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Parameter study of decaying magnetohydrodynamic turbulence

Andres Armua,∗ Arjun Berera,† and Jaime Calderón-Figueroa‡

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
(Dated: May 5, 2023)

It is well known that helical magnetohydrodynamic (MHD) turbulence exhibits an inverse transfer
of magnetic energy from small to large scales, which is related to the approximate conservation of
magnetic helicity. Recently, several numerical investigations noticed the existence of an inverse
energy transfer also in nonhelical MHD flows. We run a set of fully resolved direct numerical
simulations and perform a wide parameter study of the inverse energy transfer and the decaying laws
of helical and nonhelical MHD. Our numerical results show only a small inverse transfer of energy
that grows as with increasing Prandtl number (Pm). This latter feature may have interesting
consequences for cosmic magnetic field evolution. Additionally, we find that the decaying laws
E ∼ t−p are independent of the scale separation and depend solely on Pm and Re. In the helical
case we measure a dependence of the form pb ≈ 0.6 + 14/Re. We also make a comparison between
our results and previous literature and discuss the possible reason for the observed disagreements.

I. INTRODUCTION

Decaying magnetohydrodynamic (MHD) turbulence
received special attention in recent years. The study of
decaying turbulence has been a topic of interest in its own
sake for decades [1–10]. Furthermore, the decay of MHD
turbulence is of central importance for astrophysics and
cosmology, especially for the generation and evolution of
large scale cosmic magnetic fields [11–15].

The presence of an inverse cascade in helical MHD tur-
bulence has been studied for many decades now [16], and
a large number of numerical studies have been dedicated
to this topic. Some used direct numerical simulations
(DNS) [5, 17–22], whereas others used closure approxi-
mations and cascade models [23–25].

In recent years, several studies found evidence of an in-
verse energy transfer also in nonhelical flows [26–33]. The
physical mechanisms involved in the nonhelical inverse
transfer are different to those in the case of magnetic he-
licity, and are not completely understood yet. Some re-
cent studies claim that magnetic reconnection may play
an essential role in this inverse transfer [30–32, 34–37].
Only a few works analyzed the dependence of this effect
on the magnetic Prandtl number Pm = ν/η, which is the
ratio of kinetic viscosity to magnetic diffusivity [26, 29].
This is important for applications, since it is estimated
that Pm ≫ 1 in astrophysical systems such as the in-
terstellar and intergalactic medium [38–40]. This is also
noted in [32], where the authors choose a value of Pm
≫ 1.

In this work we perform a series of fully resolved DNS
of decaying MHD turbulence with special focus on the in-
verse transfer of magnetic energy as well as the decaying
exponents for a wide range of parameters such as Prandtl
number, Reynolds number and scale separation. Most of
the simulations in this paper are initially in equipartition
and a small number are magnetically dominated. This
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is contrary to most recent numerical results which are
mainly magnetically dominated.
Recent numerical studies implement hyperviscosity

and hyperresistivity to overcome resolution limitations.
Our whole analysis is based on flows with standard vis-
cosity and we only run a few hyperviscous runs for the
sake of comparison.
The paper is organized as follows. In section II we give

a brief introduction to decaying hydrodynamics, decay-
ing MHD for both helical and nonhelical turbulence and
its applications to the topic of primordial magnetic fields.
In section III, we give basic definitions and describe the
numerical set-up. In IV we discuss the subtleties involved
in the measurement of the decaying exponents. In section
V, we make a comparison between a hydrodynamic, a he-
lical and a nonhelical MHD simulation. In section VI, we
perform a detailed analysis of decaying helical and non-
helical MHD for varying Prandtl number. In section VII
we do the same for varying Reynolds number, and in sec-
tion VIII for the scale separation. In section IX, we show
the results of a small number of simulations that use hy-
perviscosity and hyperresistivity, to study the effect that
these have on the inverse transfer. We dedicate section
X to the comparison between our results and those pro-
duced by other codes in literature.

II. DECAYING TURBULENCE

A. Decaying hydrodynamics

The first to establish the laws of decaying turbulence
was Kolmogorov in one of his foundational works in 1941
[3]. This theory is based on the approximate invariance of
the Loitsyansky integral I = −

∫
dr r2⟨u(x)u(x+ r)⟩ ∼

L5U2 = 2L5E, where L is the integral length scale, E
the energy, and U the root mean squared velocity. This
integral is used to set the timescale of the energy decay,
assuming that dE/dt ∼ −E/T ∼ −E3/2/L ∼ −E17/10

the energy decay rate follows the power law

E ∝ t−10/7. (1)
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The invariance of the Loitsyansky integral has been
challenged by some authors years later. These suggest
that long-range correlation may exist in turbulent flows
depending on the form of the initial spectrum (∼ k2

or ∼ k4) [1, 8, 9, 41–43]. This gives place to multiple
predictions for the decaying laws, that depend on ini-
tial conditions and other physical assumptions. For in-
stance, in 1967, Saffman predicted a decay law of the
form E ∼ t−6/5 for an initial spectrum of the form
E(k) ∼ k2 [1].

Furthermore, numerical and experimental results add
to the controversy by showing a variety of results for the
decaying exponent p (i.e. E ∼ t−p), as well as different
conclusions for the dependence of p on initial conditions
and experiment/simulation set-up. For experimental re-
sults see [44–49] and for numerical results see [50–58].
There are many factors that might affect the evolution
of the decay in either numerical simulations or experi-
ments. For instance, even though the theory assumes
the Re→ ∞ limit, numerical and experimental measure-
ments are done at finite Reynolds numbers, preventing
the formation of the self-similar cascade on which the
theories rely. Furthermore, some authors notice the im-
portance of large scale resolution, suggesting that a satu-
ration occurs when the size of the largest eddies becomes
similar to size of the box, thus affecting the dynamics of
the decay [47, 52, 59].

These controversies brought recent attention to the
problem of obtaining truly universal laws for decaying
turbulence [51, 60]. In [60], the authors collected data
from different numerical and experimental results re-
ported over decades, which was analyzed to provide some
clarity on this issue.

B. Decaying MHD

A topic of major theoretical and practical importance,
is the decay of MHD turbulence. In MHD, the difficulty
to establish universal decaying laws goes one step further.
The variety of physical situations and initial conditions
is much wider than in hydrodynamics, and the interplay
of time and length scales is much more complex. Still,
multiple predictions can be made based on different as-
sumptions.

A common classification for MHD flows is done in
terms of the value of the magnetic helicity, which is de-
fined as

⟨Hb⟩ = lim
V→∞

V −1

∫
V

dV ⟨A ·B⟩ , (2)

where B is the magnetic field, A is the magnetic vector
potential such that ∇ × A = B. The magnetic helicity
is an ideal invariant in MHD, and its turbulent dynam-
ics present interesting properties. The pioneering paper
by Frisch et al. [16] showed that the magnetic helicity
spectrum Hb(k, t) =

∫
|k|=k

⟨A(k) ·B(−k)⟩ exhibits an in-

verse cascade that had not been previously predicted or

observed for kinetic helicity in pure hydrodynamic flows.
Additionally, in this paper it is shown that the flow must
obey the following realizabilty condition

|Hb(k, t)| ≤
2|Eb(k, t)|

k
, (3)

where Eb(k, t) is the magnetic energy spectrum. This
suggests that the inverse cascade of magnetic helicity
might be accompanied by a transfer of magnetic energy
to large scales in order to satisfy the condition in Eq.
(3). The implication of this process is that magnetic
energy is redistributed to larger scales, leading to the
creation of coherent magnetic structures at scales much
larger than the ones where the energy was initially in-
jected. Over the decades, numerous numerical evidence
have supported the existence of such an inverse cascade
[17, 19, 21, 22, 25, 28].
We refer to flows as helical if the Eq. (3) satisfies

the equality for a most values of k. In this case, it is
said that magnetic helicity is maximal. Alternatively, we
define the flow to be nonhelical if the magnetic helicity is
practically null. In the nonhelical case, the mechanisms
and phenomenology described above are not present in
nonhelical flows. Apart from these two cases, MHD flows
can also be partially helical, but in this work, we only
focus on cases where magnetic helicity is either maximal
or vanishing.
For decaying turbulent MHD flows, the difference be-

tween helical and nonhelical flows is also remarkable. In
the helical case, magnetic helicity is approximately con-
served during the decay, even for non-vanishing resistiv-
ity, hence, looking at Eq. (2) it can be estimated that

