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EULER SIMULATION OF INTERACTING PARTICLE SYSTEMS AND MCKEAN-VLASOV SDES WITH FULLY1

SUPER-LINEAR GROWTH DRIFTS IN SPACE AND INTERACTION ∗2

XINGYUAN CHEN † AND GONÇALO DOS REIS †‡3

Abstract.4
This work addresses the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Sto-5

chastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in6
the spatial and the interaction component in the drift, and non-constant Lipschitz diffusion coefficient. Super-linearity is understood in the7
sense that functions are assumed to behave polynomially but also satisfy a so-called one-sided Lipschitz condition.8

The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions9
allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view,10
we avoid altogether functional inequality arguments (as we allow for non-constant non-bounded diffusion maps).11

The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of 1/2−ε for ε > 0 and an optimal rate12
1/2 in the non-path-space (pointwise) mean-square error metric. All findings are illustrated by numerical examples. In particular, the testing13
raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and non-constant diffusion coefficients).14

Key words. stochastic interacting particle systems, McKean-Vlasov equations, split-step Euler methods, super-linear growth in measure,15
super-linear growth in space16

AMS subject classifications. 65C05, 65C30, 65C3517

1. Introduction. Interactions of organisms, humans, and objects are common phenomena seen easily in col-18

lective behaviour within natural and social sciences. Models for interacting particle systems (IPS) and their meso-19

scopic limits, as the number of particles grows to infinity, receive presently enormous attention given their applica-20

bility in areas such as finance, mathematical neuroscience, biology, machine learning, and physics: animal swarm-21

ing, cell movement induced by chemotaxis, opinion dynamics, particle movement in porous media, electrical bat-22

tery modelling, self-assembly of particles (see for example [5, 10, 11, 13, 14, 24, 27, 29, 33, 37, 38, 43, 48, 51]23

and references). In this work, we address the numerical approximation of interacting particle systems given by24

stochastic differential equations (SDE) and their mesoscopic limit equations (or a class thereof) called McKean–25

Vlasov Stochastic Differential Equations (MV-SDE) that follow as the scaling limit of an infinite number of parti-26

cles.27

We understand the IPS as an N -dimensional system of Rd-valued interacting particles where each particle28

is governed by a Stochastic Differential Equation (SDE). Let i = 1, · · · , N and consider N particles (Xi,N
t )t∈[0,T ]29

with independent and identically distributed Xi,N
0 = Xi

0 (the initial condition is random, but independent of30

other particles) and satisfying the (Rd)N -valued SDE (1.1)31

dXi,N
t =

(
v(Xi,N

t , µX,Nt ) + b(t,Xi,N
t , µX,Nt )

)
dt+ σ(t,Xi,N

t , µX,Nt )dW i
t , Xi,N

0 = Xi
0 ∈ Lm0 (Rd),(1.1)32

for v
(
Xi,N
t , µX,Nt

)
=
( 1

N

N∑
j=1

f(Xi,N
t −Xj,N

t )
)

+ u
(
Xi,N
t , µX,Nt

)
with µX,Nt (dx) :=

1

N

N∑
j=1

δXj,Nt
(dx),(1.2)33

34

where δXj,Nt is the Dirac measure at point Xj,N
t , {W i}i=1,··· ,N} are independent Brownian motions and Lm0 (Rd)35

denotes the usual mth-moment integrable space of Rd random variables.36

For the IPS class (1.1), the limiting class as N → ∞ are called McKean-Vlasov SDEs and the passage to the37

limit operation is known as “Propagation of Chaos”. This class was first described by McKean [50], where he38
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introduced the convolution type interaction (the v in (1.2)). This is a class of Markov processes associated with39

nonlinear parabolic equations where the map v in (1.2) is also called “self-stabilizing”. The IPS underpinning our40

work (1.1)-(1.2) has been studied widely, from a variety of points of view and as early as [55] (for a general41

survey under global Lipschitz conditions and boundedness).42

McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with convolution type drifts have general dy-43

namics given by44

dXt =
(
v(Xt, µ

X
t ) + b(t,Xt, µ

X
t )
)
dt+ σ(t,Xt, µ

X
t )dWt, X0 ∈ Lm0 (Rd),(1.3)45

where v(x, µ) =

∫
Rd
f(x− y)µ(dy) + u(x, µ) with µXt = Law(Xt),(1.4)46

47

where µXt denotes the law of the solution process X at time t, W is a Brownian motion in Rd, v, f, u, b, σ are48

measurable maps along with a sufficiently integrable initial condition X0.49

An embodiment (among many) for this typology of models is particle motion modelling that encapsulates50

three sources of forcing. Namely, the particle moves through a multi-well landscape potential gradient (the map51

u and b), the trajectories are affected by a Brownian motion (and associated diffusion coefficient σ), and the52

convolution self-stabilisation forcing characterises the influence of a large population of identical particles (under53

the same laws of motion v and f) on the particle. In effect, v acts on the particle as an average attractive/repulsive54

force exerted on the said particle by a population of similar particles (through the potential f), see [1, 57] and55

further examples in [37]. For instance, under certain constraints on f the map v adds inertia to the particle’s56

motion, which in turn delays exit times from the domain of attraction and alters exit locations [1, 22, 31]. The57

self-stabilisation term in the system induces in the corresponding Fokker-Plank equation a nonlinear term of the58

form ∇[ρ.∇(f ? ρ)] (where ρ stands for the processes density while ‘?’ is the usual convolution operator) [13, 14,59

37]. The granular media Fokker-Plank equation from biochemistry is a good example of an equation featuring this60

kind of structure [1, 15, 46]. The literature on MV-SDE is growing explosively with many contributions addressing61

well-posedness, regularity, ergodicity, nonlinear Fokker-Planck equations, large deviations [2, 3, 22, 34]. The62

convolution framework has been given particular attention as it underpins many settings of interest [15, 30, 46,63

57]. The literature is even richer under the restriction to a constant diffusion term, σ = const, as it gives access64

to methodologies based on Langevin-type dynamics but also to the machinery of Functional inequalities (e.g.,65

log-Sobolev and Poincare inequalities). We point to [30] for a nice overview on several open problems of interest66

where f is a singular kernel (and σ is a constant): including Coulomb interaction f(x) = x/|x|d, Bio-Savart law67

f(x) = x⊥/|x|d; Cucker-Smale models f(x) = (1 + |x|2)−α for α > 0; crystallisation f(x) = |x|−2p − 2|x|−p and68

take p→∞; 2D viscous vortex model with f(x) = x/|x|2 [25].69

Super-linear interaction forces. For the IPS (1.1)-(1.2) or the MV-SDE (1.3)-(1.4), we focus on the class where70

the involved functions are not (necessarily) globally Lipschitz functions. Concretely, the map v is a super-linear71

growth function in both space and measure component — we assume that f and u in (1.4) behave like a general72

polynomial but also satisfy a one-sided Lipschitz condition to control for radial growth (the specific details are73

given in Assumption 2.1 below); the maps b and σ are assumed globally Lipschitz functions.74

From the theoretical point of view, this class is presently well understood. Well-posedness was generally75

established in [1]; [32] investigate different properties of the invariant measures for particles in double-well76

confining potential and later [57] investigate the convergence to stationary states. Large deviations and exit times77

for such self-stabilising diffusions are established in [1, 31]. The study of probabilistic properties and parametric78

inference (under constant diffusion) for this class is given in [26]. Two recent studies on parametric inference79

[7, 18] include numerical studies for the particle interaction ([26] does not) but do not tackle super-linear growth80

in the interaction component ([26] does).81

To the best of our knowledge and except for [45], no numerical methods exists for this class as no general82

method allows for super-linear growth interaction kernels. For emphasis, standard SDE results for super-linear83

growth drifts do not yield convergence results independent of the number of particles N . In other words, by84

treating the interacting particle system (1.1) as an (Rd)N -dimensional SDE known results from SDE numerics85

with coefficients with super-linear growth can be applied directly. However, all estimates would depend on the86
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system’s dimension, Nd, and hence “explode” as N tends to infinity. In this work, we introduce new technical87

elements to overcome this difficulty, which, to the best of our knowledge, are new. It’s noteworthy to observe that88

the direct numerical discretization of the IPS system (1.1)-(1.2) leads to a costly computational cost of O(N2)89

and hence care is needed.90

Many of the current numerical methods in the literature of MV-SDEs rely on the particle approximation91

given by the IPS, and the known quantified rate for the propagation of chaos [1, 16, 40, 41]: taming [21, 39],92

time-adaptive [52], early Split-Step Methods (SSM) methods [17] – all these contributions allow for super-93

linear growth in space only. Further noteworthy contributions include [4, 6, 8, 12, 19, 23, 28, 36, 56]. Within94

the existing literature, no method can deal with a super-linear growth f component; all cited works make the95

assumption of a Lipschitz behaviour in µ 7→ v(·, µ) (which, in essence, entail that ∇f is bounded).96

Our contribution. The results of this manuscript provide for both the numerical approximation of interacting97

particle SDE systems (1.1)-(1.2), and McKean–Vlasov SDEs (1.3)-(1.4).98

The main contribution of this work is the numerical scheme and its convergence analysis. We present a par-99

ticle approximation SSM algorithm inspired in [17] for the numerical approximation of MV-SDEs and associated100

particle systems with drifts featuring super-linear growth in space and measure, and where the diffusion coef-101

ficient satisfies a general Lipschitz condition. The well-posedness result (Theorem 2.3 below) and Propagation102

of Chaos (Proposition 2.5 below) follow from known literature [1] – in fact, our Proposition 2.5 establishes the103

well-posedness of the particle system hence closing the small gap present in [1, Theorem 3.14]. The only existing104

work tackling this involved setting via a fully implicit scheme is [45]. They rely on (Bakry-Emery) functional105

inequalities methodologies under specific structural assumptions (constant elliptic diffusion, u = b = 0 and106

differentiability) that we do not make.107

The scheme we propose is a split-step scheme inspired in [17] (see Definition 2.6 below) that first solves an108

implicit equation given by the SDE’s drift component only then takes that outcome and feeds it to the remaining109

dynamics of the SDE via a standard Euler step. The idea is that the implicit step deals with the problematic110

super-linear growth part, and the elements passed to the Euler step are better behaved. In [17], there is only111

super-linear growth in the space variables, and the measure component is assumed Lipschitz; here both space112

and measure component have super-linear growth. From a practical point of view, the implicit step in [17] for a113

particle i only depended on the elements of particle i (the measure being fixed to the previous time step); hence114

one solves N decoupled equations in Rd. In this manuscript, the implicit step for particle i involves the whole115

system of particles entailing that one needs to solve one-single system but in (Rd)N and the solution depends on116

all terms. This change in the scheme makes it much harder to obtain moment estimates for the scheme. For the117

setting of [17] there were already several competitive schemes present in the literature, e.g., taming [21, 39]118

and time-adaptive [52] and the numerical study there was comparative. For this work, no alternative numerical119

scheme exists – see below for further discussion regarding the implementation of taming for this class.120

Results-wise, we provide two convergence results in the strong-error1 sense. For the classical (path-space)121

root mean-square error, see Theorem 2.11, we achieve a nearly-optimal convergence rate of 1/2 − ε with ε > 0.122

The main difficulty, also where one of our main contributions lie, is in establishing higher-order moment bounds123

for the numerical scheme in a way that is compatible with the convolution component in (1.2) or (1.4) and Itô-124

type arguments – see Theorem 2.10. We provide a second strong (non-path-space) mean-square error criteria,125

see Theorem 2.10, that attains the optimal rate 1/2. This 2nd result requires only the higher moments of the126

IPS’ solution process and the 2nd-moments of the numerical approximation [9] (which are easier to obtain). We127

emphasise that this 2nd notion of strong convergence (see Theorem 2.10) is also standard (albeit less) within128

Monte Carlo literature. It also controls the variance of the approximation error (simply not in path-space). Hence,129

it is sufficient for the many uses one can give to the simulation output – as one would do given any other Monte130

Carlo estimators (e.g., confidence intervals). Lastly, we show that with a constant diffusion coefficient, one attains131

the higher convergence rate of 1.0 (see Theorem 2.13).132

1We understand a “strong” error metric as a metric that depends on the joint distribution of the true solution and the numerical ap-
proximation. In contrast to the weak error where one needs only the marginals separately. Theorem 2.9 and 2.11 showcase two “strong” but
different error metrics.
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We illustrate our findings with extended numerical tests showing agreement with the theoretical results133

and discussing other properties for schemes: periodicity in phase-space, the impact of the number of particles134

and numerical rate of Propagation of Chaos, and complexity versus runtime. For comparison, we implement135

the taming algorithm [21] for the setting (without proof) and find that in the example with constant diffusion,136

taming performs similarly to the SSM. In the non-constant diffusion example, it performs very poorly. This latter137

finding raises questions (for future research) if taming is a suitable methodology for this class.138

Organisation of the paper. In Section 2 we set the notation and framework. In Section 2.3, we state the139

SSM scheme and the two main convergence results. Section 3 provides numerical illustrations (for the granular140

media model and a double-well model with non-constant diffusion). All proofs are given in Section 4.141

2. The split-step method for MV-SDEs and interacting particle systems. We follow the notation and142

framework set in [1, 17].143

2.1. Notation and Spaces. Let N be the set of natural numbers starting at 0, R denotes the real numbers.144

For a, b ∈ N with a ≤ b, define Ja, bK := [a, b] ∩ N = {a, · · · , b}. For x, y ∈ Rd denote the scalar product of145

vectors by x · y; and |x| = (
∑d
j=1 x

2
j )

1/2 the Euclidean distance. The 0 denotes the origin in Rd. Let 1A be the146

indicator function of set A ⊂ Rd. For a matrix A ∈ Rd×n we denote by Aᵀ its transpose and its Frobenius norm147

by |A| = Trace{AAᵀ}1/2. Let Id : Rd → Rd be the identity map. For collections of vectors, let the upper indices148

denote the distinct vectors, whereas the lower index is a vector component, i.e., xlj denote the j-th component of149

l-th vector. ∇ denotes the vector differential operator, ∂ denotes the partial differential operator.150

We introduce over Rd the space of probability measures P(Rd) and its subset P2(Rd) of those with finite151

second moment. The space P2(Rd) is Polish under the Wasserstein distance152

W (2)(µ, ν) = inf
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|2π(dx, dy)
) 1

2

, µ, ν ∈ P2(Rd).(2.1)153
154

where Π(µ, ν) is the set of couplings for µ and ν such that π ∈ Π(µ, ν) is a probability measure on Rd × Rd such155

that π(· × Rd) = µ and π(Rd × ·) = ν.156

Let our probability space be a completion of (Ω,F,F ,P) with F = (Ft)t≥0 carrying an Rl-valued Brownian157

motion W = (W 1, · · · ,W l) and generating the probability space’s filtration, augmented by all P-null sets, and158

with an additionally sufficiently rich sub σ-algebra F0 independent of W . We denote by E[·] = EP[·] the usual159

expectation operator with respect to P.160

We consider some finite terminal time T < ∞ and use the following notation for spaces (standard in the161

