
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fast heat transfer simulation for laser powder bed fusion

Citation for published version:
Li, X & Polydorides, N 2023, 'Fast heat transfer simulation for laser powder bed fusion', Computer Methods
in Applied Mechanics and Engineering, vol. 412, 116107. https://doi.org/10.1016/j.cma.2023.116107

Digital Object Identifier (DOI):
10.1016/j.cma.2023.116107

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Computer Methods in Applied Mechanics and Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jul. 2023

https://doi.org/10.1016/j.cma.2023.116107
https://doi.org/10.1016/j.cma.2023.116107
https://www.research.ed.ac.uk/en/publications/b2ff1026-4780-410b-96a1-a14660c9a076


Available online at www.sciencedirect.com

m
t
o
p
w
t
o
u
b
u
s
d
v
t
r
s
©
(

K
p

m
m
c

h
0
o

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 412 (2023) 116107
www.elsevier.com/locate/cma

Fast heat transfer simulation for laser powder bed fusion
Xiaohan Li∗, Nick Polydorides

Institute for Digital Communications, School of Engineering, University of Edinburgh, King’s Buildings Campus, W Mains Rd, Edinburgh, EH9
3JW, UK

Received 16 January 2023; received in revised form 30 April 2023; accepted 2 May 2023
Available online 24 May 2023

Abstract

Accurate and fast modeling of the temperature distribution and phase transitions in laser powder bed fusion is a major
ilestone in achieving its quality assurance. Commonly referred to as digital twin technology, the goal is to find agile, fast-

o-compute but also sufficiently accurate simulators that can replicate the 3D printing process while enhancing the quality
f its outcomes. In this work, we propose a surrogate model for the nonlinear heat transfer equation coupled with subspace
rojection and randomized sketching, that exploits the accuracy and explainability of finite element time-domain simulation
ith the computational efficiency of Monte Carlo sampling, applied to the modality of laser powder bed fusion. Focusing on

ackling the high-dimensionality imparted from the finite element approximation and the nonlinearity in the governing equations,
ur surrogate relies on low-dimensional projection with subspace selection and subsequently sub-samples the Picard iterations
tilized to solve the projected non-linear system of equations. The projection bases are generated in the process of simulation
y combining previous temperature profiles and locally deployed anisotropic Gaussian functions, while the sketching process
tilizes efficient sampling without replacement based on approximate optimal sampling distributions. Both the projection and the
ketching are designed to implement alongside the printing process, which makes the proposed surrogate capable of handling
ifferent process parameters without requiring prior computations offline. A series of numerical experiments are presented to
alidate the surrogate’s accuracy and reduction in compute time compared to high-fidelity finite element simulations. Although
he achieved speed-up can be as a high ten, computational times are still orders of magnitude away from what would be
equired for real-time computations. The presented methodology allows to handle different printing attributes (laser power and
can speed) and arbitrary thermal conductivity anisotropy.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Dimensionality reduction; Finite element method; Nonlinear systems of equations; Randomized sketching; Transient heat transfer with
hase changes

1. Introduction

As a heating-based additive manufacturing technology, laser powder bed fusion (LPBF) is aimed at printing
etallic parts layer after layer guided by 3D geometrical designs. As such it can, in principle, perform better and
ore efficiently than traditional subtractive manufacturing in fabricating complex designs and reducing production

osts in materials and time [1]. The process productivity and quality assurance, however, impede LPBF from
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realizing its full potential. One way to tackle these issues is by developing a digital twin (DT) of the printing
process as a way to optimize the printing and enable closed-loop control that will in turn improve repeatability and
efficiency while reducing waste and the need for human intervention. The concept is particularly appealing for a
highly digitized process like LPBF, while its utility relies heavily on the speed and accuracy of surrogate and reduced
models that capture the governing phenomena [2,3]. In particular, the efficient and accurate temperature profile
near the heating source and the dimensions of the induced melt pools are critical for deducing the micro-structure
and residual stresses of the part and can predict the final part’s deformation, fatigue life, and other metallurgical
properties [4,5]. Although high-fidelity numerical simulators for transient heat transfer with phase changes exist,
mostly in the form of finite element time domain methods, running these models is very time-consuming due to
the high dimensionality imparted by the fine spatial–temporal discretization as well as the intrinsic nonlinearity
associated with the phase changes incurred. These technical challenges motivate the design of low-dimensional fast
surrogates offering a prudent trade-off between time efficiency and model accuracy.

To achieve real-time implementation, various machine learning methods were proposed for constructing such
urrogates in the context of LPBF. Mozaffar et al. proposed a recurrent neural network for the directed energy
eposition process, capable of predicting temperature profiles for different geometries [6]. The approach, however,
ncurs a large cost in storage and compute time, due to the exorbitant amount of data required to train the model.
oy et al. predicted thermal histories from different part sizes with deep neural networks while using the design of
eat influence zone to reduce the number of data [7]. In [8], a reduced Gaussian process surrogate was employed
o predict high-dimensional temperatures by linear combination of temperatures predicted to be closed to the
nal prediction. Another approach to reduce compute times is that of model order reduction (MOR) categorized
s structural, data-driven, and projection-based. An adaptive mesh refinement strategy was proposed in [9] as a
tructural MOR method where the area of the computational domain spanning the volume of the part was attributed a
ner mesh and the remainder was more coarsely meshed. In [10], a convolutional autoencoder was applied as a data-
riven MOR method to find the encoder and decoder for high-dimensional results of partial differential equations
PDEs). The surrogate was formed by cascading a feed-forward network and the decoder where the feed-forward
etwork mapped training inputs to encoded low-dimensional representations. The projection-based method projects
he full order model into the reduced model using orthonormal bases found via proper orthogonal decomposition
POD) [11], moment matching [12], or balanced truncation [13]. Note that although projection-based MOR works
ell in linear PDEs, a further approximation of nonlinearity like the discrete empirical interpolation method in [14]

