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Abstract 52 

Detecting and characterising coronary artery stenosis and atherosclerosis directly using imaging is key for 53 

clinical decision-making in patients with known or suspected coronary artery disease. Better imaging-based 54 

quantification can be achieved through technical improvements. Clinical consensus recommendations on 55 

the appropriateness of each imaging technique for direct coronary artery visualisation were derived in a 56 

three-step real-time Delphi process planned around the 2nd International Quantitative Cardiovascular 57 

Imaging (QCI) Meeting in September 2022. CT is the method of choice to rule out obstructive stenosis in 58 

patients with intermediate pre-test probability of coronary artery disease and enables quantitative 59 

assessment of coronary plaque with respect to dimensions, composition, location, and related risk of future 60 

cardiovascular events. MRI allows visualisation of coronary plaque and can be used in experienced centres 61 

as a radiation-free second-line option for non-invasive coronary angiography instead of CT. PET has 62 

greatest potential for quantifying inflammation within coronary artery plaque, while SPECT currently has 63 

a limited role in clinical coronary artery stenosis and atherosclerosis imaging. ICA is the reference standard 64 

for stenosis assessment but cannot characterise coronary plaques. IVUS and OCT are key invasive 65 

modalities for identifying plaques at higher risk of rupture. In this Consensus Statement, we provide Delphi-66 

based clinical consensus recommendations on the preferred use of each imaging technique in specific 67 

patient populations and an outlook into the future technological potential. 68 

 69 
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Introduction 71 

Because quantitative imaging of coronary atherosclerosis and stenosis has become widely available, 72 

interdisciplinary consensus about its role in clinical practice for the management of patients with suspected 73 

or known coronary artery disease (CAD) is highly desirable. During the 2nd Quantitative Cardiovascular 74 

Imaging (QCI) Meeting on September 9th, 2022, its present status and future potential were discussed from 75 

the viewpoint of clinicians (cardiologists, radiologists, and a cardiac surgeon), biomedical engineers, and 76 

computer scientists. This multidisciplinary approach was the basis for this Consensus Statement on the 77 

clinical appropriateness of quantitative coronary artery stenosis and atherosclerosis imaging. 78 

 79 

Clinical need for coronary artery stenosis and atherosclerosis imaging 80 

Appropriate assessment of the severity of coronary artery stenoses and the extent of the atherosclerotic 81 

burden is paramount for the selection of preventive measures and for guiding clinical decision-making in 82 

patients with known or suspected CAD. From a clinical perspective, three major questions need to be an-83 

swered: 1) What is the best imaging technique for direct confirmation of CAD? 2) How can imaging help 84 

identify the best treatment strategy? 3) How can imaging improve procedural planning?  85 

 86 

1) What is the best imaging technique for direct confirmation of CAD? Imaging has a crucial role in the 87 

diagnosis of obstructive CAD. While invasive coronary angiography (ICA) was the standard for a long 88 

time, several trials have since analysed the comparative effectiveness of ICA and computed tomography 89 

(CT) in stable chest pain1–5 and have found no difference in diagnostic performance between CT and ICA 90 

for the identification of obstructive CAD. In patients with stable chest pain and an intermediate pre-test 91 

probability of CAD, the DISCHARGE trial showed a lower rate of major procedure-related complications 92 

during patient treatment when CT was used as the initial imaging test instead of ICA to define subsequent 93 

management4,5. In intermediate-risk patients with suspected acute coronary syndrome, the RAPID-CTCA 94 

trial showed no improvement of clinical outcomes at one year with early CT in addition to standard of care6. 95 

In contrast to CT, the role of other imaging modalities for direct visualisation of coronary stenosis has so 96 

far only been investigated in diagnostic studies7, and randomised trials are lacking.  97 

 98 

2) How can imaging help identify the best treatment strategy? Ideally, imaging would help to stratify 99 

patients who benefit from optimal medical treatment (OMT) and risk factor modification alone or from the 100 

addition of revascularisation by either percutaneous coronary intervention8 (PCI) or coronary artery bypass 101 
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grafting (CABG). In patients with obstructive CAD and moderate/severe ischaemia, the ISCHEMIA trial 102 

showed that invasive treatment (predominantly PCI), compared to OMT and risk factor modification, did 103 

not prevent major adverse cardiovascular events until a median of 3.2 years of follow-up9, highlighting the 104 

challenge of identifying patients who will benefit from revascularisation. A large meta-analysis found a 105 

lower risk of cardiac death especially among patients with multivessel chronic CAD undergoing revascu-106 

larisation compared to OMT alone10. Multiple trials and an individual-patient-data meta-analysis of five 107 

trials that compared PCI vs CABG as the primary revascularisation therapy in patients with multivessel 108 

disease showed a survival benefit with CABG and a reduction in spontaneous myocardial infarction 109 

(MI)11,12, which may be due to the different mode of revascularisation, namely CABG, which protects distal 110 

vascular territories (FIG. 1). 111 

In addition, a network meta-analysis13 underscored the importance of OMT. It showed that, in 112 

CAD patients without left main disease or reduced ejection fraction only, CABG was associated with a 113 

reduction of infarction and all-cause death compared to OMT alone (HR 0.58, 95% CI 0.48–0.70), but this 114 

was associated with a higher risk of stroke.  115 

Because CABG is most beneficial in patients with more severe CAD, clinical quantitative coro-116 

nary imaging for the assessment of the atherosclerotic plaque burden is highly desirable. The original SYN-117 

TAX score was found to allow selection of the best revascularisation therapy for individual patients based 118 

on the anatomical distribution, complexity, and severity of stenoses on ICA14. To overcome the shortcom-119 

ings of purely anatomic scoring, comorbidities and other risk modifiers were included in SYNTAX II15. In 120 

retrospective analyses but not in prospective trials, the SYNTAX II and SYNTAX II 2020 successfully 121 

stratified patients benefiting from CABG vs PCI16,17. It would therefore be pivotal to test if the combination 122 

of clinical quantitative imaging with risk stratification could help to optimise treatment to prevent myocar-123 

dial infarction, which is most commonly caused by rupture of plaques without previous flow limitations18–124 

20. In addition to CT, there are two invasive imaging techniques that can identify high-risk plaque features: 125 

intravascular ultrasound (IVUS) and optical coherence tomography (OCT)21. In the PROSPECT study22, it 126 

was estimated that a plaque burden >70% measured by IVUS was associated with major adverse cardio-127 

vascular events (MACE) during a follow-up of 3 to 4 years. However, it remains to be shown that these are 128 

actionable imaging findings that could help prevent events. One aspect is that only positron emission to-129 

mography (PET), and to some extent also magnetic resonance imaging (MRI), allows the identification and 130 

detection of coronary artery plaque inflammation, which is also linked to plaque rupture and subsequent 131 

MI and may thus trigger intensified OMT as an important target of coronary atherosclerosis imaging23,24 132 

(FIG. 2). 133 
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 134 

3) How can imaging improve procedural planning? Several trials have demonstrated that ‘complete re-135 

vascularisation’, which was mostly determined by non-quantitative visual estimation of coronary stenoses 136 

in epicardial vessels, improves patient outcomes25. Fractional flow-reserve (FFR) can be used to guide 137 

appropriate use of PCI was introduced to limit the number of stents. The FAME-3 trial used this strategy 138 

in comparison to CABG in patients with multivessel disease with disappointing results. After one year, 139 

non-inferiority was not met for the primary endpoint (death, MI, cerebrovascular accident, or repeat revas-140 

cularisation)26. This finding gives rise to two important considerations. First, the optimal target lesion for 141 

PCI remains to be determined. It may be a flow-limiting stenosis or a vulnerable plaque. Second, the revas-142 

cularisation concept of CABG, which is fundamentally different from that of PCI and effectively provides 143 

the heart with a new autologous network of collaterals, may be particularly beneficial for preventing future 144 

MI in patients with a high plaque burden and multiple vulnerable plaques (FIG. 1). It is therefore of great 145 

importance to extract quantitative information from coronary atherosclerosis imaging pertaining to geom-146 

etry, stability, and inflammatory status as well as total plaque burden27. Ultimately, this information may 147 

modify not only the mode but also the technique of revascularisation24,28.  148 

 149 

In this Consensus Statement, we present the current status of clinical quantitative imaging techniques for 150 

direct visualisation of coronary artery stenosis and atherosclerosis for detection of CAD, selection of the 151 

best treatment strategy, and improvement of procedural planning. 152 

 153 

Methods of consensus 154 

The latest advances in coronary artery stenosis and atherosclerosis imaging require experts in different 155 

fields to identify appropriate clinical applications. The complexity of the different imaging modalities 156 

means that a comprehensive consensus is needed. We used the Delphi method29,30, asking participants a set 157 

of 29 questions (Supplementary TABLE 1) in a total of 3 rounds. We assembled the QCI group of 31 158 

experts from different fields including 1 cardiac surgeon, 10 radiologists, 9 cardiologists, 6 biomedical 159 

engineers and scientists, and 5 computer engineers. The experts’ talks were held during the 2nd QCI Con-160 

sensus Meeting at Charité – Universitätsmedizin Berlin on September 9th, 2022, and in tandems from the 161 

clinical and frontier research perspective.  162 

The first Delphi round took place online two weeks before the QCI meeting. The participants 163 

received a personalised link to the questionnaire via the Welphi web-application31,32. The second round 164 

took place on-site during the meeting, after the experts’ talks. The third and final round took place again 165 
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online three weeks after the meeting. While answering each question, each participant was shown his/her 166 

answers from the previous round in the online tool and could revise this default answer when deemed 167 

appropriate (Supplementary FIG. 1 and 2). Additionally, before the second and third round, anonymised 168 

interim results from all experts in the previous round were shown in tabular format presenting the median 169 

for each question (Supplementary TABLE 1 and Supplementary File 1). A total of 29 questions were 170 

presented in five categories: general clinical characteristics of coronary artery stenosis and atherosclerosis 171 

imaging modalities (5 questions), specific indications (8 questions), specific groups of patients (7 ques-172 

tions), specific coronary stenosis pathophysiology (3 questions), and specific atherosclerosis pathophysiol-173 

ogy (6 questions) (Supplementary TABLE 1).  The answers were entered using a Likert scale from 1 to 174 

