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Abstract 
Many methodologically diverse computational methods have been applied to the growing challenge 

of predicting and interpreting the effects of protein variants. As many pathogenic mutations have a 

perturbing effect on protein stability or intermolecular interactions, one highly interpretable approach 

is to use protein structural information to model the physical impacts of variants and predict their 

likely effects on protein stability and interactions. Previous efforts have assessed the accuracy of 

stability predictors in reproducing thermodynamically accurate values and evaluated their ability to 

distinguish between known pathogenic and benign mutations. Here, we take an alternate approach, 

and explore how well stability predictor scores correlate with functional impacts derived from deep 

mutational scanning (DMS) experiments. In this work, we compare the predictions of 9 protein 

stability-based tools against mutant protein fitness values from 49 independent DMS datasets, 

covering 170,940 unique single amino acid variants. We find that FoldX and Rosetta show the 

strongest correlations with DMS-based functional scores, similar to their previous top performance in 

distinguishing between pathogenic and benign variants. For both methods, performance is 

considerably improved when considering intermolecular interactions from protein complex 

structures, when available. Furthermore, using these two predictors, we derive a ‘Foldetta’ consensus 

score, which improves upon the performance of both, and manages to match dedicated variant effect 

predictors in reflecting variant functional impacts. Finally, we also highlight that predicted stability 

effects show consistently higher correlations with certain DMS experimental phenotypes, particularly 

those based upon protein abundance, and, in certain cases, can significantly outcompete sequence-

based variant effect prediction methodologies for predicting functional scores from DMS experiments.  



Introduction 
Recent decades have seen massive breakthroughs in optimizing genomic sequencing for large-scale 

operations, revealing the high prevalence of genetic variation in human populations1,2. Many genetic 

variants are from missense mutations, which cause a change in the identity of single amino acid 

residues at the protein level3. However, the precise phenotypic consequences of most variants remain 

uncertain as mutants are seldom functionally characterized in clinical settings, while alternative 

approaches to conclusively classify variants, such as genetic testing and pedigree studies, require 

many cases4. 

Multiplex assays of variant effects (MAVEs) have emerged as methodologies with the potential to 

measure the effects of large numbers of genetic variants in parallel within a single experiment5,6. 

MAVEs produce interpretable variant-function maps by associating each variant to a quantitative 

assay measurement for a select phenotype. MAVEs that involve protein-based assays of amino acid 

variants are often referred to as deep mutational scanning (DMS) experiments.  DMS has been widely 

adopted to explore effects of amino acid variation using a variety of different experimental 

phenotypes, such as protein abundance, activity or general cellular fitness5. However, while the 

number of proteins that have been characterized through DMS grows constantly7,8, and use of these 

methodologies and coordination between groups is increasing through the Atlas of Variant Effects 

Alliance9, as of now DMS is not up to the challenge of evaluating all possible substitutions in the entire 

proteome, both due to costs and the inherent limitations of assaying specific phenotypes.  

As an alternative or complement to experimental approaches for characterizing variants, considerable 

efforts have been put into developing generalizable computational models for predicting the effects 

of protein variants. A large number of variant effect predictors (VEPs) exist that leverage different 

properties, including evolutionary sequence conservation, phylogenetic relationships and 

physicochemical properties, to evaluate the likelihood of a variant being damaging10. However, the 

scores output by these VEPs seldom provide an interpretable context to the underlying disease 

mechanism. An alternative approach is presented by structure-based protein stability predictors, 

which can evaluate the change in Gibbs free energy of folding (ΔΔG) or intermolecular interaction 

upon mutation11. Stability predictors are frequently used in the fields of protein engineering and even 

clinical genetics, despite not being trained for disease identification, because they can distinguish 

between stabilizing and destabilizing energetic effects and provide clues as to possible pathogenic 

mechanisms12. 

The methodological approaches to predicting stability impacts of mutations are diverse. FoldX13 and 

Rosetta14 use empirical physics-based potentials with additional statistical terms based on 



observations from bimolecular structures. ENCoM is a unique method that takes into account how 

mutations can impact protein dynamics and stability through normal mode analysis15. A combination 

of evolutionary and structural information has been employed in the untrained DDGun3D predictor16. 

Some recent predictors, like mCSM, have been derived through machine learning using various 

features17. Given such heterogeneity in approaches, numerous studies have been carried out to 

benchmark the performance of these predictors in reproducing realistic ΔΔG values that agree with 

experimental thermostability data11,18–23. Furthermore, there have been attempts to explore and 

address biases, such as data circularity, overprediction of destabilizing variants and lack of prediction 

symmetry16,24–27. However, as stability predictors are now routinely used for protein engineering and 

disease identification purposes28–35, it is crucial to know how well ΔΔG serves as a proxy score for 

pathogenicity, and thus how prevalent are destabilizing loss-of-function mechanisms in the pool of all 

possible mutations36–38. We have previously assessed the performance of ΔΔG values from stability 

predictors in distinguishing between pathogenic and putatively benign missense variants in a 

classification task12. Phenotypic assays now offer further opportunity to more quantitatively 

interrogate the extent to which predicted ΔΔG agrees with assayed fitness or activity of protein 

variants. 

DMS datasets currently provide the most extensive experimentally derived representation of the 

functional variant effect landscape, and they have been very successfully utilized in recent VEP 

benchmarking studies39,40. It was further shown that DMS assay values themselves can, in some cases, 

be better at distinguishing pathogenic from benign variants than current computational approaches. 