s additionally required for nonlinear PDEs solved by either Picard or Newton iteration. In [8], the full-order model
as projected by data-driven local projection bases formed by selecting training temperatures deemed to be similar

o the final result, and randomized sketching was directly applied to subsample the algebraic operations involved in
olving the nonlinear model with Picard iterations. Though it was a projection-based approach, it required the same
ffort of data generation and training as a data-driven approach since its temperature selection relied on a data-driven
istance predictor. In general, though a data-driven surrogate realizes real-time implementations, it is an exhaustive
apping highly relying on sufficient training data to yield an accurate response surface. It is challenging in finding

epresentative data and expensive in storage and offline computation. The projection-based method, however, needs
valid projection basis with as little dimension as possible and an additional design to effectively reduce nonlinear

omputations. These two issues are addressed explicitly in this paper.
The thermal model of LPBF simulates the heat transfer of a laser beam following a specific scanning path,

hich yields melt pools with time-variant locations and has temperature distributions peaking at the laser beam
enters. Inspired by the general shape of temperature distributions and melt pools, we design time-variant local
rojection bases by a set of 3D Gaussian functions and previous temperatures. The selected Gaussian functions are
caled and translated from a benchmark Gaussian function calibrated at each time step. Nevertheless, the number
f nonlinear computations is not reduced after projection. To cut down this effort, we apply randomized sketching
ith approximate sampling probability to estimate the projected model with less sketching time. As the surrogate is
enerated and calibrated based on previous temperatures, for different printing parameters and anisotropy with some
andomness the surrogate can still be feasible without altering its design. Both the projection and sketching processes
re implemented in the process of simulation and are updated at each time step. Together with the additional time
ost due to basis generation, sketching, and projection, the designed surrogate as a swift numerical solver with finite
lement method (FEM) still only needs 11.33% of the original model’s execution time while keeping 99.62% of
ests give temperature predictions with relative errors below 3%. With this performance, the surrogate is a reasonable
hoice for the DT framework of LPBF and is valuable in promoting quality assurance through process optimization

nd closed-loop control.
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Fig. 1. Left, a schematic depicting the apparatus of a LPBF printing process and to the right a typical profile of the temperature distribution
in the part when heated with a Gaussian heat source.

1.1. Notation and paper organization

In this paper, the matrices are presented in capital letters. For example, we denote a matrix as X , the i th row,
the i th column, and the (i, j)-th entry of which are respectively expressed as X i∗, X∗i , and X i j . Vectors that are not
rows or columns of a matrix are in lowercase letters, with the i th entry of x denoted as xi . Continuous quantities
are also specified in lower case letters and tensors are denoted as x⃗ .

In the next section we present the governing principles of the nonlinear, anisotropic thermal model in LPBF
ollowed by its numerical implementation using FEM and the analysis of what makes the solver time-consuming.
n Section 3, the details of the surrogate are explained with two subsections respectively illustrating the designs for
ketching and projection. Then, the result section includes a simplified example with its codes provided in a Github
epository and several numerical experiments in LPBF showing the performance in model accuracy and time cost
eduction. Finally, the conclusions are laid out in Section 5.

. Thermal model of LPBF

In LPBF, a trajectory is predetermined according to the object we want to print. Following this trajectory, a laser
eam selectively scans the top surface of the powder bed yielding melt pools along this trajectory. The melt pools
hroughout the printing process fuse with their adjacent solidified material, and the final object will eventually be
ormed by layer-after-layer printing. The schematic of printing a cuboid object and the temperature distribution
uring printing are descriptively shown in Fig. 1.

.1. Governing equations

Heat transfer of a tN seconds scanning process is modeled as a nonlinear heat equation over a 3D computational
omain Ω ∈ R3, which is

ρ(u)c(u)
∂u(x, t)

∂t
− ∇ · κ⃗(u)∇u(x, t) = 0, (x, t) in Ω × [0, tN ], (1)

here u(x, t) is the temperature at time t with 3D Cartesian coordinates x = [x1, x2, x3]T . The thermal properties of
he material including thermal conductivity κ⃗ , density ρ, and specific heat capacity c are temperature-dependent [15].

hile experimental data of these three thermal properties in [16–20] are fitted with polynomials, the latent heat
ffect during the liquid–solid phase transition is considered in the model of specific heat capacity c, all of which
re detailed in appendix A in [8]. The anisotropy due to the intricate melt pool convection, however, is simplified
s an anisotropic enhanced thermal conductivity model which specifies the divergence term in Eq. (1) as

∇ · κ⃗(u)∇u :=

3∑ ∂

∂xi

[
κi j (u)

] ∂u
∂x j

(2)

i, j=1

3
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where κi i satisfy κ11(u) : κ22(u) : κ33(u) = λ1 : λ2 : λ3, for some positive weights λ ∈ R3 while κi j = 0 when
̸= j [15,21]. The vector λ can be considered as time invariant to be estimated from experimental data as in [16], or

t may allow to vary randomly in a range which resembles more accurately the real process [22,23]. The boundary
f Ω denoted as Γ is partitioned into three parts: the top surface Γt , the side surface Γs that is normal to the printing
lane, and the bottom surface Γb. For these we have a Neumann boundary condition relating the heat source q , to
he heat losses due to convection qc, and radiation qr as