9, where 1 to 3 meant inappropriate, 4 to 6 meant uncertain, and 7 to 9 meant appropriate33.The process 175 

was designed to present and weigh the advantages and disadvantages of each modality regarding different 176 

technical aspects and specific clinical indications. In this way, individual participants’ opinions influenced 177 

each other towards a collective understanding of the subject discussed, and a consensus was reached in a 178 

streamlined and consistent manner (FIG. 3).  179 

 180 

Technical characteristics, risk assessment, and challenges 181 

Technical characteristics and challenges as well as advantages and disadvantages of the imaging modalities 182 

are summarised in TABLE 1. 183 

 184 

Non-invasive imaging modalities for coronary stenosis and atherosclerosis assessment.  185 

CT has high spatial and temporal resolution for noninvasive assessment of coronary stenosis and plaque 186 

composition34,35 (TABLE 1, FIG. 4 and 5) within a single heartbeat using a low-dose protocol (3-5 mSv)36–187 

38. On the other hand, CT requires intravenous administration of a highly concentrated iodine-based contrast 188 

agents and is susceptible to artefacts from high heart rates or coronary calcium39 (FIG. 2, TABLE 1). It is 189 

important to note that intravenous contrast agents used for coronary CT angiography are associated with a 190 

lower rate of contrast-associated acute kidney injury (5.6%) compared with intra-arterial contrast agent 191 

administration for ICA (13.2%)40. Interestingly, physiological serum creatinine variation meeting the 192 

definition of acute kidney injury was similar to the rate of acute kidney injury 2 days after CT angiography41 193 

(TABLE 1). Major procedural complications of CT are rare and were reported in only 0.05% of patients, 194 

whereas the rate of major procedural complications of ICA without PCI was 1.0% and that of ICA with 195 

PCI was 5.6% in the DISCHARGE trial (TABLE 1). Major procedure-related complications were lower 196 
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by a factor of 4 in the CT-first group compared with the direct-to-ICA group in the DISCHARGE trial even 197 

including complications during the initial patient management following these diagnostic procedures4. This 198 

suggests that in terms of risk assessment, noninvasive CT coronary angiography is largely advantageous 199 

compared with directly proceeding to ICA. In expert centres, coronary MRI techniques offer the option of 200 

a free-breathing examination without ionising radiation, but cannot assess smaller vessels23,42,43 and are 201 

only available for research settings at present 23,42. Available sequences on most MRI scanners can assess 202 

stenotic segments, plaque inflammation and acute thrombi, and are not affected by artefacts produced by 203 

high-density calcium44–48 (TABLE 1, FIG. 4, FIG. 6). On the other hand, cardiac MRI is limited by long 204 

acquisition times and lower spatial resolution in protocols designed for motion correction39. Importantly, 205 

claustrophobia occurs commonly during MRI with rates of 2% in outpatients and 10% in inpatients and 206 

MRI safety risks may arise from the referral of patients with absolute contra-indications (e.g. shrapnels) 207 

occurring at a rate of 0.4% (TABLE 1). PET and single-photon emission computed tomography (SPECT) 208 

are hybrid imaging modalities that in combination with CT provide the option of direct coronary imaging49. 209 

PET using 18F-sodium fluoride (NaF) can assess microcalcifications, while 68-galium (Ga)-DOTATATE 210 

visualises plaque inflammation, and 18F-glycoprotein 1 (18F-GP1) allows assessment of thrombus 49,50 211 

(TABLE 1, FIG. 7). The rate of radiopharmaceutical adverse events is between 2.1 to 3.1 per 100,000 212 

administrations (including cutaneous (rash, flush) and cardiovascular (e.g., hypotension, anaphylactoid) 213 

reactions)51,52. Effective radiation dose of PET/CT is approximately 10 mSv for the combination of 214 

coronary CT angiography, attenuation-correction CT and the radiotracer24 (TABLE 1). The use of 215 

PET/MRI can reduce effective dose to 4-5 mSv and wide field of view scanners may reduce this even 216 

further to ultra-low dose examinations. The assessment of small coronary vessels by PET alone is degraded 217 

because of its low spatial resolution (~ 4 mm), registration issues between PET and CT acquisitions, and 218 

motion artefacts53,54. SPECT is predominantly used for myocardial ischaemia imaging33 and has a limited 219 

role in coronary plaque imaging in animal models55.  220 

 221 

Invasive imaging modalities for coronary stenosis and atherosclerosis assessment. With its high temporal 222 

and spatial resolution, ICA is the reference standard for stenosis assessment56 (FIG. 4). ICA is invasive in 223 

nature, uses iodine contrast agents, and ionising radiation56(TABLE 1, FIG. 4). As noted above, the 224 

intraarterial administration of contrast media for ICA resulted in a higher rate of contrast-associated acute 225 

kidney injury than intravenous contrast for CT in the randomised CAD-Man study40 (TABLE 1). The rate 226 

of major procedural complications of ICA without PCI is approximately twenty times higher compared 227 

with CT (1.0% versus 0.05%)4. An important technical challenge of ICA is that vessel lumen dimensions 228 
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can be misrepresented because of foreshortening and tortuosity56. IVUS uses intra-coronary ultrasound and 229 

has a lower spatial resolution but a higher penetration than OCT, allowing the assessment of plaque 230 

affecting all the layers of the vessel wall as well as plaque composition57–59 (TABLE 1, FIG. 4). OCT uses 231 

near-infrared light with a high temporal and spatial resolution (TABLE 1, FIG. 4). However, it has a lower 232 

penetration depth that limits the evaluation of coronary plaque to 500 µm within the luminal surface59,60. 233 

Both invasive intravascular modalities are limited by their rigid probes in tortuous, stenotic, highly 234 

calcified, and small vessels61. They have a role in the detection of clinically relevant stenoses and culprit 235 

lesions and in determining whether a plaque is at high risk of triggering future MACE62. With regards to 236 

risk assessment, coronary vasospasm is the most common major procedural complication of IVUS and 237 

OCT (approximately 3%) and pretreatment with nitrates is recommended. Additional major procedure-238 

related complications (dissection, vessel occlusion, embo-lism) of both IVUS and OCT are rare (0.4%) but 239 

it is important to note that both entail the risks of ICA plus the additional IVUS- and OCT- procedure-240 

related risks (TABLE 1). 241 

 242 

Imaging modalities for stenosis assessment 243 

The results for appropriateness regarding general characteristics, specific indications, specific groups of 244 

patients, and specific stenosis features are summarised in FIG. 3 and Supplementary File 1. 245 

 246 

Role in the assessment of stenosis. Meta-analyses demonstrated an excellent sensitivity of 100% of CT 247 

angiography for the diagnosis of obstructive coronary artery stenoses compared to ICA63,64. New-generation 248 

coronary MRI approaches have yielded an image quality comparable to that of CT in selected patients65,66. 249 

While MRI is a promising modality, large multi-centre studies comparing its diagnostic accuracy with ICA 250 

or CT are currently not available. PET allows to detect increased coronary plaque metabolism67 (TABLE 251 

1) but similar to SPECT does not allow clinical assessment of coronary stenosis (FIG. 3). Historically, ICA 252 

was considered the backbone of stenosis severity assessment and still has a role in identifying lesions that 253 

require immediate revascularisation (stenosis >90 %)68. IVUS and OCT impose an additional risk compared 254 

to ICA alone (TABLE 1) and are appropriate imaging modalities for patients with acute coronary syndrome 255 

and ST elevation while their general cost-effectiveness is uncertain69,70 (FIG. 3).  256 

 257 

Quantitative assessment of stenosis. CT is appropriate for stenosis measurement, e.g., of the minimum 258 

lumen diameter (MLD) and the minimum lumen area (MLA) with MLA being a better measure of luminal 259 
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narrowing in non-circular stenosis71 (FIG. 4). It is also appropriate for females, young patients, and indi-260 

viduals with a high BMI (>30 kg/m2) (FIG. 3). Coronary MRI is a potential option in expert centres for 261 

female and young patients with an accuracy of 79% for the detection of obstructive CAD compared with 262 