(McKean-Vlasov) SDE literature [17, 21]). For 0 ≤ t ≤ T , let Lpt
(
Rd
)

define the space of Rd-valued, Ft-162

measurable random variables X, that satisfy E [|X|p]1/p < ∞. Define Sm([0, T ]) to be, for m > 1, the space163

of Rd -valued, F·-adapted processes Z, that satisfy E
[
sup06t6T |Zt|m

]1/m
<∞.164

Throughout the text, C denotes a generic constant positive real number that may depend on the problem’s165

data, may change from line to line but is always independent of the constants h,M,N (associated with the166

numerical scheme and specified below) but possibly depend on the terminal time T (and other fixed problem167

data).168

2.2. Framework. Let W be an l-dimensional Brownian motion and take the measurable maps v : Rd ×169

P2(Rd)→ Rd, f : Rd → Rd, b : [0, T ]× Rd × P2(Rd)→ Rd and σ : [0, T ]× Rd × P2(Rd)→ Rd×l. The MV-SDE of170

interest for this work is Equation (1.3) (for some m ≥ 1), where µXt denotes the law of the process X at time t,171

i.e., µXt = P ◦X−1
t . We make the following assumptions on the coefficients.172

ASSUMPTION 2.1. Let b and σ 1/2-Hölder continuous in time, uniformly in x ∈ Rd and µ ∈ P2(Rd). Assume173

that b, σ are uniformly Lipschitz in the sense that there exists Lb, Lσ ≥ 0 such that for all t ∈ [0, T ] and all x, x′ ∈ Rd174

and ∀µ, µ′ ∈ P2(Rd) we have that175

(Ab) |b(t, x, µ)− b(t, x′, µ′)|2 ≤ Lb
(
|x− x′|2 +W (2)(µ, µ′)2

)
,176

(Aσ) |σ(t, x, µ)− σ(t, x′, µ′)|2 ≤ Lσ
(
|x− x′|2 +W (2)(µ, µ′)2

)
.177178
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(Au) Let u satisfy: there exist Lu ∈ R, Lû > 0, Lũ ≥ 0, q1 > 0 such that for all t ∈ [0, T ], x, x′ ∈ Rd and179

∀µ, µ′ ∈ P2(Rd), it holds that180

〈x− x′, u(x, µ)− u(x′, µ)〉 ≤ Lu|x− x′|2 (One-sided Lipschitz in space),181

|u(x, µ)− u(x′, µ)| ≤ Lû(1 + |x|q1 + |x′|q1)|x− x′| (Locally Lipschitz in space),182

|u(x, µ)− u(x, µ′)|2 ≤ LũW (2)(µ, µ′)2 (Lipschitz in measure).183184

(Af ) Let f satisfy: there exist Lf ∈ R, Lf̂ > 0, q2 > 0 such that for all t ∈ [0, T ], x, x′ ∈ Rd, it holds that185

〈x− x′, f(x)− f(x′)〉 ≤ Lf |x− x′|2 (One-sided Lipschitz),186

|f(x)− f(x′)| ≤ Lf̂ (1 + |x|q2 + |x′|q2)|x− x′| (Locally Lipschitz),187

f(x) = −f(−x), (Odd function).188189

Assume the normalisation2 f(0) = 0. Lastly, and for convenience, we set q = max{q1, q2} (and we have q > 0).190

The benefits of choosing drift=v+ b with b being uniformly Lipschitz are discussed below in Remark 2.7 (see also191

[17]). Certain useful properties can be derived from these assumptions.192

REMARK 2.2 (Implied properties). Under Assumption 2.1, take some C > 0. Then for all t ∈ [0, T ], x, x′, z ∈ Rd193

and µ ∈ P2(Rd), since f is a normalised odd function (i.e., f(0) = 0), we have194

〈x, f(x)〉 = 〈x− 0, f(x)− f(0)〉+ 〈x, f(0)〉 ≤ Lf |x|2 + |x||f(0)| = Lf |x|2.195196

Also, for the function u, define L̂u = Lu + 1/2, Cu = |u(0, δ0)|2, and thus by Young’s inequality197

〈x, u(x, µ)〉 ≤ Cu + L̂u|x|2 + LũW
(2)(µ, δ0)2, 〈x− x′, u(x, µ)− u(x′, µ′)〉 ≤ L̂u|x− x′|2 +

Lũ
2
W (2)(µ, δ0)2.198

199

Using the properties of the convolution, v of (1.3) also satisfies a one-sided Lipschitz condition in space200

〈x− x′, v(x, µ)− v(x′, µ)〉 ≤
∫
Rd
Lf |x− x′|2µ(dz) + Lu|x− x′|2 = (Lf + Lu)|x− x′|2.201

202

Moreover, for ψ ∈ {b, σ}, by Young’s inequality, we have203

〈x, ψ(t, x, µ)〉 ≤ C(1 + |x|2 +W (2)(µ, δ0)2) and |ψ(t, x, µ)|2 ≤ C(1 + |x|2 +W (2)(µ, δ0)2).204205

We first recall a result from [1] establishing well-posedness of the MV-SDE (1.3)-(1.4).206

THEOREM 2.3 (Theorem 3.5 in [1]). Let Assumption 2.1 hold and assume for some m > 2(q + 1), X0 ∈207

Lm0 (Rd). Then, there exists a unique solution X to MV-SDE (1.3) in Sm([0, T ]). For some constant C > 0 (depending208

on T and m) we have209

E
[

sup
t∈[0,T ]

|Xt|m̂
]
≤ C

(
1 + E

[
|X0|m̂

])
eCT , for any m̂ ∈ [2,m].210

211

Proof. Our Assumption 2.1 is a particularisation of [1, Assumption 3.4] and hence our theorem follows212

directly from [1, Theorem 3.5].213

The interacting particle system (1.1). As mentioned earlier, the numerical approximation results of this214

work apply directly if either one’s starting point is the interacting particle system (1.1) or if one’s starting point is215

the MV-SDE (1.3). On the latter, one can approximate the MV-SDE (1.3) (driven by the Brownian motion W ) by216

2This constraint is a soft as the framework allows to easily redefine f as f̂(x) := f(x)− f(0) with f(0) merged into b.
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the N -dimensional system Rd-valued interacting particle system given in (1.1) and approximate it numerically217

with the gap closed by the Propagation of Chaos [17, 21, 52].218

For completeness we recall the setup of (1.1). Let i ∈ J1, NK and consider N particles (Xi,N )t∈[0,T ] with219

independent and identically distributed (i.i.d.) initial conditions Xi,N
0 = Xi

0 and satisfying the (Rd)N -valued SDE220

(1.1) (with v given in (1.4))221

dXi,N
t =

(
v(Xi,N

t , µX,Nt ) + b(t,Xi,N
t , µX,Nt )

)
dt+ σ(t,Xi,N

t , µX,Nt )dW i
t , Xi,N

0 = Xi
0,222223

where µX,Nt (dx) := 1
N

∑N
j=1 δXj,Nt

(dx) with δXj,Nt
being the Dirac measure at point Xj,N

t , and W i, i ∈ J1, NK224

being independent Brownian motions (also independent of the BM W appearing in (1.3); with a slight abuse of225

notation to avoid re-defining the probability space’s filtration).226

REMARK 2.4 (The system through the lens of RNd). We introduce the map V to interpret (1.1) as one system227

of equations in RNd instead of N dependent equations each in Rd. Namely, we define for v given by (1.4),228

V = (V1, · · · , VN ) : (Rd)N → (Rd)N where for i ∈ J1, NK Vi : (Rd)N → Rd, Vi(X
N ) = v(Xi,N , µX,N ),(2.2)229230

and XN = (X1,N , · · · , XN,N ) ∈ RNd where each Xi,N solves (1.1), µX,N (dx) := 1
N

∑N
j=1 δXj,N (dx).231

For XN , Y N ∈ RNd with corresponding measure µX,N , µY,N and letting Assumption 2.1 hold, the function V232

also satisfies a one-sided Lipschitz condition233

〈XN − Y N , V (XN )− V (Y N )〉234

=
1

2N

N∑
i=1

N∑
j=1

〈
(Xi,N −Xj,N )− (Y i,N − Y j,N ), f(Xi,N −Xj,N )− f(Y i,N − Y j,N )

〉
235

+

N∑
i=1

〈
Xi,N − Y i,N , u(Xi,N , µX,N )− u(Y i,N , µX,N ) + u(Y i,N , µX,N )− u(Y i,N , µY,N )

〉
236

≤ (2L+
f + Lu +

1

2
+
Lũ
2

)|XN − Y N |2, L+
f = max{0, Lf}.237

238

In the last second step we changed the order of summation and used that f is odd.239

Propagation of chaos (PoC). In order to show that the particle approximation (1.1) is of effective use to240

approximate the MV-SDE (1.3), we provide a pathwise propagation of chaos result (convergence as the number241

of particles increases and with rate). We introduce the auxiliary system of non interacting particles242

dXi
t =

(
v(Xi

t , µ
Xi

t ) + b(t,Xi
t , µ

Xi

t )
)
dt+ σ(t,Xi

t , µ
Xi

t )dW i
t , Xi

0 = Xi
0 , t ∈ [0, T ] ,(2.3)243244

which are just (decoupled) MV-SDEs with i.i.d. initial conditions Xi
0. Since the Xis are independent, µX

i

t = µXt245

for all i (and µXt the law of the solution to (1.3) with v given as (1.4)).246

The Propagation of chaos result (2.5) follows from [1, Theorem 3.14] under the assumption that the inter-247

acting particle system (1.1) is well-posed. The first statement of Proposition 2.5 establishes the well-posedness248

of the particle system hence closing the small gap left in [1, Theorem 3.14].249

PROPOSITION 2.5. Let the assumptions of Theorem 2.3 hold for some m > 2(q + 1). Then, for all i ∈ J1, NK250

there exists a unique solution Xi,N to (1.1) in Sm([0, T ]) and for any 1 ≤ p ≤ m there exists C > 0 independent of251

N (but depending on T and m) such that252

sup
t∈[0,T ]

sup
i∈J1,NK

E
[
|Xi,N

t |p
]
≤ C

(
1 + E

[
|X ·0|p

])
.(2.4)253

254
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For i ∈ J1, NK, let Xi ∈ Sm([0, T ]) be the solution to (2.3), ensured by Theorem 2.3. Suppose additionally that255

m > max{2(q+ 1), 4}. Then, there exists a constant C > 0 independent of N (but depending on T and m) such that256

sup
i∈J1,NK

sup
0≤t≤T

E
[
|Xi

t −X
i,N
t |2

]
≤ C


N−1/2, d < 4

N−1/2 logN, d = 4

N
−2
d+4 , d > 4

.(2.5)257

258

The proof and further details are presented in Appendix A. This result shows that the particle scheme will259

converge to the MV-SDE with a given quantified rate. Therefore, to show convergence between our numerical260

scheme and the MV-SDE, we only need to show that the numerical version of the particle scheme converges to261

the “true” particle scheme in a way that is independent of N . We note that the PoC rate can be optimised for the262

case of constant diffusion [17, Remark 2.5].263

2.3. The scheme for the interacting particle system and main results. The split-step method (SSM)264

here is inspired by that of [17] and re-cast accordingly to the setup here. The critical difficulty arises from the265

convolution component in v (1.3). This term is the main hindrance in proving moment bounds. Before continuing266

recall the definition of V in Remark 2.4. We now introduce the SSM numerical scheme.267

DEFINITION 2.6 (Definition of the SSM). Let Assumption 2.1 hold. Define the uniform partition of [0, T ] as268

π := {tn := nh : n ∈ J0,MK, h := T/M} for a prescribed M ∈ N \ {0}. Define recursively the SSM approximating269

(1.1) as: set X̂i,N
0 = Xi

0 for i ∈ J1, NK; iteratively over n ∈ J0,M − 1K for all i ∈ J1, NK (recall Remark 2.4 and the270

definition of the map V in (2.2))271

Y ?,Nn = X̂N
n + hV (Y ?,Nn ), X̂N

n = (· · · , X̂i,N
n , · · · ), Y ?,Nn = (· · · , Y i,?,Nn , · · · ),(2.6)272

where Y i,?,Nn = X̂i,N
n + hv(Y i,?,Nn , µ̂Y,Nn ), µ̂Y,Nn (dx) :=

1

N

N∑
j=1

δY j,?,Nn
(dx),(2.7)273

X̂i,N
n+1 = Y i,?,Nn + b(tn, Y

i,?,N
n , µ̂Y,Nn )h+ σ(tn, Y

i,?,N
n , µ̂Y,Nn )∆W i

n, ∆W i
n = W i

tn+1
−W i

tn .(2.8)274275

The stepsize h is chosen as to belong to the interval (this constraint is soft in the sense of Remark 2.7)276

h ∈
(

0,min
{

1,
1

ζ

})
for ζ defined as ζ = max

{
2(Lf + Lu) , 4L+

f + 2Lu + 2Lũ + 1 , 0
}
.(2.9)277

278

In some cases where the original functions f, u might cause trouble to find a suitable choice of h, and by the279

Remark below, we can use the addition and subtraction trick to bypass the constraint, see Remark 4.1 and [17,280

Section 3.4] for more discussion.281

REMARK 2.7 (The constraint on h in (2.9) is soft). Our framework allows to change f, u, b in such a way as to282

have ζ = 0 in (2.9) via addition and subtraction of linear terms to f, u and b. Concretely, take θ, γ ∈ R and redefine283

f, u, b into f̂ , û, b̂ as follows: for any t ∈ [0,∞), x ∈ Rd, µ ∈ P2(Rd)284

f̂(x) = f(x)− θx, û(x, µ) = u(x, µ)− γx− θ
∫
Rd
zµ(dz), and b̂(t, x, µ) = b(t, x, µ) + (γ + θ)x.285

286

For judicious choices of θ, γ it is easy to see that ζ can be set to be zero (we invite the reader to carry out the287

calculations). We remark that this operation increases the Lipschitz constant of b̂.288

Recall that the function V satisfies a one-sided Lipschitz condition in X ∈ RNd (Remark 2.4), and hence (under289

(2.9)) a unique solution Y ?,Nn to (2.6) as a function of X̂N
n exists (details in Lemma 4.2). After introducing the290

discrete scheme, we define its continuous extension and provide the main convergence results.291
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DEFINITION 2.8 (Continuous extension of the SSM). Under the same choice of h and assumptions in Definition292

2.6, for all t ∈ [tn, tn+1], n ∈ J0,M − 1K , i ∈ J1, NK, X̂i,N
0 = Xi

0 ∈ Lm0 (Rd), the continuous extension of the SSM is293

dX̂i,N
t =

(
v(Y i,?,Nκ(t) , µ̂Y,Nκ(t)) + b(κ(t), Y i,?,Nκ(t) , µ̂Y,Nκ(t))

)
dt+ σ(κ(t), Y i,?,Nκ(t) , µ̂Y,Nκ(t))dW i

t ,(2.10)294

µ̂Y,Nn (dx) : =
1

N

N∑
j=1

δY j,?,Nn
(dx), κ(t) = sup

{
tn : tn ≤ t, n ∈ J0,M − 1K

}
, µ̂Y,Ntn = µ̂Y,Nn .295

296

The next result states our first strong convergence finding. It is a “strong” pointwise (non-path-space) convergence297

result that is not in the classical mean-square error form.298

THEOREM 2.9 (Non-path-space mean-square convergence). Let Assumption 2.1 hold and choose h as in (2.9).299

Let i ∈ J1, NK, take Xi,N as the solution to (1.1) and let X̂i,N be the continuous-time extension of the SSM given by300

(2.10). If m ≥ 4q + 4 > max{2(q + 1), 4}, where Xi
0 ∈ Lm0 (Rd) and q is as defined in Assumption 2.1, then there301

exists a constant C > 0 independent of h,N,M (but depending on T and m) such that302

sup
i∈J1,NK

sup
0≤t≤T

E
[
|Xi,N

t − X̂i,N
t |2

]
≤ Ch.(2.11)303

304
305

The proof is presented in Section 4.2. This result does not need Lp-moment bounds of the scheme for p > 2.306

It needs only Lp-moments of the solution process of (1.1) and L2-moments for the scheme [9]. The proof takes307

advantage of the elegant structure induced by the SSM where Proposition 4.3 and 4.4 are the crucial intermediate308

results to deal with the convolution term.309

The next moment bound result is necessary for the subsequent uniform convergence result.310

THEOREM 2.10 (Moment bounds). Let the setting of Theorem 2.9 hold. Let m ≥ 2 where Xi
0 ∈ Lm0 (Rd) for311

all i ∈ J1, NK and let X̂i,N be the continuous-time extension of the SSM given by (2.10). Let 2p ∈ [2,m], then there312

exists a constant C > 0 independent of h,N,M (but depending on T and m) such that313

sup
i∈J1,NK

sup
0≤t≤T

E
[
|X̂i,N

t |2p
]
≤ C

(
1 + E

[
|X̂ ·0|2p

])
<∞.(2.12)314

315

The proof is presented in Section 4.3 and builds around auxiliary Theorem 4.7. There, we expand (4.35) and316