κ⃗(u)∇u(x, t) · n̂ = q(x, t) − qc(u) − qr (u), x on Γt ∪ Γs, (3)

here n̂ is the outward unit normal on the boundary surface. The heat source function at the boundary q(x, t)
odels the cross section of a Gaussian laser beam as it enters the top surface of the domain

q(x, t) =
2a P
πς2 exp

(
−

2(∥x − µ(t)∥2)2

ς2

)
, x on Γt , (4)

here µ(t) ∈ R3 is the spatial coordinate of the laser beam center at time t , a is the absorptivity, P is the laser
ower, and ς is the effective radius of the laser beam [16]. For the heat losses due to convection and radiation we
onsider the nonlinear models

qc(u) = h(u − ua), qr (u) = σsε(u4
− u4

a), x on Γt ∪ Γs, (5)

where h > 0, σs , ε, and ua are respectively the heat convection coefficient, the Stefan–Boltzmann constant, the
emissivity, and the ambient temperature, all of which are regarded as constants according to [24,25]. The bottom
surface of the part is kept at a constant temperature via a temperature-controlled platform, thus we impose a Dirichlet
condition there as [26]

u(x, t) = ub, x on Γb, t ∈ [0, tN ]. (6)

In effect, an initial condition

u(x, 0) = u0, x in Ω , (7)

suffices to yield a unique temperature solution u(x, t) to simulate the heat transfer over the spatial and temporal
domain.

2.2. The full-order numerical solver with FEM

A high-fidelity numerical solver of the nonlinear thermal model as Eqs. (1)–(7) is developed using the FEM
where fine discretization is applied in both temporal and spatial domains. While a tN seconds printing process is
discretized as N time steps with an interval ∆t namely tn = n∆t for n = 0, 1, . . . , N , the spatial domain Ω is
discretized into ne linear tetrahedrons and a large number nd degrees of freedom (DoF). The temperature at time
n is represented by the high-dimensional vector un ∈ Rnd . Given un−1, the temperature at the next time step un

atisfies

A(un)un = b(un−1, un), for n = 1, . . . , N , (8)

here the temperature-dependent matrix A ∈ Rnd×nd and vector b ∈ Rnd are defined in Appendix A. The nonlinear
ystem of equations (8) we apply Picard’s iterative algorithm which converges to a unique solution subject to some
ild assumptions, i.e. for a small ∆t , ∥un − un−1∥2 is small [27,28].

.3. Time consumption due to high dimensionality and nonlinearity

The full-order model with FEM is time-consuming since it is high-dimensional and nonlinear. While the high
imensionality is caused by fine spatial discretization, the nonlinearity is intrinsic to the material’s thermal properties
t the applied heat levels which trigger phase changes, as well as the radiation losses. On the one hand, the high nd

ncreases the dimension of the (8) system resulting in more compute time per Picard iteration. On the other hand,
oth the high dimensionality and nonlinearity increase the number of nonlinear computations required. Here we
4
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take the mass matrix M(un) ∈ Rnd×nd as an example while summarizing the details of other matrices and vectors
n Appendix A. The entries of M are defined as

Mi j (un) =

∫
Ω

ρ(un)c(un)φi (x)φ j (x)dx for i, j = 1, . . . , nd , (9)

here the integrand is the product of the density function ρ(un), the specific heat capacity c(un), and the local basis
unctions φ(x) of the i th and j th DoF. The integral in Eq. (9) is approximated via a nm-point Gaussian quadrature
ule as

Mi j (un) =

ne∑
e=1

∫
Ωe

ρ(un)c(un) φi (x)φ j (x) dx, i, j ∈ suppΩe

≈

ne∑
e=1

nm∑
ι=1

|Je| |Ωe| wιρ(un(x (ι)
e ))c(un(x (ι)

e ))φi (x (ι)
e )φ j (x (ι)

e ),

(10)

here x (ι)
e ∈ R3 and wι are respectively the coordinate and weight of the ι-th integration point within the eth

lement. |Je| is the determinant of the Jacobian of the eth element’s coordinate transform. |Ωe| is the eth element’s
olume. In matrix form, we can rewrite the approximation of M as

M(un) ≈ ΦT W (un)Φ, (11)

here Φ ∈ Rnm ne×nd are evaluations of the basis functions at all integration points and the diagonal matrix
W (un) ∈ Rnm ne×nm ne contains the temperature-dependent entries. Specifically, the i th column of Φ is

Φ∗i =
[
φi (X (1)), . . . , φi (X (nm ))

]T
, for i = 1, . . . , nd , (12)

here we have φi (X (ι)) = [φi (x
(ι)
1 ), . . . , φi (x (ι)

ne
)] at the ι-th integration point. The temperature-dependent computa-

ions related to the ι-th integration point are held in the diagonal matrix Dn
ee(X (ι)) = |Je| |Ωe| wιρ(un(x (ι)

e ))c(un(x (ι)
e ))

for e = 1, . . . , ne, and thus for all integration points this yields a diagonal

W (un) =

⎡⎢⎣ Dn(X (1))
. . .