ICA; however, MRI is not recommended for coronary stenosis measurement because of low spatial reso-263 

lution and susceptibility to artefacts23 (TABLE 1, FIG. 3). Due to the lack of studies evaluating the accu-264 

racy of the CT component of PET and SPECT, both imaging modalities are currently considered inappro-265 

priate for stenosis quantification (FIG. 3). 266 

ICA has a high accuracy in measuring stenosis but interobserver variability is substantial72 and 267 

can be improved through the use of quantitative coronary angiography (QCA)73, while ICA is preferable 268 

over CT in patients with high heart rates (TABLE 1, FIG. 3). Stenosis quantification by IVUS and OCT 269 

can be performed with absolute (e.g., MLA) and relative measures (e.g., percentage area stenosis) (FIG. 4) 270 

and both invasive modalities are appropriate for stenosis measurement with low susceptibility to artefacts 271 

while the size of the probes prevents the assessment of distal and very stenotic segments (TABLE 1). 272 

Although generally larger than measured on ICA74, the average luminal diameter measured by IVUS, and 273 

especially OCT, corresponds well with actual dimensions in phantom models (measured diameter between 274 

-2.9% and 8.0%), and the measurements are highly reproducible74,75.  275 

 276 

Indications and clinical applications. CT is most appropriate for assessing coronary anatomy and in stable 277 

chest pain patients with low to intermediate pre-test probability and is the preferred choice after heart trans-278 

plantation4,76,77 (FIG. 3). The clinical indications for coronary MRI are currently uncertain because of a 279 

lack of randomised trials78. The high negative predictive value in expert centres makes coronary MRI a 280 

possible non-invasive second-line option for direct coronary assessment in patients with low to intermediate 281 

pre-test probability78 while the appropriateness of PET and SPECT remain generally uncertain (FIG. 3). 282 

The DISCHARGE trial4 and smaller randomised trials5 found several benefits for a treatment strat-283 

egy guided by CT instead of ICA in stable chest pain patients with intermediate pre-test probability of 284 

disease and thus, ICA remains the most appropriate imaging modality for direct coronary assessment in 285 

patients with high pre-test probability. In acute coronary syndrome, ICA is most appropriate, and the addi-286 

tional use of IVUS or OCT is considered appropriate if ST elevation is present(FIG. 3). However, a meta-287 

analysis has revealed only moderate accuracy compared with FFR for different MLA cut-off values pro-288 

posed for identification of hemodynamically significant stenosis by IVUS and OCT79,80.  289 

 290 
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Future developments. Improvements of in-plane spatial resolution of CT to 0.16-0.25 mm81 will reduce 291 

blooming artefacts for more accurate stenosis quantification and improved lumen visualisation in the pres-292 

ence of coronary stent struts82. In MRI, automated trigger delay determination, scan planning, and image 293 

reconstruction will enable adequate spatial resolution within a single breath-hold83. Automated calibration 294 

and lumen contouring in ICA may further ease and increase the use of QCA for stenosis quantification. For 295 

IVUS and OCT, imaging-derived computational flow indices allow improved identification of hemody-296 

namically significant stenoses compared to luminal measurements only84,85 . 297 

 298 

Key points for stenosis assessment  299 

 CT is most appropriate as an initial test for diagnosing CAD in patients with stable chest pain and 300 

low to intermediate clinical likelihood of obstructive CAD.  301 

 Not using ionising radiation, coronary MRI can become a second-line option for direct coronary 302 

assessment in patients with low to intermediate pre-test probability. 303 

 ICA is the most appropriate test in patients with high pre-test probability and acute coronary syn-304 

drome.  305 

 PET and SPECT have no role in the direct assessment of stenosis severity.  306 

 IVUS and OCT are preferred in acute coronary syndrome with ST elevation and for planning stent 307 

placement.  308 

 309 

CT for coronary atherosclerosis imaging 310 

Role in the assessment of atherosclerosis. CT provides qualitative and quantitative information on the 311 

total coronary plaque burden and composition (FIG. 3, Supplementary File 1). Specifically, CT allows 312 

detection and quantification of calcified, non-calcified, and partially calcified plaque (FIG. 2). Moreover, 313 

analysis of plaque characteristics in CT has been shown to allow identification of high-risk plaque fea-314 

tures86,87 (FIG. 5). 315 

 316 

Quantitative assessment of atherosclerosis. Coronary artery calcium (CAC) plaque burden is quantified 317 

using the Agatston, volume, or mass CAC scores88,89. The CAC score is a strong and independent predictor 318 

of cardiovascular events90,91 and, therefore, is recommended to refine the 10-year risk stratification92. Low-319 

attenuation plaque burden (< 30 Hounsfield units) > 4% on CT was shown to be associated with fatal and 320 

nonfatal MI in patients with stable chest pain in the SCOT-HEART trial (HR: 4.65; 95% CI, 2.06–10.5; 321 
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P<0.001)93. Plaque morphology on CT provides further valuable prognostic information94. High-risk coro-322 

nary plaque features on CT, in addition to a CAC score of 400 or more4,95, include low attenuation, positive 323 

remodelling, napkin-ring sign and spotty calcifications86,87 (FIG. 5).  324 

 325 

Indications and clinical applications. CT is most appropriate for quantifying total coronary plaque burden 326 

and appropriate to assess coronary plaque morphology and composition. The detection of culprit plaque is 327 

appropriate using CT, yet was rated higher using IVUS and OCT96 (FIG. 3). In asymptomatic individuals 328 

at an intermediate risk of CAD, CAC scoring, based on non-contrast CT, adds prognostic value beyond 329 

clinical risk factors and can guide decision-making regarding risk factor modification95. Coronary plaque 330 

on CT is visually intuitive and can be directly explained to patients and, therefore, may improve adherence 331 

to medical therapy well as lead to more statin therapy recommendations97. Analysis of the pericoronary 332 

adipose tissue (PCAT) surrounding the coronary arteries on CT has emerged as a new approach to detecting 333 

and quantifying coronary artery inflammation98 by detecting a higher attenuation as an indirect biomarker 334 

of molecular and cellular changes96 (FIG. 5). 335 

 336 

Future development. New software will allow rapid, fully automated whole coronary tree plaque quantifi-337 

cation and characterisation and may ultimately be used as a support tool for routine clinical decision-making 338 

99. In addition, further research on PCAT will provide more insights into its possible clinical utility100,101. 339 

 340 

Key points for CT 341 

 CT’s spatial resolution enables quantitative assessment of coronary plaque with respect to dimen-342 

sions, composition, location, and related risk of future cardiovascular events while it is the most 343 

appropriate modality for quantification of the total coronary plaque burden (FIG. 3).  344 

 Higher and/or irregular heart rates, extensive coronary calcifications, and coronary stents hinder 345 

the evaluation of coronary atherosclerosis (TABLE 1). 346 

 Automated whole-tree coronary plaque software, together with higher temporal and spatial reso-347 

lution provided by new CT scanners, will facilitate quantification of coronary atherosclerosis. 348 

 349 

MRI for coronary atherosclerosis imaging 350 

Role in the assessment of atherosclerosis. Black-blood imaging sequences102(FIG. 6) are used to assess 351 

the lumen and vessel wall and detect wall thickening as a marker of positive remodelling103–106. Dark-blood 352 
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T1-weighted imaging detects hallmarks of plaque haemorrhage and luminal thrombi as hyperintense sig-353 

nals, which indicate the formation of methaemoglobin 12 to 72 hours following a haemorrhagic 354 

event107(FIG. 6, Supplementary File 1). Finally, intra-plaque inflammation (FIG. 2), and extracellular 355 

expansion related to angiogenesis have been targeted using contrast-enhanced T1-weighted imaging after 356 

administration of a gadolinium-based contrast agent, and results demonstrate a correlation of dynamic and 357 

late signal enhancement with the severity of atherosclerosis108 (FIG. 6). 358 

 359 

Quantitative assessment of atherosclerosis. High signal intensity of coronary plaque on noncontrast MRI, 360 

which correlates with a higher likelihood of unstable plaque109, can be quantified on T1-weighted inversion-361 

recovery images Intriguingly, the extent of high-intensity plaque was found to decrease after statin ther-362 

apy110. Sato et al.111 have shown that the predominant substrate for such high-intensity plaque in stable CAD 363 

is intraplaque haemorrhage and not lipids, which is in agreement with findings of near-infrared spectros-364 

copy IVUS (NIRS-IVUS) and indicates how MRI may contribute to the guidance and monitoring of ther-365 

apy.  366 

 367 

Indications and clinical applications. The clinical use of MRI is considered uncertain, mostly because of 368 

its limited resolution and 3D coverage (FIG. 3). Black- and dark-blood MRI may become alternatives to 369 

CT for the non-invasive assessment of coronary atherosclerosis112. Imaging high-risk plaque features may 370 

help to better stratify patients’ risk and thus improve tailoring of medical therapy.  371 