⟨Hb⟩ ∼ B(t)2L(t) ∼ Eb(t)L(t) , (4)

where B is the rms magnetic field and L is the coher-
ence length of the field.
This conservation results in an inverse cascade of mag-

netic helicity from small to large length scales, that sup-
ports an inverse transfer of magnetic energy. This also
produces a slower energy decay and a faster growth of
the integral lengthscale than in the hydrodynamic case.
For U ∼ B and Lb ∼ Lu, it can be derived that

the magnetic and kinetic energy decay with similar rates
Eb ∼ Eu ∼ t−2/3 [31]. Nevertheless, the magnetic field
decay measured in numerical simulations is shallower
than this prediction [5, 7, 11, 28, 61].
In [31, 34–37], it is proposed that magnetic reconnec-

tion is the mechanism leading the inverse transfer and
setting the decay timescale. Based on these arguments,
in [31] different decay rates are computed depending on
the situation. For U ≪ B, it is found that Eb ∼ t−4/7

and Eu ∼ t−5/7, whereas for U ∼ B, it is conjectured
that an invariant related to the cross-helicity (even in
cases with no net cross-helicity), produces a decay of the
form Eu ∼ t−1 and Eb ∼ t−1/2.
In the nonhelical case, the conservation of magnetic

helicity cannot be used to estimate the timescale of the
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decay. The nonhelical inverse transfer found recently in
numerical work has brought increasing interest in this
topic. A decade ago, multiple works reported this inverse
energy transfer using DNS [27, 28, 33], although many
years before, in [5] they had observed a small inverse
transfer of energy in direct numerical simulations for the
nonhelical case, suggesting that this effect could be more
pronounced at larger values of Re. The physical mech-
anisms behind this inverse transfer remain unclear and
recent studies were dedicated to this topic [29–32, 62].

Campanelli analyzed the problem of decaying nonheli-
cal MHD using Olesen scaling arguments. These ex-
plore the self-similarity properties of MHD equations [63],
reaching to the conclusion that for an initial spectra of
the form (Eb(k, t) ∼ Eu(k, t) ∼ k4), the magnetic energy
decays as Eb ∝ t−1 [13, 64, 65].
In [27], the PENCIL code is used and a clear inverse

transfer of magnetic energy is observed for a magnetically
dominated case. The authors suggest that the inverse
transfer occurs either due to the shallower kinetic spectra
∼ k2 that dominates at large scales, interacting with the
magnetic field to force larger coherence scales, or due to
the local two-dimensional behavior of the magnetic vector
potential that might enhance the inverse transfer. In this
work, a weak turbulence spectrum (∼ k−2) is observed
in the inertial range. Runs that start with small helicity
show an energy decay that goes like t−1 initially, and
then approach a t−1/2 as the system approaches maximal
helicity. The t−1 scaling has been repeatedly observed
in numerical simulations of nonhelical MHD [5, 7, 28–
30, 33, 66]. In [28, 33], an inverse energy transfer and a
magnetic energy decay of t−1 are also reported.
Recently in [30], magnetic reconnection is proposed as

the main mechanism for the inverse transfer, and this
is investigated using DNS of initially magnetically dom-
inated flows as well as a kinetic dominated case. The
authors show that if the time is normalized using the
magnetic reconnection timescale, all decay curves with
different Lundquist numbers collapse into each other.
When the flow is initialized with non-zero kinetic energy,
a weaker but present inverse transfer is found, possibly
related to the dynamo action at large scales.

In [31], the authors give an intuitive explanation of
the mechanism leading the decaying timescale based on
small positive and negative helical structures. Similarly
to the conservation of the Loitsyansky integral in hydro-
dynamics, the authors propose that the finite contribu-
tions from these helical structures conserve the integral
IH =

∫
dr⟨h(xh(x))⟩, where h = A · B is the helicity

density. This results in a conservation law of the form

B4L5 ∼ E2
bL

5 ∼ const . (5)

For the magnetically dominated case, this gives a mag-
netic energy decay of the form t−1.18 in the slow recon-
nection regime and t−1.11 in the fast reconnection regime.
Nevertheless, for the case in which U ∼ B, it is conjec-
tured that a Saffman-type invariant associated to cross-
helicity gives a decay of t−10/7 for both the magnetic

and kinetic energy, same as the Loitsyanksy-Kolmogorov
prediction for hydrodynamic flows.
Most of the decaying nonhelical MHD studies found in

literature have been done for Prandtl number Pm = 1,
except from [26, 27, 29, 32]. In [29], a thorough numerical
study using the PENCIL code is performed, with a wide
parameter range exploration varying Pm and scale sepa-
ration. These simulations show that the inverse transfer
is suppressed for increasing Prandtl number. The au-
thors argue that this occurs due to the slow magnetic
reconnection at high Pm. The opposite behavior is ob-
served in [26], where the growth of magnetic energy at
large scales grows for increasing Pm.

C. Application to the decay of primordial magnetic
fields

The prevalence of cosmic magnetic fields at different
locations and scales in space presents a unique link to
the physics of the early universe through present–day ob-
servations, particularly (but not exclusively) the cosmic
microwave background. The presence of cosmic fields in
voids of the large scale structure, with strengths of 10−16

G and coherence lengths of Mpc scales, are thought to
be of primordial origin [67, 68].
A major subject to explain the strength and scale of

the observed magnetic fields, is the evolution of the mag-
netic fields across the multiple cosmological eras. This
goes back to the seminal paper of Turner and Widrow
[69], where the generation of cosmic magnetic fields in
the context of inflation was explored. Next, Branden-
burg, Enqvist and Olesen found covariant MHD equa-
tions for an expanding spacetime [23, 24]. Finally, the
first comprehensible numerical and analytical study of
the evolution of magnetic fields throughout the (stan-
dard) cosmological expansion was given by Banerjee and
Jedamzik [11].
Accounting for the expanding background introduces

new terms to the usual MHD equations. This is hardly
unexpected, as even for the simple evolution of a “free”
magnetic field, its strength varies as 1/a2 — with a(t)
denoting the scale factor — due to flux conservation.
However, it was pointed out in [23, 70] that for the
radiation–dominated era, a convenient rescaling of the
MHD variables can render the same set of equations as
in flat spacetime. In this way, one can use standard ana-
lytical and numerical tools to perform the MHD analysis
in a cosmological context. For the matter–dominated
era, one can introduce a different set of variables that
can render similar equations to those of standard MHD
[71, 72]. Even though expansion–related terms persist,
which effectively slow down the rate of dynamical evolu-
tion, standard MHD equations can be applicable for pe-
riods of time where the typical microphysical processes
are faster than the expansion rate, or equivalently, where
the corresponding characteristic times are smaller than
one expansion time. On the other hand, it has also been
reported that the assumption of incompressibility is valid
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during the radiation-dominated era due to the large value
of the speed of sound in a relativistic plasma. This could
be extended to the matter-dominated era, except for field
strengths leading to current values larger than 10−11G,
where the fluid is not compressible after photon decou-
pling. Thus, as long as one stays below that value, the
results we obtain in nonrelativistic and incompressible
MHD could be, in principle, applied to this cosmological
period.

Most numerical works are done at moderate Prandtl
numbers. However, the interstellar and intergalactic
medium have an estimated Prandtl number in the range
108 − 1014 [11, 38–40, 73–75]. Even though these num-
bers are not practical for DNS, we can study the trends
in the behavior for increasing Pm. This can give some
hints to understand a more realistic scenario.