However, a number of caveats should be understood when using DMS scores to evaluate how 

damaging effects are represented through predicted changes in stability. Realistically, we can expect 

that assays that evaluate phenotypes such as protein abundance or complex formation, should show 

the best agreement with stability predictions, as they are well suited to detect destabilizing loss-of-

function molecular mechanisms. Other types of assays, such as general competitive growth 

experiments, are potentially sensitive to non-destabilizing but damaging mutations, such as those 

associated with gain-of-function or dominant-negative effects. We have previously shown that 

damaging mutations, which manifest through such non-loss-of-function mechanisms, tend to be mild 

at a protein structural level, and not well identified through prediction of stability effects38. Thus, some 

specific types of assays, which do not measure stability directly, may show very heterogenous 

agreement with stability predictors. However, we believe DMS values provide an unbiased, 

independent way of comparing predictors, and at the same time allow us to explore how well 

destabilizing loss-of-function mechanisms can be identified through specific experimental 

phenotypes. 



In this study, using a large number of DMS datasets as a benchmark, we quantified the capability of 

structure-based protein stability predictors to accurately rank the functional impacts of variants. We 

demonstrate that FoldX and Rosetta predictions derived on protein complex structures significantly 

outperform other tools in assessing the functional impact of mutations. We also show how evaluating 

full biological assemblies improves our ability to relate predictions to functional phenotypes involving 

protein or DNA binding. Interestingly, we find that combining the predictions from FoldX and Rosetta 

into a consensus ‘Foldetta’ score considerably improves the correlation with DMS data, especially 

when using full complex structures, leading to a performance that matches dedicated variant effect 

predictors. Finally, we explore how certain types of DMS phenotypes, specifically ones related to 

protein abundance, correlate the best with variant stability predictions due to their closer association 

with destabilizing loss-of-function mechanisms. 

Results 
Considerations of stability predictor benchmarking with DMS datasets 

For this study, we gathered 49 different DMS datasets for 39 unique protein targets. A majority of the 

datasets we used were collected and outlined previously in the comprehensive VEP benchmarks from 

Livesey & Marsh39,40. This mostly included assays of human proteins, but also experiments on yeast, 

bacterial and viral proteins. In addition, new datasets have been subsequently released and published 

in the MaveDB7, which were combined with previous data to form our benchmarking dataset. The full 

list of genes and DMS datasets used in this study is available in Supplementary Table 1. For the 

additional DMS experiments that contained fitness values from assays under multiple conditions, we 

selected the option most representative of native-like conditions, for instance grown under no 

additional treatments than were required by the phenotypic assay or experimental setup.  

The DMS datasets used are heterogenous in terms of the phenotypes that were assayed for. The most 

frequent category involves human gene complementation of native genes in yeast, with the fitness 

scores being derived from competitive growth of variants in deep mutational scanning experiments. 

VAMP-seq is another methodology, which interrogates the abundance of GFP-fused variant proteins 

and thus also their stability41. Other methods include toxicity assays, assessing changes to binding 

strength through two-hybrid or phage display assays, or activity assays tailored to specific targets, for 

instance patch-clamp assessment of cell currents for KCNQ4 potassium channel variants42. In this 

work, for cases where a single gene has multiple associated DMS datasets, we identify the datasets 

alphabetically, surrounded by parentheses, e.g. BRCA1(a) and BRCA1(b) represent two independent 

DMS experiments performed by different groups using different functional assays. 



Different DMS datasets for the same genes can show variability in variant impact values due to 

different experimental conditions or even the phenotypes being assayed, however, they generally 

show moderate to high Spearman’s correlations, averaging at around 0.66, suggesting that they 

represent a sufficiently robust approach to benchmark variant effect prediction performance39. 

Mutations that excessively perturb the stability of a protein and lead to its degradation ought to be 

reflected by most assay types. However, we can also imagine that many DMS assays would be sensitive 

to mutations that affect the protein in some way other than loss of function due to intra- or inter-

molecular destabilization. Thus, the degree of agreement between ΔΔG values and DMS scores should 

also tell us something of the pervasiveness of destabilizing loss-of-function mechanisms for a given 

gene or tested phenotype. 

Most of the stability predictors we use here depend on structural inputs. We therefore derived a 

structural variant map, linking each variant in every DMS dataset to a residue within a protein 

structure from the Protein Data Bank43, using the same strategy as described recently38. AlphaFold2 

models were used for proteins or select residues in infrequent cases where they were not covered by 

experimental structures. It has been recently demonstrated that accurate stability predictions can also 

be delivered using modelled protein structures, with AlphaFold2 providing suitable inputs for FoldX 

even for proteins without homologs in the training set44–46.  

We tested 9 stability predictors, 7 of which we have previously also explored for their ability to 

distinguish between pathogenic and putatively benign human variants12. On top of FoldX, Rosetta, 

INPS3D, PoPMuSiC, mCSM, ENCoM and DynaMut2, we have included DDGun3D, an ‘untrained’ 

stability prediction method, as well as the recently released RaSP which offers rapid evaluation of 

variants based upon sequence alone through a neural network model13–17,45,47–49. While most methods 

only offer functionality of evaluating stability perturbing effects of mutations on monomeric 

structures, FoldX, ENCoM and Rosetta were also evaluated in terms of full protein complex structures, 

if they were available, as this functionality is easily accessible in these predictors. Finally, we not only 

explored the agreement of ΔΔG values, which range from stabilizing to destabilizing, but also absolute 

change in stability, |ΔΔG|, as a metric of general energetic perturbation of the structure. We have 

previously shown that considering strongly stabilizing variants as deleterious through use of |ΔΔG| 

improves the disease identification performance of most stability predictors, likely due to stability 

predictors sometimes mispredicting the sign of the ΔΔG, and stability-increasing mutations 

occasionally being pathogenic12.  

