sensing system.  

The reflection measurements (S11) taken from 

experimentation were processed to recreate images for both 

brain atrophy and stroke. To improve the imaging process, 

additional measurements were taken from the front and back 

of the head using a headband. This helped in an accurate 

reconstruction of images by ensuring complete coverage of 

brain phantom. The positioning of sensors remained the same 

on the RF glasses with the meander line sensor on the left and 

the crescent antenna on the right side of the glasses. The 

sensors on the headband are arranged by the placement of a 

meander line sensor on the front facing the forehead, and a 

crescent sensor facing the back of the head phantom.  

III. SENSOR DESIGN 

To detect and diagnose cerebral blood density and vascular 

dementia degeneration, deep penetration into the head is 

required. The selection of operational frequency for the sensor 

is important to ensure maximum coverage inside the brain. 

The other important design parameters are the miniaturization 

and positioning of sensors around the brain.  The antenna 

sensors presented in this research are designed to operate on 

an Ultra-wideband (UWB) frequency range, between 1 GHz 

and 4 GHz. This frequency band is selected to ensure 

maximum penetration and coverage inside the brain. Both 

antenna sensors are miniaturized to integrate with wearable 

glasses. The design of antenna sensors is novel and the sensors 

are capable of detecting cerebral blood density, atrophy and 
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stroke. The proposed sensors are optimized to provide 

unidirectional radiation. This helped to minimize the effects of 

nearby objects and resulted in efficient microwave power 

utilization. Antenna sensors are placed on the left and right 

hinges of glasses, with radiating patches facing the skin.  

Meander line antenna is designed and miniaturized using 

multiple patches of the ground plane. The sensor provides 

good S11 performance at 1.2 GHz and 2.5 GHz. The proposed 

meander line sensor-I has dimensions of 30 x 60 mm2 and is 

implemented on FR4 substrate with a dielectric constant of 4.4 

and a thickness of 1.6 mm. The designed antenna contains a 

single monopole radiating element that is fed with a 50 Ω feed 

line, as depicted in Fig. 2. Width of the feeding line is FW = 4 

mm and length is FL = 24 mm. A square-shaped partial ground 

plane at the bottom and an inverted triangular ground plane 

are introduced on top of the RF sensor structure to improve 

the bandwidth and reflection at lower frequencies. Other 

dimensions of the sensor are given in Table I. 

 

 
              (a)                                                               (b) 

 

Fig. 2.  (a) Fabricated meander line antenna sensor-I (b) Geometric 
configuration of meander line antenna sensor-I 

 

   A crescent-shaped antenna sensor is designed with a partial 

ground plane structure to improve the reflection at lower 

frequencies. The crescent shape of radiating element helps to 

maintain high impedance bandwidth and compact structure. 

Initially, a single-element Ultra-wideband (UWB) monopole 

antenna was designed and miniaturized using partial and 

defected ground structures. A circular patch was first 

implemented on CST Microwave Studio, but the S11 

characteristics were not optimum, it was then modified to a 

donut-shaped monopole. The antenna was then transformed to 

a crescent shape by chamfering an inner circle from this 

donut-shaped monopole. The crescent shape helped to lower 

the resonant frequency of antenna sensors and resulted in a 

considerable improvement in bandwidth. The reflection results 

(S11) for the circular, donut-shaped monopole and final 

crescent shape sensor are presented in Fig 3.  The resonant 

frequency of the antenna sensors can be approximately 

calculated using (1), where fl is the resonant frequency, c is 

the speed of light, εr  is the relative permittivity of the substrate 

and L is the side length of antenna structure [25]. 

                     
2( 1)

l
r

c
f

L 
=

+
    (1) 

The geometry of the ground plane and radiating structure is 

altered to miniaturize the design for crescent antenna sensor-

II, which has dimensions of 22 x 31 mm2 and is designed on 

FR4 substrate with a dielectric constant of 4.4 and thickness of 

1.6 mm. A single crescent-shaped monopole radiating element 

is designed on top of a chamfered ground plane that is fed 

with a 50 Ω triangular tapered feed line, as shown in Fig. 4. 