III. NUMERICAL SET-UP

We investigate the decay of MHD turbulence using
fully resolved DNS for a wide range of parameters. For
this we use the EddyBurgh code [76, 77]. This solves the
incompressible MHD equations given by

∂tu = − (u · ∇)u+ ν∇2u+ (∇×B)×B, (6a)

∂tB = (B · ∇)u− (u · ∇)B + η∇2B , (6b)

where ν is the viscosity and η the resistivity. We use
Alfvenic units, so the mass density ρ = 1 and the Alfvén
velocity vA = B.

EddyBurgh is a pseudospectral DNS code that solves
MHD equations (6) on a cubic box of length ℓbox = 2π
with periodic boundary conditions. This consists of a cu-
bic lattice of N3 equally spaced collocation points, where
N = 256, 512, 1024, 2048 and 4096. The 2/3 dealiasing
rule is implemented. We use a predictor-corrector time-
stepping procedure, also known as Heun’s method [78].

To initialize the fields in a given helical state, we use a
orthonormal helical basis h+

k , h
−
k , which are eigenvectors

of the curl operator, so they satisfy ik × h+
k = kh+

k and

ik × h−
k = −kh−

k . These are fully helical by construc-
tion. Furthermore, given that the fields are solenoidal, we
can expand the three-dimensional kinetic and magnetic
fields into this helical basis, i.e. B(k, t) = B+(k, t)h−

k +

B−(k, t)h+
k for the magnetic field and likewise for the

kinetic field. For further details, we refer the reader to
Refs. [79–81]. Our runs are initialized either with maxi-
mal magnetic helicity (labeled with H) or with vanishing
helicity (labeled with NH). For this we first initialize the
fields by assigning a Gaussian-random vector to the fields
at each point x. Then, we apply a Fourier transform and
we expand the resulting fields onto the helical basis to set
the desired initial helical state. Setting the initial state
as nonhelical is rather straightforward, as the Gaussian-
random vectors gives an distribution of positive and neg-
ative helical modes that cancel each other out, resulting
in a state with no net helicity. In order to set the ini-
tial state as fully helical, we keep only one of the helical

projections B+ or B− (the choice is indistinct). In this
work, kinetic and cross-helicities are set to zero initially.
Finally, we rescale the fields to obtain the desired initial
spectra. All our runs have an initial magnetic spectrum
of the form

Eb(k) = Eb(t = 0) c1

(
k

kp

)4

exp

[
− 2

(
k

kp

)2
]

, (7)

c1 =
211/2

3
√
π

k−1
p , (8)

where kp is the wavenumber at which the spectrum peaks,
and c1 is a normalisation factor that ensures that the
initial energy remains invariant under changes of kp. This
spectrum, has a form of ∼ k4 for k < kp, it peaks at
k = kp and shows a sudden cut-off for k > kp.
All simulations are freely evolving from t = 0. Most

runs are initially in equipartition (i.e. Eu(k, t = 0) =
Eb(k, t = 0)), although we run a smaller number of
simulations that are initialized with the velocity field
set to zero. The integral (or coherence) lengthscales of
the kinetic and magnetic field are computed as Lu,b =
(3π/4E)

∫∞
0

dk Eu,b(k)/k. The rms velocity is defined

so that Eu = 3U2/2 and the rms magnetic field such
that Eb = 3B2/2. The large eddy turnover time is
Tu = Lu/U and the Alfvén time is Tb = Lb/B. We use
the initial eddy turnover time as a reference. Runs with
equipartition satisfy U(0) = B(0) and Lu(0) = Lb(0),
hence, we refer to the large eddy turnover time simply
as T = Tu(0) = Tb(0). In the magnetically dominated
case, T = Tb(0), as Tu is not defined for t = 0. In
the same way we express the initial Reynolds number
Re(0) = U(0)L(0)/ν as Re, note that this is not defined
when the velocity field is initialized to zero. We also refer
to the initial Lundquist number S(0) = B(0)Lb(0)/η as
S. The magnetic Reynolds number Reb = UL/η and the
Lundquist number are equivalent at t = 0 for all runs
initialized in equipartition. The kinetic and magnetic
dissipation rates are computed as εu = 2ν

∫
dk Euk

γ

and εb = 2η
∫
dk Eb(k)k

γ , where γ = 2 for standard
viscosity and γ = 4 for the hyperviscous/hyperresistive
case. We keep all simulations fully resolved unless oth-
erwise stated. We consider runs fully resolved when

both the kinetic dissipative scale kν =
(
εu(t)/ν

3
)1/4

and

the magnetic dissipative scale kη =
(
εb(t)/η

3
)1/4

satisfy
kmax/kν > 1.25 and kmax/kν > 1.25 throughout the en-
tire duration of the run. Only in one extreme case we get
kmax/kη ≈ 1.15.

We run two cases using hyperviscosity and hyperresis-
tivity, with the aim of establishing a qualitative compar-
ison with previous results in literature. This consists in
modifying the viscous and resistive terms in Eqs. (6a)
and (6b) respectively, so the gradient is now of fourth or-
der, i.e. ν∇2 → ν2∇4 and η∇2 → η2∇4. In all nonhelical
runs, Hb/2EbLb ∼ O(10−3). This ensures that the sim-
ulations remain practically nonhelical for all times.

The aim of this work is to perform a wide parameter
study of MHD decay by measuring the spectra evolu-
tion and the scaling laws for a number of high resolution
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numerical simulations of helical and nonhelical MHD tur-
bulence. We pay special attention to the inverse transfer
of energy.

IV. SCALING EXPONENTS p AND q

In this work we report scaling exponents for the kinetic
and magnetic energy decay Eu,b ∼ t−pu,b , and coherence
length growth Lu,b ∼ tqu,b . Measuring these exponents
is not always a straightforward task. The first feature of
the scaling exponents we find in our simulation is that
they are not constant throughout the decay in all cases.
To see this, we measure

pb(t) = −d logEb

d log t
, (9a)

qb(t) = −d logLb

d log t
. (9b)

Typically, there is an initial transient of a few eddy
turnover times for the system to reach an approximate
self-similar decay (see section V, Figures 1 and 2). When
Re is high, the system decays while turbulence is devel-
oped and the decay follows a power law t−p. During this
stage, a plateau is observed in the evolution of p(t). Nev-
ertheless, in some other cases, for moderate and low Re,
there is no clear time interval in which p and q reach a
steady constant value. This introduces certain ambiguity
in the measurements. For very low Reynolds numbers,
turbulence is not developed at all and the decay is almost
entirely diffusive. Note that this becomes slightly more
difficult when we vary the Prandtl number, for instance,
for a low Pm, we can have a turbulent kinetic decay to-
gether with a diffusive magnetic decay, only kept up by
dynamo effect.

We also note that when the scale separation kp ∼ O(1),
the initial transient tends to be slower, not only tak-
ing more time for the energy to reach a power-law de-
cay but also adding a larger bias, since the approxima-
tion (t − t0)

−p ≈ t−p becomes more questionable, with-
out clear arguments to determine t0 as pointed out in
[7]. Furthermore, for low Re, diffusion takes over rather
quickly, not allowing the development of turbulence at
t ≫ t0.

We measure the scaling exponents by determining a
time interval in which an approximate plateau is observed
in the evolution of p(t) and q(t). Then we perform a
linear regression with logarithmic axes within that time
interval. In some cases, when we compare multiple cases,
there is no clear common plateau in the evolution of their
exponents. In those cases we show the time evolution p(t)
and q(t) and discuss the criteria used. We acknowledge
the bias that is introduced by using logarithmic axes. An
alternative method to overcome these problems is used
in [31] to make comparisons to predictions, although this
is also subject to the subjective choice of intervals.