Before benchmarking the predictors on DMS measurements, we first compared the agreement 

between all predictors for the full dataset of explored variants to get a sense of the heterogeneity 



between different methodological approaches. We calculated pairwise Spearman’s rho values across 

all evaluated variants between each predictor pair, using both ΔΔG and |ΔΔG| metrics (Figure 1). 

Without taking the high correlation between monomeric vs complex predictions for the same 

predictor into account, or DynaMut2 and its methodological component mCSM, we see that, overall, 

most of the predictors also show fairly good agreement with each other, with the average absolute 

Spearman’s rho value for ΔΔG at 0.49, rising to 0.60 if we exclude ENCoM. 

ENCoM predictions stand out as the most unrelated to any other predictor, with the highest 

correlation for ΔΔG being with DDGun3D at 0.23. Rosetta predictions appear to be the most divergent 

in terms of comparing monomeric vs complex values for the same mutations, likely as a result of the 

energetic minimization procedure of structures, treating complexes as a single chain. As in our 

previous work, using absolute stability values did not prove beneficial to increase the agreement 

between most predictors, with the exception for ENCoM correlations with FoldX and Rosetta. We have 

also previously demonstrated that ENCoM benefits the most from use of absolute values for 

classification tasks, as it tends to overpredict stabilizing effects. The highest correlations of 0.76 were 

observed between DDGun3D and INPS3D, as well as 0.75 between RaSP and Rosetta. Indeed, one 

would expect RaSP and Rosetta to show a high degree of correlation, as RaSP has been trained not on 

experimental ΔΔG values, but on Rosetta predictions45. The high correlation between DDGun3D and 

INPS3D is likely due to the fact that both methods are essentially extensions of their underlying 

sequence and alignment-based models, and therefore both directly utilize information about 

evolutionary sequence conservation, in contrast to all other predictors.  

Correspondence between stability predictions and DMS values  

For each stability predictor and DMS dataset pair, we calculated Spearman’s correlations using the 

shared subset of observations (Figure 2). Both the predictor and DMS score directions were adjusted 

for consistency (i.e. higher ΔΔG values indicate increased destabilization and higher DMS scores 

indicate more damaging effects). While we observed that most predictors rank DMS dataset variants 

with moderate consistency between each other, the overall correlations tend to be fairly low, with 

the average rho values throughout the benchmark at 0.26 and 0.28 for ΔΔG and |ΔΔG|, respectively. 

This is in-line with the recent observations from Høie et al. showing an average Spearman’s correlation 

value of 0.25 between Rosetta ΔΔG and a number of DMS datasets50. Overall, even direct experimental 

thermostability values and computational predictions are often shown to only correlate on the order 

of ~0.5, with some works showing that the practical upper bound for such comparisons can only reach 

~0.8 due to experimental data quality51. 



However, other works have shown individual correlations between stability predictions and DMS 

functional scores can reach up to 0.57 for targets like NUDT1552. In our analysis, Rosetta and FoldX 

stability predictions for the E. coli beta lactamase (bla) antibiotic resistance DMS datasets bla(a) and 

bla(b) produced the highest observed correlations in this benchmark, ranging between 0.66-0.68, 

while the best correlation for bla(d), a different antibiotic resistance experiment, was only 0.44. 

Rosetta complex ΔΔG values also appear to correlate well (0.61) with dataset UBI4(b), based on a FACS 

assay that relates well to stability. The next best correlating datasets for other genes had Spearman’s 

rho values of up to 0.53, across both ΔΔG and |ΔΔG|. 

We have previously shown that dominant-negative and gain-of-function disease variants tend to be 

structurally milder and demonstrate weak stability perturbation38. As such, they are harder to 

distinguish from benign variants through stability prediction. This is likely to contribute to the low 

correlations observed for CALM1, TARDBP and SRC datasets, which are known to also be associated 

with non-loss-of-function disease mechanisms, such as the dominant-negative effect in CALM genes53–

55, and gain-of-function mutations in TARDBP56,57 and SRC58,59. 

ENCoM, the method with weakest correlations overall, leverages a unique prediction approach based 

on normal mode analysis, which is purported to take into account variant effects on protein dynamics. 

However, it also benefits the most out of all predictors from the use of absolute stability values as a 

metric, increasing Spearman’s rho by up to 0.36, compared to correlations achieved using raw stability 

values. This approach shifts the perspective towards evaluating mild vs perturbing effects, instead of 

stabilizing vs destabilizing, suggesting a likely tendency to overpredict variants as stabilizing. This also 

appears to affect DDGun3D to a lesser extent.  

Importantly, we also explored how taking into account intermolecular interactions, by using complex 

structures, impacts variant stability prediction, and in turn the evaluation of functional effects. We 

compared results from FoldX, Rosetta and ENCoM, which were the only methods that allowed easy 

use of biomolecular complex structures in prediction. This led to considerable improvements in the 

agreement with DMS measurements in certain cases. For example, both FoldX and Rosetta showed 

marked increases in correlation with GAL4 DMS values when the full DNA-bound structure was 

utilized, as opposed to just the monomeric subunit in isolation. This is illustrated in Figure 3a, where 

the structure of the GAL4 complex is shown coloured based on DMS values, showing that hotspots of 

highest functional variant impact appear not only at the protein dimer interface, but also at interaction 

sites with DNA. Such mutation effects at interfaces would be missed by stability predictions that do 

not take intermolecular interactions into consideration. If we repeat the visualization (Figure 3b), this 

time colouring the residue positions by agreement between the severity of DMS scores and absolute 



FoldX stability predictions (see Methods), we can see that many of the accurately evaluated positions 

in green overlap with the DMS score hotspots in Figure 3a, suggesting that the most damaging variants 

that disrupt DNA binding may be predicted the best. However, FoldX also appears to under- and over-

predict other functional variant outcomes, on a per-position and per-mutation basis, either due to 

DMS scores being affected by other molecular dysfunction mechanisms or the inaccuracy of the FoldX 

methodology itself.  