The length of feeding line is FL = 14 mm, width of feeding 

line near the radiating element and feed port is FW1 = 1 mm 

and FW2 = 4 mm respectively. The partial ground plane is 

chamfered from the upper edges, which resulted in bandwidth 

improvements for sensor-II. High impedance is achieved by 

tapering the feedline. The overall dimensions of sensor-II are 

listed in Table I.  

 

 
 

Fig. 3.  Simulated reflection results (S11) at each design step of crescent 

antenna sensor-II 

 

 
             (a)                                                               (b) 

 

Fig. 4.  (a) Fabricated crescent antenna sensor-II (b) Geometric configuration 
of crescent antenna sensor-II 

 

 

 



TABLE I 
DIMENSIONS OF ANTENNA SENSORS 

Meander line antenna Crescent antenna 

Parameter 

Dimensions 

(mm) Parameter 

Dimensions 

(mm) 

Length (L) 60 Length (L) 31 

Width (W) 30 Width (W) 22 

Ground length, 

square (G1L) 20 Ground length (GL) 17 

Ground length, 
triangle (G2L) 10  Ground width (GW) 22 

Ground width, 

square (G1W) 30 

Feeding line length 

(FL)  14 

Ground width, 

triangle (G2W) 30 

Feeding line width 
near radiating 

element (FW1)  1 

Feeding line 
length (FL) 24 

Feeding line width 
near feed port (FW2)  4 

Feeding line width 

(FW) 4  

Ground left chamfer 

(C1) 5.3 

Meander line 
patch width (P1) 4 

Ground right 
chamfer (C2) 7 

Meander line 

patch width (P2) 7   

Meander line 
patch width (P3) 8   

 Meander line 

patch width (P4) 2    

 

IV. RESULTS 

A. Simulation Results and Near-Field Analysis 

Microwave sensing works on the basis of variations in 

reflected signal strength. The microwave signals are reflected 

differently based on these dielectric variances between healthy 

and diseased tissues. The dielectric changes in the targeted 

brain areas determine the blood and cerebrospinal fluid (CSF) 

concentration and density. The backscattered signals are then 

analyzed to determine the problematic area of the brain. The 

level of reflection determines the cause of neurodegeneration. 

Reflected signals aid in the identification of strokes, brain 

atrophy, white matter changes or lesions, protein deposits, 

micro and macro infarcts, and microbleeds. 

CST Microwave Studio was used for the proposed work's 

near-field computational modeling and analysis. The sensors 

were first miniaturized by keeping the gain, directivity, 

Specific Absorption Rate (SAR) and other design parameters 

in an optimal range. The meander-line and crescent-shaped 

sensors were then simulated for sensing blood density 

variation, stroke, and brain atrophy. Meander line sensor-I and 

crescent sensor-II were placed on the left and right sides of 

wearable glasses respectively, as shown in Fig. 5 (a). A 

realistic voxel model [26] is used for software simulations, 

with various brain entities like skull, skin, bones, grey matter, 

white matter, blood, cerebrospinal fluid, and ventricles. The 

cross-sectional view of brain entities along with the placement 

of RF sensors on wearable glasses is shown in Fig. 5 (b). 

During simulation, the properties of these individual brain 

segments were adjusted to simulate blood density, blood clots, 

and brain atrophy pathologies. Initial S11 measurements were 

recorded before any changes to the head voxel as a benchmark. 

The S11 simulated measurements were taken with an antenna-

tissue spacing of 10 mm, 15 mm and 20 mm to assess the 

optimum antenna-tissue separation for both sensors. The 

results are presented in Fig. 6 (a-b), which indicate that the 

sensors can operate more effectively when placed 10 mm 

away from the brain.   