Nevertheless, the main goal of this work is not to con-
trast our measurements against precise theoretical pre-
dictions. Instead, we look at trends as we vary different

parameters and see whether our measurements are con-
sistent with these predictions or not. In fact, discrimi-
nating between different theoretical predictions that are
very close, requires a careful numerical treatment that is
often ignored in literature.
In order to obtain a fully turbulent decay, we need

large Reynolds numbers. This requires higher resolutions
as we need to resolve increasingly large wavenumbers kν
and kη. However, if we want to observe the build-up
of magnetic energy at large scales and its influence in
the decay, we need to have enough scale separation, i.e.
kp ≫ 1, but this puts more energy closer to the dissi-
pation scales, which prevent us from obtaining a large
Reynolds number for a given resolution. This is espe-
cially challenging when it comes to explore cases with
Pm ≫ 1 at the same time we keep a relatively high Re.
For low Re, the smaller scales are expected to decay as
exp

(
−2νk2t

)
, if most of the energy decays through vis-

cosity (or diffusivity in the case of magnetic energy), the
decay is approximately of the form E ∼ t−5/2 [2, 53]. In
section VIE we provide more arguments that show that
slight details can significantly affect the predicted values
of p and q at finite resistivity.
Some authors use hyperviscosity and hyperresistivity

to overcome resolution limitations [29, 31]. This allows a
larger inertial range without a greater demand on reso-
lution. The cost is that this alters the theoretical predic-
tions, as it introduces different scaling relations that we
prefer to avoid in this analysis and also because modify-
ing the resistive region affects the magnetic reconnection
process. Still, we run a few hyperviscous simulations just
for the sake of qualitative comparison with other results
in literature.

V. MHD VS. HD DECAY

First we show the spectral evolution and the scaling
laws of the kinetic energy decay of a helical and a nonheli-
cal flow with Pm = 1. We compare these to a pure hydro-
dynamic decay with the same viscosity ν = 0.0003125,
kp = 40 and N = 2048. Both MHD simulations are
initially in equipartition so the kinetic spectra are equiv-
alent for all three runs at time t = 0.
In Figure 1, we see that the helical case shows a strong

inverse transfer of energy in the evolution of the kinetic
spectra consequence of the approximate conservation of
the mean magnetic helicity in the helical case. Instead,
the nonhelical case shows only a slight increase of ki-
netic energy at large scales than the hydrodynamic case,
which shows that even for the highest Reynolds number
we achieve, the inverse transfer of kinetic energy is not
significant.
This comparison becomes clear when we observe the

energy at large scales as shown in Figure 3, where we
measure the growth of energy for k ≤ 3 as Eu3

=∫ 3

0
dk Eu(k). In any case, the growth of energy at large

scales is much weaker than the one found in [61], where
the effect is much more pronounced. In principle, this
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FIG. 1. Kinetic energy spectra during decay for runs HRe5,
NHRe5, and a hydrodynamic run with same parameters and
same initial spectrum. Different curves correspond to times
t/T = 0, 1.6, 12.8 and 50.

small difference between the hydrodynamic and the non-
helical case can be either due to a stronger inverse cas-
cade of kinetic energy in MHD, or due to the transfer
from magnetic to kinetic energy at large scales due to
the local action of the Lorentz force. However, we can-
not discard that this difference is merely related to box
size effects.

It is clear that the helical run shows a larger growth of
coherence length than both the nonhelical and the pure
hydrodynamic case. This can be seen from the evolu-
tion of the spectrum peak, that is a fair estimate of the
coherence length evolution.

Finally, we look at the time evolution of the scaling
exponents pu and qu in Figure 2. We see that the hy-
drodynamic and the nonhelical MHD run have different
transients but end up decaying at the same rate, consis-
tent with the Loitsyansky-Kolmogorov prediction t−10/7.
The integral scale grows approximately like t0.4 in both
cases. On the other hand, the helical flow show different
properties, with a shallower decay that goes like t−2/3

and the integral scale grows approximately like t1/2. In-
terestingly, the helical exponents present a more erratic
behavior, possibly due to the integral lengthscale becom-
ing comparable to the box size much faster than in the
other cases.

VI. DECAY AT VARYING PRANDTL NUMBER

We now look at the decay of helical and nonhelical
MHD for varying Pm. Most works in literature have
been carried out for a short range of values for Pm, ex-
cept from [29] and [26]. In [29], a thorough analysis at
varying Prandtl number is done using both standard vis-
cosity and hyperviscosity. The authors find that as Pm
increases, the growth of magnetic energy at large scales
is suppressed. In our simulations we find the opposite
trend. We comment on this in section X.
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FIG. 2. Time evolution of the scaling exponents pu (a) and
qu (b) for runs HRe5, NHRe5, and a hydrodynamic run with
same parameters and same initial spectrum. The horizontal
gray dashed lines correspond to typical values pu = 1, 10/7
and 2/3, and qu = 1/2 and 2/3.
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FIG. 3. Time evolution of large scale kinetic energy
Eu3(t)/Eu3(0) for runs HRe5, NHRe5, and a hydrodynamic
run with same parameters and same initialization.

We run a set of 22 simulations initialized in equiparti-
tion, 11 helical and 11 nonhelical (see Table I). The runs
with Pm = 32 is slightly underresolved, with kmax/kη ≈
1.15 during the first turnover times. We also run 8 simu-
lations with the velocity field initialized to zero, 4 helical
and 4 nonhelical (see Table II). In every case the scale
separation is set at kp = 40 and viscosity is fixed at
ν = 0.005. This choice of parameters results in a mod-
erate Reynolds number, preventing the kinetic flow from
developing a complete turbulent state. Still, we increase
Prandtl number while keeping constant viscosity and we
measure the scaling exponents at t ≈ 50T . The reason
for this is that p(t) and q(t) do not reach a constant value
for higher Pm. Instead, they tend to an asymptotic value
as time evolves. For this reason, we consider the value
of p(t) and q(t) at the latest time measured (t = 50T ) as
the best estimate of the exponent.

A. Scaling exponents for initial equipartition

First, we analyze the case in which runs are initially
in equipartition. In Figure 4a we show the kinetic and
magnetic scaling exponents for varying Pm, whereas in
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Figure 4b we show the scaling exponents measured for
the magnetic coherence scale.

The plot in Figure 4a provides interesting clues about
the behavior of the decay at different Pm. A common
and perhaps obvious characteristic, is that both kinetic
and magnetic decay become shallower as we increase the
Prandtl number.

For Pm ≤ 0.25, helical and nonhelical decays have the
same decaying exponents, with the kinetic energy show-
ing a shallower decay than the magnetic energy. In the
range 2−5 ≤ Pm ≤ 0.5, pu remains approximately con-
stant, whereas pb decreases. This is consistent with hav-
ing a constant viscosity and decreasing resistivity. This
indicates that the decay is mainly dominated by viscos-
ity and diffusivity, with little influence of magnetic helic-
ity and little interplay between the magnetic and kinetic
fields. Nevertheless, it seems that there is a small transfer
from magnetic to kinetic energy, that would explain why
pb ≳ 5/2 and pu ≲ 5/2, where p = 5/2 is the expected
value for a purely viscous or resistive decay [2, 53].

For Pm > 0.5 an interesting situation is observed.
When we increase Pm, pb continues to decrease, and pu,
that was constant for Pm < 0.5, starts decreasing. This
indicates that the kinetic decay becomes shallower due
to a more effective interaction with the magnetic field.

So far we have not made any distinction between the
helical and nonhelical decay. In the nonhelical case, as
we keep increasing Pm, we get pb < pu, thus, the mag-
netic decay becomes shallower than the kinetic one, with
both exponents approaching 1. Nevertheless, the data
shows no clear asymptotic behavior at this range of val-
ues. Studying the behavior at larger Pm would require
a larger computational power that is not available at the
moment.