Relative ranking of stability predictor performance in assessing variant functional impacts 

To compare the relative performance of our tested predictors, we used a scoring and ranking scheme 

based on pairwise predictor correlation comparisons on each DMS dataset, as recently introduced40. 

Each predictor would be given a point for demonstrating a higher Spearman’s rho value for a DMS set 

against another prediction tool, or both would get half a point for a tie.  The advantage of this ranking 

strategy is that it accounts for the fact that not all methods successfully made predictions for all 

mutations in all proteins, as the pairwise comparisons are performed only on the shared variant subset 

that both predictors were successfully able to evaluate. In the end each, predictor’s score was scaled 

by the total number of successful comparisons it had been involved in, resulting in a relative 

performance ranking, for both ΔΔG and |ΔΔG| (Figure 4). Given the top performance of FoldX and 

Rosetta in Figure 2, we also compared a combined approach we termed ‘Foldetta’, which represents 

the mean of FoldX and adjusted Rosetta predictions (rescaled from REUs to kcal/mol, see Methods). 

Using either ΔΔG or |ΔΔG| values results in very similar rankings overall. If we consider only the 

original predictors, in both cases, FoldX and Rosetta values derived on protein complexes were the 

top performers by a large margin. However, combining complex-based scores from the two tools 

produces a superior predictor, with the Foldetta_comp ensemble coming out ahead by ~0.15 points 

in the ranking. Rankings starting at seventh place change slightly depending on whether we are using 

ΔΔG or |ΔΔG| values with DDGun3D seeing a large performance increase when using absolute scores. 

However, in both cases the four methods that show the least correspondence with DMS rankings are 

DynaMut2, mCSM, ENCoM for complexes and ENCoM for monomers. The surprising performance 

increase when taking into account the consensus of FoldX and Rosetta predictions contrasts sharply 

with multi-feature or consensus methods like DynaMut2, DDGun3D and INPS3D, but demonstrates 

the utility of even simple untrained ensembling when combining the right inputs. 

Although a comprehensive benchmarking of VEPs using DMS datasets has been recently carried out39, 

we decided to compare how well predictors, which have been intentionally derived for functional 

variant effect evaluation, agree with experimental DMS scores on our structural benchmarking 

dataset. Many of our DMS dataset genes are not of human origin, and many VEPs are not designed to 



produce predictions for non-human proteins. We thus picked a small selection of methodologically 

diverse methods that had produced a sufficient number of predictions for most DMS datasets. This 

included two simple substitution matrices as baseline methods for assessing amino acid similarity, the 

widely used classical method SIFT60, more modern methods PROVEAN61 and SNAP262, as well as state-

of-the-art predictors DeepSequence63 and EVcouplings64. Figure S1 shows that, compared to stability 

predictors, VEP correlations are considerably higher and more consistent across the different gene 

datasets. They achieve average Spearman’s correlations of 0.36, and 0.42 if we exclude the BLOSUM62 

and Grantham substitution matrices65,66 – considerably higher than the average value of ~0.26 

observed for stability predictors. If we include VEPs in our ranking scheme, we see that FoldX and 

Rosetta outperform the substitution matrices and SIFT, but cannot perform as well as modern VEPs 

for predicting functional scores from DMS experiments (Figure S2), consistent with our previous 

observation that stability predictors are, overall, less useful than VEPs for the identification of 

pathogenic missense mutations12. Interestingly, the combined Foldetta score shows substantial 

capacity to accurately reflect the relative functional impacts of variants, comparable to the top tested 

VEPs – EVcouplings and SNAP2. 

Computational stability predictions show better agreement with DMS scores derived 
through protein abundance-based assays 

We have observed that the highest heterogeneity in correlation values arises not between different 

predictors, but across DMS datasets. We note that phenotypes that tend to correlate well with 

stability prediction values come from VAMP-seq or other fluorescence-based experiments (e.g., 

NUDT15, PTEN(a), TPMT, CYPC9(a), UBI4(b)). While growth assay datasets from some specific targets, 

like bla or P53, also show good agreement, they are uncharacteristic and more likely represent good 

protein-specific performance unrelated to the underlying assay type. Abundance-based approaches 

could be said to directly relate to the stability of target proteins, thus being better tailored to detecting 

loss of protein function. VAMP-seq has been specifically developed for this purpose and shown to 

correlate well with experimental thermodynamic and predicted stability measures41,67. On the other 

hand, competitive growth assays produce fitness values that relate to numerous underlying effects 

and various molecular mechanisms and show mixed tendencies for both high and low correlations, 

depending on the target.  

To more quantitatively explore whether any specific assay types stand out in their agreement with 

stability prediction values, we classified the DMS datasets broadly into 5 groups, as outlined in 

Supplementary Table 3, depending on the phenotype assaying approach. Abundance-based assays 

represent experiments that make use of VAMP-seq and other fluorescent-tagging approaches that 

can quantify protein expression and stability in cells, being able to directly assess whether variants 



lead to a loss-of-function through degradation. Growth experiments involve mutant competition or 

antibiotic survival and are able to characterize functional effects from multiple molecular mechanisms. 