(4.36), and leverage the properties of the SSM scheme stated in Proposition 4.3 and 4.4 to deal with the difficult317

convolution terms.318

Next we state the classic mean-square error convergence result.319

THEOREM 2.11 (Classical path-space mean-square convergence). Let the setting of Theorem 2.9 hold. Assume320

there exists some ε ∈ (0, 1) such that m ≥ max{4q + 4, 2 + q + q/ε} > max{2(q + 1), 4} with Xi
0 ∈ Lm0 (Rd)321

for i ∈ J1, NK and q given as in Assumption 2.1. Then there exists a constant C > 0 independent of h,N,M (but322

depending on T and m) such that323

sup
i∈J1,NK

E
[

sup
0≤t≤T

|Xi,N
t − X̂i,N

t |2
]
≤ Ch1−ε.(2.13)324

325

The proof is presented in Section 4.4. For this result we need both the Lp-moments of the scheme and solution326

process. This in contrast to the proof methodology of Theorem 2.9 and the reason we introduce Theorem 2.10327

as a main result. The nearly optimal error rate of (1 − ε) is a consequence of the estimation of (4.46) (product328

of three unbounded random variables). The expectation is taken after the supremum and then we use Theorem329

2.9 and 2.10 – this forces an ε sacrifice of the rate. The nearly optimal error rate of (1 − ε) is also the present330

best one available even for higher-order differences p > 2 (although we do not present these calculations). It is331

still open how to prove (2.12) with the supt inside the expectation — the difficulty to be overcome relates to332

establishing (4.3) of Proposition 4.4 under higher moments p > 2 in a way that aligns with carré-du-champs type333

arguments and the convolution term (within the style of proof we provide, otherwise new arguments need be334

found). It remains an open problem to show (2.13) when ε = 0.335
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A particular result for granular media equation type models. We recast the earlier results to granular336

media type models where the diffusion coefficient is constant and higher convergence rates can be established.337

ASSUMPTION 2.12. Consider the following MV-SDE338

dXt = v(Xt, µ
X
t )dt+ σdWt, X0 ∈ Lm0 (Rd), v(x, µ) =

∫
Rd
f(x− y)µ(dy).(2.14)339

340

Let f : Rd → Rd be continuously differentiable satisfying (Af ) of Assumption 2.1. There exist Lf ′ , Lf ′′ > 0, q ∈ N341

and q > 1, with q the same as in (Af ), such that for all x, x′ ∈ Rd342

|∇f(x)| ≤ Lf ′(1 + |x|q), |∇f(x)−∇f(x′)| ≤ Lf ′′(1 + |x|q−1 + |x′|q−1)|x− x′|.(2.15)343344

The function σ : [0, T ]× Rd × P2(Rd)→ Rd×l is a constant matrix.345

In the language of the granular media equation, MV-SDE (2.15) corresponds to the Fokker-Plank PDE ∂tρ =346

∇ · [∇ρ+ ρ∇W ∗ ρ] where ∇W = f and ρ is the probability measure [45]. We have the following results.347

THEOREM 2.13. Let Assumption 2.12 hold and choose h as in (2.9). Let i ∈ J1, NK, take Xi,N to be the so-348

lution to (1.1), let X̂i,N be the continuous-time extension of the SSM given by (2.10) and Xi
0 ∈ Lm0 (Rd). Let349

m ≥ max{8q, 4q + 4} > max{2(q + 1), 4} with q as defined in Assumption 2.12. Then there exist a constant C > 0350

independent of h,N,M (but depending on T and m) such that351

sup
i∈J1,NK

sup
0≤t≤T

E
[
|Xi,N

t − X̂i,N
t |2

]
≤ Ch2.(2.16)352

353

This result is proved in Section 4.5. Supporting simulation results are presented in Section 3.1 and confirm354

the strong root mean square error rate of 1.0.355

We note that one can use a proof methodology similar to that used for Theorem 2.11 to obtain (2.16) with356

the supt inside the expectation. This would deliver a rate of h2−ε, the key steps are similar to (4.47)-(4.48).357

3. Examples of interest. We illustrate the SSM on three numerical examples.3 The “true” solution in each358

case is unknown and the convergence rates for these examples are calculated in reference to a proxy solution359

given by the approximating scheme at a smaller timestep h and higher number of particles N (particular details360

are given below). The strong error between the proxy-true solution XT and approximation X̂T is as follows361

root Mean-square error (Strong error) =
(
E
[
|XT − X̂T |2

]) 1
2 ≈

( 1

N

N∑
j=1

|Xj
T − X̂

j
T |

2
) 1

2

.362

363

We also consider the path strong error define as follows, for Mh = T , tn = nh,364

Strong error (Path) =
(
E
[

sup
t
|Xt − X̂t|2

]) 1
2 ≈

( 1

N

N∑
j=1

sup
n∈J0,MK

|Xj
tn − X̂

j
tn |

2
) 1

2

.365

366

The propagation of chaos (PoC) rate between different particle systems {X̂i,Nl
T }i,l where i denotes the i-th particle367

and Nl denotes the size of the system,368

Propagation of chaos error (PoC error) ≈
( 1

Nl

Nl∑
j=1

|X̂j,Nl
T −Xj

T |
2
) 1

2

.369

370
371

3Implementation code in Python is available in https://github.com/AnandaChen/Simulation-of-super-measure
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REMARK 3.1 (‘Taming’ algorithm). For comparative purposes we implement the ‘Taming’ algorithm [17, 21] –372

any convergence analysis of the taming algorithm to the framework of this manuscript is an open question. Of the373

many variants of Taming possible, set the terminal time T with Mh = T , we implement as follows:
∫
Rd f(·− y)µ(dy)374

is replaced by
∫
Rd f(·−y)µ(dy)/(1+M−α|

∫
Rd f(·−y)µ(dy)|), and u is replaced by u/(1+M−α|u|) with the choice375

of α = 1/2 for non-constant diffusion and α = 1 for constant diffusion.376

Within each example, the error rates of Taming and SSM are computed using the same Brownian motion paths.377

Moreover, for the simulation study below, we fix the algorithmic parameters as follows:378

1. For the strong error, the proxy-true solution is calculated with h = 10−4 and the approximations are379

calculated with h ∈ {10−3, 2 × 10−3, . . . , 10−1} with N = 1000 at T = 1 and using the same Brown-380

ian motion paths. We compare SSM and Taming with the proxy-true solutions provided by the same381

algorithm (SSM and Taming) respectively.382

2. For the PoC error, the proxy-true solution is calculated with N = 2560 and the approximations are383

calculated with N ∈ {40, 80, . . . , 1280}, with h = 0.001 at T = 1 and using the same Brownian motion384

paths.385

3. The implicit step (2.6) of the SSM algorithm is solved, in our examples, via a Newton method iteration.386

We point the reader to Appendix B for a full discussion. In practice, 2 to 4 Newton iterations are sufficient387

to ensure that the difference between two consecutive Newton iterates are not larger than
√
h in ‖ · ‖∞-388

norm (in RNd).389

Lastly, the symbols N (α, β) denote the normal distribution with mean α ∈ R and variance β ∈ (0,∞).390

3.1. Example: the granular media equation. The first example is the granular media Fokker-Plank equa-391

tion taking the form ∂tρ = ∇ · [∇ρ+ ρ∇W ∗ ρ] with W (x) = 1
3 |x|

3 and ρ is the correspondent probability density392

[15, 45]. In MV-SDE form we have393

dXt = v(Xt, µ
X
t )dt+

√
2 dWt, X0 ∈ Lm0 (Rd), v(x, µ) =

∫
Rd

(
− sign(x− y)|x− y|2

)
µ(dy),(3.1)394

395

where sign(·) is the standard sign function, µXt is the law of the solution process X at time t. This granular media396

model has been well studied in [15, 45] and is a reference model to showcase the numerical approximation.397

For this specific case, starting from a normal distribution, the particles concentrate and move around its initial398

mean value (also its steady state). In Figure 3.1 (a) and (b) one sees the evolution of the density map across time399

T ∈ {1, 3, 10} for two initial initial distributionsN (0, 1) andN (2, 4) respectively, and h = 0.01. For this case, both400

methods approximate well the solution without any apparent leading difference between Taming and SSM.401

Figure 3.1 (c) shows strong error of both methods, computed at T = 1 across h ∈ {10−3, 2×10−3, . . . , 10−1}.402

The proxy-true solution for each method is taken at h = 10−4 and the baseline slopes for the “order 1” and “order403

0.5” convergence rate are provided for comparison. The estimated rate of both method is 1.0 in accordance to404

Theorem 2.13 (under constant diffusion coefficient). Figure 3.1 (d) shows strong error v.s algorithm runtime of405

both methods under the same set up as in (c). The SSM perform slightly better than the Taming method.406

Figure 3.1 (e) shows the path type strong error of both method, compare to the results in (c), the SSM407

preserve the error rate of near 1.0 and perform better than the Taming method. Figure 3.1 (f) shows the PoC408

error of both methods. The two results coincide since the differences between two methods are within 0.001. The409

PoC rates are near 0.5 which is better than the theoretical result of 1/4 after we take square root in Proposition410

2.5. This result is similar to [52, Example 4.1], and is explained theoretically by [20, Lemma 5.1] but under411

stronger assumptions than ours.412

3.2. Example: Double-well model. We consider a limit model of particles under a symmetric double-well413

confinement. We test a variant of the model studied in [57] but change its diffusion coefficient to a non-constant414

one (in opposition to the previous example). Concretely, we study the following McKean-Vlasov equation415

dXt =
(
v(Xt, µ

X
t ) +Xt

)
dt+XtdWt, v(x, µ) = −1

4
x3 +

∫
Rd
−
(
x− y

)3
µ(dy).(3.2)416

417
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(a) Density with X0 ∼ N (0, 1) (b) Density with X0 ∼ N (2, 16)

(c) Strong Error (d) Strong error v.s Runtime (e) Strong error (Path) (f) PoC Error

Figure 3.1: Simulation of the granular media equation (3.1) with N = 1000 particles. (a) and (b) show the
density map for Taming (blue, left) and SSM (orange, right) with h = 0.01 at times T = 1, 3, 10 seen top-to-
bottom and with different initial distribution. (c) Strong error (rMSE) of SSM and Taming with X0 ∼ N (2, 16).
(d) Strong error (rMSE) of SSM and Taming w.r.t algorithm with X0 ∼ N (2, 16).(e) Strong error (Path) of SSM
and Taming with X0 ∼ N (2, 16). (f) PoC error rate in N of SSM and Taming with X0 ∼ N (2, 9) with perfect
overlap of errors.

The corresponding Fokker-Plank equation is ∂tρ = ∇ · [ ∇(ρ|x|
2

2 ) + ρ∇V + ρ∇W ∗ ρ] with W = 1
4 |x|

4, V =418
1
16 |x|

4 − 1
2 |x|

2, ρ is the corresponding density map. There are three stable states {−2, 0, 2} for this model [57].419

The example of Section 3.1 was a relatively mild with additive noise and where both methods performed420

well. For this double-well model of (3.2), the drift includes super-linear growth components in both space and421

measure and a non-constant unbounded diffusion coefficient.422

In Figure 3.2 (a) and (b), Taming (blue, left) fails to produce acceptable results of any type – Figure 3.2 (c)423

shows the simulated paths of both methods where it is noteworthy to see that Taming become unstable while the424

SSM paths remain stable. In respect to Figure 3.2 (a) and (b), the SSM (orange, right) depicts the distribution’s425

evolution to one of the expected stable states (x = 2) as time evolves. It is interesting to find out that for the SSM426

in (a), where X0 ∼ N (0, 1), the particles shift from the zero (unstable) steady state to the positive stable steady427

state x = 2. However, in (b) with X0 ∼ N (3, 9), we find that the particles remain within the basin of attraction428

of the stable state x = 2. Figure 3.2 (d) displays under the same parameter choice for h, T as for the granular429

media example of Section 3.1 with X0 ∼ N (2, 4) the estimated rate of convergence for the schemes. It shows the430

taming method fails to converge (but does not explode). The strong error rate of the SSM is the expected 1/2431

in-line with Theorem 2.9 (and Theorem 2.11).432

The “order 1” and “order 0.5” lines are baselines corresponding to the slope of 1 and 0.5 rate of convergence.433

434

Figure 3.2 (e) shows that, to reach the same strong error level Taming shall takes far more (over 100 times)435

runtime than the SSM.436

3.3. Example: 2d Van der Pol (VdP) oscillator. We consider the Van der Pol (VdP) model described in [35,437

Section 4.2 and 4.3], with added super-linearity in measure and non-constant unbounded diffusion. We study438
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(a) Density with X0 ∼ N (0, 1) (b) Density with X0 ∼ N (3, 9)

(c) Simulated paths of Taming (top) and SSM (bottom) (d) Strong error (e) Strong error v.s Runtime

Figure 3.2: Simulation of the Double-Well model (3.2) with N = 1000 particles. (a) and (b) show the density
map for Taming (blue, left) and SSM (orange, right) with h = 0.01 at times T = 1, 3, 10 seen top-to-bottom and
with different initial distribution. (c) simulated paths by Taming (top) and SSM (bottom) with h = 0.01 over
t ∈ [0, 3] and with X0 ∼ N (3, 9). (d) Strong error (rMSE) of SSM and Taming with X0 ∼ N (2, 4). (e) Strong
error (rMSE) of SSM and Taming w.r.t algorithm Runtime with X0 ∼ N (2, 4).

the following MV-SDE dynamics: set x = (x1, x2) ∈ R2, for (1.3) define the functions f, u, b, σ as439

f(x) = −x|x|2, u(x) =

[
− 4

3x
3
1

0

]
, b(x) =

[
4(x1 − x2)

1
4x1

]
, σ(x) =

[
x1 0
0 x2

]
,(3.3)440

441

which satisfy the assumptions of this work.442

Figure 3.3 (a) shows the strong error of both methods, the “order 1” and “order 0.5” lines are baselines with443

the slope of 1 and 0.5 for comparison. The estimated rate of the SSM is near 0.5 while Taming failed to converge.444

Figure 3.3 (b) shows the PoC error of both methods, Taming failed to converge while the estimated rate of the445

SSM is near 0.5 (see discussion of previous Section 3.1).446

Figure 3.3 (c) shows the system’s phase-space portraits (i.e., the parametric plot of t 7→ (X1,t, X2,t) and447

t 7→ (E[X1,t],E[X2,t]) over t ∈ [0, 20]) of the SSM with respect to different choices of N ∈ {30, 100, 500, 1000}.448

The impact of N on the quality of simulation is apparent as is the ability of the SSM to capture the periodic449

behaviour of the true dynamics. Figure 3.3 (d)-(e)-(f)-(g) shows the expectation’s fluctuation (of Figure 3.3450

(c)) and the system’s phase-space path portraits of the SSM for different choices of N . The trajectory becomes451

smoother as N becomes larger and the paths are similar for N ≥ 500.452

3.4. Numerical complexity, discussion and various opens questions. Across the three examples the SSM453

converged and all examples recovered the theoretical convergence rate (of 1/2 in general, and 1 for the additive454

noise case). In the latter two examples, Taming failed to converge while on the first example the SSM and taming455

are mostly similar. The main difference between examples is the diffusion coefficient.456
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(a) Strong error (b) PoC error (c) Expectation paths of SSM w.r.t N

(d) Phase graph of N = 30 (e) Phase graph of N = 100 (f) Phase graph of N = 500 (g) Phase graph of N = 1000

Figure 3.3: Simulation of the Vdp model (3.3) with X1 ∼ N (0, 4), X2 ∼ N (−2, 4). (a) Strong error (rMSE) of the
SSM and Taming with T = 1, N = 1000. (b) PoC error of the SSM and Taming with T = 1, h = 0.001. (c) the
expectation overlays paths for the SSM with T = 20, h = 0.01 w.r.t different N . (d)-(e)-(f)-(g) the corresponding
phase-space portraits in (c) with N ∈ {30, 100, 500, 1000}.