In the helical case, for 0.25 <Pm≤ 1 the magnetic de-
cay is steeper than in the nonhelical case, but the kinetic
decay is equal or slower, which suggest a more effective
transfer of energy from magnetic to kinetic energy than
in the nonhelical case. For Pm > 1, both the kinetic
and the magnetic energy decay at the same rate pb ∼ pu,
and at a much slower rate than in the nonhelical case,
approaching values in the range ≈ 1/2 - 2/3. The helical
data seems to show the start of an asymptotic behavior
at large Pm.

Now we look at the plots that show the evolution of
these exponents in time, from which we take the measure-
ments shown in the previous Figures. In Figure 5, we see
that in most cases, pb(t) seems to approach an asymp-
totic behavior. This indicates that there is a small bias
towards smaller values in the measurements of pb. For
low Pm, pb(t) seems to approach an asymptotic value af-
ter a short transient, but it suffers a second transition
at later times, where it ends up approaching a larger
value. This is observed in both helical and nonhelical
cases. This behavior is likely caused by the transition
between turbulent and diffusive decay, which is reason-
able at low Pm. The transients can be also influenced by
the box size effect.

We analyze the scaling laws of the coherent lengths Lb

and Lu. This exponent has an erratic behavior at low
Prandtl number as we can see in Figure 6. During an
initial stage, qb(t) approaches an asymptotic behavior,
but a few turnover times later, qb(t) starts to show an
erratic behavior until it finally decays, without reaching
an asymptotic behavior. At low Pm we expect a rather
diffusive decay. With this initial spectrum, the decay is
approximately of the form Eb(k, t) = k4 exp

(
−2ηk2t

)
,

which gives Lb ∼ t1/2, however, the finite box size pre-
vents Lb from growing further, and this might explain
the decay of q(t) at later times.
Because of the above reasons, the values of qb for Pm

< 0.25 should not be taken into account for the analy-
sis. These are shown merely for the comparison with the
behavior of qu.
The measurements of qb are also taken at time t ≈ 50T .

The main characteristics shown in Figure 4b, is that qb
and qu increase for increasing Pm in the helical case,
whereas it decreases in the nonhelical case, showing that
even though we observe a slight increase of magnetic en-
ergy at large scales in the nonhelical case, the coherence
length does not grow significantly faster. The values of qb
in the helical case seem to approach 1/2 asymptotically
for high Pm, whereas the nonhelical case does not show
an asymptotic trend at this range.

B. Scaling exponents in magnetically dominated
decay

We now look at the runs initialized with zero velocity.
Figure 7 shows the dependence of the exponents on Pm
in this case.
According to recent literature, magnetically dominated

should give a stronger inverse cascade in the nonhelical
case [30]. Nonetheless, our results show that the decay-
ing exponents are surprisingly similar to the runs with
initial equipartition. The only difference is that the val-
ues of qu in the nonhelical case are slightly larger than
in equipartition cases. This indicates a faster growth of
coherence length only in the kinetic field. The magnetic
decay rate shows no relevant differences between mag-
netically dominated flows and those in equipartition, as
opposed to what is stated in [30, 31].

C. Spectra evolution

It is useful to compare all the previous cases by looking
at the spectra evolution for varying Pm. Figure 8 shows
the spectra evolution for helical and nonhelical cases, and
both magnetically dominated and in equipartition. Many
of the features already mentioned are seen here with more
clarity.
We see that, for Pm ≪ 1, the helical and nonhelical

decays are almost identical. At Pm = 1, we see that the
magnetic decay is slower in the helical case. The kinetic
spectra shows an identical decay in equipartition cases,
and a more pronounced inverse transfer in the magnet-
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Run Pm ν Re kp N

H/NHp-5 2−5 0.005 8 40 512
H/NHp-4 2−4 0.005 8 40 512
H/NHp-3 2−3 0.005 8 40 512
H/NHp-2 2−2 0.005 8 40 512
H/NHp-1 2−1 0.005 8 40 512
H/NHp0 1 0.005 8 40 512
H/NHp1 2 0.005 8 40 1024
H/NHp2 22 0.005 8 40 1024
H/NHp3 23 0.005 8 40 2048
H/NHp4 24 0.005 8 40 2048
H/NHp5 25 0.005 8 40 2048

TABLE I. Helical and nonhelical runs for varying Prandtl number and fixed viscosity ν = 0.005 and kp = 40. All runs are
initially in equipartition.

Run Pm ν S kp N

H/NHpz-2 0.25 0.005 2 40 512
H/NHpz0 1.00 0.005 8 40 512
H/NHpz2 4.00 0.005 32 40 1024
H/NHpz4 16.00 0.005 129 40 2048

TABLE II. Helical and nonhelical runs for varying Prandtl number and fixed viscosity ν = 0.005 and kp = 40. All runs are
initially magnetically dominated with zero velocity field.

ically dominated case, due to the interaction with the
magnetic field at large scales.

For larger Pm, the inverse transfer of magnetic energy
becomes pronounced in the helical case, as expected. The
peak of the spectrum goes well past the initial k4 spec-
trum. On the other hand, in the nonhelical case, only
a weak build-up of magnetic energy is observed close to
the characteristic wavenumber of the box, and the peak
never goes past the initial k4 spectrum, which indicates
a slow growth of the coherence length.

Interestingly, the kinetic energy shows a remarkable
growth of energy at low wavenumbers, especially in the
magnetically dominated nonhelical case and in both he-
lical cases, adopting a k2-like spectrum. The tilt of the
large scale spectrum might be originated only due to the
saturation at the box size. Nevertheless, this growth of
kinetic energy indicates that even though viscosity is kept
constant across simulations, the triadic interactions in
the Lorentz force term make the inverse transfer of kinetic
energy much more effective at high Pm. It is known that
in the helical case, the inverse energy transfer is driven
by the inverse cascade of magnetic helicity, which is bet-
ter understood. In [62], it is found that in the nonhelical
case, transfers between different fields are more non-local
than between the same fields. Furthermore, non-local
triadic interactions contributing to the inverse transfer
of energy are less constrained than those contributing to
the forward transfer, especially in the magnetic domi-
nated case, thus enhancing the inverse transfers. This
might explain the larger inverse transfer of kinetic en-
ergy observed in the magnetic dominated case compared
to the equipartition case in nonhelical flows.

In Figure 9, we show the build-up of magnetic energy
at large scales in the equipartition case. We compute

the energy at large scales (i.e.Eb3

∫ 3

0
dk E(k)). We see

that the build-up of large scale energy grows with Pm,
although the initial transient becomes suddenly slower
for the cases with Pm ≥ 8. The results are qualitatively
similar in the magnetically dominated case. This is in line
with the findings in [26]. However, in [29] the opposite
trend is found.

D. High Reynolds number

Last, we perform a similar analysis to the one done in
section VIA, but for a smaller viscosity. This allows us to
explore the Pm variation at higher Re. The cost of this
is that resolution limitations prevent us from exploring
values of Pm larger than 1. Simulations parameters are
shown in Table III. All the cases analyzed in this section
are initially in equipartition.
In Figure 10, we show the decaying exponent depe-

nence on Pm. We compare this with the plot in Figure
4a, done for ν = 0.005.
We see that some qualitative features remain similar,

especially at low Pm. The magnetic decay is mainly diffu-
sive and steeper than the kinetic. However, in this case
the kinetic decay is turbulent, with a rate pu ≈ 10/7,
which is reasonable given the higher Re in these simula-
tions.
We note that the decay in the helical case is shallower

than the nonhelical for Pm ≥ 2−4. This is different to the
case ν = 0.005, where the same occurs at Pm ≥ 1. Nev-
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FIG. 4. Scaling exponents p (a) and q (b) for the following cases: magnetic helical (blue squares), magnetic nonhelical (orange
triangles), kinetic helical (blue crosses) and kinetic nonhelical (orange crosses). Dashed horizontal lines correspond to the
typical scaling values observed in literature p = 1 for nonhelical flows and q = 2/3 for helical flows. All runs are initially in
equipartition.