Binding assays such as phage display or two-hybrid experiments can represent variant impacts on 

intermolecular interactions, which ought to relate well to stability predictions for tools that can take 

into account relevant complex structures. The activity assay category includes target-specific 

experimental setups more directly measuring the functional mutant effects, and not just through the 

proxy of growth or protein stability. We separated out viral protein datasets, based on replication 

assays, into a separate category due to them being quite dissimilar from all other proteins.  

Figure 5 shows the mean per-dataset Spearman’s correlations with the top-ranking stability predictors 

FoldX, Rosetta, their combined Foldetta score, as well as the mean across all methods, for each assay 

phenotype group. The trend clearly demonstrates that stability predictors best reflect functional 

scores from abundance-based DMS datasets, both in the case of only the best methods, as well as for 

all predictors, while viral replication datasets show the worst agreement. Activity-based assays show 

good agreement mostly due to high correlations on the GFP datasets, which are bound to be more 

representative of loss-of-function mechanism mutations. Competitive growth assays, which are a 

popular generalized approach, appear to show mixed agreement on a per-gene level, but are not well 

correlated with changes to stability overall, possibly owing to destabilizing loss-of-function 

mechanisms being more prominent only in certain genes. Curiously, half of the binding-based assays 

do not show good agreement even with FoldX or Rosetta, which are able to evaluate interactions in 

complex structures, or show a marked improvement between predictions derived on monomeric 

structures vs fullest available structure.  

We investigated the coverage of mapped and other available structures for the binding DMS proteins 

(PSD95, HRAS, GAL4, BRCA1), to see what factors might underly the low correlations. We found that 

structures for HRAS (PDB IDs: 2CE2 and 6P0Z) and PSD95 (PDB ID: 6QJL) did not contain the binding 

partners relevant for the specific DMS assays, or were monomeric, explaining the inability of stability 

predictors to reflect intermolecular interactions. More suitable complex structures were not currently 

available in the PDB. However, both GAL4 and BRCA1(a) DMS datasets show increased correlation 

with stability values, when using complex structures. The GAL4 structure (PDB ID: 3COQ) contains a 

transcription factor dimer that is bound to a DNA duplex, allowing us to evaluate variant effects both 

on dimerization and DNA recognition. The BRCA1(a) dataset was derived from an assay interrogating 

BRCA1-BARD1 heterodimer interactions, which are represented in the structural data (PDB IDs: 7JZV 

and 1JM7).  



Considering the strong correlation differences that may arise based on assay type, we decided to 

investigate how the ranking is affected by only using DMS datasets that have been shown to be well 

reflected by stability predictions. We explored DMS scores from experiments on protein abundance, 

which include VAMP-seq experiments and other fluorescence-based approaches. In our comparison 

we also included VEPs to see how stability predictors compare on DMS datasets that are best suited 

for loss-of-function prediction. Figure 6 shows a considerably steeper rank distribution, strongly 

establishing the combined Foldetta score not only as the approach most reflective of functional assay 

scores among stability-based methods, but also as the overall best predictor, significantly 

outperforming all VEPs in the case when predictions from complex structures are used against 

abundance-based DMS scores. Compared between each other, complex-based FoldX and Rosetta 

demonstrate similar performance on DMS experiments based on abundance phenotypes, and, judging 

by the overlapping confidence intervals, show a competitive performance with top VEPs on these 

datasets. While this current generation of stability predictors are not likely to be particularly useful in 

the direct identification of pathogenic variants on the proteome scale,  compared to state-of-the-art 

VEPs, they offer a clear advantage over VEPs in terms of interpretability of mechanistic effects, 

especially in this case where we see that raw stability predictions correlate better than absolute values 

with functional DMS scores, indicating the distinction between stabilizing and destabilizing variants is 

important for accuracy. This contrasts with our past results for stability predictor performance in a 

classification task between pathogenic and benign variants, where |ΔΔG| values, focusing on the 

overall magnitude of a mutation’s impact on stability, showed better predictivity. More importantly, 

the performance increase we observed when combining the scores from our two best methods by 

simple averaging hints that there are ample opportunities to further increase the capability of stability 

predictors when identifying functionally impactful variants and identifying putative disease mutations. 

Discussion 
Our study primarily aimed to examine the relationship between stability, structure and function, by 

interrogating the capacity of different protein stability predictors to score variants in line with 

experimentally determined functional impacts. We found that FoldX and Rosetta show the strongest 

correlations with DMS measurements, and also demonstrated the importance of protein complex 

structures for evaluating the functional impact of variants to the fullest extent. DMS experiments 

proved to be instrumental for this benchmarking task, as their results are currently the most direct 

representation of the functional protein variant landscape. Our results support the choice of Rosetta 

as a predictive tool, which has recently been used in similar studies exploring DMS functional score 

relationships with stability- and conservation-based metrics50,52. Unlike many VEPs, which are 

optimized for human mutations, or influenced by the widely varying sequence coverage across 



evolutionary space, stability predictors should be well suited to evaluate proteins in an organism-

agnostic manner, as most are grounded in physics or approximate physical terms by proxy. Finally, we 

must accentuate that stability predictors are not designed for disease variant identification, and their 

training and design is aimed at reproducing realistic ΔΔG values that reflect experimental 

thermostability changes, and not at ranking functional impacts. Thus, our predictor ranking does not 

necessarily imply that FoldX or Rosetta are the most accurate tools for predicting either the ΔΔG 

magnitude, or the direction of stability perturbing effects. Despite this, stability predictors are still 

routinely used in clinical research for variant prioritization and mechanistic interpretation29,30,32,68, 

mostly because of their high interpretability due to their structure-based nature. For instance, 

evaluation of a set of clinically severe Pax6 mutations using FoldX revealed that many are insufficiently 

destabilizing to disrupt the native DNA interactions, and instead, suggested a gain-of-function off-

target mechanism behind the worse-than-null phenotypes32. Similarly, dominant mutations in Itpr1, a 

homo-tetrameric ion channel protein, were found to be insufficiently destabilizing to disrupt complex 

formation, suggesting a dominant-negative mechanism of action, with mild mutations in a single 

subunit causing complex poisoning68. Exploring the ability of ΔΔG to reflect functional impact could 

lead to a more effective application of these methodologies for such purposes. 