The SSM is robust in respect to small choices of h and N . In all three examples, the SSM remains convergent457

for all choices of h (even for h = 0.1) while taming fails to converge at all. In the Van der Pol (VdP) oscillator458

example of Section 3.3, when comparing across different particle sizesN , the SSM provides a good approximation459

for all choices of N (even for N = 30) and the PoC result is as expected. In general, we found that the runtime460

of the SSM is nearly the double of Taming for the same choices of h, but on the other hand, Taming takes461

over 100-times more runtime to reach the same accuracy as the SSM (if one considers the strong error against462

runtime).463

Computational costs and open questions for future research. In the context of (1.1), assume one wants464

to simulate an N -particle system over a discretised finite time-domain with M time points. Since we deal with465

convolution type operator, the interaction term need to be computed for every single particle and thus, a standard466

explicit Euler scheme incurs a computational cost of O(N2M). Without the convolution component, the cost is467

simply O(NM). For the SSM scheme in Definition 2.6, since it is has an implicit component there is an additional468

cost attached to it (more below).469

At this level, two strategies can be thought to reduce the complexity. The first is by controlling the cost of470

computing the interaction itself, these have been proposed for example in the projected particle method [8] or471

the Random Batch Method (RBM) [37]. To date there is no general proof of these outside Lipschitz conditions472

(and constant diffusion coefficient in the RBM case) for the efficacy of the method, also, it is not clear how to use473

these methods in combination with Newton to solve the SSM’s implicit equation (more below). The second is to474

better address the competition between the number of particles N , as dictated by the PoC result Proposition 2.5,475

and the time-step parameter M (or 1/h). Our experimental work estimating the Propagation of chaos rate points476

to a convergence rate of order 1/2 instead of the upper bound rate 1/4 guaranteed by (2.5) in Theorem 2.5. This477

result is not surprising in view of the theoretical result [20, Lemma 5.1]; and numerically in [52, Example 4.1].478

To the best of our knowledge, no known PoC rate result covers the examples presented here and Theorem 2.5 is479
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presently the best known general result.480

Solving the implicit step in SSM - Newton’s method. The SSM scheme contains an implicit Equation (2.6)481

that needs be solved at each timestep. It is left to the user to choose the most suitable method for given data482

and, in all generality, one needs an approximation scheme to solve (2.6). Proposition B.2 below shows that as483

long as said approximation is uniformly controlled within a ball of radius Ch of the true solution, then the SSM’s484

convergence rate of Theorem 2.9 is preserved.485

As mentioned in the initial part of Section 3, we use Newton’s method (assuming extra differentiability of486

the involved maps) – see Appendix B for details where [54, Section 4.3] is used to guarantee convergence. The487

computation cost raises from O(N2M) to O(κN2M), where κ denotes the leading term cost of Newton after κ488

iterations. In practice, we found that within 2 to 4 iterations (i.e., κ ≤ 4) two consecutive Newton iteration are489

sufficiently close for the purposes of the scheme’s accuracy: denoting Newton’s jth-iteration by yj ∈ RNd, then490

‖yκ − yκ−1‖∞ <
√
h (which is the stop criteria used, see Appendix B).491

Interacting particle systems like (1.1) induce a certain structure to the associated Jacobian matrix when seen492

through the lens of (Rd)N . The closed form expressions provided in Appendix B.2 point to a very sparse Jacobian493

matrix with a very specific block structure. For instance, the Γ matrix (see Appendix B.2) is a symmetric one and494

is multiplied by h/N making its entries very small: it stands to reason that Γ can be removed from the Jacobian495

matrix as one solves the system (provided its entries can be controlled) and thus suggests that an inexact or496

quasi-Newton method might be computationally more efficient. In [42, Section 3] the authors review [53] who497

address the case of using inexact Newton methods when the equation of interest (2.6) is a monotone map, which498

is indeed our case. The usage of Newton method is not a primary element of discussion and, as does [42], we499

point the reader to the comprehensive review [49] on practical quasi-Newton methods for nonlinear equations.500

In conclusion, it remains to explore how different versions of Newton method for sparse systems can be used as501

way to reduce its computational cost but, in light of our study, we found Newton method very fast and efficient502

even comparatively with the Explicit Euler taming method in Section 3.1.503

4. Proof of split-step method (SSM) for MV-SDEs and interacting particle systems: convergence and504

stability. The proof appearing in Section 4.2 depends in no way on Theorem 2.10 or its proof (in Section 4.3).505

Nonetheless, Section 4.3 has a strong complementary effect to fully understanding the proof in Section 4.2.506

4.1. Some properties of the scheme. Recall the SSM scheme of Definition 2.6. In this section we clarify fur-507

ther the choice of h and then introduce two critical results arising from the SSM’s structure. Note that throughout508

C > 0 is a constant always independent of h,N,M .509

REMARK 4.1 (Choice of h). Let Assumption 2.1 hold, the constraint on h in (2.9) comes from (4.2), (4.3) and510

(4.19) below, where Lf , Lu ∈ R and Lũ ≥ 0. Following the notation of those inequalities, under (2.9) for ζ > 0,511

there exists ξ ∈ (0, 1) such that h < ξ/ζ and512

max

{
1

1− 2(Lf + Lu)h
,

1

1− (4L+
f + 2Lu + 2Lũ + 1)h

,
1

1− (4L+
f + 2Lu + Lũ + 1)h

}
<

1

1− ξ
.513

514

For ζ = 0, the result is trivial and we conclude that there exist constants C1, C2 independent of h515

max

{
1

1− 2(Lf + Lu)h
,

1

1− (4L+
f + 2Lu + 2Lũ + 1)h

,
1

1− (4L+
f + 2Lu + Lũ + 1)h

}
≤ C1 ≤ 1 + C2h.516

517

As argued in Remark 2.7 the constraint on h can be lifted.518

LEMMA 4.2. Choose h as in (2.9). Then, given any X ∈ RNd there exists a unique solution Y ∈ RNd to519

Y = X + hV (Y ).(4.1)520521

The solution Y is a measurable map of X.522
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Proof. Recall Remark 2.4. The proof is an adaptation of the proof [17, Lemma 4.1] to the RNd case.523

PROPOSITION 4.3 (Differences relationship). Let Assumption 2.1 hold and choose h as in (2.9). For any n ∈524

J0,MK and Y ∗,Nn in (2.6), there exists some constant C > 0 such that for all i, j ∈ J1, NK,525

|Y i,?,Nn − Y j,?,Nn |2 ≤ |X̂i,N
n − X̂j,N

n |2 1

1− 2(Lf + Lu)h
≤ (1 + Ch)|X̂i,N

n − X̂j,N
n |2.(4.2)526

527

Proof. Take n ∈ J0,MK, i, j ∈ J1, NK. Using Remark 2.2 and Young’s inequality we have528

|Y i,?,Nn − Y j,?,Nn |2529

=
〈
Y i,?,Nn − Y j,?,Nn , X̂i,N

n − X̂j,N
n

〉
+
〈
Y i,?,Nn − Y j,?,Nn , v

(
Y i,?,Nn , µ̂Y,Nn

)
− v

(
Y j,?,Nn , µ̂Y,Nn

) 〉
h530

≤ 1

2
|Y i,?,Nn − Y j,?,Nn |2 +

1

2
|X̂i,N

n − X̂j,N
n |2 + (Lf + Lu)|Y i,?,Nn − Y j,?,Nn |2h.531

532

The argument regarding the uniformity of the constant C in regards to the parameters h,N,M follows from533

Remark 4.1.534

PROPOSITION 4.4 (Summation relationship). Let Assumption 2.1 hold. Choose h as in (2.9). For the process in535

(2.7) there exists a constant C > 0 (independent of h,N,M) such that, for all i ∈ J1, NK, n ∈ J0,MK,536

1

N

N∑
i=1

|Y i,?,Nn |2 ≤ Ch+ (1 + Ch)
1

N

N∑
i=1

|X̂i,N
n |2.(4.3)537

538

Proof. From (2.8) we have539

1

N

N∑
i=1

|Y i,?,Nn |2 =
1

N

N∑
i=1

{〈
Y i,?,Nn , X̂i,N

n

〉
+
〈
Y i,?,Nn , v(Y i,?,Nn , µ̂Y,Nn )

〉
h

}
540

≤ 1

N

N∑
i=1

{
1

2
|Y i,?,Nn |2 +

1

2
|X̂i,N

n |2 +
〈
Y i,?,Nn , u(Y i,?,Nn , µ̂Y,Nn )

〉
h+

h

N

N∑
j=1

〈
Y i,?,Nn , f(Y i,?,Nn − Y j,?,Nn )

〉}
.(4.4)541

542

By Assumption 2.1 and Young’s inequality, we have543

1

N2

N∑
i=1

N∑
j=1

〈
Y i,?,Nn , f(Y i,?,Nn − Y j,?,Nn )

〉
=

1

2N2

N∑
i=1

N∑
j=1

〈
Y i,?,Nn − Y j,?,Nn , f(Y i,?,Nn − Y j,?,Nn )

〉
544

≤ 1

2N2

N∑
i=1

N∑
j=1

Lf |Y i,?,Nn − Y j,?,Nn |2 ≤
2L+

f

N

N∑
i=1

|Y i,?,Nn |2, L+
f = max{Lf , 0}.545

546

Plugging this into (4.4) and using Remark 2.2 with Λ = 4L+
f + 2Lu + 2Lũ + 1, we have547

1

N

N∑
i=1

|Y i,?,Nn |2 ≤ 1

N

N∑
i=1

{
|X̂i,N

n |2 + 2h
(
2L+

f |Y
i,?,N
n |2 + Cu + L̂u|Y i,?,Nn |2 + LũW

(2)(µ̂Y,Nn , δ0)2
)}

548

≤ 1

N

N∑
i=1

{
|X̂i,N

n |2 + 2h
(
2L+

f |Y
i,?,N
n |2 + Cu + L̂u|Y i,?,Nn |2 +

Lũ
N

N∑
j=1

|Y j,?,Nn |2
)}

549

≤ 1

1− Λh

1

N

N∑
i=1

{
|X̂i,N

n |2 + 2Cuh

}
=

1

N

N∑
i=1

{
|X̂i,N

n |2(1 + h
Λ

1− Λh
) +

2Cuh

1− Λh

}
.550

551

Remark 4.1 yields the argument.552
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From Lemma 4.2 we know a unique solution, Y ?,Nn , to (2.6) as a function of X̂N
n exists. We next show that553

the scheme we proposed in (2.6)-(2.8) is square integrable.554

PROPOSITION 4.5 (Second moment bounds of SSM). Let the setting of Theorem 2.9 hold. Let m ≥ 2 where555

X̂i,N
0 ∈ Lm0 (Rd) for all i ∈ J1, NK, then there exists a constant C > 0 independent of h,N,M (but depending on T )556

such that557

sup
i∈J1,NK

sup
n∈J0,MK

E
[
|X̂i,N

n |2
]

+ sup
i∈J1,NK

sup
n∈J0,M−1K

E
[
|Y i,?,Nn |2

]
≤ C

(
1 + E

[
|X̂ ·,N0 |2

])
<∞.558

559

Proof. Let i ∈ J1, NK, n ∈ J0,M − 1K, by Assumption 2.1, from (2.6)-(2.8) and Proposition 4.4, since the560

particles are identically distributed, we have561

E
[
1 + |Y i,?,Nn |2|

]
≤ E

[
1 + |X̂i,N

n |2
]
(1 + Ch).562563

Similar to [17, Proposition 4.5], we have564

|X̂i,N
n+1|2 ≤ |X̂i,N

n |2 + C
(

1 + |Y i,?,Nn |2 +
1

N

N∑
j=1

|Y j,?,Nn |2
)

(h+ |∆W i
n|2) + 2

〈
Y i,?,Nn , σ(tn, Y

i,?,N
n , µ̂Y,Nn )∆W i

n

〉
.565

566

Taking expectations and summing 1 to both sides, Young’s inequality yields567

E
[
1 + |X̂i,N

n+1|2
]
≤ E

[
1 + |X̂i,N

n |2
]
(1 + Ch).568569

By induction and using that the particles are identically distributed, we conclude that570

sup
i∈J1,NK

sup
n∈J0,MK

E
[
1 + |X̂i,N

n |2
]
≤ sup
i∈J1,NK

E
[
1 + |X̂i,N

0 |2
]
(1 + Ch)M ≤ (1 + E

[
|X̂ ·,N0 |2

]
)eCT <∞,(4.5)571

572

where we used Mh = T and that the {X̂i,N
0 }i are i.i.d. The inequality for supi∈J1,NK supn∈J0,M−1K E

[
|Y i,?,Nn |2

]
573

follows using similar argument.574

We provide the following auxiliary proposition to deal with the cross products terms in the later proofs.575

PROPOSITION 4.6. Take N ∈ N, for all i ∈ J1, NK, for any given p ∈ N, sequences
{
{ai}i :

∑N
i=1 ai = p, ai ∈ N

}
576

and any collection of identically distributed Lp-integrable random variables {Xi}i we have577

E
[ N∏
i=1

|Xi|ai
]
≤ E

[
|X1|p

]
.578

579

Proof. Using the notation above, by Young’s inequality, for any i, j ∈ J1, NK we have580

|Xi|ai |Xj |aj ≤
ai

ai + aj
|Xi|ai+aj +

aj
ai + aj

|Xj |ai+aj .581
582

Thus, by induction and using that the {Xi}i are identically distributed, the result follows.583

4.2. Proof of Theorem 2.9: the pointwise mean-square convergence result. We provide here the proof584

of Theorem 2.9. Throughout this section, we follow the notation introduced in Theorem 2.9 and let Assumption585

2.1 hold, h is chosen as in (2.9), m ≥ 4q + 4, where m is defined in (1.3) and q is defined in Assumption 2.1.586

Note that throughout C > 0 is a constant always independent of h,N,M but possibly depending on T and m.587
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Proof. Let i ∈ J1, NK, n ∈ J0,M − 1K, s ∈ [0, h], tn = nh and p ≥ 2 with m ≥ 4q + 4, using same notation as588

in (1.1), define the following auxiliary process589

Xi,N
n = Xi,N

tn , ∆Xi
tn+s = Xi,N

tn+s − X̂
i,N
tn+s, tn = nh, ∆W i

n,s = W i
tn+s −W i

tn ,590

Y i,X,Nn = Xi,N
n + hv(Y i,X,Nn , µY,X,Nn ), µY,X,Nn (dx) :=

1

N

N∑
j=1

δY j,X,Nn
(dx).591

592

For all n ∈ J0,M − 1K, i ∈ J1, NK, r ∈ [0, h], from (2.10), we have593

|∆Xi
tn+r|2 =

∣∣∣∆Xi
tn +

∫ tn+r

tn

(
v(Xi,N

s , µX,Ns )− v(Y i,X,Nn , µY,X,Nn )
)
ds594

+

∫ tn+r

tn

(
v(Y i,X,Nn , µY,X,Nn )− v

(
Y i,?,Nn , µ̂Y,Nn

) )
ds+

∫ tn+r

tn

(
b(s,Xi,N

s , µX,Ns )− b(tn, Y i,X,Nn , µY,X,Nn )
)
ds595

+

∫ tn+r

tn

(
b(tn, Y

i,X,N
n , µY,X,Nn )− b(tn, Y i,?,Nn , µ̂Y,Nn )

)
ds596

+

∫ tn+r

tn

(
σ(s,Xi,N

s , µX,Ns )− σ(tn, Y
i,X,N
n , µY,X,Nn )

)
dW i

s597

+

∫ tn+r

tn

(
σ(tn, Y

i,X,N
n , µY,X,Nn )− σ(tn, Y

i,?,N
n , µ̂Y,Nn )