Run Pm ν Re kp N

H/NH*
p-4 0.0625 0.0003125 128 40 2048

H/NH*
p-3 0.125 0.0003125 128 40 2048

H/NH*
p-2 0.25 0.0003125 128 40 2048

H/NH*
p-1 0.5 0.0003125 128 40 2048

H/NH*
p0 1 0.0003125 128 40 2048

TABLE III. Helical and nonhelical runs for varying Prandtl number and fixed viscosity ν = 0.003125 and kp = 40.
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FIG. 5. Time evolution of pb(t) for nonhelical (left) and helical
(right) runs. Darker shades correspond to lower values of Pm,
and dotted lines represent the case with Pm = 1.

ertheless, we note that in both cases, this corresponds
to the the same magnetic Reynolds number Reb =Re,
Pm ≈ 8, indicating that the helical inverse transfer be-
comes more effective as soon as the magnetic field starts
to develop turbulence, independently of the kinetic field.

The nonhelical kinetic decay does not become shal-
lower as we increase Pm, indicating that the interaction
with the magnetic field does not alter the evolution of the
kinetic decay at this range of Pm. The magnetic and the
kinetic exponents approach a Loitsyanksy-Kolmogorov
decay of p = 10/7. Interestingly, for equal values of re-
sistivity, the magnetic decay is shallower in the case with
lower Re.
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0.4

0.5

0.6

q b
(t

)

10 20 30 40 50

t/T

FIG. 6. Time evolution of qb(t) for nonhelical (left) and helical
(right) runs. Darker shades correspond to lower values of Pm,
and dotted lines represent the case with Pm = 1.

In the helical case, the kinetic decay is strongly influ-
enced by the interaction with the magnetic field as we
increase Pm. Both end up decaying at the same rate
for the largest values of Pm, similar to the high viscosity
case. This shows that helical magnetic fields are more
effective at sustaining the kinetic field than nonhelical
ones.

Now we focus on the behavior of qb. The trends are
more defined at lower Pm than in Figure 4b, indicating
that the erratic behavior observed is a consequence of
low Reynolds numbers. For the largest values of Pm, the
kinetic and magnetic integral lengthscales grow at the
same rate, with the helical showing a value of qb ≳ 0.5
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FIG. 7. Scaling exponents p (a) and q (b) for the following cases: magnetic helical (blue squares), magnetic nonhelical (orange
triangles), kinetic helical (blue crosses) and kinetic nonhelical (orange crosses). Dashed horizontal lines correspond to the
typical scaling values observed in the literature p = 1 for nonhelical flows and q = 2/3 for helical flows. All runs are initially
magnetically dominated.

and the nonhelical q ≈ 0.4.

Even though the inverse transfer we observe is small,
the fact that it increases with Pm is appealing in the con-
text of possible cosmological applications, given the high
values of Pm in that context. Unfortunately, running
fully resolved DNS at higher Pm and Re is unfeasible at
present.

E. Helicity conservation

It is expected that at sufficiently large Reynolds and
Lundquist numbers, magnetic helicity remains approxi-
mately conserved during the decay. In section II, we saw
that this leads to a conservation of the form EbL ∼ const.
(see Eq. ( 4)). We also mentioned the analogous conser-
vation predicted recently for nonhelical flows, which is of
the form E2

bL
5. In Figure 11, we show the evolution of

these quantities in time for runs in Table III. We note
that the helical case shows an approximate conservation

in both cases, with EbL ∼ t−0.16 and E
2/5
b L ∼ t−0.10 for

Pm= 1.

The conservation is not exact, but there is a slow de-
cay over time. We can assume that the decay follows

a power law Eβ
b L ∼ t−δ. For δ = 0, it is possible

use a Kolmogorov-like argument and show that, in the
Sweet-Parker regime, the energy decay is given by ∂tEb ∼
E

(6β+5)/4
b [31]. This regime is typical in most DNS sim-

ulations of MHD turbulence, as the Lundquist number
is high but not enough to reach the fast-reconnection
regime [82]. The Sweet-Parker regime is characterized
by a balance between the resistive and inductive terms
in Eq. (6b) [83, 84]. This gives a slower timescale for the
reconnection than in the ideal case where the inductive
term dominates. For δ ̸= 0, we get

∂tEb ∼ E
(6β+5)/4
b t−δ , (10)

Eb ∼ t−4(δ+1)/(6β+1) (11)

This would produce a slight change in the predicted
values of pb = (−6β − 1)/4), such that the corrected
values are now p′b = pb(1 + δ). For a value of δ ≈ 0.1,
the decay is slightly steeper by a factor of 10%. This is
slight but significant when it comes to compare different
theoretical predictions. In Fig. 10a, we saw that pb was
close to 10/7, but if we take this correction into account,
the actual value would indicate that pb gets closer to the
predicted values of 1.18 or 1. Once again, we remark
the importance of these kind of details when comparing
theoretical predictions.

VII. VARYING REYNOLDS NUMBER

We study the behavior of the decay at varying Re with
fixed Pm = 1. This analysis is similar to the one done
in [28], in which the the same eddyBurgh code and same
initial conditions were implemented. The only difference
is the range of Reynolds numbers explored and the scale
separation. In [28], the authors find pb ≈ 0.47 + 13.9Rλ,
where Rλ refers to the Taylor scale Reynolds number.
We run a set of 5 helical and 5 nonhelical simulations

to observe the behavior of the decay at varying Re with
the parameters shown in Table IV.
The plot in Figure 12 shows the evolution of pb(t). All

curves show a small but consistent growth that seem to
approach an asymptotic value, except from the helical
ones with lower Re in which the growth is still consider-
able. The measurements are taken using a linear fit in a
log-log scale between t/T = 40-50.
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FIG. 8. Spectra evolution of runs NH/Hp-2,p0,p2,p4 and NH/Hpz-2,pz0,pz2,pz4, for times t/T = 0, 0.8, 3.3, 13 and 50. Solid lines
indicate magnetic energy spectra and dashed lines indicate kinetic energy spectra. Brighter lines correspond to earlier times.

Run Pm ν Re kp N

H/NHRe5 1 0.0003125 129 40 2048
H/NHRe4 1 0.000625 64.5 40 2048
H/NHRe3 1 0.00125 32.4 40 1024
H/NHRe2 1 0.0025 16.2 40 1024
H/NHRe1 1 0.005 8.09 40 1024

TABLE IV. Helical and nonhelical runs for varying Re and fixed Prandtl number Pm = 1 and kp = 40. Darker shades
correspond to higher Re. All runs are initially in equipartition.

The measured values of p and q are shown in Figure
13, where only the helical pb and pu seem to approach an
asymptotic value for large Re. We find that these have
a dependence of the form pb(Re) = ph∞ + ph0/Re, with
measured values of ph∞ = 0.6 and ph0 = 14. The asymp-
totic value is different to the one measured in [28], pos-

sibly due to the wider range of Re explored in this work.
This is essential to determine the asymptotic behavior.
We can see that the value of pb is close to different predic-
tions pb ≈ 0.5− 0.66, and a similar behavior is observed
for the kinetic decay, which is not in agreement with the
prediction that pu ≈ 1 for helical flows in equipartition
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FIG. 9. Large scale energy evolution Eb3(t)/Eb3(0), for non-
helical (left) and helical (right) runs H/NHp. Brighter lines
correspond to higher Pm. The dotted line in each plot corre-
sponds to the run with Pm = 1.

[31].
For the nonhelical case, in principle one can propose

a similar dependence of the form pb(Re) = pnh∞ +
pnh0/Re

α. Nevertheless, the range of Re explored does
not show a clear asymptotic behavior, and as a conse-
quence, different fits with different values of α fit the
data, giving quite different values of pnh∞. For instance,
pnh∞ = 1.2 for α = 1/2 and pnh∞ = −0.6 for α = 1/8,
which is unphysical. Both fits are shown in the plot of
Figure 13a.