We have previously also demonstrated FoldX was the best out of all tested stability predictors at 

distinguishing between confirmed human disease variants and putatively benign ones through both 

ΔΔG and |ΔΔG|, while Rosetta did not rank as high on that particular task12. One aspect of FoldX 

performance that made it useful for disease identification was its tendency to assign excessively large 

stability perturbation scores to disease variants, due to the clashes they caused within structures, very 

effectively separating the score densities between putatively benign mutations and truly deleterious 

ones. However, in this current work we demonstrate that FoldX and Rosetta also have the capacity to 

maintain an accurate relative ranking of functional variant effects, and not just produce outlier scores 

for disease mutations. This is potentially of great benefit, as it shows such predictors can delineate 

between hypomorphic and full loss-of-function effects for a given protein, which could be useful when 

interpreting and prioritizing variants or patient genotypes.  

Some heterogeneity in predictor performance is not surprising. Previous efforts to benchmark their 

accuracy in reproducing realistic ΔΔG values have revealed highly varied performance, owing to the 

different methodological approaches and biases. A likely reason for the success of FoldX and Rosetta 

are their empirical scoring functions, containing energetic and statistical terms parametrized based on 

experimental data. It is unlikely that the source of high FoldX and Rosetta performance is overtraining 

on test data, as we are benchmarking a different kind of performance altogether. Instead, the high 

agreement is likely due to an underlying association of loss-of-function mechanisms with the protein 



and phenotype in question. RaSP45, a deep learning-based method that simplifies structural protein 

representations, benefits indirectly through being parametrized against Rosetta predictions, while 

leveraging considerably improved computational speed. More novel approaches combining machine 

learning with sequence- or structure-based features, such as mCSM, DDGun3D, PoPMuSiC and 

INPS3D, do not seem to overall be as effective at ranking functional impacts. However, these state-of-

the-art methods have been shown to be accurate at predicting actual ΔΔG values, and improve upon 

other methodologies in terms of prediction symmetry, and are less sensitive to resolution and 

substitution type biases18,25–27,36.  

Interestingly, we observed the more unconventional methods, such as ENCoM and DynaMut2, benefit 

the most from using absolute ΔΔG values, but also, despite having adjusted for effect directions of 

predictors and DMS sets to match, often demonstrate moderate inverse correlations, likely due to 

experimental noise. It is also important to point that DDGun3D and INPS3D, the hybrid sequence and 

structure-based approaches, effectively include sequence-derived features representing evolutionary 

conservation in their predictions. Conservation is known to be predictive of damaging mutations, 

regardless of molecular mechanism, which would suggest that these methods could be capable of 

predicting mutations at conserved positions to be more (de)stabilizing than they actually are, resulting 

in a stronger correlation with the functional scores from DMS assays. Given that non-loss-of-function 

disease variants tend to be structurally milder, we would expect them to be poorly predicted by 

conventional stability predictors, since their damaging effects are unlikely to be due to 

destabilization38. DDGun3D and INPS3D appear to show relatively better correlations, compared with 

other methods, on essential, highly conserved genes, such as HSP82 and PAB1, or some genes with 

mixed disease mechanism like TARDBP and SRC57–59. However, sequence features do not appear to 

consistently favour the prediction of non-LOF disease gene variants, like CALM1, and overall, these 

hybrid predictors demonstrate relatively poor performance in the correlation ranking, and especially 

on the abundance-based DMS datasets. 

Interestingly, we also saw a marked performance increase when combining FoldX and Rosetta 

predictions into an ensemble scoring approach we dubbed ‘Foldetta’, which is simply the mean 

prediction value of the two tools for a given variant. Despite observing that FoldX and Rosetta can give 

very different evaluations of a variants’ effect, going as far as producing stability values of opposing 

signs for the same mutation, the ensemble score correlates better with DMS data, matching the 

performance of VEPs and even substantially outperforming them when only ranking methods on 

abundance-based datasets. However, modern multi-feature methods like DDGun3D, INPS3D and 

DynaMut2, which themselves combine the methodologies or even direct predictions from other tools 

(original version of DynaMut) do not seem to demonstrate the same capabilities. This demonstrates 



that the noise in current computational stability predictors could be alleviated by combining multiple 

well-performing tools, perhaps with a specific emphasis on methodologies based on empirical 

potentials that approximate physics terms, as both FoldX and Rosetta fall into this category. Overall, 

the performance of Foldetta suggests stability predictors have applicability in disease variant 

identification, and further ensembling approaches combining currently available predictors may lead 

to yet even better results, especially if ensembles are trained and the individual tools are weighted. 

In this study we also demonstrated the utility of using complex structures of biological units, as 

monomer structures may not be sufficient for assessing the full functional impact of a variant, for 

instance due to molecular mechanisms involving intermolecular interactions, as shown previously38. 