 372 

Future development. Spatial resolution will be enhanced by three-dimensional (3D) imaging with isotropic 373 

voxel sizes between 0.8 and 1.5 mm and acquisition times of 10 to 15 min39,46. Signal may be boosted by 374 

administering targeted gadolinium- or iron-based contrast agents113. Alternatively, fluorine-based imaging 375 

agents may improve contrast given the absence of background signal114. Additional efforts to boost resolu-376 

tion include non-rigid motion correction for signal acquisition during extended periods of the cardiac cy-377 

cle115. 378 

Key points for MRI 379 

 MRI allows visualisation of wall thickness, intraplaque haemorrhage, and luminal thrombi as high-380 

risk coronary plaque features but is limited by motion artefacts. 381 

 MRI is currently not appropriate for use in clinical practice because it has too low a resolution and 382 

lacks 3D coverage in comparison to CT (TABLE 1). 383 
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 New technology to improve spatial resolution, motion correction, as well as new contrast agents 384 

may make MRI a non-invasive alternative to CT.  385 

 386 

PET for coronary atherosclerosis imaging 387 

Role in the assessment of atherosclerosis. PET allows interrogation of disease activity within coronary 388 

plaque, and research has focused largely on the detection of coronary inflammation, calcification, and 389 

thrombosis24,116,117 (FIG. 2). Radiotracers specifically targeting inflammation can be administered to 390 

identify and to characterise distinct phases of inflammation118. Examples include targeting of glucose 391 

metabolism in activated macrophages with 18F-fluorodeoxyglucose117, chemokine receptor CXCR4 392 

expression on leukocytes and polarised macrophages118 and somatostatin receptor subtype-2 expression in 393 

proinflammatory macrophages with 68Ga-DOTATATE119,and calcification activity using the radiotracer 394 

18F-sodium fluoride (NaF)120 (FIG. 7).  395 

 396 

Quantitative assessment of atherosclerosis. Most studies have been conducted with the radiotracer 18F-397 

NaF, which has been validated as a marker of calcification and disease activity using histology as standard 398 

of reference24 (FIG. 7). Its uptake demonstrates a close association with disease progression and a change 399 

in CAC scores121. Importantly, baseline 18F-NaF identifies culprit plaque, and total coronary 400 

microcalcification activity independently predicts subsequent fatal or non-fatal MI (hazard ratio 7.1, 95% 401 

confidence interval 2.2 to 25.1; p=0.003)120. 402 

 403 

Indications and clinical applications. PET is considered the most appropriate imaging modality for 404 

assessing coronary plaque inflammation (FIG. 3, Supplementary File 1) but remains primarily a research 405 

tool. 18F-FDG PET is already used to monitor the pharmacologic modulation of inflammation in extra-406 

coronary atherosclerotic plaque in clinical trials of novel anti-inflammatory drugs122,123. Moreover, PET has 407 

provided translationally relevant insights into plaque pathobiology and the relevance of systemic 408 

interactions for disease progression116,124. The prospective multicentre non-randomised international 409 

clinical PREFFIR study125 recently confirmed the ability of 18F-NaF PET to predict subsequent MI120 and 410 

cardiovascular death in patients with advanced multivessel CAD and a history of recent MI. These findings 411 

can help identify patients with active disease states who may benefit from intensive medication (e.g., 412 

PCSK9 or IL1 inhibition).  413 

 414 
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Future development. New tracers will allow the more specific interrogation of coronary inflammation and 415 

other key processes such as fibrosis126 and thrombus formation127. Advances in PET detector technologies 416 

will lead to better resolution and, thus, higher sensitivity128. Finally, image processing solutions to address 417 

motion can markedly enhance image quality and are becoming clinically available129.  418 

 419 

Key points for PET 420 

 PET is considered most appropriate for quantifying coronary plaque inflammation, yet is suscep-421 

tible to motion artefacts and has limited temporal and spatial resolution (TABLE 1) and therefore 422 

currently remains a research tool. 423 

 Technical advances and software improvements will improve motion correction and overcome 424 

limited spatial and temporal resolution. 425 

 18F-NaF PET of calcification activity predicts subsequent disease progression and event risk and 426 

has the potential to improve risk stratification and identification of patients who require a more 427 

intensive therapy. 428 

 429 

ICA for coronary atherosclerosis imaging 430 

Role in the assessment of atherosclerosis. ICA is the reference standard for the diagnosis of obstructive 431 

CAD4 but has a limited role in the direct visualisation of coronary atherosclerosis (FIG. 3, Supplementary 432 

File 1). 433 

 434 

Quantitative assessment of atherosclerosis. ICA detects the presence of atherosclerotic plaque based on 435 

the imprint left on the vessel contour and therefore provides limited information on plaque morphology and 436 

composition (FIG. 3). Nonetheless, deformation of the vessel wall by circumferential tensile stress from 437 

the pulsatile arterial pressure is directly dependent on tissue stiffness and therefore on the plaque 438 

composition (FIG. 8). This deformation of the coronary artery, termed radial wall strain (RWS), can be 439 

derived from ICA and presents another avenue for clinical application of advanced ICA technology130 440 

(FIG. 8).  441 

 442 

Indications and clinical applications. ICA is appropriate for culprit coronary plaque detection (FIG. 3). 443 

As supported by our Delphi results, ICA is appropriate in patients with a high pre-test probability of CAD. 444 

Moreover, ICA is also indicated if a patient remains symptomatic despite guideline-directed medical 445 

treatment and in case of high-risk anatomy CAD131 (FIG. 3, Supplementary File 1).  446 
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 447 

Future development. Promising ICA-based techniques to assess coronary atherosclerosis such as RWS 448 

must be further explored130. An additional ICA-based technique is determination of endothelial shear stress, 449 

which indicates coronary artery regions prone to developing plaques based on computational fluid 450 

dynamics, and thus, a potential parameter for risk stratification in patients with CAD19,132. 451 

 452 

Key points for ICA 453 

 ICA is appropriate for the detection of culprit coronary plaque especially in patients with acute 454 

coronary syndrome, yet does not directly visualise the vessel wall and plaque composition. 455 

 Coronary RWS is indirectly determined by coronary plaque composition and could potentially 456 

have a role clinically (FIG. 8). 457 

 ICA is appropriate in patients with stable chest pain and a high pre-test probability of CAD 458 

(>60%). 459 

 460 

 461 

IVUS for coronary atherosclerosis imaging 462 

Role in the assessment of atherosclerosis. IVUS can characterise the morphology and composition of 463 

coronary artery plaque with a much higher penetration depth (4-8 mm) than OCT (0.4-2.0 mm)70; but with 464 

lower spatial resolution (TABLE 1). IVUS allows visualisation of all three layers of the coronary vessel 465 

wall and the detection of high-risk plaques that can reduce the effectiveness of PCI (FIG. 9). 466 

 467 

Quantitative assessment of atherosclerosis. Positive remodelling is a common finding in early 468 

atherosclerosis that can be detected using IVUS and is associated with plaque rupture and thrombus 469 

formation133 (FIG. 2). In the PROSPECT study22, IVUS-based determination of a plaque burden larger than 470 

70% in patients with acute coronary syndrome was associated with non-culprit MACE during a follow-up 471 

of 3 to 4 years (HR: 5.03, 95% CI: 2.51–10.11, p<0.001). IVUS probes integrating NIRS allow detection 472 

and quantification of lipid-rich plaques based on a maximum 4 mm lipid core burden index ≥400, which 473 

was found to help in identifying patients at higher risk for subsequent MACE (HR:3.39, 95% CI: 1·85–474 

6·20, p<0·0001) in 24-month follow-up134. However, artefacts such as posterior shadowing in calcified 475 

plaque, reverberation, and non-uniform rotational distortion can degrade coronary plaque visualisation in 476 

IVUS135 (FIG. 9). 477 

 478 
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Indications and clinical applications. IVUS is appropriate to assess coronary plaque composition and to 479 

detect culprit plaque (FIG. 3, Supplementary File 1). IVUS is considered less appropriate than CT for 480 

estimating total plaque burden and less appropriate than PET for assessing coronary plaque inflammation. 481 