Cerebral blood density was emulated using variations in the 

material density, conductivity and dielectric permittivity. The 

customized voxel model for cerebral blood density 

simulations is shown in Fig. 5 (c-d). For initial simulations, 

the actual blood density of 1050 kg/m3 was configured for the 

blood pool of the voxel model [27] [28]. Density was 

increased to 1100 kg/m3 for the moderately high case of 

cerebral blood density. For high blood density, the Rho value 

for material is changed to 1150 kg/m3. In addition, for 

moderate and high blood densities, electrical conductivity was 

increased. For each sensor position, the reflection result (S11) 

is measured against the variation in blood density inside the 

brain voxel model. It can be seen in Fig. 6 (c-d) that there is a 

strong reflection and a higher downward shift in S11 for the 

high blood density state as compared to low and moderate 

blood density. This confirms that the sensors are working 

accurately for the detection of cerebral blood density 

variation. 

For brain stroke and brain atrophy emulation, changes were 

made in the grey matter and white matter of the brain model. 

For brain atrophy simulations, the relative permittivity was 

reduced from 54.8 to 41 for grey matter and 40.5 to 36.5 for 

white matter. For stroke analysis, the permittivity of the blood 

pool was decreased from 63.2 to 56.5 and blood density was 

increased from 1060 kg/m3 to 1190 kg/m3. The detail of 

changes made in the parameters for each brain entity is 

presented in Table II. The simulated reflection results (S11) for 

both brain atrophy and stroke are presented in Fig. 6 (e-f).  

 

TABLE II 

VARIATION IN SIMULATED PARAMETERS FOR BRAIN ENTITIES  

  Blood Gray Matter White Matter 

Simulated 

condition 

Dielectric 
permittivity 

(ε) 

Material 
density 

(ρ)  

Conductivity 

(S/m) 

Dielectric 
permittivity 

(ε) 

Material 
density 

(ρ)  

Conductivity 

(S/m) 

Dielectric 
permittivity 

(ε) 

Material 
density 

(ρ)  

Conductivity 

(S/m) 

Normal brain 63.2 1050 1.38 54.8 1045 0.77 40.5 1041 0.47 

Moderately high 
blood density 

66 1100 1.46 54.8 1045 0.77 40.5 1041 0.47 

High blood 

density 
71 1150 1.55 54.8 1045 0.77 40.5 1041 0.47 

Brain stroke 73 1190 1.55 54.8 1045 0.77 40.5 1041 0.47 

Brain atrophy 63.2 1050 1.38 41 750 0.65 36.5 545 0.59 



 

            
  (a)                                                               (b) 

                                                         
  (c)                                                               (d) 

  
Fig. 5.  Head voxel model used in software simulations with (a) RF sensors 

placed on glasses (b) Cross-sectional view of model from top with brain 

entities, veins and layers (c) Side view of voxel model with cerebral blood 
arteries (d) Top view of voxel model with blood arteries 

    

  
            (a)    (b) 

 

  
            (c)    (d) 
 

 
            (e)    (f) 

 

Fig. 6.  Simulated reflection (S11) results (a) Meander line sensor-I antenna-

tissue separation results with normal brain voxel (b) Crescent sensor-II 
antenna-tissue separation results with normal brain voxel (c) Cerebral blood 

density for meander line antenna sensor-I (d) Cerebral blood density for 

crescent antenna sensor-II (e) Stroke and brain atrophy for meander line 
antenna sensor-I (f) Stroke and brain atrophy for crescent antenna sensor-II  

 

The performance of RF sensors was validated while 

operating in close proximity to the human head voxel. The 

time-domain characterization was carried out by radiating a 

pulse into the brain. Field probes were placed inside the voxel 

model at a distance of 30 mm and 60 mm from the sensors. 

The field strength and shape of the pulse travelling from the 

antenna towards brain voxel model are shown in Fig. 7 (a) and 

Fig. 7 (b) for sensor-I and sensor-II respectively. The E-field 

strength is reduced by half in case of sensor-I and by one-third 

in case of sensor-II. A considerable delay is observed in the 

pulse when operated near the head model, which is due to the 

impact of biological layers on the transmitted electromagnetic 

wave. The field probe results validate the selection of Ultra-

wideband (UWB) frequencies for the proposed RF sensors. 

The directionality of the proposed RF sensors is evaluated by 

calculating front-to-back (F/B) ratio. This is the ratio of 

transmitted power and the reflected power. The simulated 

peak front-to-back ratio of sensor-I is 16 dB and sensor-II is 

17 dB, as presented in Fig. 7 (c). 