Both FoldX and Rosetta, the best ranked methods, and ENCoM, the poorest, were able to take into 

account structures containing more than one protein chain, and in the case of FoldX and Rosetta also 

other biomolecules. All methods saw increased correlations with DMS values for some datasets which 

are based on phenotypes that involved assessing binding, aggregation, or for genes with known 

involvement in functional interactions. The correlation between FoldX and the transcription factor 

GAL4 saw considerable benefit, because FoldX is able to evaluate the stability perturbations involving 

DNA. Of course, such an approach depends on having available structures, and being able to assess 

the relevance of a given assembly for assessing a particular phenotype. While DeepMind have now 

made monomeric AlphaFold2 model structures of the whole proteome available to all, the Protein 

Data Bank still remains the main source of functionally relevant protein complexes.  

Our work hints at the pervasiveness of destabilizing loss-of-function mechanisms throughout the 

functional variant landscape, and the importance of choosing the most informative phenotypes for 

DMS experiments. Both stability predictors and VEPs we tested performed the best on experiments 

interrogating protein abundance and stability, such as various assays involving fluorescent reporters 

or VAMP-seq, and some antibiotic survival experiments. Importantly, however, not all loss-of-function 

missense mutations will be due to protein destabilization: for example, they may impact functionally 

important sites or perturb protein allostery69. Moreover, gain-of-function and dominant-negative 

mechanisms are also common pathogenic mechanisms70. In these cases, both stability predictors and 

abundance-based DMS experiments will be less likely to accurately reflect the biologically important 

impacts of variants. 

In the case of proteins with multiple functions or disease mechanisms, multiple different assays would 

be required to gleam the full scope of a variant. This could be alleviated by using competitive growth 

assays, which should capture the broadest selection of functional effects from variants; although, the 

delineation of what molecular mechanism might be responsible for the increase or reduction in fitness 



is lost. Other general issues with DMS data are that it can be noisy, restricted to a small set of 

experimental conditions, and also removed from the original cellular context71. Due to these 

limitations, as well as the enormous resource cost of most current DMS methodologies, they are 

unlikely to replace computational prediction tools as the main avenue to fully understanding 

functional effects of missense mutations in the near future. However, an exciting new methodology, 

dubbed cDNA display proteolysis, was recently shown to be capable of assessing functional variant 

effects on protein thermodynamic stability at tremendous scale and speed72. While limited to a 

stability phenotype, such a DMS approach also presents a valuable opportunity to gleam insight into 

the mechanisms of LOF disease, further test the accuracy of current computational tools on a large 

independent dataset and use it for training and developing better methodologies. 

Methods 
Structural DMS variant dataset collection and mapping 

Starting from the set of DMS datasets we compiled as part of our recent VEP benchmarking studies39,40, 

we also added additional datasets gathered from experimental research publications and MaveDB7. 

All datasets are listed in Supplementary Table 1, along with publication references or MaveDB 

accession codes. 

Protein Data Bank structures were selected through a procedure published previously38, choosing the 

first biological assembly for each structure as representative of the biologically relevant quaternary 

structure. The mutation mapping pipeline has been previously described38. Protein chains with more 

than 90% sequence identity to a human protein over a region of at least 50 amino acid residues were 

considered. Mutations were only mapped to non-human structures in cases where the residue and its 

adjacent neighbours were the same as the human wild-type sequence. Including non-human 

structures with this approach allowed us to substantially increase the size of our dataset. Structures 

with best resolution followed by largest biological assembly were prioritized for mapping in the case 

of multiple available structures for a residue. For PDB files containing multiple occupancies of a single 

residue, only the first occurring entry was selected and residues missing from PDB structures were not 

considered. For NMR ensembles the first frame was chosen. 

Variants that could not be mapped to PDB structures were evaluated on AlphaFold2 models73. 

AlphaFold models were accessed and downloaded on 2021.07.27 from https://alphafold.ebi.ac.uk. 

The DMS variants were mapped to AlphaFold models based on UniProt sequence positions. 

Structure-based variant stability predictors and variant effect predictors 

FoldX 5.0 was run using default parameters as previously described13,38. Both protein subunit and 

complex structures were used where available to also take into account intermolecular interactions. 



The structures were passed through the ‘RepairPDB’ function prior to ΔΔG calculations. DDGun16 

source code was downloaded from https://github.com/biofold/ddgun and run using the 3D protocol. 

ENCoM15 was run both on monomeric and complex PDB protein structures throughout two separate 

instances, source code was downloaded from https://github.com/NRGlab/ENCoM. The Cartesian ΔΔG 

application from Rosetta suite (Linux build 2021.16.61629) was run based on the protocol laid out in 

Park et al.74, while using the Ref2015 scoring function. The structures were relaxed according to the 

protocol for both monomeric and complex PDB structures. Results from three prediction iterations 

were averaged and ΔΔG values were derived by taking the difference between the wild-type and 

mutant values for each individual run. For complex evaluation, PDB structures 4JZW and 4JZZ were 

modified to introduce cysteines instead of some non-standard residues for Rosetta to recognize the 

disulfide bonds. RaSP45 was run on a modified Google Colab notebook, based on a mix of code from 

GitHub commits 26b0b1a and 518624e. INPS3D49, mCSM17, DynaMut248 and PoPMuSiC47 webservers 

were queried in Python 3.8.8 using RoboBrowser (https://github.com/jmcarp/robobrowser) or 

Selenium (https://github.com/baijum/selenium-python) packages. Some predictions for certain 

datasets or variants could not be completed due to software or webserver errors. 

The Foldetta stability score was derived as a mean of FoldX and scaled Rosetta predictions for each 

variant. As Rosetta predictions are initially produced in REUs (Rosetta Energy Units), they need to be 

divided by a scaling factor of 2.94 (previously established in Park et al.74) to bring them onto the 

kcal/mol scale as other predictors, like FoldX. In the case of absolute stability values, the mode of the 

FoldX and Rosetta predictions was taken before combining them into Foldetta. 