Even obtaining a clear asymptotic behavior, these re-
sults depend strongly on the measurement methods. The
lack of accuracy makes it difficult to distinguish between
different theoretical predictions. For instance, between
the Eb ∼ t−1.11 and t−1.18 scalings given by the fast and
slow reconnection regime respectively. Also, an ensem-
ble average using different initial conditions would give a
better estimation of the error.

Last, we consider the run NHRe5, that has the largest
Re, and we run another with the same initial magnetic
field but with the velocity field initialized to zero. Figure
14 shows the spectra evolution in both cases.

We see that for the magnetically dominated case, the
kinetic spectra has a pronounced inverse transfer and
ends up with more energy at large scales than the run
that starts in equipartition.

The comparison of the magnetic spectra is less clear.
For that reason, we look at the large scale energy up to
k = 7. This is shown in Figure 15. The magnetically
dominated case shows a slightly larger growth of mag-
netic energy at large scales. This is, at least qualitatively,
in line with the analysis in [30].

VIII. VARYING kp

Now we perform a study at varying kp. We can think
of a set of simulations in which we keep the initial energy,
viscosity and resistivity constant, but we vary the value
of kp. If we choose a value of kp ≫ 1, we obtain enough
scale separation to allow inverse energy transfer without
being affected by the box size, the setback is that by
doing this, most of our energy will be close to the dissi-
pative scales, hence, most of the decay will be dissipative
and no inertial range will develop. If we choose kp ≳ 1,

we will get a wider inertial range, but without enough
scale separation to allow inverse transfer and avoid box
size effects. For this section we concentrate only in the
nonhelical case.

To establish a fair comparison between runs, we per-
form a set of 6 simulations with kp ranging from 5 to 80,
and choosing ν such that the Reynolds number is con-
stant for all runs. Simulations parameters are shown in
Table V.

We start by taking a look at the spectra evolution in
Figure 16. We focus on the behavior for wavenumbers
k < kp. We note that the small growth of energy in
the low k region keeps the initial k4 form in cases with
kp ≥ 40. Instead, for kp < 40, box size effects start
to become noticeable, and saturation tilts the k4 spectra
towards shallower slopes. Still, it is worth noticing that in
every case, the decay produces a small growth of energy
at large scales.

We measured the decaying exponents and we find no
drastic differences for all values of kp, with pb ≈ 1.7-
1.9. Nevertheless, when we compare the evolution of
p(t) (shown in Figure 17), we note that the cases with
kp ≤ 20 show a rather erratic behavior, whereas those
with greater scale separation are practically indistin-
guishable and show a smoother behavior. This shows
the importance of scale separation to obtain a smooth
evolution of p(t) independent of box size effects. In prin-
ciple, the independence of pb on kp may be valid only in
this range and higher Re, but the situation could be dif-
ferent for lower Reynolds numbers, where a large portion
of the energy decay is dissipative.

To address this, we extend the previous study by vary-
ing kp and Re simultaneously. We want to look at the
Re dependence of pb and see if this is independent of the
scale separation, even for kp ∼ 1, where box size effects
are strongly noticeable. For this, we choose three differ-
ent values of kp = 5, 20 and 100. This choice requires an
extremely high resolution in some cases, reaching a box
with N = 4096. For each value of kp, we run a small
number of simulations varying viscosity. The parameters
for these runs are shown in Table VI.

We measure the evolution of pb(t) for all runs and study
its dependence on Re. We take a look at Figure 18, and
we note the erratic behavior for the cases with small scale
separation. We see that it is not straightforward to de-
termine a time interval to perform a fair measurement
between all cases. Despite the erratic behavior, cases
with kp = 5 show a plateau between t/T ≈ 15-25. Dur-
ing this time interval, some of the cases with kp = 20 and
kp = 100 show an increasing pb(t), approaching a possible
plateau at later times. For the measurements, we take a
narrow interval t/T = 20-25 to prevent as much bias as
possible.

In Figure 19, we show the scaling exponents measured
for varying Re. We find that pb follows a clear trend that
only depends on Re, without any dependence on the scale
separation. Even though an asymptote will be reached at
higher values or Re, the range explored is not enough to
determine such a value. The increase in computational
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power is crucial to show this asymptotic trend and to
determine the value of pb. Nevertheless, the trend seems
to favour the prediction pb = 1, rather than pb = 10/7.

IX. HYPERVISCOSITY AND
HYPERRESISTIVITY

In order to make a fair comparison with previous re-
sults in the literature, we run three simulations using hy-
perviscosity, initialized with the velocity field set to zero.
Parameters are reported in Table VII, and the spectra
evolution in all three cases are shown in Figure 20.

In all hyperviscous runs we can observe a slightly
stronger inverse transfer than in our standard simula-
tions but still not enough for the peak to move beyond
the initial k4 spectrum. In Figure 20c we see an inertial
range slightly shallower than the k−2 found in previous
works, closer to the k−5/3 scaling. Figures 20b and 20a
show runs with the same hyperviscosity but with different
Pm. The case with higher Pm shows the stronger inverse
transfer, supporting the same trend that we observe for
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standard viscosity.

X. COMPARISON WITH PREVIOUS
LITERATURE

Some of the features of nonhelical decay that are ob-
served in previous work, namely, the inverse energy trans-
fer or the formation of a weak turbulent spectra k−2, are
different to the ones found here. Those studies used dif-
ferent codes with slightly different equations from the
ones we used in this work. For instance the PENCIL
code used in [27, 29, 30, 32], solves compressible MHD,
whereas in [33], relativistic MHD equations are imple-
mented.

Most of the simulations in recent work are initialized
with small or zero kinetic energy. In all cases, the inverse
transfer of magnetic energy is stronger than the one we
find in this work. In [30], an initial kinetic dominated
flow is also studied, finding a decay similar to the one
found in this work.

Some minor discrepancies can also be expected in the
scaling exponents due to the measurement methods. Ad-
ditionally, certain numerical aspects such as dealiasing
rules, resolution criteria and timestepping procedure can
have some impact in the results [85]. Other aspects such
as the initial spectra have a relevant influence in the sub-
sequent evolution of the decay [61]. Additionally, the
use of hyperviscosity and hyperresistivity, which gives a
wider inertial range for limited resolution, alters the dis-
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Run Pm ν Re kp N

NHkp5 1 0.01 32.2 5 256
NHkp10 1 0.005 32.2 10 512
NHkp20 1 0.0025 32.2 20 512
NHkp40 1 0.00125 32.2 40 1024
NHkp80 1 0.000625 32.2 80 2048

TABLE V. Nonhelical runs varying kp at fixed Reynolds number Re(0) ≈ 32.
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FIG. 15. Time evolution of the large scale magnetic energy
Eb3(t)/Eb3(0) for runs NHRe5, and NHRe5Z.
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FIG. 16. Spectra evolution for times t/T = 0, 1 and 20 for
kp = 20, 40 and 80. Keeping Pm = 1 and Re≈ 32.

sipative mechanisms and the dynamics of the decay [31].

In [27, 29, 30, 32], the PENCIL code is used. The initial
magnetic spectra is the same as ours for k < kp, and the
kinetic spectra develops a k2 form. In most cases the
flow is magnetically dominated at t = 0 except from one
run in [30] where the magnetic field is subdominant and
in [32], where the nonhelical simulation was first driven
with a random forcing and relatively small scale separa-
tion. In all these works an inverse transfer is observed
in the nonhelical case. This transfer is especially strong
in [27, 29], where the peak of the spectrum goes well
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FIG. 17. Evolution of pb(t) for nonhelical runs with fixed
Re≈ 32, Pm = 1, and varying kp = 5, 10, 20, 40, 80, and 160.