It is also useful for identifying stent failure, particularly by determining malapposition, underexpansion, 482 

and edge dissection62 (FIG. 9). The ULTIMATE trial demonstrated that the use of IVUS during the 483 

implantation of drug-eluting stents reduced the cardiovascular death rate compared to the use of ICA 484 

alone136.  485 

 486 

Future development. Current research focuses on automatic detection and measurement of coronary plaque 487 

during the procedure137,138. IVUS technologies that incorporate other imaging modalities (OCT/NIRS) and 488 

the estimation of FFR will enhance the identification of high-risk coronary plaques and their haemodynamic 489 

repercussion, respectively62,70.  490 

 491 

Key points for IVUS 492 

 IVUS is appropriate for assessment of coronary plaque composition and detection of culprit coro-493 

nary plaque. 494 

 Assessing target vessels before stent implantation and detecting stent failure are important clinical 495 

applications of IVUS which will benefit from the development of automated detection and quan-496 

tification of coronary plaque. 497 

Detection of superficial lesions with a high risk of rupture is an important area of IVUS research 498 

that can ultimately close the gap towards OCT. 499 

 500 

OCT for coronary atherosclerosis imaging 501 

Role in the assessment of atherosclerosis. OCT is an invasive imaging modality that provides real-time 502 

tomographic views of coronary plaque at very high resolution by using infrared light and fibreoptic tech-503 

nologies62. OCT has the highest spatial resolution to assess superficial coronary plaque lesions but lower 504 

penetration depth than IVUS62, which also is its major limitation as it precludes assessment of the total 505 

coronary plaque burden. When used to assess suspected stent failure, OCT can detect uncovered struts, 506 

distinguish neoatherosclerosis from neointima, and identify thrombus and is more accurate in revealing 507 

stent underexpansion, malapposition, and edge dissection139–141.(FIG. 10). 508 

 509 
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Quantitative assessment of atherosclerosis. OCT can differentiate the phenotype of culprit coronary plaque 510 

and to identify TCFA (i.e., cap < 65-70 μm)60,142 (FIG. 10). Moreover, OCT can measure the thickness of 511 

the fibrous cap60, identify high-risk plaques61,143 and macrophages (FIG. 10), and quantify plaque exten-512 

sion144. 513 

 514 

Indications and clinical applications. Because of its high spatial resolution, OCT is most appropriate for 515 

assessment of coronary plaque morphology and equally appropriate as IVUS for determination of coronary 516 

plaque composition and culprit coronary plaque detection (FIG. 3, Supplementary File 1). The detailed 517 

visualisation of luminal superficial lesions allows identification of underlying causes of MI with non-ob-518 

structive coronary arteries (MINOCA) such as spontaneous coronary artery dissection and embolic dis-519 

ease61. In the ILUMIEN III: OPTIMISE PCI trial, OCT-guided PCI was able to achieve higher stent ex-520 

pansion measured as minimum stent area compared with ICA-guided PCI, but was not superior to IVUS-521 

guided PCI145. 522 

 523 

Future development. Automated identification and quantification of coronary plaques by OCT is a subject 524 

of current research146,147. A combination of OCT with other intravascular imaging modalities (IVUS/NIRS) 525 

and OCT-based FFR may be able to more comprehensively assess coronary plaque and flow impact after 526 

stent implantation143,148,149. This may facilitate better identification of plaques with a higher risk of compli-527 

cations.  528 

 529 

Key points for OCT 530 

 OCT has high spatial resolution and thus allows accurate assessment of superficial lesions while 531 

its penetration depth is lower than that of IVUS. 532 

 The main challenges of OCT include its invasive nature, the expertise required in imaging inter-533 

pretation, and its limited penetration depth. 534 

 OCT is recommended for guiding and optimising stent placement, especially in patients with com-535 

plex lesions and anatomy. 536 

 537 

Conclusions 538 

Several modalities are available for clinical quantitative coronary artery stenosis and atherosclerosis 539 

imaging. CT is accurate and reliable for stenosis assessment and quantification of total coronary plaque 540 

volume, making CT most appropriate for directing treatment in patients with stable chest pain and an 541 
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intermediate probability of CAD27. Even though MRI is currently not widely used in the clinical setting and 542 

is mostly used at expert centres, it has potential to become a reliable tool to assess stenosis and plaque 543 

morphology without ionising radiation exposure provided further technical improvements relevantly 544 

increase its robustness. PET has a role in the quantitative assessment of coronary plaque inflammation, 545 

making it a preferred modality for treatment monitoring. ICA is considered the reference standard for the 546 

evaluation of patients with stable chest pain and a high probability of coronary stenosis as well as for 547 

patients with acute coronary syndrome. IVUS and OCT are intravascular imaging modalities that play a 548 

relevant role both in the estimation of coronary stenosis severity and in plaque characterisation for treatment 549 

planning.  550 

 The clinical potential of these modalities can be substantially improved by technical advances. In 551 

CT, new technologies aim at improving spatial and temporal resolution as well as automated quantification 552 

and characterisation of coronary plaque. The spatial resolution of MRI will be enhanced by reduction of 553 

the voxel size and shorter acquisition times, and better signal enhancement will be achieved with new 554 

contrast agents. The role of PET will expand by the translation of research findings into clinical practice 555 

and the development of new tracers for the detection of plaque vulnerability. QCA will help in the 556 

standardisation of stenosis assessment by ICA, while RWS will contribute information derived from 557 

estimating the deformity of the vessel wall caused by coronary plaques. Anatomical measurements in IVUS 558 

and OCT will enable determination of coronary flow by the integration of FFR into the same catheters.  559 

No single quantitative coronary imaging modality is best for all groups of patient or disease types 560 

and not all are equally available with similar local expertise at all clinical centres. Using a Delphi method, 561 

we determined which imaging modalities are better suited for specific patient groups (FIG. 3). In 562 

conclusion, this clinical consensus statement shows the current advantages, disadvantages, and expected 563 

future development of different imaging modalities for clinical quantitative coronary artery stenosis and 564 

atherosclerosis imaging. This will help examiners to appropriately choose the best imaging modality based 565 

on the specific clinical scenario, individual patient characteristics, and the availability of each imaging 566 

modality. 567 
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Tables 1148 

 1149 

 1150 

Table 1 | Technical comparison of imaging tools for direct visualisation of coronary stenosis and 1151 

atherosclerosis. 1152 

 Parameter CT MRI PET SPECT ICA IVUS OCT 

General              

Ionising radia-
tion  

Yes, the median 
effective dose 
of CT is approxi-
mately 2-5 
mSv63,150,151. 

No Yes, effective dose of 
approximately 10 mSv 
for the combination of 
coronary CT angi-
ography, attenuation-
correction CT and the 
radiotracer (0.019 
mSv/MBq for 18F-FDG 
and 0.024 mSv/MBq 
for 18F-sodium fluo-
ride (NaF))152,153.    

Yes, but no clinical 
coronary imaging 
application at pre-
sent. 

Yes, the median 
effective dose of 
ICA was re-
ported to be 4.1 
mSv4. 

Not by itself, ionis-
ing radiation used 
during the ICA pro-
cedure 

Not by itself, ionis-
ing radiation used 
during the ICA pro-
cedure 

Contrast agent, 
tracer, or non-
contrast tech-
nique 

High iodine con-
centration (~ 
350–400 mg io-
dine/ml), intra-
venous admin-
istration with a 
rate of acute 
kidney injury of 
5.6%  

Coronary MRI an-
giography: non-
contrast-en-
hanced 3D 
bSSFP/T1-GRE se-
quence 
Coronary MRI 
plaque: motion-
corrected RD T1-
GRE thrombus: 
MRDTI  

Plaque imaging:  
Calcification: 18F-so-
dium fluoride (NaF).  
Glucose metabolism:  
18F-FDG.  
SSTR2: 68Ga-DOTATATE  

Currently NA for 
atherosclerosis as-
sessment. Steno-
sis can be as-
sessed by the CT 
component of the 
procedure. 

Iodine contrast 
agent, intraarte-
rial administra-
tion with a sig-
nificantly higher 
rate of acute 
kidney injury of 
13.2% com-
pared to CT40. 

NA Need of clearing 
during pullbacks 
(contrast or eventu-
ally saline in CKD)  
 

Risk assessment Only 0.05% 
(1/1782) of cor-
onary CT in the 
DISCHARGE trial 
were associated 
with a major 
procedural 
complication4. 
Major proce-
dural complica-
tions of CT and 
related proce-
dures during 
the initial sub-
sequent man-
agement oc-
curred at a rate 
of 0.5% in pa-
tients with sta-
ble chest pain in 
the DISCHARGE 
trial - signifi-
cantly less fre-
quent com-
pared to the 
1.9% for the ICA 
group4. 

Referral of pa-
tients with abso-
lute contraindica-
tions (e.g. shrap-
nels and pace-
makers) can be a 
safety concern 
and occurs at a 
rate of 0.4%154. 
Claustrophobia is 
common during 
MRI with rates 
between 2% in 
the outpatient 
setting155 and 
10% in the inpa-
tient setting156. 

Similar risks as noted 
for coronary CT plus 
the risks of the PET 
tracer.  The incidence 
of radiopharmaceuti-
cal adverse events has 
been reported to be as 
low as 2.1 to 3.1 per 
100,000 administra-
tions (including cuta-
neous (rash, flush) and 
cardiovascular (e.g., 
hypotension, anaphy-
lactoid) reactions), 
with no deaths51,52. 

No clinical coro-
nary imaging ap-
plication at pre-
sent. 

 

1.0% (15/1532) 
of ICA without 
PCI and 5.6% of 
ICA with PCI 
(15/269) in the 
DISCHARGE trial 
were associated 
with a major 
procedural com-
plication4. Ma-
jor procedural 
complications of 
ICA and related 
procedures dur-
ing the initial 
subsequent 
management 
occurred at a 
rate of 1.9% in 
the DISCHARGE 
trial which was 
significantly 
more frequent 
compared to 
the 0.5% for the 
CT group4. 

IVUS entails the 
risks of ICA plus ad-
ditional IVUS pro-
cedure-related 
risks. Coronary vas-
ospasm is the most 
common major 
procedural compli-
cation of IVUS (ap-
proximately 3%) 
and pretreatment 
with nitrates is rec-
ommended. Addi-
tional major proce-
dure-related com-
plications (dissec-
tion, vessel occlu-
sion, embolism) are 
rare (0.4%)157. 
 