Dn(X (nm ))

⎤⎥⎦ . (13)

From (12) and (13), it is easy to see that the tall matrix Φ does not depend on temperature, and can thus be computed
efore the start of the simulation. During the simulation, the computation due to nonlinearity is reflected by the
iagonal of W (un) in each Picard iteration, which requires nmne nonlinear computations in density ρ(un) and specific

heat capacity c(un). The degree of nonlinearity for the integrand is affected by the polynomial functions ρ(un) and
c(un), both of which are fitted with experimental data and vary with different materials. The higher the degree of
nonlinearity is the larger nm is, and the finer the spatial discretization is the larger ne becomes. Accordingly, it
is worthwhile to figure out a way that manages to reduce both the dimensionality and nonlinearity of the thermal
model as Eq. (8) but maintains the accuracy of temperature profiles.

3. Fast-computed surrogate

At the start of a new line of scanning in LPBF, the profile of the temperature is not regular for the first few time
steps. This is partly due to the temperature-controlled building platform and the existing temperature from previous
printing. More importantly, with a small time interval, there is not enough heat at the beginning to form steady
melt pools. For example, a thermal simulation of scanning a straight line is shown in Fig. 2, from which we can
tell that the steady temperature distributions are gradually formed with obvious anisotropy. Therefore, to improve
time efficiency while securing accuracy, we first run the full order model for the first nt time steps and then replace
the subsequent thermal simulation with a surrogate. The surrogate is proposed to reduce the expensive time cost
due to high dimensionality and nonlinearity. To begin with, we project the full-order thermal model with FEM to a
comparably low dimension with a properly established orthonormal projection basis Ψn ∈ Rnd×nr where nr ≪ nd

and un ≈ Ψnrn . The Eq. (8) is thereby projected as
A(un)rn = b(un−1, un), (14)

5
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Fig. 2. Temperature profiles whilst printing on a straight line trajectory. Notice that the temperature profiles at the start of the printing on
each layer (left column) cannot be described as (anisotropic) Gaussian functions.

where A(un) = Ψ T
n A(un)Ψn and b(un−1, un) = Ψ T

n b(un−1, un). We hereafter denote the projected matrices and
ectors with boldface. Though projection reduces the dimension of the matrix equation, the amount of nonlinear
omputation is still consistent with the full-order model. Accordingly, we further approximate Eq. (14) with
andomized sketching to yield a swift surrogate as

Â(ûn)r̂n = b̂(ûn, ûn−1), (15)

nd get the projected solution r̂n ∈ Rnr via Picard iterations. Backprojecting to the nd dimension we then reconstruct
ˆn = Ψn r̂n . The procedure of implementing the surrogate is outlined in algorithm 1 where both sketching and
rojection procedures have several parameters to control the trade-off between model accuracy and time cost. From
lgorithm 1, it is shown that we need to generate the projection basis before randomized sketching while the actual
rojection happens after the settlement of row selection in randomized sketching. To state the design clearly, we
tart from the assumption that we have a proper projection basis and illustrate the randomized sketching with
pproximated success probability in Section 3.1. Then, we explain Gaussian basis generation and projection in
ection 3.2.

.1. Randomized sketching with approximate sampling probability

We now explain the design by focusing on the mass matrix M(un) defined in Eq. (9) as an example since
he randomized sketching and projection of each part of the full-order model are implemented in a very similar
ay. Herein, we generally show the computational procedure of the projected and sketched mass matrix M̂(un) as
ig. 3 where the modules related to randomized sketching are illustrated in detail and the module of Gaussian local
rojection is enriched later in Section 3.2. In the reduced model with a projection basis Ψn , the projected mass
atrix M(un) ∈ Rnr ×nr is

M(un) = Ψ T
n M(un)Ψn = ΦT W (un)Φ =

nm ne∑
i=1

Wi i (un)ΦT
i∗Φi∗, (16)

here the tall matrix Φ ∈ Rnm ne×nr is the projected basis function matrix ΦΨn . We also tell that M(un) can be
T
epresented as the linear combination of nmne rank-one matrices Φi∗Φi∗ weighted by Wi i (un) for i = 1, . . . , nmne.

6
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Algorithm 1 The fast-computed surrogate.
Input: a total amount of time steps N , the full-order model as Eq. (8), an integer nt .
Output: the temperature profiles un for n = 1, · · · , N .

1: for n = 1 to N do
2: if n ⩽ nt then
3: Get un with the full-order model A(un)un = b(un−1, un).
4: else
5: Generate the Gaussian local projection basis Ψn as Section 3.2.1.
6: Implement randomized sketching with approximated sampling probability as Section 3.1.
7: Implement projection as Section 3.2.2.
8: Get r̂n by solving the projected and sketched model Â(ûn)r̂n = b̂(ûn, ûn−1).
9: Reconstruct the temperature estimation ûn = Ψn r̂n .

10: end if
11: end for

Fig. 3. The sketching procedure to compute the projected and sketched mass matrix.

The time cost due to nonlinearity, however, is reflected by the diagonal matrix W (un). It is shown in Eq. (16)
that projection only reduces the columns of basis function matrix from nd to nr while all nmne evaluations of
temperature-dependent functions to form the diagonal of W (un) still remain, to bypass the majority of which we
further approximate the projected model via randomized sketching. It manages to approximate M(un) by selecting
and weighting some of the rows of Φ and W (un) based on some non-uniform Bernoulli sampling probabilities. In
specific, the approximated mass matrix M̂(un) ∈ Rnr ×nr is

M̂(un) = Φ̃T W̃ (un)Φ̃ =

ng∑
i=1

W̃i iΦ̃
T
i∗Φ̃i∗, (17)

where Φ̃ ∈ Rng×nr only contains the ng selected rows of Φ. The total number of both rank-one matrices and
corresponding weights are reduced from nmne to ng . When the i th row of Φ̃ weighted by W̃i i (un) is selected from
the j th row of Φ weighted by W j j (un), we have the diagonal entries of W̃ (un) ∈ Rng×ng as

W̃i i (un) =
1
ω j

W j j (un), for i = 1, . . . , ng, (18)

where 0 < ω j ⩽ 1 is the probability of selecting the j th row of Φ. All ng indexes j in Eq. (18) are recorded as a
row index vector β ∈ Rng which is useful in the fast projection explained in Section 3.2.2. In randomized sketching
stated above, it is essential to set all sampling probabilities ω ∈ Rnm ne properly to ensure low sketching error while
utting down sketching time cost. Accordingly, we specify ω based on the fast-computed approximation of leverage
cores which is detailed in the subsequent Section 3.1.1.