Run Pm ν Re kp N

NHkR1 1 0.009 35 5 1024
NHkR2 1 0.006 53 5 1024
NHkR3 1 0.003 107 5 1024
NHkR4 1 0.0009 358 5 1024
NHkR5 1 0.0004 805 5 2048
NHkR6 1 0.009 8 20 1024
NHkR7 1 0.006 13 20 1024
NHkR8 1 0.003 26 20 2048
NHkR9 1 0.001 80 20 2048
NHkR10 1 0.0009 89 20 2048
NHkR11 1 0.0004 201 20 2048
NHkR12 1 0.009 1 100 4096
NHkR13 1 0.006 2 100 4096
NHkR14 1 0.003 5 100 4096
NHkR15 1 0.001 16 100 4096
NHkR16 1 0.0009 17 100 4096
NHkR17 1 0.0004 40 100 4096

TABLE VI. Nonhelical runs for varying viscosity and kp at
fixed Prandtl number Pm = 1.

Run Pm ν2 kp N

NHhy1 1 10−6 30 1024
NHhy2 12 10−6 30 1024
NHhy3 1 2·10−10 30 2048

TABLE VII. Nonhelical runs using hyperviscosity, initialized
with zero velocity field. The Prandtl number is defined as Pm
= ν2/η2.
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past the initial k4 spectrum. This is possibly achieved
because of the extremely low values of viscosity, resis-
tivity, hyperviscosity and hyperresistivity. On the other
hand, in [30, 32], only standard dissipative terms with
moderate values of viscosity are used, obtaining only a
moderate inverse transfer. This suggests that the use of
hyperresistivity might have a stronger influence on the
strength of the inverse transfer than expected. Looking
at our results using hyperviscosity in section IX, we note
that this trend is indeed observed. However, the strength
of the inverse transfer is not as great as in these other
papers.

In [29], the results are benchmarked against Zeus-
MP2, where no inverse transfer is observed. It is argued
that this difference is caused by the different numeri-
cal integration schemes used (six order finite difference
for PENCIL vs. second-order finite difference for Zeus-
MP2 ). The authors suggest that the lower order in the
numerical integration of the latter, adds a numerical dis-
sipation that might affect the evolution of the magnetic

field. A previous work studied the differences between
Snoopy, PENCIL and Zeus-MP2 [86]. In this work, the
authors conclude that the transport properties are not
affected severely by numerical dissipation. No parame-
ters are given for the Zeus-MP2, hence the comparison
that we can do is limited. Nevertheless, in our simula-
tions, we find an opposite trend at increasing Pm, and
a much slower growth of the magnetic coherence length
Lb(t) than that found in [29]. Even though the numerical
aspects might explain some of the differences observed,
we believe that these differences are substantial and need
further exploration.

In any case, the discussions given in [31] and the ar-
guments and data presented in [30], suggest that the in-
verse transfer of magnetically dominated flows should be
stronger than those initially in equipartition. That is also
different to what we observe numerically.

In [33], the relativistic MHD code MARA was used (see
[87] for details, especially for the Godunov finite-volume
integration scheme used and the inherent numerical dis-
sipation). This code has some differences with the rest
of the codes mentioned in this section, but it also shows
a nonhelical inverse transfer with a noticeable growth of
the integral scale over time. It is not mentioned how the
kinetic field is initialized in this simulation.

Finally, in [31] the Snoopy code is used [88]. This code
is the most similar to the one we use, since it is a pseu-
dospectral code that solves incompressible MHD in a box
of size 2π with a 2/3 dealiasing rule. The only difference
with our code is that Snoopy uses a third-order Runge-
Kutta scheme for the timestepping procedure. In this
work, the authors implement viscosity and hyperviscos-
ity. The kinetic flow is initialized to zero and a clear in-
verse transfer is observed in the nonhelical hyperviscous
case. The scaling exponents measured using the Snoopy
code are in reasonable agreement with ours. This is in-
teresting to note, since the authors use a measurement
method where some biases of the log-log fit are overcome.

We performed a last comparison with the Snoopy code,
given that our code uses only a second-order timestepping
procedure. We repeated runs NHp2 and NHhy1 with a
timestep ten times smaller than in the original runs, and
we checked that results were stable and that the choice
of timestep did not introduce any undesired effect. A
possible source for disagreement could be that other in-
variants such as cross-helicity are set different initially. It
has been shown in previous work that cross-helicity can
quench triadic interactions producing forward transfer,
creating asymmetries that favour inverse transfer [62].
Even though net cross-helicity vanishes, differences in the
local structures can have an impact in the inverse transfer
and give place to a different phenomenology. More evi-
dence studying the influence of cross-helicity may clarify
if this is relevant to explain the discrepancies.

We can conclude that after an extensive check, the de-
caying rates we measured in this work are in reasonable
agreement with previous literature. This suggests that
the discrepancies we find in terms of the inverse transfer
are not for any obvious reasons such as coding errors.
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Since the underlying mechanisms for the inverse trans-
fer in nonhelical MHD are not yet clear, we believe that
further analysis is needed. Either numerical or physi-
cal aspects that might seem subtle, could strongly affect
the evolution of the magnetic field and in particular, the
inverse energy transfer in the nonhelical case.

XI. DISCUSSION AND CONCLUSIONS

In this work we have explored the decay of helical and
nonhelical MHD turbulence using fully resolved DNS in
a wide range of parameters. We find a present but weak
nonhelical inverse transfer of magnetic energy, compared
to the one found in recent literature [27, 29, 31, 33]. Nev-
ertheless, we found that increasing Prandtl number en-
hances this inverse transfer, especially in the kinetic field.
This is opposite to the trend found in [29], where increas-
ing Pm turns the inverse transfer less efficient. This dif-
ference is possibly related to the subtleties involved in dif-

ferent numerical implementations of the MHD equations
that might affect strongly the mechanisms of nonhelical
inverse transfer.

We also measured the helical and nonhelical decay rate
Eb ∼ t−pb for different parameters. We note that a care-
ful numerical approach is necessary for measuring these
values. Especially, due to the closeness of the different
theoretical predictions ranging from pb ≈ 0.5-0.7 in the
helical case and pb ≈ 1-1.5 in the nonhelical case. We re-
port the trends observed for pb at varying Prandtl num-
ber, varying Reynolds number and varying scale repara-
tion kp. We find that pb decreases for increasing Pm and
increasing Re, producing a shallower magnetic decay in
both helical and nonhelical cases. Furthermore we find
that in the helical case, the decay follows a functional
form pb ≈ 0.6 + 14/Re.

We find that the behavior of the large scales is affected
by scale separation in the nonhelical case (the helical case
is not studied). A small scale separation shows an erratic
evolution of the scaling exponent and the evolution of the
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subinertial spectra Eb ∼ k4. Nevertheless, our numeri-
cal results show that the measured values of pb are not
strongly dependent on kp.

In [30] and [31], the authors suggest that flows in
equipartition U ∼ B show a weaker inverse transfer
and a steeper magnetic decay. However, we do not find
strong differences between these two cases, either in the
steepness of the decay or the amount of inverse transfer.
Still, the magnetically dominated case shows a slightly
stronger inverse transfer than the case in equipartition,
which is in line with the above mentioned predictions,
but not as strong as in other works in literature.

Finally we comment on the similarities and differences
between the observed nonhelical inverse transfer in our
results and those in recent literature. A strong inverse
transfer has been observed using three different codes
that use different equations, different numerical tech-
niques, and different fields initialization. We believe that
further work is needed to understand the reason for such
differences. We made sure that our simulations satisfy
adequate spatial and temporal resolution requirements.
This is something these other studies were more lenient
in regards. Other properties such as the compressibility
present in the PENCIL code were also suggested in [29] as
a possible mechanism to enhance the inverse transfer due
to the form of the kinetic spectra at low wavenumbers.

Nevertheless, the strong inverse transfer observed in [31]
using incompressible turbulence indicate that the source
of the discrepancy might not be related to this. We argue
that the initial cross-helicity and its subsequent evolution
can be the source of the observed discrepancies. Last, we
run a small number of hyperviscous and hyperresistive
runs, to verify if the inverse transfer emerges when the
inertial range is sufficiently wide. The comparisons shows
a slightly stronger inverse transfer but not enough to see
the peak of the spectrum moving past the initial k4 slope.
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