 

                                         
            (a)    (b) 

 
(c) 

 
Fig. 7.  Simulated near-field time-domain pulses at distance of 30 mm and 60 

mm inside head phantom (a) Meander line antenna sensor-I (b) Crescent 

antenna sensor-II (c) Front-to-back ratio of sensors 
 

The impact of using RF sensors on brain safety is crucial 

when they are operating within close proximity to the brain. 

The primary factor to measure this is the radiation intensity 

absorbed by the brain during exposure to RF sensors. This is 

calculated through the Specific Absorption Rate (SAR), which 

provides the safe amount of radiation absorbed by the body 

during exposure. International Commission for Non-Ionizing 

Radiation Protection (ICNIRP) permits a maximum of 2 

W/Kg SAR per 10g of mass [29]. The maximum power 
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absorption for meander line sensor-I is 1.4 W/Kg for an input 

power of 100 mW, operating at 10 mm away from the brain 

voxel, as shown in Fig. 8 (c). For the crescent antenna sensor-

II, the maximum value of SAR is 1.15 W/Kg for an input 

power of 100 mW, at 10mm from brain phantom, as presented 

in Fig. 8 (d).  SAR values are calculated at different locations 

from the brain voxel model to monitor the variations. The 

measured SAR values for these simulations against the input 

power of 1 mW, 10 mW and 100 mW are given in Table III. 

All the SAR values are within a permissible range, which 

validates that the device is safe for medical diagnostic 

applications. SAR can be calculated for each antenna sensor 

using (2), where σ is the conductivity of the material, E is the 

electric field value and md is the mass density of the target 

human tissue [30]. 

  

2

d

S
m

AR
E 

=                                (2) 

Another important safety factor to consider is the impact of 

RF sensors on body temperature. The transient behavior of the 

temperature was measured on CST Studio Suite thermal 

transient solver. Thermal simulations provided the 

temperature status of all brain segments including skin, skull, 

gray and white matter. The default temperature of brain voxel 

model was configured as 36 °C and the overall influence of 

antenna sensors on the temperatures was studied. The 

maximum increase in temperature was observed for skin layer 

while the sensors were in operation, which was 36.152 °C for 

sensor-I and 36.144 °C for sensor-II.  There was a minimal 

increase in temperature for the skull, white and gray matter 

and the average temperature rise is too small to have any 

adverse effect on the health and safety of the brain. The 

measured values of average temperature increase for brain 

entities are recorded in Table IV.  

The amount of penetration inside the brain voxel model is 

determined through the E-field distribution. The penetration 

depth is evaluated for proposed RF sensors at a frequency of 

1.5, 2 and 2.5 GHz, with an input power of 100 mW to the 

sensors. The maximum amount of penetration inside the brain 

for both sensors was at 2.5 GHz. While operating on this 

frequency, both sensors were able to reach the temporal and 

parietal lobes while propagating through white and grey 

matter, as shown in Fig. 8 (a-b). This counter-validates the 

efficacy of designed RF sensors in near-field operation.  

 

   
                  (a)                               (b) 

 

 
                   (c)                               (d) 

                                                               
Fig. 8.  Simulated E-field distribution of proposed antenna sensors inside the 

head (top-view) at 2.5 GHz (a) Meander line antenna sensor-I (b) Crescent 
antenna sensor-II; Simulated Specific Absorption Rate (SAR) for (c) Meander 

line antenna sensor-I at 2.5 GHz (d) Crescent antenna sensor-II at 2.5 GHz 

 

B. Experimental Results And Evaluation of Multimodal 

Sensing System 

The simulated results were experimentally validated using the 

proposed RF glasses and fabricated head phantom. The 

measurements were taken using an artificial brain phantom 

with brain-mimicking material filled inside, representing grey 

and white matter. The fabricated antenna sensors were 

mounted on wearable glasses to make the device comfortable 

and convenient for the patients. Antenna sensors I and II are 

arranged on the side hinges of the glasses. The Sub Miniature 

version A (SMA) coaxial RF connectors are placed to the sides 

to accommodate the cables connecting sensors with the Vector 

Network Analyzer (VNA), which is being used to generate and 

monitor the reflected signal received by the sensors. HP 8753C 

VNA was used for experiments, which has a frequency range 

of 300 kHz to 3 GHz and a dynamic range of up to 100 dB.   