.1.1. Approximate sampling probability
To significantly reduce nonlinear computations, it is critical to properly set the success probabilities ω ∈ Rnm ne

ˆ
o that we manage to retain ng ≪ nmne and a small sketching error ∥M(un) − M(un)∥2. The vector of probabilities

7
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Fig. 4. The relative errors with different percentage p.

ω depends on the leverage scores of the rows of Φ ∈ Rnm ne×nr [29,30]. Namely, for i = 1, . . . , nmne we have

ωi = min (1, ξ/nrℓi ), (19)

ℓi = (∥Ui∗∥2)2, (20)

here the statistical leverage score ℓ ∈ Rnm ne is the squared row norms of U , and U ∈ Rnm ne×nr is the left singular
ectors in the compact SVD of Φ. The parameter ξ > 0 is a positive integer that bounds the number of rows
elected. Though the exact leverage scores ℓ are needed for the randomized sketching, they are computationally
xpensive to obtain. The two most computationally expensive parts are the large matrix multiplication Φ = ΦΨn
ith the computational complexity O(nmnendnr ) and the compact SVD of Φ. Therefore, we propose a way to

pproximate ℓ with less time in SVD and without implementing the exact product ΦΨn . As in Eq. (20), the exact
everage scores are computed as the squared row norms of the nr left singular vectors in U . We hereby replace it
ith its first ñr (ñr < nr ) columns that correspond to the ñr largest singular values of Φ, and then use the squared

ow norms of the ñr columns to approximate ℓ. In specific,

ℓ̂i = (∥Ũi∗∥2)2, (21)

here Ũ ∈ Rnm ne×ñr containing the ñr left singular vectors is obtained from the ñr rank approximation of Φ.
e can choose ñr as a small proportion of nr without a high sacrifice in accuracy. As shown in Fig. 4, we take

p = ñr/nr indicating the percentage we pick. Then, we compare the 2-norm relative errors of temperatures and the
orresponding sketching time with p ranging from 5% to 100%. As in Fig. 4, we can tell that the approximation
rror has a comparably high tolerance for a small percentage p. The 2-norm relative errors of temperatures are below
% when p ⩾ 30%, while the increase of accuracy is not significant when p ⩾ 80%. Therefore, an acceptable range
f p is from 30% to 80%, which can be further specified according to how much sketching time we want to take.
iven a reasonable percentage p, Ũ can be fast-computed via randomized SVD. While the standard procedure
f randomized SVD in [31] is detailed by algorithm B.1 in Appendix B, it is modified as algorithm 2 to avoid
omputing Φ = ΦΨn explicitly. In specific, as stated in the third step of algorithm 2 we compute Φ(ΨΥ1) instead
f ΦΨΥ1 to avoid the expensive multiplication ΦΨ . The computational complexity of Φ(ΨΥ1) and ΦΨΥ1 are
espectively O(ndnr ñr + nmnend ñr ) and O(nmnendnr + ndnr ñr ). Since we have ñr = ⌊pnr⌋ and 1/nr ⩽ p < 1,
t is validated that O(ndnr ñr + nmnend ñr ) < O(nmnendnr + ndnr ñr ). Moreover, the smaller the proportion p is
he more time we can save by avoiding this large matrix multiplication. Once the fast-computed ℓ̂ is obtained, the
pproximated success probability ω̂ is accordingly generated via Eq. (19).

.2. Gaussian local projection

To ensure model accuracy, it is essential to establish competent projection bases. A satisfactory projection basis

hould embody the temperature distributions we want while having as less dimension as possible. In LPBF, the laser

8
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Algorithm 2 The approximation of sampling probability.
Input: the basis function matrix Φ ∈ Rnm ne×nd , the Gaussian projection basis Ψ ∈ Rnd×nr , a parameter ξ > 0, a

proportion 1/nr ⩽ p < 1, an embedding dimension k.
utput: an approximation of success probability ω̂.

1: ñr = ⌊pnr⌋.
2: Generate two random sub-Gaussian matrices Υ1 ∈ Rnr ×ñr and Υ2 ∈ Rk×nm ne .
3: Compute Φ̃ ∈ Rnm ne×ñr by Φ̃ = Φ(ΨΥ1).
4: Compute the orthonormal matrix Λ ∈ Rnm ne×ñr in the QR-decomposition of Φ̃.
5: Compute the left singular vectors of (Υ2Λ)†Υ2ΦΨ as Ū ∈ Rñr ×ñr .
6: Ũ = ΛŪ .
7: for i = 1 to nmne do
8: ℓ̂i = (∥Ũi∗∥2)2.
9: ω̂i = min (1, ξ/nr ℓ̂i ).