)
dW i

s

∣∣∣2.598
599

Taking expectations on both side, using Jensen’s inequality and Itô’s isometry, we have600

E
[
|∆Xi

tn+r|2
]
≤ (1 + h)I1 + (1 +

1

h
)I2 + 2I3 + 2I4,(4.6)601

602

where the terms I1, I2, I3, I4 are defines as follows603

I1 = E
[∣∣∣∆Xi

tn +

∫ tn+r

tn

(
v(Y i,X,Nn , µY,X,Nn )− v

(
Y i,?,Nn , µ̂Y,Nn

) )
ds(4.7)604

+

∫ tn+r

tn

(
b(tn, Y

i,X,N
n , µY,X,Nn )− b(tn, Y i,?,Nn , µ̂Y,Nn )

)
ds
∣∣∣2],(4.8)605

606
607

I2 = E
[∣∣∣ ∫ tn+r

tn

(
v(Xi,N

s , µX,Ns )− v(Y i,X,Nn , µY,X,Nn )
)
ds(4.9)608

+

∫ tn+r

tn

(
b(s,Xi,N

s , µX,Ns )− b(tn, Y i,X,Nn , µY,X,Nn )
)
ds
∣∣∣2],(4.10)609

610
611

I3 =E
[∣∣∣ ∫ tn+r

tn

(
σ(s,Xi,N

s , µX,Ns )− σ(tn, Y
i,X,N
n , µY,X,Nn )

)
dW i

s

∣∣∣2],(4.11)612
613
614

I4 =E
[∣∣∣ ∫ tn+r

tn

(
σ(tn, Y

i,X,N
n , µY,X,Nn )− σ(tn, Y

i,?,N
n , µ̂Y,Nn )

)
dW i

s

∣∣∣2].(4.12)615
616

For I1, Young’s inequality yields617

I1 = E
[∣∣∣Xi,N

n +
(
V Y,in + b(tn, Y

i,X,N
n , µY,X,Nn )

)
r − X̂i,N

n −
(
V ∗,in + b(tn, Y

i,?,,N
n , µ̂Y,Nn )

)
r
∣∣∣2]618

≤ E
[∣∣∣Xi,N

n − X̂i,N
n +

(
V Y,in − V ∗,in

)
r
∣∣∣2](1 +

h

2
) + E

[∣∣∣b(tn, Y i,X,Nn , µY,X,Nn )− b(tn, Y i,?,,Nn , µ̂Y,Nn )
∣∣∣2](h

2
+ h),

(4.13)

619
620
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where V Y,in and V ∗,in stand for V Y,in = v(Y i,X,Nn , µY,X,Nn ) and V ∗,in = v(Y i,?,Nn , µ̂Y,Nn ) respectively.621

For the first term of (4.13), recall the SSM defined in (2.7). We have622

E
[∣∣∣Xi,N

n − X̂i,N
n +

(
V Y,in − V ∗,in

)
r
∣∣∣2]623

=E
[〈
Xi,N
n − X̂i,N

n +
(
V Y,in − V ∗,in

)
r, Y i,X,Nn − Y i,?,Nn +

(
V Y,in − V ∗,in

)
(r − h)

〉]
624

=E
[〈
Xi,N
n − X̂i,N

n , Y i,X,Nn − Y i,?,Nn

〉]
+ E

[〈
Xi,N
n − X̂i,N

n ,
(
V Y,in − V ∗,in

)〉]
(r − h)625

+ E
[〈
Y i,X,Nn − Y i,?,Nn ,

(
V Y,in − V ∗,in

)〉]
r − r(h− r)E

[∣∣∣V Y,in − V ∗,in

∣∣∣2].626
627

Using the relationship that (2.7) induces, we have628

V Y,in − V ∗,in =
Y i,X,Nn −Xi,N

n + Y i,?,Nn − X̂i,N
n

h
.629

630

We first deduce that631

E
[∣∣∣Xi,N

n − X̂i,N
n +

(
V Y,in − V ∗,in

)
r
∣∣∣2] = E

[
|Xi,N

n − X̂i,N
n |2

]
+ E

[〈
Xi,N
n − X̂i,N

n , V Y,in − V ∗,in

〉]
2r632

+ E
[〈

(Y i,X,Nn − Y i,?,Nn )− (Xi,N
n − X̂i,N

n ), V Y,in − V ∗,in

〉]r2

h
633

= E
[
|Xi,N

n − X̂i,N
n |2

]
(1− Ch,r) + E

[
|Y i,X,Nn − Y i,?,Nn |2

]
Ch,r + E

[〈
Y i,X,Nn − Y i,?,Nn , V Y,in − V ∗,in

〉]r2

h
.(4.14)634

635

Where Ch,r = (2hr− r2)/2h. Also, for the second term of (4.13), using Assumption 2.1 and that the particles are636

identically distributed637

E
[∣∣∣b(tn, Y i,X,Nn , µY,X,Nn )− b(tn, Y i,?,Nn , µ̂Y,Nn )

∣∣∣2]638

≤CE
[
|Y i,X,Nn − Y i,?,Nn |2 +W (2)(µY,X,Nn , µ̂Y,Nn )

]
639

≤CE
[
|Y i,X,Nn − Y i,?,Nn |2

]
+ CE

[ 1

N

N∑
j=1

|Y j,X,Nn − Y j,?,Nn |2
]
≤ CE

[
|Y i,X,Nn − Y i,?,Nn |2

]
.(4.15)640

641

By Assumption 2.1 and using Young’s inequality once again642

E
[
|Y i,X,Nn − Y i,?,Nn |2

]
≤ E

[〈
Y i,X,Nn − Y i,?,Nn , Xi,N

n − X̂i,N
n + V Y,in − V ∗,in

〉]
h(4.16)643

≤ E
[1

2
|Y i,X,Nn − Y i,?,Nn |2 +

1

2
|Xi,N

n − X̂i,N
n |2

]
+ E

[〈
Y i,X,Nn − Y i,?,Nn , V Y,in − V ∗,in

〉]
h.(4.17)644

645

For the last term (4.17), since the particles are identically distributed, Assumption 2.1 and Remark 2.4 yield646

E
[〈
Y i,X,Nn − Y i,?,Nn , V Y,in − V ∗,in

〉]
≤ E

[ 1

N

N∑
j=1

〈
Y j,X,Nn − Y j,?,Nn , V Y,jn − V ∗,jn

〉]
647

≤
(

2L+
f + Lu +

1

2
+
Lũ
2

)
E
[
|Y i,X,Nn − Y i,?,Nn |2

]
.(4.18)648

649

Thus, injecting (4.18) back into (4.17) and (4.16), set Γ2 = 4L+
f + 2Lu + Lũ + 1, then by Remark 4.1,650

E
[
|Y i,X,Nn − Y i,?,Nn |2

]
≤ 1

1− Γ2h
E
[
|Xi,N

n − X̂i,N
n |2

]
≤ E

[
|Xi,N

n − X̂i,N
n |2

]
(1 + Ch).(4.19)651

652
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Plug (4.19) and (4.18) back into (4.14), (4.15) and (4.13). We then conclude that653

I1 ≤ E
[
|Xi,N

n − X̂i,N
n |2

]
(1 + Ch).(4.20)654655

For I2, by Young’s and Jensen’s inequality, we have656

I2 ≤ h E
[ ∫ tn+h

tn

∣∣∣v(Xi,N
s , µX,Ns )− v(Y i,X,Nn , µY,X,Nn )

∣∣∣2ds(4.21)657

+

∫ tn+h

tn

∣∣∣b(s,Xi,N
s , µX,Ns )− b(tn, Y i,X,Nn , µY,X,Nn )

∣∣∣2ds
]
.(4.22)658

659

For (4.21), from Assumption 2.1, using Young’s, Jensen’s, and Cauchy-Schwarz inequality660

E
[∣∣∣v(Xi,N

s , µX,Ns )− v(Y i,X,Nn , µY,X,Nn )
∣∣∣2]661

≤ CE
[∣∣∣u(Xi,N

s , µX,Ns )− u(Y i,X,Nn , µY,X,Nn )
∣∣∣2 +

1

N

N∑
j=1

∣∣∣f(Xi,N
s −Xj,N

s )− f(Y i,X,Nn − Y j,X,Nn )
∣∣∣2](4.23)662

≤ C

N

N∑
j=1

E
[∣∣∣(1 + |Xi,N

s −Xj,N
s |q + |Y i,X,Nn − Y j,X,Nn |q

)
|Xi,N

s − Y i,X,Nn − (Xj,N
s − Y j,X,Nn )|

∣∣∣2]663

+ CE
[
(1 + |Xi,N

s |2q + |Y i,X,Nn |2q)(|Xi,N
s − Y i,X,Nn |2) +

1

N

N∑
j=1

|Xj,N
s − Y j,X,Nn |2

]
664

≤ C
√
E
[
1 + |Xi,N

s |4q + |Y i,X,Nn |4q
]
E
[
|Xi,N

s − Y i,X,Nn |4
]

+ E
[ 1

N

N∑
j=1

|Xj,N
s − Y j,X,Nn |2

]
(4.24)665

+
C

N

N∑
j=1

√
E
[
1 + |Xi,N

s −Xj,N
s |4q + |Y i,X,Nn − Y j,X,Nn |4q

]
E
[
|Xi,N

s − Y i,X,Nn |4 + |Xj,N
s − Y j,X,Nn |4

]
.(4.25)666

667

Using the structure of the SSM, Young’s and Jensen’s inequality, and Proposition 4.3 we have668

|Xi,N
s − Y i,X,Nn |2 ≤ 2|Xi,N

s −Xi,N
n |2 + 2|Xi,N

n − Y i,X,Nn |2,(4.26)669

|Xi,N
n − Y i,X,Nn |2 =

∣∣∣v(Y i,X,Nn , µY,X,Nn )h
∣∣∣2 ≤ 2

∣∣∣u(Y i,X,Nn , µY,X,Nn )h
∣∣∣2 +

2h2

N

N∑
j=1

∣∣∣f(Y i,X,Nn − Y j,X,Nn )
∣∣∣2670

≤ C
(

1 + |Y i,X,Nn |2q+2 +
1

N

N∑
j=1

|Y j,X,Nn |2
)
h2 +

Ch2

N

N∑
j=1

(
1 + |Y i,X,Nn − Y j,X,Nn |2q+2

)
671

≤ C
(

1 + |Y i,X,Nn |2q+2 +
1

N

N∑
j=1

|Y j,X,Nn |2
)
h2 +

Ch2

N

N∑
j=1

(
1 + |Xi,N

n −Xj,N
n |2q+2

)
.672

673

Similarly, we have674

|Xi,N
s − Y i,X,Nn |4 ≤ 16|Xi,N

s −Xi,N
n |4 + 16|Xi,N

n − Y i,X,Nn |4,(4.27)675

|Xi,N
n − Y i,X,Nn |4 ≤ C

(
1 + |Y i,X,Nn |4q+4 +

1

N

N∑
j=1

|Y j,X,Nn |4
)
h4 +

Ch4

N

N∑
j=1

(
1 + |Xi,N

n −Xj,N
n |4q+4

)
.676

677
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From (1.1) and using (2.4) (since m ≥ 4q + 4) alongside Young’s inequality and Itô’s isometry, we have678

E
[
|Xi,N

s −Xi,N
n |2

]
≤ E

[∣∣∣ ∫ s

tn

v(Xi,N
u , µX,Nu ) + b(u,Xi,N

u , µX,Nu )du+

∫ s

tn

σ(u,Xi,N
u , µX,Nu )dW i

u

∣∣∣2] ≤ Ch,679

E
[
|Xi,N

s −Xi,N
n |4

]
≤ E

[∣∣∣ ∫ s

tn

v(Xi,N
u , µX,Nu ) + b(u,Xi,N

u , µX,Nu )du+

∫ s

tn

σ(u,Xi,N
u , µX,Nu )dW i

u

∣∣∣4] ≤ Ch2.680
681

Also, using (2.4), Jensen’s and Young’s inequality (since m ≥ 4q + 4) we have682

E
[Ch2

N

N∑
j=1

(
1 + |Xi,N

t −Xj,N
t |2q+2

)]
≤Ch2 and E

[∣∣∣Ch2

N

N∑
j=1

(
1 + |Xi,N

t −Xj,N
t |2q+2

)∣∣∣2] ≤ Ch4.683

684

This next argument uses steps similar to those used in (4.35) and (4.36) (appearing in the proof of Theorem685

4.7). Since X ·,N has bounded moments via (2.4) (this refers to the true interacting particle system), we have for686

any m ≥ p ≥ 2 that687

E
[
|Y i,X,Nn |p

]
≤
(

4pE
[ 1

N

N∑
j=1

|Xi,N
n −Xj,N

n |p
]

+ 4pE
[∣∣∣ 1

N

N∑
j=1

(1 + |Xj,N
n |2)

∣∣∣p/2]+ 1
)

(1 + Ch) ≤ C.688

689

Collecting all the terms above, using that the particles are identically distributed, we have690

E
[
|Xi,N

s − Y i,X,Nn |2
]
≤ Ch, E

[
|Xi,N

s − Y i,X,Nn |4
]
≤ Ch2, E

[
|Y i,X,Nn |p

]
≤ C,(4.28)691

E
[∣∣∣W (2)(µX,Ns , µY,X,Nn )

∣∣∣2] ≤ E
[ 1

N

N∑
j=1

|Xj,N
s − Y j,X,Nn |2

]
≤ Ch.(4.29)692

693

Plugging all the above inequalities back into (4.24) and (4.25), we conclude that694

E
[∣∣∣v(Xi,N

s , µX,Ns )− v(Y i,X,Nn , µY,X,Nn )
∣∣∣2] ≤ Ch.(4.30)695

696

We now consider term (4.22) of I2. By Assumption 2.1, using (4.28) and (4.29)697

E
[∣∣∣b(s,Xi,N

s , µX,Ns )− b(tn, Y i,X,Nn , µY,X,Nn )
∣∣∣2] ≤ CE[h+ |Xi,N

s − Y i,X,Nn |2 +
∣∣∣W (2)(µX,Ns , µY,X,Nn )

∣∣∣2] ≤ Ch.(4.31)

698
699

Thus, plugging (4.30), (4.31) back into (4.21) and (4.22), we have700

I2 ≤ Ch3.(4.32)701702

For I3, by Itô’s isometry, the results in (4.28) and (4.29), and using similar argument as in (4.31) we have703

I3 =E
[∣∣∣ ∫ tn+r

tn

(
σ(s,Xi,N

s , µX,Ns )− σ(tn, Y
i,X,N
n , µY,X,Nn )

)
dW i

s

∣∣∣2]704

≤E
[ ∫ tn+h

tn

∣∣∣(σ(s,Xi,N
s , µX,Ns )− σ(tn, Y

i,X,N
n , µY,X,Nn )

)∣∣∣2 ds
]
≤ Ch2.(4.33)705

706

Similarly for I4, by Itô’s isometry, Proposition 4.5, Equation (4.19) and using similar argument in (4.15)707

I4 =E
[∣∣∣ ∫ tn+r

tn

(
σ(tn, Y

i,X,N
n , µY,X,Nn )− σ(tn, Y

i,?,N
n , µ̂Y,Nn )

)
dW i

s

∣∣∣2]708

≤E
[ ∫ tn+h

tn

∣∣∣(σ(tn, Y
i,X,N
n , µY,X,Nn )− σ(tn, Y

i,?,N
n , µ̂Y,Nn )

)∣∣∣2 ds
]
≤ E

[
|Xi,N

n − X̂i,N
n |2

]
Ch.(4.34)709

710
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Plugging (4.20), (4.32) (4.33) and (4.34) back to (4.6), we have, for all n ∈ J0,M − 1K, i ∈ J1, NK and r ∈ [0, h]711