The experimental setup used to verify the designed system is 

shown in Fig. 9. 

 

 

TABLE III 

SPECIFIC ABSORPTION RATE (SAR) OF ANTENNA SENSORS (PER 10G) WITH INPUT POWER (MILLIWATT) 

Distance from Brain phantom (mm) 
Sensor-I SAR (W/Kg)  Sensor-II SAR (W/Kg) 

1 mW 10 mW 100 mW 1 mW 10 mW 100 mW 

10 0.014 0.14 1.4 0.012 0.116 1.15 

15 0.015 0.11 1.08 0.009 0.085 0.85 

20 0.008 0.074 0.74 0.006 0.062 0.62 

 

 

 
 

 
 



TABLE IV 
MAXIMUM TEMPERATURE RISE IN BRAIN AREAS (CELSIUS) 

Simulated Sensor Skin Skull            Gray matter White matter 

Sensor-I  0.152 0.147 0.132 0.124 

Sensor-II  0.144 0.138 0.12 0.115 

 

The experimentation is done using RF sensors, VNA, a 

brain skull model and a personal computer with measurement 

software. VNA ports were calibrated first using open, short 

and load connectors. After calibration, both sensor-I and 

sensor-II were connected to the 50 Ω ports available on VNA 

using SMA wires. The output power from VNA to the antenna 

sensors was 1.25 mW for each port. S11 measurements were 

taken with RF glasses placed on an empty skull model, as a 

benchmark. 

 

 
 

Fig. 9.  Experimental setup with VNA, laptop, head phantom, and portable RF 

glasses. 

 

An artificial brain phantom is prepared [31] using the grey 

matter layer, white matter layer and the tubes placed inside the 

material to represent the blood vessels. For the preparation of 

grey and white matter layers, a mixture of water, sugar and 

agar is prepared with an overall concentration of 1400 ml to 

match the total brain volume of an average male. Since water 

has a high dielectric constant of 78.4, sugar was first dissolved 

in the water to lower the dielectric constant. Agar powder was 

added to the boiling mixture of water and sugar. The boiled 

liquid was then poured inside the skull model to solidify into a 

jelly-like material. The material composition of the brain 

phantom is given in Table V. Dielectric properties of the 

phantom mixture, blood-mimicking liquids and stroke targets 

were measured using two-port VNA HP8753C connected to 

Agilent high-temperature dielectric probe 85070E-0020. VNA 

was connected to a laptop PC using a General Purpose 

Interface Bus (GPIB) connector and software associated with 

the dielectric probe was used to capture dielectric properties.  

The dielectric values and density of the blood-mimicking 

liquids and stroke targets are given in Table VI. 
 

TABLE V 

COMPOSITION OF BRAIN PHANTOM MIXTURE 

Material Quantity 

Water 700 ml (700 g) 

Sugar 600 ml (510 g) 

Agar 100 ml (35 g) 

Total Volume 1400 ml 

 

The proposed RF glasses were verified on skull phantom 

with polyvinyl chloride (PVC) and silicone tubes placed inside 

to represent arteries. The tubes were placed in an arrangement 

to mimic the circle of Willis, which is an important junction of 

arteries at the base of the human brain. The experimentation 

involved measuring of blood density for two blood-mimicking 

liquids. Liquid-A was saline water that has the same properties 

as real blood, with a density of 1025 kg/m3 and a dielectric 

constant of 66 [32]. Saline water was injected inside these 

tubes to mimic blood within major arteries. The 

experimentation was initiated with sensors placement around a 

normal brain phantom and a reference dataset for the proposed 

model was collected first with low-density liquid-A inside the 

brain phantom. The tubes were then filled with a high-density 

liquid-B to observe the effect of blood density variation inside 

the brain. Liquid-B was pure milk with a density of 1050 kg/m3 

and a dielectric constant of 71 [33]. Reflection measurements 

(S11) were taken from both sensors along the temporal and 

frontal parts of the brain for low and high-density blood-

mimicking liquids. The results are presented in Fig. 11 (a-b); 