For DMS datasets present in our recent benchmarking studies, we used the previously calculated VEP 

values39,40. For newly included DMS datasets, VEP values were obtained using the same pipeline. 

Where available, VEP predictions were obtained using the dbNSFP database version 4.075. Further 

predictor scores were obtained from predictor web-interfaces like SNAP262, or run locally for 

EVcouplings64, SIFT60 and DeepSequence63. 

To compare the agreement between GAL4 DMS scores and FoldX stability predictions for variants, 

both score sets were rank normalized to the range of 0-1. As they showed better correlation, absolute 

stability values were chosen for the comparison, and any variants that were indicated to increase the 

functional outcome of the DMS assay were removed to focus on the loss-of-function aspect of the 

predictions. Normalized stability values were subtracted from the normalized DMS scores, where a 

positive delta for a variant indicates FoldX is underpredicting its functional effect, in relation to DMS 

data, while a negative delta means FoldX overestimates the functional impact of a variant. A value 

close to zero indicates agreement between FoldX and the DMS assay on the relative severity of a 



variant. To visualize prediction accuracy on a structure, median delta values were derived from all 

variants with a DMS score at a given position. 

Statistical analyses 

Full-pairwise Spearman’s correlations for complete observations were calculated using the R ‘psych’76 

and ‘corrplot’77 packages. The directions of the DMS scores and stability predictor values were 

adjusted to match a single ‘direction’.  

For the predictor correlation ranking against DMS functional values, a scoring scheme involving 

pairwise comparisons of each predictor against every other predictor for every DMS dataset was 

derived. For a given DMS dataset and two predictors, only the common subset of variants, for which 

both prediction and assay values were available, was used to calculate Spearman’s rho values. The 

correlation values were rounded to two digits after the decimal point and were compared only if 

neither predictor was completely missing data for a given DMS dataset. After a successful comparison, 

the predictor with a larger correlation value was rewarded a point, or each predictor was granted half 

a point in the case of a draw after rounding. In the end, each predictor’s score was divided by the total 

number of successful comparisons it was involved in to normalize the scores. This normalization also 

gives a chance for predictors with a few missing DMS datasets not to fall behind in the scoring scheme 

due to undersampling issues. Error bars were derived using the ‘binom.confint’ function from the 

‘binom’ package78. 

Data Availability 
All the DMS dataset variants, structure identifiers used in the dataset, and stability predictor values 

are available at www.doi.org/10.17605/OSF.IO/ZTV8A. 
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 Figure 1. Most protein stability prediction methods display moderate agreement with each other.  
The coloured scale bar represents the absolute magnitude of Spearman’s rho values from pairwise 
comparisons calculated for complete observations, calculated across variants pooled from all the 
genes. The lower matrix triangle shows Spearman’s correlation calculated using the raw Gibbs free 
energy values, taking into account both destabilizing and stabilizing effects, while the upper triangle 
contains rho values derived using only the absolute magnitudes. All predictor ΔΔG values were 
adjusted to match for stabilizing and destabilizing effect directions. 

  



 Figure 2. Stability predictor scores can correlate highly with scores from DMS experiments, but 
performance is highly heterogenous. The coloured scale bar represents the absolute magnitude of 
Spearman’s rho values from pairwise comparisons calculated for complete observations. All predictor 
ΔΔG values were adjusted to match for stabilizing and destabilizing effect directions. 

  



Figure 3. Stability predictors that can account for intermolecular interactions between proteins and 
other molecules, such as DNA, allow to explain a larger extent of functional variant effects through 
the scope of stability. a – Values in squares represent Spearman’s correlations for GAL4 variants 
between predicted Gibbs free energy changes and DMS scores, in the case of using just one subunit 
structure, or evaluating stability on the entire complex assembly. The DMS dataset for GAL4 contains 
variant enrichment scores from a yeast two-hybrid experiment. Protein structures are coloured based 
on the per-position median variant score, with lower values indicating more functionally sensitive 
positions, and grey indicating missing values. GAL4 variants used for the analyses were mapped to 
PDB structure 3COQ, containing a GAL4 dimer and a DNA double-strand. b – Protein structures are 
coloured based on the agreement between rank normalized DMS scores and absolute FoldX ΔΔG 
predictions. Both the DMS and FoldX scores were rank normalized to the range of 0-1, where a positive 
delta for a variant indicates FoldX is underpredicting its functional effect, in relation to DMS data, 
while a negative delta means FoldX overestimates the functional impact of a variant. A value close to 
zero (green) indicates agreement between FoldX and the DMS assay on the relative severity of a 
variant. 

  



Figure 4. Complex-based FoldX and Rosetta stability predictions are significantly more accurate at 
ranking variant effects in relation to DMS scores than other stability evaluation tools. Computational 
protein stability predictor rankings were derived based on comparisons of pairwise correlations with 
DMS scores, see ‘Methods’. Error bars denote the 95% confidence interval of a binomial test.



 

 
Figure 5. Stability predictions correlate best with results from assays interrogating protein 
abundance. Correlations were calculated per-dataset, and the values shown represent assay group 
means. Error bars denote the 95% confidence interval, found by using the Fisher z transform of the 
correlation. Only raw ΔΔG values from stability predictors were used in the comparison. 



Figure 6. Computational stability predictors can outcompete top VEPs when assessing agreement 
only against abundance-based DMS data. Computational protein variant effect predictor rankings 
were derived based on comparisons of pairwise correlations against DMS scores, see ‘Methods’. Only 
raw ΔΔG values from stability predictors were used in the comparison. Error bars denote the 95% 
confidence interval of a binomial test. 

 