10: end for

Fig. 5. The projection procedure to compute the projected and sketched mass matrix.

eam scans along the pre-determined trajectory yielding melt pools at different positions, the areas around which
re also where the changes of temperature gradient concentrate. As a result, it makes sense to use local projection
ases instead of a global basis since temperatures at different time coordinates are expected to be dissimilar. The
ocal projection basis Ψn at the nth time step, though required to be updated as the printing process carries on,
nly needs to focus on the positions around the laser beam center µ(tn) and thus requires fewer dimensions for an

accurate delineation of u(tn). More specifically, the temperature u(t) provoked by a moving Gaussian heat source as
q. (4) is expected to have its peak at µ(t) and can be roughly outlined by a set of 3D Gaussian functions adjusted

rom a benchmark Gaussian function with operations including translation and variance scaling. The parameters
f a benchmark Gaussian function, however, are calibrated by linear least square regression based on the latest
emperature. The procedure of Gaussian local projection is exhibited as Fig. 5 in general, while the details of
rojection basis generation and projection are respectively explained in Sections 3.2.1 and 3.2.2.

.2.1. Projection basis generation
Inspired by the Gaussian heat source, melt pool shapes, and anisotropic temperature distributions, we shall gather

set of 3D Gaussian functions to generally cover the temperature we want. The selected Gaussian functions are
valuated at all DoFs as G ∈ Rnd×nG where nG denotes the number of Gaussian functions. Considering the heat
emained by the previous temperatures, the projection basis Ψn is then established as an orthonormal basis of the
atrix Q ∈ Rnd×(nG+nu+1) which is
Q = [G, un−nu , . . . , un−1, 1], (22)

9
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where the temperatures at the previous nu time steps are included. The point, however, is how to properly select
nG Gaussian functions. We establish a Gaussian function with two parameters: the position of the mean and the
variances. First, we can set nµ mean positions located at the laser beam center at the nth time step and several
positions ahead of the laser beam along the printing direction. In a straight line printing, the coordinates of the
selected means are µn

∈ R3×nµ . µn
∗i = µ(tn) + i[∆d, 0, 0]T where i = 0, 1, . . . , nµ − 1 in forward scanning and

= 0, −1, . . . ,−(nµ−1) in backward scanning. Then, we can find nσ sets of standard deviations by properly scaling
set of benchmark values σ̄ ∈ R3 with an empirical vector η ∈ Rnη > 0. The benchmark standard deviations σ̄

re obtained by roughly outlining the normalized latest temperature un−1/ max (un−1) as a 3D Gaussian function
fn−1(x) = exp (−

∑3
τ=1(xτ − µ(tn−1)τ )2/2σ̄ 2

τ ). The optimal σ̄ satisfies

argmin
σ̄

∥un−1(X̄ )/ max (un−1) − fn−1(X̄ )∥2, (23)

here un−1(X̄ ) ∈ Rn̄d contains the DoF in un−1 ∈ Rnd that are greater than a temperature um . um is set empirically
ut is normally around the melting temperature of the material. The coordinates of these n̄d nodes are specified as
he rows in the matrix X̄ ∈ Rn̄d×3. With linear least square regression, ˆ̄σ ∈ R3 is approximated by

1/ ˆ̄σ 2
= (B(X̄ )T B(X̄ ))−1 B(X̄ )T ln (un−1(X̄ )/ max (un−1)), (24)

here B(X̄ ) ∈ Rn̄d×3 is B(X̄ ) =
1
2 [(X̄∗1 − µ(tn−1)11)2, (X̄∗2 − µ(tn−1)21)2, (X̄∗3 − µ(tn−1)31)2]. ˆ̄σ is then properly

caled by η yielding n3
η different sets of standard deviations as

σ (η)∗i = [exp (η j ln σ̄1), exp (ηk ln σ̄2), exp (ηq ln σ̄3)]T , for i = 1, . . . , nσ , (25)

here nσ = n3
η. The j th, kth, and qth entry of η constitute one possible arrangement in the permutations of η with

epetition. Considering the designs above, we can collect a total number of nG = nµnσ Gaussian functions and
gather the matrix G in Eq. (22) as

Gdi = exp (−
3∑

τ=1

(Xτd − µn
τ j )

2

2σ (η)τk
2 ), for d = 1, . . . , nd , and i = 1, . . . , nG, (26)

here X ∈ R3×nd contains the spatial coordinate of the nd DoF. The i th column of G arranges the j th of nµ means
nd the kth of nσ standard variances as one possible permutation. The projection basis Ψn ∈ Rnd×nr is then formed
s the left singular vectors of the nr -rank approximation of Q. As the number of DoF nd is large and the number
f selected Gaussian functions nG is typically a few hundred, the SVD of Q can be computationally expensive. As
result, we use randomized SVD as algorithm B.1 in Appendix B to reduce the generation time of the orthonormal
asis Ψn [31].

.2.2. Fast projection
According to the design above, the projection basis Ψn is generated in the process of simulation and will not be

stablished until un−1 becomes available. Hence, the action of projection should also be implemented in the process
f simulation. The complete projection should be finished by

Φ = ΦΨn, (27)

hich is the expensive large matrix multiplication that we want to avoid all along. We have avoided computing it
xplicitly in randomized sketching as stated in Section 3.1.1 and algorithm 2. Consequently, we can obtain the row
ndexes of ng successful selections as β before fulfilling the projection. We can thereby skip Φ and directly get Φ̃
s

Φ̃ = Φβ∗Ψn. (28)

ince the majority of rows are bypassed via randomized sketching, we have ng ≪ nmne and thus the computational
omplexity is significantly reduced from O(n n n n ) for Eq. (27) to O(n n n ) for Eq. (28).
m e d r g d r

10
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Fig. 6. Relative errors between FEM and SM.