there is a strong reflection in the case of high-density liquid-B 

with a high dielectric constant. This indicates an increased loss 

in the signal for high-density blood-mimicking liquid when 

measured with sensor-I and sensor-II. The experimentation 

results indicate that the designed antenna sensors can 

accurately detect the density of blood mimicking liquid inside 

the artificial cerebral arterial network. The proactive detection 

of blood density through RF sensing can help to reduce and 

prevent the risk of stroke, tissue and organ damage at a 

preliminary stage.  

For stroke analysis, the proposed RF sensing system was 

first verified on a normal brain phantom placed inside the skull 

model. Reflection measurements (S11) were taken using both 

RF sensors and were kept as a reference benchmark when there 

was no anomaly. This reference dataset was helpful in the 

reconstruction of images for both experimental cases of 

vascular dementia: brain atrophy and stroke. The artificial 

stroke target-A was emulated using a shallow spherical target 

with a volume of 27 mm3 [32], as shown in Fig. 10 (c). This 

spherical ischemic stroke target-A was filled with saline liquid 

to match the dielectric constant of an actual blood clot. The 

target was placed in the middle of the brain phantom to create 

an artificial brain stroke scenario. 

 

    
                          (a)                                     (b) 

 



 
 

(c) 
 

Fig. 10.  (a) Fabricated gel-based brain phantom (b) Gel-based brain phantom 

for cognitive load emulation (c) Fabricated brain phantom with stroke target 
 

Reflection measurements (S11) were taken with RF glasses 

placed around the head phantom. There is a strong reflection in 

the presence of stroke target-A compared to the normal brain, 

as shown in Fig. 11 (c-d). S11 measurements were taken with 

another stroke target-B to have a comparison between the 

reflection performance. This stroke target-B was filled with a 

mixture of coconut oil and pure milk [33]. This stroke object 

has a higher density of 1050 Kg/m3 compared to the actual 

blood plasma which has a density of 1025 kg/m3. The dielectric 

constant of the mixture added to stroke target-B is relatively 

higher as compared to the actual blood, as given in Table VI. 

The S-parameters indicate a higher loss for stroke target-B for 

both meander line and crescent sensors, as shown in Fig. 11 (c-

d). The measured results confirm that the proposed RF sensing 

system is able to detect stroke and transient ischemic stroke.   

 
TABLE VI 

DENSITY OF BLOOD MIMICKING LIQUIDS AND STROKE TARGETS USED IN 

EXPERIMENTS 

Material Density (kg/m³) Dielectric constant 

Liquid-A (saline 

water) 
1025 66 

Liquid-B (pure milk) 1050 71 

Stroke Target-A 

(saline) 
1025 66 

Stroke Target-B 

(mixture of coconut oil 
and milk) 

1050 73 

 

To emulate the brain atrophy scenario, the same brain 

phantom was modified through the removal of the stroke target 

and the creation of a cavity with a volume of 58 mm3 in the 

middle of brain matter [22]. The cavity was filled with a 

mixture of salt, agar and water to represent the cerebrospinal 

fluid (CSF) accumulation inside. The dielectric properties of 

this mixture were verified first to match it with the dielectric 

values of CSF. The results were then taken with RF glasses and 

a clear reflection from CSF can be seen in Fig. 11 (e-f). The 

experimental results confirm that the proposed system is 

capable of detecting cerebral blood density, stroke and brain 

atrophy in the brain.  

 

  
(a)                                          (b) 

 

     
(c)                                          (d) 

 

  
(e)                                          (f) 

 
Fig. 11.  Measured reflection (S11) results for (a) Cerebral blood density 

detection with meander line antenna sensor-I (b) Cerebral blood density 
detection with crescent antenna sensor-II (c) Stroke targets with meander line 

antenna sensor-I (d) Stroke targets with crescent antenna sensor-II (e) Brain 

atrophy and CSF with meander line antenna sensor-I (f) Brain atrophy and 
CSF with crescent antenna sensor-II 

 

The measured results are consistent with the simulated 

results and both sensors provide improved reflection (S11) 

results in the experimental setup, as shown in Fig. 12 (a-b). 