E
[
|∆Xi

tn+r|2
]
≤ (1 + h)E

[
|Xi,N

n − X̂i,N
n |2

]
(1 + Ch) + (1 +

1

h
)Ch3 + Ch2 + E

[
|Xi,N

n − X̂i,N
n |2

]
Ch712

≤ E
[
|Xi,N

n − X̂i,N
n |2

]
(1 + Ch) + Ch2.713714

By backward induction, the discrete Grönwall’s lemma delivers the result of (2.11).715

4.3. Proof of Theorem 2.10: the moment bound result. In this section prove Theorem 2.10. Throughout716

this section we follow the notation introduced in Theorem 2.10 and let: Assumption 2.1 hold, h is chosen as in717

(2.9) and m ≥ 2p with m as defined in (1.3).718

We first prove a moment bounds result across the timegrid then extend it to the continues process as stated719

in Theorem 2.10.720

THEOREM 4.7 (Moment bounds of SSM). Let the setting of Theorem 2.9 hold. Letm ≥ 2 where X̂i,N
0 ∈ Lm0 (Rd)721

for all i ∈ J1, NK and let X̂i,N be the continuous-time extension of the SSM given by (2.10). Let 2p ∈ [2,m], then722

there exists a constant C > 0 independent of h,N,M (but depending on T and m) such that723

sup
i∈J1,NK

sup
n∈J0,MK

E
[
|X̂i,N

n |2p
]

+ sup
i∈J1,NK

sup
n∈J0,M−1K

E
[
|Y i,?,Nn |2p

]
≤ C

(
1 + sup

i∈J1,NK
E
[
|X̂i,N

0 |2p
])
<∞.724

725

Proof. The next inequality introduces the quantities HX,p
n and HY,p

n . For any i ∈ J1, NK, n ∈ J0,MK, by726

Young’s and Jensen’s inequality727

E
[
|X̂i,N

n |2p
]

= E
[∣∣∣ 1

N

N∑
j=1

(X̂i,N
n − X̂j,N

n ) +
1

N

N∑
j=1

X̂j,N
n

∣∣∣2p]728

≤ 4pE
[ 1

N

N∑
j=1

|X̂i,N
n − X̂j,N

n |2p
]

+ 4pE
[∣∣∣ 1

N

N∑
j=1

(1 + |X̂j,N
n |2)

∣∣∣p]+ 1 = HX,p
n ,(4.35)729

E
[
|Y i,?,Nn |2p

]
≤ 4pE

[ 1

N

N∑
j=1

|Y i,?,Nn − Y j,?,Nn |2p
]

+ 4pE
[∣∣∣ 1

N

N∑
j=1

(1 + |Y j,?,Nn |2)
∣∣∣p]+ 1 = HY,p

n .(4.36)730

731

Using the following inequalities from Proposition 4.3 and 4.4, we have HY,p
n ≤ HX,p

n (1 + Ch),732

|Y i,?,Nn − Y j,?,Nn |2 ≤ |X̂i,N
n − X̂j,N

n |2(1 + Ch) and
1

N

N∑
j=1

(1 + |Y j,?,Nn |2) ≤
[ 1

N

N∑
j=1

(1 + |X̂j,N
n |2)

]
(1 + Ch).733

734

We now prove that HX,p
n+1 ≤ HY,p

n (1 + Ch). For the first element composing HX,p
n+1 we have735

E
[ 1

N

N∑
j=1

|X̂i,N
n+1 − X̂

j,N
n+1|2p

]
=E
[ 1

N

N∑
j=1

∣∣∣(Y i,?,Nn + b(tn, Y
i,?,N
n , µ̂Y,Nn )h+ σ(tn, Y

i,?,N
n , µ̂Y,Nn )∆W i

n

)
736

−
(
Y j,?,Nn + b(tn, Y

j,?,N
n , µ̂Y,Nn )h+ σ(tn, Y

j,?,N
n , µ̂Y,Nn )∆W j

n

)∣∣∣2p].(4.37)737
738

Introduce the extra (local) notation for Gi,j,n1 , Gi,j,n2 and Gi,j,n3 as739

Gi,j,n1 = Y i,?,Nn − Y j,?,Nn , Gi,j,n2 = b(tn, Y
i,?,N
n , µ̂Y,Nn )h− b(tn, Y j,?,Nn , µ̂Y,Nn )h,740

Gi,j,n3 = σ(tn, Y
i,?,N
n , µ̂Y,Nn )∆W i

n − σ(tn, Y
j,?,N
n , µ̂Y,Nn )∆W j

n.741742
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For a + b + c = 2p, a < 2p, a, b, c ∈ N, by Assumption 2.1, Young’s inequality, Jensen’s inequality, Proposition743

4.6 and the fact that the Brownian increments are independent, the particles are conditionally independent and744

identically distributed, for (4.37), we have745

E
[C
N

N∑
j=1

|Gi,j,n1 |a|Gi,j,n2 |b|Gi,j,n3 |c
]
≤ E

[
|Y i,?,Nn |2p

]
Ch ≤ HY,p

n Ch.746

747

Thus, for the first term of HX,p
n+1, we conclude that748

4pE
[ 1

N

N∑
j=1

|X̂i,N
n+1 − X̂

j,N
n+1|2p

]
≤ 4pE

[ 1

N

N∑
j=1

|Y i,?,Nn − Y j,?,Nn |2p
]

+HY,p
n Ch.(4.38)749

750

For the second term of HX,p
n+1 we have751

E
[∣∣∣ 1

N

N∑
j=1

(1 + |X̂j,N
n+1|2)

∣∣∣p] = E
[∣∣∣ 1

N

N∑
j=1

[
1 +

(
Y j,?,Nn + b(tn, Y

j,?,N
n , µ̂Y,Nn )h+ σ(tn, Y

j,?,N
n , µ̂Y,Nn )∆W j

n

)2]∣∣∣p].752

753

Set the following (extra local) notation754

Gn4 =
1

N

N∑
j=1

(1 + |Y j,?,Nn |2), Gn5 =
1

N

N∑
j=1

〈
2Y j,?,Nn + σ(tn, Y

j,?,N
n , µ̂Y,Nn )∆W j

n, σ(tn, Y
j,?,N
n , µ̂Y,Nn )∆W j

n

〉
,755

Gn6 =
1

N

N∑
j=1

〈
2Y j,?,Nn + b(tn, Y

j,?,N
n , µ̂Y,Nn )h+ 2σ(tn, Y

j,?,N
n , µ̂Y,Nn )∆W j

n, b(tn, Y
j,?,N
n , µ̂Y,Nn )h

〉
.756

757

We have once again using similar arguments as before, by Young’s inequality, Jensen’s inequality, Proposition 4.6,758

that the particles are conditionally independent and identically distributed, the independence property of the759

Brownian increments, the Lipschitz property for b and σ, and using the fact that for l1 > l2 > 1, |x|l2 ≤ 1 + |x|l1760

we have761

E
[
|Gn4 |a|Gn5 |b|Gn6 |c

]
≤ E

[
|Y i,?,Nn |2p + 1

]
Ch ≤ HY,p

n Ch.762763

Thus, for the second term of HX,p
n+1, we conclude that764

4pE
[∣∣∣ 1

N

N∑
j=1

(1 + |X̂j,N
n+1|2)

∣∣∣p] ≤ 4pE
[∣∣∣ 1

N

N∑
j=1

(1 + |Y j,?,Nn |2)
∣∣∣p]+HY,p

n Ch.(4.39)765

766

Plug (4.38) and (4.39) into HX,p
n+1 we have767

HX,p
n+1 = 4pE

[ 1

N

N∑
j=1

|X̂i,N
n+1 − X̂

j,N
n+1|2p

]
+ 4pE

[∣∣∣ 1

N

N∑
j=1

(1 + |X̂j,N
n+1|2)

∣∣∣p]+ 1768

≤ 4pE
[ 1

N

N∑
j=1

|Y i,?,Nn − Y j,?,Nn |2p
]

+ 4pE
[∣∣∣ 1

N

N∑
j=1

(1 + |Y j,?,Nn |2)
∣∣∣p]+ 1 +HY,p

n Ch ≤ HY,p
n (1 + Ch).769

770

Thus finally, for all n ∈ J0,M − 1K, i ∈ J1, NK, by backward induction collecting all the results above, since771

m ≥ 2p, where m is defined in (1.3), we have (for some C > 0 independent of h,N,M)772

E
[
|X̂i,N

n+1|2p
]
≤ HX,p

n+1 ≤ HY,p
n (1 + Ch) ≤ HX,p

n (1 + Ch)2 ≤ · · · ≤ HX,p
0 eCT ≤ CE

[
|X̂i,N

0 |2p
]

+ C <∞.773774

Similar argument yields the result for E
[
|Y i,?,Nn |2p

]
.775

22

This manuscript is for review purposes only.



Proof of the Theorem 2.10.776

Proof of the Theorem 2.10. Under the same assumptions and notations of Theorem 4.7, one can apply argu-777

ments similar to those used in [17, Proposition 4.6] to obtain the result.778

The final result of this section concerns the incremental (in time) moment bounds of X̂i,N . This result is in779

preparation for the next section.780

PROPOSITION 4.8. Under same assumptions and notations of Theorem 2.10, there exists a constant C > 0781

independent of h,N,M (but depending on T and m) such that for any p ≥ 2 satisfy m ≥ (q + 1)p, where m is782

defined in (1.3), q is defined in Assumption 2.1, we have783

sup
i∈J1,NK

sup
0≤t≤T

E
[
|X̂i,N

t − X̂i,N
κ(t)|

p
]
≤ Ch

p
2 .(4.40)784

785

Proof. Under Assumption 2.1, and carefully applying Young’s and Jensen’s inequality, one can argue similarly786

as to [17, Proposition 4.7] and obtain the result (we omit further details).787

4.4. Proof of Theorem 2.11, the uniform convergence result in path-space. We now prove Theorem788

2.11.789

Proof of Theorem 2.11. Let Assumption 2.1 hold. Let i ∈ J1, NK, t ∈ [0, T ], suppose m ≥ max{4q + 4, 2 + q +790

q/ε}, where Xi
0 ∈ Lm0 (Rd), q is as given in Assumption 2.1. From (2.4) and (2.12), both process Xi,N and X̂i,N791

have sufficient bounded moments for the following proof. Define ∆Xi := Xi,N − X̂i,N . Itô’s formula applied to792

|Xi,N
t − X̂i,N

t |2 = |∆Xi
t |2 yields793

|∆Xi
t |2 =2

∫ t

0

〈
v(Xi,N

s , µX,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
ds(4.41)794

+ 2

∫ t

0

〈
b(s,Xi,N

s , µX,Ns )− b(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
ds(4.42)795

+

∫ t

0

∣∣∣σ(s,Xi,N
s , µX,Ns )− σ(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s))

∣∣∣2ds(4.43)796

+ 2

∫ t

0

〈
∆Xi

s,
(
σ(s,Xi,N

s , µX,Ns )− σ(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s))
)

dW i
s

〉
.(4.44)797

798

We analyse the above terms one by one and will take supremum over time with expectation. For (4.41),799

〈
v(Xi,N

s , µX,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
800

=
〈
v(Xi,N

s , µX,Ns )− v(X̂i,N
s , µ̂X,Ns ),∆Xi

s

〉
+
〈
v(X̂i,N

s , µ̂X,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
.(4.45)801

802
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For the first term above, by Assumption 2.1 and using Remark 2.2803

E
[

sup
0≤t≤T

∫ t

0

〈
v(Xi,N

s , µX,Ns )− v(X̂i,N
s , µ̂X,Ns ),∆Xi

s

〉
ds
]

804

≤E
[ ∫ T

0

C

N

N∑
j=1

∣∣∣f(Xi,N
s −Xj,N

s )− f(X̂i,N
s − X̂j,N

s )
∣∣∣|∆Xi

s|ds
]

805

+ E
[

sup
0≤t≤T

∫ t

0

〈
u(Xi,N

s , µX,Ns )− u(X̂i,N
s , µ̂X,Ns ),∆Xi

s

〉
ds
]

806

≤E
[ ∫ T

0

C

N

N∑
j=1

{(
1 + |Xi,N

s −Xj,N
s |q + |X̂i,N

s − X̂j,N
s |q

)
|∆Xi

s −∆Xj
s ||∆Xi

s|
}

ds
]

(4.46)807

+ E
[ ∫ T

0

(
L̂u|∆Xi

s|2 +
Lũ
2N

N∑
j=1

|∆Xj
s |2
)

ds
]
.808

809

To deal with (4.46), using the following notations, for all i, j ∈ J1, NK,810

Gi,j,s7 =
(

1 + |Xi,N
s −Xj,N

s |q + |X̂i,N
s − X̂j,N

s |q
)

and Gi,j,s8 = |∆Xi
s −∆Xj

s ||∆Xi
s|.811

812

The combination of Gi,j,s7 and Gi,j,s8 makes it difficult to obtain a domination via |∆Xi
s|2, we overcome this by813

applying Chebyshev’s inequality as follows. The indicator function is denoted as 1{Ω}. Recall the moment bound814

results on X, X̂ in (2.4) and (2.12) respectively. Now, using Theorem 2.9, Proposition 4.6 and Young’s inequality,815

we have816

E
[
Gi,j,s7 Gi,j,s8

]
= E

[
Gi,j,s7 Gi,j,s8 (1{Gi,j,s7 <Mε})

]
+ E

[
Gi,j,s7 Gi,j,s8 (1{Gi,j,s7 ≥Mε})

]
(4.47)817

≤ E
[
MεGi,j,s8

]
+ E

[ |Gi,j,s7 |1/ε

M
Gi,j,s7 Gi,j,s8

]
≤ 2E

[
Mε|∆Xi

s|2
]

+ hE
[
|Gi,j,s7 |1/εGi,j,s7 Gi,j,s8

]
818

≤ Ch1−ε + hC
(

1 + E
[
|Xi,N

s |2+q+q/ε + |X̂i,N
s |2+q+q/ε

])
≤ Ch1−ε,(4.48)819

820

where for the last inequality, we used that the particles are identically distributed and there are sufficiently high821

bounded moments available for the process since m ≥ 2 + q + q/ε.822

Thus, for the first term in (4.45) and using that the particles are identically distributed, we conclude that823

E
[

sup
0≤t≤T

∫ t

0

〈
v(Xi,N

s , µX,Ns )− v(X̂i,N
s , µ̂X,Ns ),∆Xi

s

〉
ds
]
≤ CE

[ ∫ T

0

|∆Xi
s|2ds

]
+ Ch1−ε.(4.49)824

825

For the second term in (4.45), under Assumption 2.1, using Young’s inequality, Jensen’s inequality, and Proposi-826

tion 4.8 we have827

E
[

sup
0≤t≤T

∫ t

0

〈
v(X̂i,N

s , µ̂X,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
ds
]

(4.50)828

=E
[

sup
0≤t≤T

∫ t

0

〈
u(X̂i,N

s , µ̂X,Ns )− u(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
ds
]

(4.51)829

+ E
[

sup
0≤t≤T

∫ t

0

1

N

N∑
j=1

〈f(X̂i,N
s − X̂j,N

s )− f(Y i,?,Nκ(s) − Y
j,?,N
κ(s) ),∆Xi

s

〉
ds
]

(4.52)830

≤E
[ ∫ T

0

|∆Xi
s|2ds

]
+ I2 + I3.831

832
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For I2 (given by the domination of (4.51)), by Assumption 2.1, Young’s inequality and Cauchy-Schwarz inequality833

I2 =LûE
[ ∫ T

0

(
1 + |X̂i,N

s |q + |Y i,?,Nκ(s) |
q
)2

|X̂i,N
s − Y i,?,Nκ(s) |

2
]
ds834

≤C
∫ T

0

√
E
[(

1 + |X̂i,N
s |2q + |Y i,?,Nκ(s) |2q

)2]
E
[
|X̂j,N

s − Y j,?,Nκ(s) |4
]
ds.835

836

For I3 (given by the domination of (4.52) after extracting the |∆Xi| term), by Assumption 2.1, Young’s inequality837

and Cauchy-Schwarz inequality838

I3 =
CLf̂
N

N∑
j=1

E
[ ∫ T

0

(
1 + |X̂i,N

s − X̂j,N
s |q + |Y i,?,Nκ(s) − Y

j,?,N
κ(s) |

q
)2 ∣∣(X̂i,N

s − X̂j,N
s )− (Y i,?,Nκ(s) − Y

j,?,N
κ(s) )