4. Results

The performance of the designed surrogate model (SM) is evaluated by comparing its model accuracy and time
cost with the full-order model using FEM. In Section 4.1, a simplified example is evaluated, the codes of which are
provided in the Github repository [32]. In Section 4.2, numerical experiments are carried out with the considerations
under the context of LPBF such as intricate nonlinearity, phase changes, and anisotropy. All tests are implemented
in Matlab R2020b on a computer with 2.6 GHz 6-Core Intel Core i7 processor and 16 GB RAM.

4.1. A simplified example

An example is provided to simulate the heat transfer with a Gaussian heat source moving forward with a speed v.
he Gaussian function follows Eq. (4) with a fixed amplitude denoted as fs in this section. The three-dimensional
omain is discretized by mesh with less refinement compared with Section 4.2, and the thermal properties including
hermal conductivity, density, and specific heat capacity are temperature-dependent but are only set as simple
olynomials. As a result, this simplified example is comparably not high-dimensional and only has mild nonlinearity.
he parameter details are listed in Appendix C, in which the parameters of the thermal model and the surrogate
re respectively in Tables C.1 and C.2.

.1.1. Model accuracy
The model accuracy is evaluated by relative errors which are computed in 2-norm and infinity-norm. Both are

efined on the entire nd -dimensional temperatures. Namely, when u ∈ Rnd and û ∈ Rnd respectively denote the
imulated temperature with FEM and the corresponding estimated temperature with the SM, we have the 2-norm
elative error as e = ∥u − û∥2/∥u∥2 and the infinity-norm of the component-wise relative error as e∞ = ∥ec

∥∞

here ec
i = |ui − ûi |/ui for i = 1, . . . , nd . The boxplots as Fig. 6 show the two types of relative errors for the

implified example in this section. In each box, the red line represents the median while the bottom and top line
re respectively the 25th percentile (Q1) and 75th percentile (Q3). The upper and lower whiskers of each box
dditionally extend with a distance of 1.5 × (Q3 − Q1). We can tell that e range from 1.53% to 3.56% while e∞

ange from 6.96% to 12.69%. More specifically, we can compare the temperature distributions between FEM and
M. Take one time step (t = 0.4 ms) as an example, the temperature profiles and the relative errors are shown in
ig. 7.

.1.2. Time cost reduction
The average time cost of FEM and SM are summarized in Table 1 where the time cost of SM consists of four

arts: basis generation, sketching, projection, and simulation. It indicates that 33.64% of time cost is saved on
verage. The total time cost is reduced from 1.3414s to 0.8901s, which is not a significant reduction. However, a
ore remarkable improvement in time efficiency will be shown when the thermal model has a higher dimension
nd nonlinearity.

11
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Fig. 7. The comparison of temperature distribution between FEM and SM.

Table 1
The comparison of average time cost.

FEM
(s)

SM (s) Reduction
(%)Basis generation Sketching Projection Simulation Total

1.3414 0.0066 0.2754 0.0077 0.6004 0.8901 33.64

4.2. Numerical experiments of LPBF

A series of numerical experiments are carried out to simulate two straight lines scanned back and forth in a
wo-layer AlSi10Mg powder bed surrounded by argon atmosphere where the laser beam starts from x (i)

s and ends
at x (i)

e with a hatch distance ∆h on the top of the i th layer. The powder bed domain numerically expressed as
cuboid is discretized to tetrahedron meshes with a conforming refinement within the printing area, in which

ne meshes distribute around the scanning lines on the top layer (tetrahedrons with a side length of 0.005 mm)
nd the rest area has coarser mesh (tetrahedrons with a side length of 0.025 mm). Under this mesh scheme, the
omain Ω evolving from the first to the second layer is spatially discretized into ne tetrahedron elements, nd DoFs,
nd n̄d constant temperature nodes on the bottom surface. Specifically, we have nd = 86333, n̄d = 11011, and
e = 510797 for the first layer, and for the second layer nd = 96509, n̄d = 2134, and ne = 568908. It is worth
oting that the printing area in a real LPBF process is normally larger and the mesh refinement used here may not
e as efficient. For more realistic complexity or elaborate printing trajectories, more sophisticated mesh generation
lgorithms will be advantageous such as the area of fine mesh is set to be around and moving with the melt pool.
he full-order model with FEM is used as a reference model, and we validate it with the experiment results in [16]
hich includes a selective laser melting process using the apparatus with a YLR-500-SM ytterbium fiber laser

nd a numerical simulation using the ANSYS multiphysics finite element package. The reference experiment was
onducted with laser power P = 250 W and scan speed v = 200 mm/s using the same material (AlSi10Mg powders
ith 99.7% purity and an average size around 30µm) in the same atmosphere (argon). The scanning pattern of a

aser beam is visualized as Fig. 8 where the positions at the center of each layer are used to validate our thermal
imulation. We further detail the validation in Appendix D. There are a total amount of 18 tests including different
aser power (P=200, 250, 300 W), scan speed (v=200, 600, 1000 mm/s), as well as a static or random anisotropy
cale factor λ. While the static scale factor λ = [2.5, 1, 3.2]T is found by the trial-and-error calibration to fit the
xperiment results in [16], the three values in the random scale factor λ are respectively generated from uniform
istributions λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), and λ3 ∼ U (1.5, 4.5) to simulate the randomness of anisotropy in
eality. Therefore, with the 18 tests denoted as Si for i = 1, . . . , 18 we validate the feasibility of our surrogate
o cope with different printing parameters and a certain level of anisotropy randomness. The parameter settings of
ach test are specified in Table E.1 in Appendix E. In Appendix C, the model parameters used in both FEM and
he surrogate are specified in Table C.3, and the parameters specific to the surrogate are specified in Table C.4.
12
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o

Fig. 8. The laser scanning pattern in [16] where position 1 and 2 used in validation are respectively the center of the first and second layer.