OCT entails the risks 
of ICA plus addi-
tional OCT proce-
dure-related risks. 
The rate of major 
procedural compli-
cations related to 
OCT is similar to 
that of IVUS158. 
 

Temporal resolu-
tion (acquisition 
time per frame) 

Approximately 
150-200 ms 

20-60 ms 5s -10s  5 s to 5 min  1-10 ms 30-100 frames per 
second 

180-200 frames per 
second  

Spatial resolu-
tion (image anal-
ysis voxel size) 

0.35*0.35 
mm²(axial) with 
slice thickness 
of 0.5 to 0.7 mm 

Coronary MRI an-
giography: 0.9-1.3 
mm³  
Coronary MRI 
plaque imaging: 
0.8-1.5 mm³ 

Axial resolution: 3-5 
mm  

Axial resolution: 6-
10 mm  

0.1-0-2 mm Axial resolution: 
100 to 150 µm; lat-
eral resolution 150 

to 300 μm 

Axial resolution: 10–
15 µm; lateral reso-
lution: 20 to 90 μm  

Penetration 
depth 

NA NA NA NA NA 4-8 mm 0.4-2.0 mm (de-
pending on type of 
tissue at selected lo-
cation)  

Technical chal-
lenges 

              

Susceptibility to 
artefacts 

Medium Medium High High Low Medium Medium 

Small-vessel as-
sessment 

Medium Low Low Low High Medium Medium 
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 1153 

Consensus on the technical assessment of imaging modalities compiled in this table was accomplished 1154 

using the Delphi method with ratings by 10 investigators (1 cardiologist, 5 radiologists, 1 dual certified 1155 

cardiologist–radiologist, 1 nuclear medicine physician and 2 methodologists). 1156 

3D: three-dimensional; bSSFP: balanced steady-state free precession; CT: computed tomography; CKD: 1157 

chronic kidney disease; ECG: electrocardiogram; F:fluoride; FDG: fluorodeoxyglucose; Ga: gallium; GRE: 1158 

gradient echo sequence; ICA: invasive coronary angiography; IVUS: intravascular ultrasound; MRI: mag-1159 

netic resonance imaging; MRDTI: magnetic resonance direct thrombus imaging; OCT: optical coherence 1160 

tomography; PET: positron emission tomography; RD : respiratory dynamic; SPECT: single-photon emis-1161 

sion computed tomography NA, not applicable; SSTR2: somatostatin receptor 2 1162 

 1163 

  1164 

User depend-
ency 

Low High Low Low Medium High High 

Need for ECG-
gating 

Yes Yes Yes Yes No No No 

Need of sedation No No No No Yes, conscious 
sedations possi-
ble 

Yes, conscious se-
dation possible 

Yes, conscious seda-
tion possible 

Advantages and 
disadvantages 

             

Advantages Non-(minimally) 
invasive. Coro-
nary lumen and 
coronary wall 
assessment. 
Similar amount 
of contrast 
agent as in ICA.  

Inflammation de-
tection in coro-
nary plaque. No 
need for ionising 
radiation. Most 
techniques do not 
require contrast 
agent. 

Molecular characteri-
sation of pathobiology. 
Direct inflammation 
detection in coronary 
plaque. Calcification 
activity assessment.  

NA High accuracy in 
stenosis assess-
ment. Able to 
assess small ves-
sels. Treatment 
option during 
the same proce-
dure.  

Higher penetration 
compared to OCT, 
enables assess-
ment of all vessel 
layers.  

Higher spatial and 
temporal resolution 
than IVUS enables 
better endoluminal 
evaluation of 
plaque. Can pene-
trate calcium and 
measure its compo-
nents. 

Disadvantages High and irregu-
lar heart rates.               
High coronary 
calcium load 
and blooming 
artefacts (false 
positives). 

Challenges due to 
motion and spa-
tial resolution. 
Clinical role still to 
be defined.  

Challenges due to mo-
tion and limited resolu-
tion. 
Limited  
availability  
(in  
specialised  
centres only).  
 

Currently no role 
for SPECT in coro-
nary plaque and 
stenosis imaging 

Invasive user-
dependent pro-
cedure.  
No direct as-
sessment of cor-
onary plaque.  

Lower temporal 
and spatial resolu-
tion than OCT that 
limits assessment 
of superficial 
plaque compo-
nents. Challenging 
to handle in very 
tortuous vessels 
and in presence of 
high-grade steno-
sis.  

Lower penetration 
that limits assess-
ment of deep vessel 
layers. 
Requires clearing of 
blood during pull-
back. Challenging to 
handle in very tor-
tuous and distal 
vessels.  
Cannot penetrate 
highly scattering, 
highly attenuating 
lipid tissue. 
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Figures 1165 

 1166 

Fig. 1 | Main differences in the revascularisation concepts between PCI and CABG. 1167 

 1168 

a | Percutaneous coronary intervention (PCI) has the advantage of re-establishing coronary artery blood 1169 

flow after angioplasty and stent placement in a flow-limiting lesion; however, non-obstructive coronary 1170 

potential future culprit lesions downstream are not treated, which could lead to infarction in distal vascular 1171 

territories. b | On the other hand, coronary artery bypass grafting (CABG) is a surgical procedure providing 1172 

a bypass for alternative blood supply to distal coronary territories (usually from a mammary or radial ar-1173 

tery), which has the advantage of protecting distal vascular territories as the grafts are usually inserted distal 1174 

to additional plaque (adapted from Doenst et al.18). 1175 

 1176 

 1177 

 1178 

 1179 

  1180 



 

34 

 

Fig. 2 | Targets of clinical coronary stenosis and atherosclerosis imaging. 1181 

 1182 

 1183 

 1184 

The figure shows a schematic coronary artery cross-section and summarises the different coronary stenosis 1185 

and atherosclerosis imaging targets (indicated in Italic and Bold) and the appropriateness of each imaging 1186 

modality for each target based on the QCI consensus. The appropriateness is shown in descending order for 1187 

each of the imaging targets. CT is an appropriate modality to assess plaque burden, coronary plaque (CP), 1188 

coronary artery lumen dimensions (i.e., stenosis), and pericoronary adipose tissue (PCAT) and may allow 1189 

assessment of the necrotic core as low-attenuation plaque as well as coronary stents. MRI can be used to 1190 

assess inflammation and thrombi in a research setting. PET is the best technology to show and quantify 1191 

coronary artery plaque inflammation and can also identify coronary thrombi though at lower accuracy 1192 

compared with OCT and IVUS. ICA is the reference standard to assess coronary lumen dimensions and 1193 

basic stent characteristics. IVUS is appropriate to assess lumen dimensions, plaque composition, thrombi, 1194 

CP, and stents. OCT is a high-resolution technique to assess coronary plaque rupture, the necrotic core, 1195 

thrombi, and stents.  1196 

CP: calcified plaque; CT: computed tomography; ICA: invasive coronary angiography; IVUS: intravascular 1197 

ultrasound; MRI: magnetic resonance imaging; NCP: non-calcified plaque; NIRS: near-infrared 1198 

spectroscopy; OCT: optical-coherence tomography; PET: positron-emission tomography. 1199 

  1200 
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Fig. 3 | Clinical characteristics and appropriateness of coronary artery stenosis and atherosclerosis 1201 

imaging. 1202 

General clinical characteristics of coronary ar-
tery stenosis and atherosclerosis imaging mo-

dalities C
T

 

M
R

I 

P
E

T
 

S
P

E
C

T
 

IC
A

 

IV
U

S
 

O
C

T
 

Availability of modality in clinical practice 9 6 4 5 9 6 5 

Modality is commonly applied in clinical prac-
tice 

8 5 2 4 9 5 4 

Modality includes quantification in clinical 
practice 

8 5 5 4 7 7 7 

Cost-effectiveness of imaging technique 8 5 3 4 6 5 5 

General adverse events profile 8 8 7 7 6 5 5 

 1203 

 1204 

 1205 

 1206 

 1207 

 1208 

 1209 

 1210 

 1211 

 1212 

 1213 

 1214 

 1215 

 1216 

 1217 

 1218 
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 1220 

 1221 

 1222 

 1223 

Specific indications: appropriateness of coro-

nary artery stenosis and atherosclerosis imag-
ing C

T
 

M
R

I 

P
E

T
 

S
P

E
C

T
 

IC
A

 

IV
U

S
 

O
C

T
 

Stable chest pain with suspected CAD and in-
termediate pre-test probability (10-60%) 

9 6 4 5 5 3 3 

Stable chest pain with suspected CAD and 
high pre-test probability (>60%) 

7 6 4 4 8 6 6 

Following an inconclusive or nondiagnostic 

functional test 

8 5 4 4 7 5 5 

Acute coronary syndrome without ST eleva-
tion 

7 4 3 3 8 6 6 

Acute coronary syndrome with ST elevation 3 2 1 1 9 7 7 

Asymptomatic subjects with high-risk of cardi-

ovascular disease (>10% risk of cardiovascular 
events in the subsequent 10 years) 

7 4 2 2 2 2 2 

New symptoms in patients with prior coronary 

stenting 

7 5 4 5 8 6 6 

New symptoms following coronary artery by-

pass grafting 

8 6 4 4 7 5 5 

Specific groups of patients: appropriateness 

of coronary artery stenosis and atheroscle-

rosis imaging 

C
T

 