∣∣2]ds839

≤C
N

N∑
j=1

∫ T

0

√
E
[(

1 + |X̂j,N
s |2q + |X̂i,N

s |2q + |Y i,?,Nκ(s) |2q + |Y j,?,Nκ(s) |2q
)2]

E
[
|X̂j,N

s − Y j,?,Nκ(s) |4
]
ds.840

841

By (2.7), Assumption 2.1, Young’s inequality, Jensen’s inequality, since m ≥ 4q+ 4, and by Theorem 4.7, we have842

E
[
|X̂i,N

κ(s) − Y
i,?,N
κ(s) |

4
]

= E
[
|hv(Y i,?,Nκ(s) , µ̂Y,Nκ (s))|4

]
843

≤ Ch4E
[
|u(Y i,?,Nκ(s) , µ̂Y,Nκ (s))|4

]
+
Ch4

N

N∑
j=1

E
[
|f(Y i,?,Nκ(s) − Y

j,?,N
κ(s) )|4

]
844

≤ Ch4E
[
1 + |Y i,?,Nκ(s) |

4q+4 +
1

N

N∑
j=1

|Y j,?,Nκ(s) |
4
]

+
Ch4

N

N∑
j=1

E
[
(1 + |Y i,?,Nκ(s) − Y

j,?,N
κ(s) |

4q)|Y i,?,Nκ(s) − Y
j,?,N
κ(s) |

4
]

845

≤ Ch4

N

N∑
j=1

E
[
1 + |Y j,?,Nκ(s) |

4q+4
]
≤ Ch4.846

847

Using this inequality in combination with Proposition 4.8 allows us to conclude that848

E
[
|X̂j,N

s − Y j,?,Nκ(s) |
4
]
≤ CE

[
|X̂j,N

s − X̂j,N
κ(s)|

4 + |X̂j,N
κ(s) − Y

j,?,N
κ(s) |

4
]
≤ Ch2.(4.53)849

850

Thus, for (4.45) injected back in (4.41), take supremum and expectation, and collecting all the necessary results851

above, we reach852

E
[

sup
0≤t≤T

∫ t

0

〈
v(Xi,N

s , µNs )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
ds
]
≤ CE

[ ∫ T

0

|∆Xi
s|2ds

]
+ Ch1−ε.(4.54)853

854

For the second term (4.42), the calculation is similar as in [17, Proof of Proposition 4.9], we conclude that855

E
[

sup
0≤t≤T

∫ t

0

〈
b(s,Xi,N

s , µX,Ns )− b(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉
ds
]
≤ Ch+ CE

[ ∫ T

0

|∆Xi
s|2ds

]
.(4.55)856

857

Similarly, for the third term (4.43) (these are just Lipschitz terms), we have858

E
[

sup
0≤t≤T

∫ t

0

∣∣∣σ(s,Xi,N
s , µX,Ns )− σ(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s))

∣∣∣2ds
]
≤ Ch+ CE

[ ∫ T

0

|∆Xi
s|2ds

]
.(4.56)859

860
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Consider the last term (4.44) – this is a Lipschitz term and dealt with similarly to [17, Proof of Proposition 4.9].861

Using the Burkholder-Davis-Gundy’s, Jensen’s and Cauchy-Schwarz inequality, and the above results,862

E
[

sup
0≤t≤T

∫ t

0

〈
∆Xi

s,
(
σ(s,Xi,N

s , µX,Ns )− σ(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s))
)

dW i
s

〉 ]
(4.57)863

≤ 1

4
E
[

sup
0≤t≤T

|∆Xi
t |2
]

+ E
[ ∫ T

0

∣∣∣σ(s,Xi,N
s , µX,Ns )− σ(κ(s), Y i,?,Nκ(s) , µ̂Y,Nκ(s))

∣∣∣2ds
]
.864

865

Again, gathering all the above results (4.54), (4.55), (4.56), and (4.57), plugging them back into (4.41), after866

taking supremum over t ∈ [0, T ] and expectation, for all i ∈ J1, NK we have867

E
[

sup
0≤t≤T

|∆Xi
t |2
]
≤ Ch1−ε + CE

[ ∫ T

0

sup
0≤u≤s

|∆Xi
u|2ds

]
+

1

2
E
[

sup
0≤t≤T

|∆Xi
t |2
]

868

≤ Ch1−ε + C

∫ T

0

E
[

sup
0≤u≤s

|∆Xi
u|2
]
ds.869

870

Grönwall’s lemma delivers the final result after taking supremum over i ∈ J1, NK.871

4.5. Discussion on the granular media type equation. Throughout C > 0 denotes a constant always872

independent of h,N,M but possibly depending on T and m.873

Proof of Proposition 2.5. Recall the proof of (4.41) in Section 4.4. Under Assumption 2.12, for all i ∈ J1, NK,874

t ∈ [0, T ], and using arguments similar to those of (4.45) we have875

∆Xi
t = Xi,N

t − X̂i,N
t =

∫ t

0

v(Xi,N
s , µX,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)) ds,876

⇒ E
[
|∆Xi

t |2
]
≤ 2

∫ t

0

E
[〈
v(Xi,N

s , µX,Ns )− v(X̂i,N
s , µ̂X,Ns ),∆Xi

s

〉]
ds(4.58)877

+ 2

∫ t

0

E
[〈
v(X̂i,N

s , µ̂X,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉]
ds.(4.59)878

879

For (4.58), arguing as in (4.18), Remark 2.4 and using that the particles are identically distributed, we have880

E
[〈
v(Xi,N

s , µX,Ns )− v(X̂i,N
s , µ̂X,Ns ),∆Xi

s

〉]
≤ 2L+

f E
[
|∆Xi

s|2
]
.(4.60)881

882

For (4.59), it is similar to the above, we have883

2

∫ t

0

E
[〈
v(X̂i,N

s , µ̂X,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s)),∆X
i
s

〉]
ds =

2

N

N∑
j=1

∫ t

0

E
[〈
f(∆X,i,j

s )− f(∆Y,i,j
κ(s) ),∆Xi

s

〉]
ds,(4.61)884

885

where we introduce the following handy notation (recall (2.7) and (2.10))886

∆X,i,j
t = X̂i,N

s − X̂j,N
s , ∆Y,i,j

κ(s) = Y i,?,Nκ(s) − Y
j,?,N
κ(s) ,887

∆X,i,j
s = ∆X,i,j

κ(s) +Gi,j,s9 (s− κ(s)) +Gi,j,s10 , ∆Y,i,j
κ(s) = ∆X,i,j

κ(s) +Gi,j,s9 h,888

Gi,j,s9 =
(
v(Y i,?,Nκ(s) , µ̂Y,Nκ(s))− v(Y j,?,Nκ(s) , µ̂Y,Nκ(s))

)
and Gi,j,s10 = σ

(
(W i

s −W i
κ(s))− (W j

s −W
j
κ(s))

)
.(4.62)889

890
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We now proceed to estimate (4.61). By the mean value theorem under Assumption 2.12, for (4.61), there exist891

ρ1, ρ2 ∈ [0, 1] such that892

f(∆X,i,j
s ) =f(∆X,i,j

κ(s) ) +∇f(∆X,i,j
κ(s) )

(
Gi,j,s9 (s− κ(s)) +Gi,j,s10

)
+

∫ ∆X,i,j
s

∆X,i,j
κ(s)

(
∇f(u)−∇f(∆X,i,j

κ(s) )
)
du893

=f(∆X,i,j
κ(s) ) +∇f(∆X,i,j

κ(s) )
(
Gi,j,s9 (s− κ(s)) +Gi,j,s10

)
894

+
(
∇f
(
∆X,i,j
κ(s) + ρ1(Gi,j,s9 (s− κ(s)) +Gi,j,s10 )

)
−∇f(∆X,i,j

κ(s) )
)(

∆X,i,j
s −∆X,i,j

κ(s)

)
,895

f(∆Y,i,j
κ(s) ) =f(∆X,i,j

κ(s) ) +∇f(∆X,i,j
κ(s) )

(
Gi,j,s9 h

)
+
(
∇f
(
∆X,i,j
κ(s) + ρ2(Gi,j,s10 h)

)
−∇f(∆X,i,j

κ(s) )
)(

∆Y,i,j
κ(s) −∆X,i,j

κ(s)

)
.896

897

Note that only G10 contains the Brownian increments. From the above, there exists ρ1,s, ρ2,s ∈ [0, 1] for all898

s ∈ [0, T ], and by Young’s inequality, we have899 ∫ t

0

E
[〈
f(∆X,i,j

s )− f(∆Y,i,j
κ(s) ),∆Xi

s

〉]
ds(4.63)900

≤
∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) )
(
Gi,j,s9 (s− h− κ(s)) +Gi,j,s10

)
,∆Xi

s

〉]
ds+ C

∫ t

0

E
[
|∆Xi

s|2
]
ds(4.64)901

+ C

∫ t

0

E
[∣∣∣∇f(∆X,i,j

κ(s) + ρ1,s(G
i,j,s
9 (s− κ(s)) +Gi,j,s10 )

)
−∇f(∆X,i,j

κ(s) )
∣∣∣2∣∣∣∆X,i,j

s −∆X,i,j
κ(s)

∣∣∣2]ds(4.65)902

+ C

∫ t

0

E
[∣∣∣∇f(∆X,i,j

κ(s) + ρ2,s(G
i,j,s
9 h)

)
−∇f(∆X,i,j

κ(s) )
∣∣∣2∣∣∣∆Y,i,j

κ(s) −∆X,i,j
κ(s)

∣∣∣2]ds.(4.66)903
904

For the first term of (4.64), by Young’s inequality905 ∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) )
(
Gi,j,s9 (s− h− κ(s)) +Gi,j,s10

)
,∆Xi

s

〉]
ds(4.67)906

≤ C
∫ t

0

E
[
|∆Xi

s|2
]
ds+ C

∫ t

0

E
[∣∣∣∇f(∆X,i,j

κ(s) )Gi,j,s9 (s− h− κ(s))
∣∣∣2]ds(4.68)907

+

∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) ) Gi,j,s10 ,∆Xi
s −∆Xi

κ(s)

〉]
ds+

∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) ) Gi,j,s10 ,∆Xi
κ(s)

〉]
ds.(4.69)908

909

For the second term of (4.68), since m ≥ 4q+2, by Assumption 2.12 and Theorem 2.10, using calculations similar910

to those in (4.23) and Proposition 4.6, we have911

C

∫ t

0

E
[∣∣∣∇f(∆X,i,j

κ(s) )Gi,j,s9 (s− h− κ(s))
∣∣∣2]ds ≤ Ch2

∫ t

0

E
[
1 + |X̂i,N

κ(s)|
4q+2 + |Y i,?,Nκ(s) |

4q+2
]
ds ≤ Ch2.912

913

By Jensen’s inequality and calculations close to those for I3 in (4.52), since m ≥ 4q + 2, we have914

E
[
|∆Xi

t −∆Xi
κ(t)|

2
]

= E
[∣∣∣ ∫ t

κ(t)

(
v(Xi,N

s , µX,Ns )− v(Y i,?,Nκ(s) , µ̂Y,Nκ(s))
)

ds
∣∣∣2](4.70)915

≤h
∫ t

κ(t)

1

N

N∑
j=1

E
[∣∣∣f(Xi,N

s −Xi,N
s )− f(Y i,?,Nκ(s) − Y

i,?,N
κ(s) )

∣∣∣2] ds ≤ Ch3.(4.71)916

917

Thus, for the first term of (4.69), by Cauchy-Schwarz inequality and the properties of the Brownian increment918 ∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) ) Gi,j,s10 ,∆Xi
s −∆Xi

κ(s)

〉]
ds ≤

∫ t

0

√
E
[∣∣∇f(∆X,i,j

κ(s) ) Gi,j,s10

∣∣2]√E
[∣∣∆Xi

s −∆Xi
κ(s)

∣∣2]ds ≤ Ch2.919
920
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For the second term of (4.69), since Gi,j,s10 of (4.62) is conditionally independent of ∆X,i,j
κ(s) and ∆Xi

κ(s) (and921

contains the Brownian increments), the tower property yields922 ∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) ) Gi,j,s10 ,∆Xi
κ(s)

〉]
ds = 0.(4.72)923

924

Thus, plugging the above results back into (4.64), we conclude that925 ∫ t

0

E
[〈
∇f(∆X,i,j

κ(s) )
(
Gi,j,s9 (s− h− κ(s)) +Gi,j,s10

)
,∆Xi

s

〉]
ds ≤ Ch2.(4.73)926

927

For (4.65), by Assumption 2.12, Cauchy-Schwarz inequality and the properties of the Brownian increment, and928

the condition m ≥ max{8q, 4q + 4}929

E
[∣∣∇f(∆X,i,j

κ(s) + ρ1,s(G
i,j,s
9 (s− κ(s)) +Gi,j,s10 )

)
−∇f

(
∆X,i,j
κ(s)

)∣∣4]930

≤ CE
[∣∣(1 +

∣∣∆X,i,j
κ(s) + ρ1,s

(
Gi,j,s9 (s− κ(s)) +Gi,j,s10

)∣∣q−1
+
∣∣∆X,i,j

κ(s)

∣∣q−1
)∣∣ρ1,s

(
Gi,j,s9 (s− κ(s)) +Gi,j,s10

)∣∣4] ≤ Ch2,931
932

and933

E
[∣∣∆X,i,j

s −∆X,i,j
κ(s)

∣∣4] ≤ CE[∣∣(Gi,j,s9 (s− κ(s)) +Gi,j,s10

)∣∣4] ≤ Ch2.934
935

Thus, using Cauchy-Schwarz inequality again and the results above we conclude that936 ∫ t

0

E
[∣∣∇f(∆X,i,j

κ(s) + ρ1,s

(
Gi,j,s9 (s− κ(s)) +Gi,j,s10

))
−∇f(∆X,i,j

κ(s) )
∣∣2∣∣∆X,i,j

s −∆X,i,j
κ(s)

∣∣2]ds ≤ Ch2.(4.74)937
938

For (4.66), recall (4.62). Similarly to above, by assumption m ≥ 4q + 2 and hence939 ∫ t

0

E
[ ∣∣∇f(∆X,i,j

κ(s) + ρ2,sG
i,j,s
9 h

)
−∇f

(
∆X,i,j
κ(s)

)∣∣2 ∣∣Gi,j,s9 h
∣∣2 ]ds ≤ Ch2.(4.75)940

941

Thus, plugging (4.73), (4.74) and (4.75) back into (4.63), yields942 ∫ t

0

E
[〈
f(∆X,i,j

s )− f(∆Y,i,j
κ(s) ),∆Xi

s

〉]
ds ≤ Ch2 + C

∫ t

0

E
[
|∆Xi

s|2
]
ds.(4.76)943

944

Plug the above result and (4.60) back to (4.58), we conclude that, for all i ∈ J1, NK, t ∈ [0, T ]945

E
[
|∆Xi

t |2
]
≤C

∫ t

0

E
[
|∆Xi

s|2
]
ds+ Ch2.(4.77)946

947

Grönwall’s lemma delivers the final result after taking supremum over i ∈ J1, NK.948

Appendix A. Well-posedness of the particle system and the PoC – Proposition 2.5 .949

The Propagation of chaos result (2.5) follows directly from [1, Theorem 3.14]. The gap we close is the well-950

posedness result for the interacting particle system and the moment bound result. Note that throughout C > 0 is951

a constant always independent of h,N,M but possibly depending on T and m.952

Proof of Proposition 2.5. We start by interpreting the interacting particle system (1.1) as a single SDE in953