The crescent antenna sensor-II provides better simulation and 

measurement results for the detection of cerebral blood 

density variations, stroke and brain atrophy. In addition to this, 

the crescent antenna sensor-II is more compact (22 x 31 mm2), 

as compared to the meander line antenna sensor-I (30 x 60 

mm2). This allows an easier integration for sensor-II within 

the proposed RF glasses. Furthermore, the crescent sensor-II 

has a lower Specific Absorption Rate (SAR) and results in 

minimal temperature increase for skin, skull, gray and white 

matter.  
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Fig. 12.  Comparison of simulated and measured reflection (S11) results with 

normal brain phantom (a) Meander line antenna sensor-I (b) Crescent antenna 
sensor-II 
 

C. Imaging Of Stroke And Brain Atrophy 

The imaging for stroke and brain atrophy is performed 

using Microwave imaging via a space-time (MIST) 

beamforming algorithm. The MIST algorithm uses energy 

levels of backscattered signals to reconstruct the image of 

malignant anomalies. The MIST algorithm implemented in 

this work is a modified improved version of the algorithm for 

breast cancer detection [34]. The results of the imaging 

algorithm are enhanced by using an average of reflection (S11) 

data sets collected from each sensor. The significant change in 

dielectric properties between the malignant part of the brain 

results in high levels of backscattered energy levels. The 

reflection data received through backscattering by the Ultra-

wideband (UWB) antenna sensors is recorded to initiate the 

image processing. This dataset was used as an initial input to 

the imaging algorithm implemented in MATLAB. The 

received reflection data is converted from frequency to time 

domain using Inverse Fast Fourier Transform (IFFT) and is 

time-aligned through finite-impulse response (FIR) filters. The 

resultant signals are processed through time shifts, gating to 

remove the artifact and align the processed signals. The 

energy is calculated for each pixel of these resultant signals 

and stored in an image matrix. This image matrix is then 

compared with the reference image matrix of a normal brain 

phantom. The subtraction of two matrices provides an energy 

map of the malignant anomalies in case of stroke and brain 

atrophy. The flowchart of the MIST algorithm process is 

shown in Fig. 13. 

The reflection measurements (S11) were first taken with a 

normal brain phantom as a reference dataset. The S11 values 

were normalized to compute the phase and magnitude of each 

signal. The imaging algorithm was implemented on the dataset 

obtained through the stroke target-A, stroke target-B and brain 

atrophy. The volume of each stroke target was 27 mm3 and the 

dielectric properties of the stroke targets are given in Table 

VI. For stroke, the affected area is visible in the middle of the 

heat map which represents the spherical stroke target placed 

around the middle of the brain phantom. It can be noticed in 

Fig. 14 (d-e) that the variation in density of the stroke object is 

resulting in a high-intensity heat map for stroke target-B. The 

brain atrophy region is relatively more spread out due to the 

wider cavity of 58 mm3, with red boundaries indicating the 

atrophy and yellow color representing the cerebrospinal fluid. 

The antennas were placed at the coordinates of (50, 0), (50, 

100), (0, 50), (100, 50) according to the axis in Fig. 14. The 

reconstructed images are compared with the actual brain 

atrophy and stroke changes in the realistic phantom, as shown 

in Fig. 14. 

 
Fig. 13.  Microwave Imaging in Space-Time (MIST) algorithm process 

flowchart 
 

The image reconstruction is accurate in terms of the atrophy 

and stroke target location. The backscattered signal was 

normalized for both stroke brain atrophy measurements, as 

shown in Fig. 15. It can be observed that the reflection in the 

case of brain atrophy is higher as compared to the stroke in 

terms of magnitude (dB). Future work will be done to 

optimize it further to obtain the exact dimension of the 

malignant target. The image quality and contrast can also be 

improved through delay and sum (DAS) [35], [36], delay 

multiply and sum (DMAS) [37]–[39] and channel-ranked 

delay and sum (CR-DAS) [40], [41] algorithms. 