M
R

I 

P
E

T
 

S
P

E
C

T
 

IC
A

 

IV
U

S
 

O
C

T
 

Female patients 8 7 5 5 7 7 7 

Young age (<55y) 8 7 4 4 6 5 5 

High heart rate (>70 beats per min) 7 6 5 5 8 7 7 

High BMI (>30 kg/m²) 7 6 5 5 7 7 7 

Valvular heart disease (including planned 
transcatheter aortic valve implantation) 

9 6 3 2 7 5 4 

After heart transplantation 8 6 4 4 7 6 6 

Chronic kidney disease (GFR: <30 
ml/min/1.73 m²) 

6 6 5 5 6 5 5 
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 1224 

 1225 

 1226 

 1227 

The values shown are the median ratings of the 31 experts at the end of the 3-round clinical Delphi process 1228 

for each modality and each of the 29 clinical questions. Consensus was rated on a scale of 1 to 9, with 1 to 1229 

3 being inappropriate (purple), 4 to 6 being uncertain (yellow), and 7 to 9 being appropriate (green). A total 1230 

of 31 experts participated. Two radiologists (M.D. and A.J.V.M.), one MD/PhD (F.B.), one cardiologist 1231 

(D.E.N.), and one biomedical engineer (B.F.) defined the 29 questions in the table. M.D. D.E.N., B.F., and 1232 

the additional 28 experts answered the questionnaire.  1233 

  1234 

Specific questions for the evaluation of pathophysiology for clinical 

quantitative imaging tools  

    
  

Coronary artery stenosis imaging: specific 
pathophysiology questions 

C
T

 

M
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S
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E
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T

 

IC
A

 

IV
U
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O
C

T
 

Coronary artery anatomy (including anoma-
lies) 

9 6 3 2 7 3 3 

Accuracy of coronary artery stenosis meas-

urement  

8 5 2 1 8 8 9 

Susceptibility of stenosis measurement to ar-
tifacts 

6 5 4 4 7 7 6 

Coronary atherosclerosis imaging: specific 
pathophysiology questions 

C
T

 

M
R

I 

P
E

T
 

S
P

E
C

T
 

IC
A

 

IV
U

S
 

O
C

T
 

Coronary plaque morphology 8 5 2 1 5 8 9 

Coronary plaque composition 8 5 2 1 3 8 8 

Total coronary plaque burden 9 5 3 2 6 7 6 

Culprit coronary plaque detection 7 5 4 2 7 8 8 

Coronary plaque inflammation 6 5 7 2 2 5 6 

Pericoronary adipose tissue 8 5 4 3 1 3 3 
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Fig. 4 | Imaging modalities for the assessment of coronary stenosis. 1235 

  1236 

a | Coronary CT image obtained in a 62-year-old male patient with atypical chest pain and severe aortic 1237 

stenosis. Straight reformation (left panel) of the right coronary artery (RCA) demonstrates several calcified 1238 

plaques and a 40% diameter stenosis of the mid RCA (arrow), which is confirmed by invasive coronary 1239 

angiography (ICA)(arrow) (middle panel). The stenosis severity (right panel) is based on the ratio of either 1240 

the minimal lumen diameter (MLD) or minimal lumen area (MLA) of the stenotic region (red line) and the 1241 

average luminal diameter of the reference regions (blue lines), respectively. In this case, the MLA was 1.5 1242 

mm2 divided by the average of the area of the reference regions (3.7 mm2) and multiplied by 100 yields a 1243 

40% stenosis. b| Coronary MRI demonstrates a curved reformation (left panel) of the left anterior 1244 

descending coronary artery (LAD). Note that - in comparison to the coronary CT image from the same 1245 

patient (middle panel) - the lumen of the mid LAD is visually less stenotic because of the lack of signal of 1246 

calcified plaques. In CT, the lumen of the mid LAD appears difficult to accurately assess due to blooming 1247 

artefacts caused by calcified plaques. Both imaging modalities identified a >50 stenosis in the proximal 1248 

LAD (white arrow). The right panel demonstrates a difference in lumen dimensions between both MRI and 1249 

CT. c | IVUS cross-sectional image from the right coronary artery in a case without coronary artery disease. 1250 

Notice that, in normal coronary vessels, the wall is shown as a thin echogenic layer (arrow) delimited by 1251 

two low-echogenic layers that correspond to the intima and adventitia (left panel). In comparison, an 1252 

obstructive coronary plaque in the RCA (middle panel) with a thickened wall causes a 50% diameter 1253 

stenosis. Assessment of stenosis severity by IVUS (right panel) can be estimated as MLA (green line) or 1254 

MLD (blue lines); note that the high penetration depth of IVUS allows the visualisation of the outer layers 1255 

of the vessel wall. d | Cross-sectional OCT image from the mid segment of the LCx for assessment of an 1256 

obstructive lesion with a stenosis area of 81% and stenosis diameter of 56.4% (left panel). Quantitative 1257 

coronary angiography (middle panel) yields a stenosis area of 95.8% and stenosis diameter of 79.5% 1258 

illustrating that lumen dimensions measured by OCT are larger, yielding a less severe stenosis grade 1259 

compared with ICA 74. The graphical representation of the OCT axial image (right panel) compares 1260 

estimation of the stenotic lesion based on MLA (green line) and MLD (blue lines) determined in the stenotic 1261 

segment. 1262 

 1263 
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Fig. 5 | CT for quantitative coronary atherosclerosis imaging.  1264 

 1265 

 1266 

 1267 

 1268 
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a | Example of plaque characterisation using coronary computed tomography (CT) angiography, intravas-1269 

cular ultrasound (IVUS), optical coherence tomography (OCT), and histology. The left panel shows a vol-1270 

ume-rendered CT data set and the middle panel a coronary CT curved multiplanar reconstruction of the left 1271 

circumflex coronary artery (LCx). The coronary CT of a 62-year-old man with atypical chest pain was 1272 

acquired in a photon-counting detector CT scanner and reconstructed using 0.2 mm slice thickness. The 1273 

right panel shows the coronary artery cross-sections from the sites indicated with yellow interrupted lines 1274 

in the left and middle panels. The images shown in the right panel were acquired as part on an ex vivo 1275 

investigation (courtesy of Cardiovascular Imaging Research Center, Massachusetts General Hospital, Har-1276 

vard Medical School, Boston, MA). In the right panel, the images included in the rows represent CT (left), 1277 

IVUS (middle left), OCT (middle right), and histology (right). Cross-sections are numbered in rows (1-4): 1278 

fibroatheroma with sheet calcification and lipid pool (row 1). Fibrous plaque and a small side branch (row 1279 

2). Early fibroatheroma and a large side branch (row 3). Adaptive intimal thickening (row 4).  1280 

b | Correlation of CT findings with ICA and OCT in a 44-year-old male patient presenting with atypical 1281 

angina. CT shows a low-attenuation plaque in the left anterior descending coronary artery (LAD) (arrows 1282 

and inset) without significant obstructions. Invasive coronary angiography (ICA) confirms the absence of 1283 

coronary obstructions and shows luminal narrowing at the location of the high-risk plaque on CT (arrows 1284 

and inset). OCT was performed as an add-on to ICA and definitely ruled out plaque rupture. The patient 1285 

was discharged with the recommendation to intensify risk factor modification and with a prescription of 1286 

high-dose statins based on the findings of a high-risk coronary plaque with low attenuation on CT. c | High-1287 

risk plaque features. Coronary CT is able to detect features related to risk of rupture and future major ad-1288 

verse cardiovascular events. Spotty calcification is a marker of ongoing inflammation, while the napkin-1289 

ring sign, positive remodelling, and low attenuation indicate necrotic cores, which have a higher risk of 1290 

rupture (FIG. 2). d | Pericoronary adipose tissue (PCAT) surrounding the coronary arteries on CT has 1291 

emerged as a new approach to detecting and quantifying coronary artery inflammation to quantify coronary 1292 

artery inflammation and cardiovascular risk. PCAT is calculated from the attenuation maps around right 1293 

coronary (RCA), superimposed on the CT images, and presented as a visual colour scale in the left and 1294 

middle panels (yellow=low, red=high, blue=very high). A higher value is related to inflammation, which 1295 

can be related to active plaque inflammation with a higher risk of rupture. 1296 

Ca: calcium; L: lumen; SB: side branch. 1297 

  1298 
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Fig. 6 | MRI for quantitative coronary atherosclerosis imaging. 1299 

 1300 

 1301 

a| Contrast enhancement mechanisms in free-breathing 3D coronary MRI angiography. T2prep gradient 1302 

echo image (left panel) showing the left anterior descending artery (LAD) with high-intensity signal lumen 1303 

(arrow) (Adapted from Stuber M, et al.159). The same LAD is also visualised with a 3D dual-inversion fast 1304 

spin echo sequence (right panel), in which the lumen has low signal intensity (middle-right and right panels, 1305 

arrow) (Adapted from Stuber M et al. 160). b | Coronary vessel walls can be assessed using a dual-inversion 1306 

pre-pulse in conjunction with a fast spin-echo imaging sequence (left panel). Magnification (right panel) of 1307 

the right coronary artery (RCA) on an axial plane allows visualisation of the coronary artery wall (arrow). 1308 

c | Coronary MRI angiography (left panel) shows a stenotic atherosclerotic lesion in the proximal RCA 1309 