RNd. In Remark 2.4 we show that, as a system in RNd, the function V (see (2.2) and (1.4)) satisfies a one-954

sided Lipschitz condition (as a map in RNd). Thus: (i) the drift term of the whole system also satisfies one-sided955

Lipschitz condition as b satisfies a uniformly Lipschitz condition by (Ab); (ii) the diffusion coefficient satisfies a956
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Lipschitz condition (by (Aσ)). In conclusion, the well-posedness of the interacting particle SDE RNd-system is957

ensured by standard SDE results [47, Theorem 3.5 (p.58)].958

The moment bound result of the RNd-system that follows from [47, Theorem 3.5 (p.58)] does not lead to959

(2.4) as the constant appearing on the right-hand side depends on N and explode as N ↗∞. Nonetheless, with960

well-posedness at hand, we are able to improve the bound and show (2.4).961

The strategy of the proof is the same as that in Section 4.3. For all m ≥ 2p ≥ 2, i ∈ J1, NK, t ∈ [0, T ], we have962

E
[
|Xi,N

t |2p
]

= E
[∣∣∣ 1

N

N∑
j=1

(
Xi,N
t −Xj,N

t

)
+

1

N

N∑
j=1

Xj,N
t

∣∣∣2p]963

≤ 4pE
[ 1

N

N∑
j=1

|Xi,N
t −Xj,N

t |2p
]

+ 4pE
[∣∣∣ 1

N

N∑
j=1

|Xj,N
t |2

∣∣∣p]964

≤ 4pE
[
|Xi,N

t −Xj,N
t |2p

]
i 6=j

+ 4pE
[∣∣∣ 1

N

N∑
j=1

|Xj,N
t |2

∣∣∣p].(A.1)965

966

For the first term in (A.1), by Itô’s formula, for i, j ∈ J1, NK, i 6= j,967

|Xi,N
t −X

j,N
t |2p = |Xi,N

0 −Xj,N
0 |2p968

+ 2p

∫ t

0

|Xi,N
s −Xj,N

s |2p−2
〈
Xi,N
s −Xj,N

s , v(Xi,N
s , µX,Ns )− v(Xj,N

s , µX,Ns )
〉

ds969

+ 2p

∫ t

0

|Xi,N
s −Xj,N

s |2p−2
〈
Xi,N
s −Xj,N

s , b(s,Xi,N
s , µX,Ns )− b(s,Xj,N

s , µX,Ns )
〉

ds970

+ 2p

∫ t

0

|Xi,N
s −Xj,N

s |2p−2
〈
Xi,N
s −Xj,N

s , σ(s,Xi,N
s , µX,Ns )dW i

s − σ(s,Xj,N
s , µX,Ns )dW j

s

〉
971

+
2p(2p− 1)

2

∫ t

0

|Xi,N
s −Xj,N

s |2p−2
(
|σ(s,Xi,N

s , µX,Ns )|2 + |σ(s,Xj,N
s , µX,Ns )|2

)
ds.972

973

By Assumption 2.1, Remark 2.2, Jensen’s inequality, Proposition 4.6, take expectation on both side, by the parti-974

cles are identically distributed and Burkholder-Davis-Gundy (BDG) inequality, we have975

E
[
|Xi,N

t −X
j,N
t |2p

]
≤ E

[
|Xi,N

0 −Xj,N
0 |2p

]
+ C

∫ t

0

E
[
|Xi,N

s −Xj,N
s |2p

]
ds+ C

∫ t

0

E
[
|Xi,N

s |2p
]
ds.976

977

For the second term in (A.1), similarly, and notice that,978

1

N

N∑
j=1

|Xj,N
t |2 =

1

N

N∑
j=1

|Xj,N
0 |2 +

1

N

N∑
j=1

∫ t

0

〈
Xj,N
s , v(Xj,N

s , µX,Ns )
〉

ds+
1

2N

N∑
j=1

∫ t

0

|σ(s,Xj,N
s , µX,Ns )|2ds979

+
1

N

N∑
j=1

∫ t

0

〈
Xj,N
s , b(s,Xj,N

s , µX,Ns )
〉

ds+
1

N

N∑
j=1

∫ t

0

〈
Xj,N
s , σ(s,Xj,N

s , µX,Ns )dW j
s

〉
980

≤ 1

N

N∑
j=1

(
|Xj,N

0 |2 +

∫ t

0

|Xj,N
s |2ds+

∫ t

0

〈
Xj,N
s , σ(s,Xj,N

s , µX,Ns )dW j
s

〉)
+

C

N2

N∑
i=1

N∑
j=1

∫ t

0

|Xi,N
s −Xj,N

s |2ds.981

982

Take power of p on both side and expectations. By Jensen’s inequality, BDG inequality, Proposition 4.6, Assump-983

tion 2.1, the Lipschitz properties on σ, we can conclude with the highest order up to 2p, we have984

E
[∣∣∣ 1

N

N∑
j=1

|Xj,N
t |2

∣∣∣p] ≤ C + CE
[ 1

N

N∑
j=1

|Xj,N
0 |2p

]
+ C

∫ t

0

E[|Xi,N
s |2p]ds+ C

∫ t

0

E
[∣∣∣ 1

N

N∑
j=1

|Xj,N
s |2

∣∣∣p]ds,985

986
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where we used that the particles are identically distributed to deal with the third term on the righ-hand side.987

Collecting all the above results and using (A.1) again, we have988

E
[
|Xi,N

t |2p
]
≤ E

[
|Xi,N

t −Xj,N
t |2p

]
+ E

[∣∣∣ 1

N

N∑
j=1

|Xj,N
t |2

∣∣∣p]989

≤ E
[
|Xi,N

0 −Xj,N
0 |2p

]
+ CE

[
|Xi,N

0 |2p
]

+ C

∫ t

0

(
E
[
|Xi,N

s −Xj,N
s |2p

]
i 6=j

+ E
[∣∣∣ 1

N

N∑
j=1

|Xj,N
s |2

∣∣∣p])ds.990

991

Grönwall’s lemma delivers the final result after taking supremum over i ∈ J1, NK and t ∈ [0, T ].992

Appendix B. Solving the implicit equation of the SSM and a deployment of Newton’s method.993

In this section we address solving the implicit Equation (2.6) in the SSM. We first present a general result994

stating the level of precision on needs to solve (2.6) such that the final convergence rate of the SSM method is995

preserved (e.g., Theorem 2.9 and 2.11). Proposition B.2 is understood as a requirement of an adequate approx-996

imation method. In the subsequent section, we describe a deployment of Newton’s method as one such method997

(among many) with the simulation results in Section 3 showing its efficiency.998

B.1. Approximation scheme to the SSM. Recall the SSM from Definition 2.6. For any timestep n ∈ J0,M −999

1K, for any particle i ∈ J1, NK, define Ψ̂i : Rd ×RNd × [0, T ]→ Rd be the measurable map associating the unique1000

solution Y i,?,Nn of (2.6) to its data X̂i,N
n , X̂N

n and h, i.e.,1001

Ψ̂i(X̂
i,N
n , X̂N

n , h) = Y i,?,Nn , Ψ̂ = (Ψ̂1, . . . , Ψ̂N ).(B.1)10021003

The existence of such a map Ψ̂ is guaranteed by Lemma 4.2 (see also Proposition 4.3 and 4.4 for some of1004

its good properties). We next introduce a version SSM of Definition 2.6 where the implicit equation is solved1005

approximately only.1006

DEFINITION B.1 (Approximation scheme to the SSM). We follow the notation of Definition 2.6 hold. Denote1007

the approximation mapping at each SSM step (2.6) as a measurable map Ψi : Rd × RNd × [0, T ] → Rd. The SSM1008

variant is then, corresponding to (2.6)-(2.7): set X
i,N

0 = Xi
0 for i ∈ J1, NK; then for all i ∈ J1, NK and n ∈ J0,M−1K1009

Y
i,?,N

n = Ψi(X
i,N

n , X
N

n , h), X
N

n = (X
1,N

n , . . . , X
N,N

n ), µY,Nn (dx) :=
1

N

N∑
j=1

δ
Y
j,?,N
n

(dx),(B.2)1010

X
i,N

n+1 = Y
i,?,N

n + b(tn, Y
i,?,N

n , µY,Nn )h+ σ(tn, Y
i,?,N

n , µY,Nn )∆W i
n, ∆W i

n = W i
tn+1
−W i

tn ,(B.3)10111012

where for any i the map Ψi is an approximation to Ψ̂i solving (B.1).1013

We emphasise that at this point, our assumption is that the maps Ψi can be found. We discuss how to find them1014

in the next section.1015

PROPOSITION B.2. Let the assumptions of Theorem 2.10 hold. Recall the notation of Definition 2.6 and (B.1).1016

For the Ψ̂i and Ψi defined in (B.1) and (B.2) respectively, if supi E[|Ψ̂i(xi, x, h) − Ψi(xi, x, h)|2] ≤ Ch for all1017

x = (x1, . . . , xN ) ∈ L2
0(RNd) and some constant C (independent of h,N,M but depending on T ) , then1018

sup
n∈J1,MK

sup
i∈J1,NK

E
[
|X̂i,N

n −Xi,N

n |2
]
≤ Ch.(B.4)1019

1020

The main interpretation is that as long as the implicit Equation (2.6) is solved approximately up to an accuracy1021

of size h (the time-step increment) in L2-norm, then the final order of convergence of the numerical scheme is1022

preserved.1023
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Proof. We proceed by induction since for all i ∈ J1, NK, by definition, we have X̂i,N
0 = X

i,N

0 = Xi
0.1024

Step: The initial case. We prove that supi∈J1,NK E
[
|X̂i,N

1 − Xi,N

1 |2
]
≤ Ch. By the assumptions of Proposition1025

B.2 we have1026

sup
i∈J1,NK

E
[
|Y i,?,N0 − Y i,?,N1 |2

]
≤ sup
i∈J1,NK

E
[
|Ψ̂i(X

i
0, X0, h)−Ψi(X

i
0, X0, h)|2

]
≤ Ch.1027

1028

For all i ∈ J1, NK, since function b and σ are Lipschitz, by similar arguments in (4.31),1029

sup
i∈J1,NK

E
[
|X̂i,N

1 −Xi,N

1 |2
]
≤ C sup

i∈J1,NK
E
[
|Y i,?,N0 − Y i,?,N1 |2 +

∣∣W (2)(µY,N0 , µ̂Y,N0 )
∣∣2h]1030

≤ sup
i∈J1,NK

E
[
|Y i,?,N0 − Y i,?,N1 |2

]
≤ Ch.(B.5)1031

1032

Step: The inductive case. For n ∈ J1,M − 1K, given supi∈J1,NK E
[
|X̂i,N

n − X
i,N

n |2
]
≤ Ch, we need to proof1033

supi∈J1,NK E
[
|X̂i,N

n+1 −X
i,N

n+1|2
]
≤ Ch, similarly, we first proof the result for the first step, from the assumption of1034

Proposition B.2,1035

sup
i∈J1,NK

E
[
|Y i,?,Nn − Y i,?,Nn |2

]
= sup
i∈J1,NK

E
[
|Ψ̂i(X̂

i
n, X̂n, h)−Ψ(X

i

n, Xn, h)|2
]

1036

≤ 2 sup
i∈J1,NK

E
[
|Ψ̂i(X̂

i
n, X̂n, h)− Ψ̂i(X

i

n, Xn, h)|2
]

+ 2 sup
i∈J1,NK

E
[
|Ψ̂i(X

i

n, Xn, h)−Ψi(X
i

n, Xn, h)|2
]

1037

≤ 2 sup
i∈J1,NK

E
[
|Ψ̂i(X̂

i
n, X̂n, h)− Ψ̂i(X

i

n, Xn, h)|2
]

+ 2h.(B.6)1038
1039

Recall the results in Section 4.2, the arguments in (4.19) are satisfied for all i ∈ J1, NK, thus,1040

sup
i∈J1,NK

E
[
|Ψ̂i(X̂

i
n, X̂n, h)− Ψ̂i(X

i

n, Xn, h)|2 ≤ sup
i∈J1,NK

E
[
|X̂i

n −X
i

n|2(1 + Ch) ≤ Ch.1041
1042

Plug the result above into (B.6) to conclude1043

sup
i∈J1,NK

E
[
|Y i,?,Nn − Y i,?,Nn |2

]
≤ Ch.1044

1045

And, by similar argument in (B.5), we have1046

sup
i∈J1,NK

E
[
|X̂i,N

n+1 −X
i,N

n+1|2
]
≤ Ch.1047

1048

B.2. Deploying Newton’s method. We now provide a discussion on using Newton’s method to solve (2.6)1049

in the scope of the SSM. We first introduce Newton’s method for high dimensions. Recall the functions V, u, f in1050

(1.4), (2.2), and the SSM in Definition 2.6.1051

For simplicity of presentation, we assume that the function u only depends on the space-components (this1052

is inline with the numerical examples section) and f has continuous second order derivative. Fix x ∈ RNd, for1053

y = (y1, y2, . . . , yN ) ∈ (Rd)N , for the functions V, F : RNd → RNd and u, f : Rd → Rd, we want to find a solution1054

of y 7→ F (y) (given by (2.6)) defined as1055

RNd 3 y 7→ F (y) = y − x− hV (y) = 0, V = (V1, V2, . . . , VN ) and Vi(y) = u(yi) +
1

N

N∑
j=1

f(yi − yj).1056

1057
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For a fixed x ∈ RNd, Lemma 4.2 ensures that a unique y? exists satisfying F (y?) = 0. Setting as initial guess of1058

y0 = x, we denote the κth-iteration of the Newton method by yκ and define it as1059

y0 = x, yκ+1 = yκ − [∇F ]−1(yκ)F (yκ),10601061

where ∇F stands for the Jacobian matrix of F .1062

Denoting INd as the identity matrix in Nd-dimensions, we express the Jacobian of F in closed form as1063

[∇F ](y) = INd − hA(y) +
h

N
Γ(y) where for y = (y1, y2, . . . , yN ) ∈ (Rd)N we have1064

A(y) =

∇u(y1) · · · 0
...

. . .
...

0 · · · ∇u(yN )

+


1
N

∑N
j=1∇f(y1 − yj) · · · 0

...
. . .

...
0 · · · 1

N

∑N
j=1∇f(yN − yj)

1065

Γ(y) =

∇f(y1 − y1) · · · ∇f(y1 − yn)
...

. . .
...

∇f(yn − y1) · · · ∇f(yn − yn)

 .1066

1067

The matrix A(y) is a block diagonal matrix, and Γ is a symmetric matrix since f is odd and its main diagonal is1068

equal to ∇f(0). We stop the Newton’s iteration at step κ when the error tolerance rule ‖yκ − yκ−1‖∞ <
√
h is1069

satisfied. We note that since Γ(·) is a symmetric matrix weighted by h
N which is an order 1/N smaller that INd1070

and hA(·) one can think of ignoring it in favour of an approximate Newton’s method.1071

Theoretical foundation for methodological choices. As mentioned, Lemma 4.2 ensures a unique y? exists solving1072

F (y?) = 0. Proposition 4.3 and 4.4 ensure continuous dependence of y? on x, and hence assuming h small enough1073

the choice of y0 = x as the initial guess for y? in the Newton method is justified. From [54, Theorem 4.4], under1074

the extra assumption that F is twice differentiable with continuous derivatives, we have that the Newton iteration1075

converges quadratically to the unique solution y?. In fact, given h small enough and complementing with the trick1076

highlighted in Remark 2.7 one can show that V in (2.2) has a strictly negative one-sided Lipschitz constant and1077

hence ∇V is strict negative definite matrix (see [44]) and hence so is ∇F – this ensures that ∇F is nonsingular1078

(also at y?) and thus [54, Theorem 4.4] applies guaranteeing convergence.1079

In the scope of the examples presented in Section 3, with the choices above, we found that the condition1080

‖yκ − yκ−1‖∞ <
√
h is attained within two to four Newton method iterations, i.e., with κ ≤ 4.1081
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