In comparison with the relevant state-of-the-art work, the 

proposed multimodal RF sensing system provides the 

following advantages: 

  

• The suggested system is cost-effective, non-invasive, 

unobtrusive, wearable, and requires minimal 

supervision, compared to conventional imaging 

technologies [8], [10], [11]. 

• In contrast to the proposed concept of miniaturized 

sensors embedded in RF glasses, the existing 

radiofrequency sensing techniques are relatively 

complex and less conformable with head-mounted 

sensor arrays [20], [21].  
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Fig. 14.  Images of realistic brain phantom with (a) ischemic 27 mm3 stroke target-A (b) ischemic 27 mm3 stroke target-B (c) brain atrophy, 58 mm3 cavity filled 
with CSF-mimicking liquid; and Reconstructed images using MIST beamforming algorithm for (d) ischemic stroke target-A (e) ischemic stroke target-B (f) brain 

atrophy 

 

 
 
Fig. 15.  Normalized backscattered signals for ischemic stroke target and brain atrophy (magnitude, dB) 

 

• Our experiments validate the multi-modal detection 

capability of this RF sensing system. Existing 

solutions are designed for a single modality, either 

stroke [18], [19], [20], [21] or brain atrophy detection 

[22]. However, our proposed system detects multiple 

neurodegenerative anomalies with the same sensors. 

• Our research is the first to investigate cerebral blood 

density detection using customized non-invasive RF 

sensors.  

• The proposed sensing system ensures multimodal 

neurodegeneration detection with low sensor count, 

as compared to the existing radiofrequency 

techniques that involve multi-element antenna arrays 

(8, 16 or 24 elements) for brain sensing [19], [20], 

[21], [22]. 

• The proposed meander line and crescent sensors, 

when integrated within wearable RF glasses, can 

effectively operate with a high sensitivity to the 

antenna-tissue separation while maintaining safety 

features such as thermal effect on tissues and Specific 

Absorption Rate (SAR). 

 

 

 



V. CONCLUSION 

A portable and wearable radio frequency system is 

developed for vascular dementia detection. The sensing 

system is capable of identifying brain atrophy, stroke and 

blood density variation in the brain at an initial stage. The 

design of sensors is optimized and miniaturized using 

computational software. The sensors are integrated with 

wearable smart glasses, and experimental validation of sensors 

has been performed by developing a realistic head phantom. 

Experimental results indicate that the designed sensors were 

able to detect the major pathophysiological anomalies 

associated with vascular dementia, like cerebral blood density, 

brain atrophy and stroke. The portable, cost-effective, user-

centric and non-invasive design makes it a novel sensing 

system for medical diagnostic applications. Simulated and 

measured S11 results have confirmed that the device is capable 

of detecting variations in blood density inside the brain 

effectively. The measured results from the sensing system are 

post-processed using an enhanced microwave beamforming 

algorithm. The imaging algorithm accurately reconstructed the 

brain atrophy and stroke changes in the realistic phantom. The 

promising results confirm the capability of this portable and 

wearable imaging system for the early detection of 

neurodegeneration.  

Future research will focus on the integration of this system 

with Internet of Things (IoT) sensors for real-time data 

transmission and processing that would be useful for robust 

remote sensing and imaging. The portable RF sensing system 

can be integrated with audio-visual sensors to enable emotion 

and cognition-aware neurodegeneration monitoring. The 

prospect of using flexible substrates for antennas can make 

future devices more conformable, resilient and manageable. A 

portable nano-VNA can be integrated into the wearable 

sensing system to make the device cost-effective and portable. 

The integration of 3D imaging algorithms can significantly 

accelerate the imaging reconstruction process and can improve 

accuracy and diagnosis. Another area that needs improvement 

is the development of 3D-printed lifelong phantoms with a 

more realistic representation of brain tissues, grey matter, 

white matter, skin, and blood pool. 
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