(arrow). The pre-contrast inversion-recovery (IR) image of the RCA (middle-left panel) shows no visible 1310 

coronary enhancement. However, the gadolinium (Gd)-enhanced inversion-recovery image (middle-right 1311 
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panel) from the same anatomical location shows distinct signal enhancement in the area of the stenotic 1312 

lesion (arrow). Invasive coronary angiography (ICA) confirms the lesion in the proximal RCA (right, panel, 1313 

arrow). d | Bright-blood MRI angiography (left panel) shows a stenotic lesion in the LAD (arrow), during 1314 

the simultaneous, interleaved and co-registered dark-blood T1-weighted MRI sequence (middle left panel) 1315 

the same lesion shows a high-intensity signal (arrow) that can be attributed to a bystander atheromatous 1316 

plaque. The severity of the lesion is corroborated with the ICA (middle right panel) of the same lesion 1317 

(arrow) and shown as diffuse plaque with fibroatheroma (arrow) in the OCT cross-sectional image (right 1318 

panel). e | The bright-blood MRI angiogram (left panel) shows a low-intensity signal stenotic lesion in the 1319 

proximal RCA (arrow), which shows a high-intensity signal (arrow) in the simultaneous, interleaved and 1320 

co-registered non-contrast T1-weighted inversion recovery sequence (middle left panel) related to acute 1321 

plaque rupture/thrombus (FIG. 2). The stenosis severity of the lesion (arrow) is corroborated by ICA (mid-1322 

dle right panel) and shown as an acute intraluminal thrombus (arrow) in the IVUS cross-sectional image 1323 

(right panel). 1324 

 1325 

  1326 
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Fig. 7 | PET for quantitative coronary atherosclerosis imaging. 1327 

 1328 

  1329 

a | Demonstration of active microcalcification using 18F-sodium fluoride (NaF) PET. Example images 1330 

from the PREFFIRtrial125 showing active microcalcification in culprit, stented plaque in left anterior de-1331 

scending (LAD) artery. The CT image (left panel) shows the stent in the LAD without a visible abnormality, 1332 

while the PET/CT (right panel) image shows a focal site of increased active mineral deposition (FIG. 2). b 1333 

| Detection of CXCR4-positive inflammatory cells. Computed tomography (CT) (top left panel) and fused 1334 

CXCR4-targeted PET/CT (top right panel) of culprit stented lesion in acute ST-segment elevation myocar-1335 

dial infarction. Elevated CXCR4 signal (top right panel, dotted circle) representing CXCR4+ inflammatory 1336 

cell infiltrate129 can be seen; the corresponding ICA shows the culprit lesion before reperfusion (bottom left 1337 

panel, dotted circle) and after reperfusion (bottom right panel).  1338 

 1339 

 1340 

  1341 
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Fig. 8 | Representative example of coronary radial wall strain analysis. 1342 

 1343 

 1344 

a | Invasive coronary angiography (ICA) shows a moderate lesion in the left anterior descending coronary 1345 

artery (LAD) (left panel). The white line indicates the region with the highest radial wall strain (RWS) over 1346 

the cardiac cycle. RWS is estimated using a single ICA projection with minimal lesion overlap and vessel 1347 

foreshortening. To calculate the RWS, first the lumen diameter change (LDC) along the target vessel is 1348 

estimated during 4 representative phases of the cardiac cycle (end-diastole, early-systole, end-systole, and 1349 

end-diastole); the LDC is then computed as the maximal diameter minus the minimal diameter over the 1350 

cardiac cycle. The RWS is the LDC divided by the maximal diameter. A maximum RWS >12% was sug-1351 

gested as the threshold for defining vulnerable plaque on coronary radial wall strain analysis 130. In the 1352 

example shown, RWS derived from ICA images correlated with invasive imaging-derived characteristics 1353 

of plaque vulnerability such as the presence of thin-cap fibroatheroma. b | RWS for the assessment of 1354 

atherosclerosis (right panel). RWS is the direct reflection of the interplay between the pulsatile coronary 1355 

blood pressure and the composition of the vessel wall. A higher deformation of the vessel wall (blue two-1356 

sided arrows) during the cardiac cycle corresponds to high-strain spots; notice that the most atherosclerotic 1357 

segments (black circle) have a higher RWS. Vulnerable plaques tend to have higher RWS values and are 1358 

more susceptible to rupture because of their higher biomechanical stress. 1359 

D: distal; P: proximal. 1360 

 1361 

 1362 
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Fig. 9 | IVUS for quantitative coronary atherosclerosis imaging. 1363 

 1364 

 1365 

 1366 

 1367 

a | IVUS plaque detection and quantification. The panels on the right of the IVUS cross-sectional images 1368 

are graphic representations of the vessel components and coloured as following: lumen = light pink, vessel 1369 

wall = dark pink, non-calcified plaque = yellow, calcified plaque = light grey; brown: lipid-rich plaques; 1370 

red: thrombus; grey circles: stent struts; dark grey= acoustic shadow; blue: reverberation. Positive 1371 

remodelling (middle-top panel) is the thickening of the vessel wall secondary to coronary plaques (FIG. 2); 1372 

in this example, the thickened wall (arrows) has already narrowed the vessel lumen (top panel). The plaque 1373 

burden is calculated as the ratio of the atheroma area to the vessel’s external elastic lamina (EEL) (arrows); 1374 
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the atheroma area is calculated by the difference between EEL area and the lumen area (middle panel). 1375 

Calcified plaque (bottom panel) (arrows) causes acoustic shadowing obscuring the external layers of the 1376 

vessel wall. b | IVUS artefacts. Differentiating artefacts from true structures in IVUS is pivotal for plaque 1377 

assessment. Acoustic shadowing behind calcific plaque (asterisk) (top panel). Reverberation artefact seen 1378 

as multiple equidistant reflections from calcium (arrows) (middle panel). Non-uniform rotational distortion 1379 

is seen from 7 to 12 o’clock (curved dotted arrow) (bottom panel). c | Optimal stent implantation by IVUS 1380 

guidance. For an optimal stent implantation (FIG. 2), the following criteria must be met: a plaque burden 1381 

<50 % at 5 mm proximal or distal to the plaque edge (top panel), stent expansion at the minimal lumen area 1382 

(MLA) must be > 5.0 mm2 or 90% of the MLA of the reference segments (middle panel), and no dissection 1383 

> 3 mm involving the media136 (bottom panel). d | Criteria for stent failure are plaque overload > 50% (top 1384 

panel), underexpansion (middle panel), and edge dissection (bottom panel). 1385 

  1386 
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Fig. 10 | OCT for quantitative coronary atherosclerosis imaging. 1387 

 1388 

 1389 

 1390 



 

47 

 

a | Vulnerable plaque features identified by OCT. The panels on the right of the OCT cross-sectional images 1391 

are graphic representations of the vessel components and coloured as follows: lumen = light pink, vessel 1392 

wall = dark pink, non-calcified plaque = yellow, calcified plaques = light grey; brown: lipid-rich plaques; 1393 

red: thrombus; dark grey=shadow produced by the guide-wire. Fibrous plaque: homogeneous signal-rich 1394 

backscattering regions (asterisk) (top left panel). Lipid-rich plaque: low-intensity regions with diffuse bor-1395 

ders and high-intensity overlying bands (middle-top left panel). Plaque rupture: fibrous cap discontinuity 1396 

and cavity formation within the plaque (middle bottom left panel) (FIG. 2). Neoatherosclerosis in-stent 1397 

plaque rupture: low-intensity region with diffuse borders and within the stent (bottom left panel). Plaque 1398 

erosion: presence of attached thrombus overlying a visually intact plaque (top right panel). Calcified nod-1399 

ule: one or more regions of calcium protruding into the lumen (middle-top right panel). Layered plaque: 1400 

plaque with layers of different optical densities (middle-bottom right panel). Thin-cap fibroatheroma 1401 

(TCFA): plaque with lipid-rich content and a fibrous cap < 65-70 μm (bottom right panel). b | Longitudinal 1402 

view showing different plaque components (lipid-rich, macrophages, TCFA, thrombus and ruptured 1403 

plaque) along the left coronary artery. Macrophages are seen as a high-intensity confluent region with a 1404 

signal intensity exceeding that of background noise (middle panel). Thrombus (FIG. 2) is seen as a high-1405 

intensity backscattering mass protruding into the lumen (middle-right panel). c | Stent implantation and 1406 

automated stent expansion (top panel) with dual segmentation at the left anterior descending artery (LAD) 1407 

upstream and downstream of the first diagonal side branch (D1); optimal expansion (100% for both seg-1408 

ments, blue arrows) and large lumen area (> 4.5 mm2) were achieved. OCT longitudinal view with stent 1409 

(bottom) confirming proper expansion (blue arrows) of the stent without strut malapposition inside the 1410 

LAD. 1411 

 1412 