Fig. 9. Relative errors between FEM and SM.

Table 2
The melt pool size comparison between FEM and SM.

Test Layer FEM (µm) SM (µm) Relative error (%)

Length Width Depth Length Width Depth Length Width Depth

S9
1 162.50 98.77 62.50 167.50 103.34 60.76 3.08 4.63 2.78
2 185.00 97.98 68.36 191.31 100.23 63.74 3.41 2.30 6.76

S10
1 115.00 93.90 58.39 112.71 93.90 54.37 1.99 < 0.01 6.88
2 112.50 97.57 62.69 115.30 101.21 60.02 2.49 3.73 4.26

4.2.1. Model accuracy
The model accuracy is compared in three aspects: relative errors, melt pools, and thermal histories. The spread

f relative errors is shown in the boxplot as Fig. 9 where the i th box expresses the relative errors of the test Si

for i = 1, . . . , 18. We can tell that most of the 2-norm relative errors are smaller than 3%. More specifically,
there are respectively 99.62% and 60.64% of 2-norm relative errors below 3% and 2%, while the maximum 2-
norm relative error among all tests is 3.30%. The infinity norm of component-wise relative errors, however, range
from 5.12% to 24.77% where 98.79% and 70.42% of tests are respectively below 15% and 10%. In addition to
the comparison between high-dimensional temperatures, we further focus on the area around melt pools where
most temperature gradients concentrate. Take S9 and S10 as examples, χi denotes the middle position of the i th
scanning line on the i th layer. The comparison of the melt pool size is listed in Table 2 where the maximum
relative error of the four melt pool sizes are respectively 4.63%, 6.76%, 6.88%, and 4.26%. In Figs. 10 and 11, we
show the contours of temperature distributions together with the relative errors of temperatures at individual nodes.
The errors inhomogeneously distribute over the domain, and the maximum of the plotted errors which is also the

infinity-norm of the component-wise relative errors are respectively 10.21%, 11.46%, 6.68%, and 8.36%. At the

13
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Fig. 10. The melt pool comparison of S9 between FEM and SM.

Fig. 11. The melt pool comparison of S10 between FEM and SM.
14
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χ

Fig. 12. The thermal history comparison between FEM and SM.

Table 3
The comparison of average time cost.

Layer FEM
(s)

SM (s) Reduction
(%)Basis generation Sketching Projection Simulation Total

1 399.37 1.51 22.55 1.85 25.73 51.64 87.07
2 519.93 1.82 23.71 2.13 24.82 52.48 89.91

same four positions, the thermal histories are compared as Fig. 12. In S9, the relative errors of thermal histories at
1 and χ2 are respectively 3.12% and 5.94%. For the thermal histories at χ1 and χ2 in S10, we can see the effect

of anisotropy randomness while their relative errors are respectively 3.31% and 3.10%.

4.2.2. Time cost reduction
While the accuracy of SM is validated in Section 4.2.1, another important performance is the reduction of

execution time. At each time step of the high-fidelity thermal model with FEM, the execution time consists of
Picard iterations. Therefore, for one layer of printing in one test, we record and compute the average time cost
of implementing the simulation where the nonlinear thermal properties and boundary conditions are repeatedly
evaluated at each integration point in each Picard iteration. While the basis generation, sketching, and projection
of SM respectively corresponding to Sections 3.2.1, 3.1, and 3.2.2 are successively executed in the process of
simulation, the simulation part is also the Picard iterations but is implemented with the projected and sketched
model where only a small amount of nonlinear computations are required. On average, as shown in Table 3, the
SM manages to respectively reduce 87.07% and 89.91% of time cost for the one- and two-layer printing. Specifically,
while the average execution time of FEM is respectively 399.37s for layer 1 and 519.93s for layer 2, the average
execution time of SM is correspondingly 51.64s and 52.48s. Most of the execution time in SM is taken by sketching
and simulation parts, though both of which are necessary they can be further reduced if more sacrifice in accuracy
is acceptable. Namely, a smaller proportion p in algorithm 2 will reduce the sketching time required, and a smaller
multiplier ξ will cut down the simulation time required.

5. Conclusions

A fast surrogate model is proposed as a swift alternative to the high-fidelity thermal model of LPBF. The
thermal model is governed by a nonlinear and anisotropic heat equation considering temperature-dependent thermal
properties and phase changes. It is numerically solved by FEM with Gaussian quadrature and Picard iteration. To
build the surrogate, we first run the full-order model with FEM for the first several time steps until the melt pool
becomes stable. Then, the full-order model is projected on a local projection basis generated in the process of

simulation. The local projection basis is formed by gathering several previous temperatures and a set of Gaussian
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functions calibrated by the temperature at the last time step. The projected model is then randomly sketched with
the approximate sampling probability which requires less sketching time and avoids explicitly implementing full
projection. After generating the row selection scheme by randomized sketching, we implement the projection with
only the selected rows. To validate the performance of the surrogate, we make a simplified example and several
numerical experiments of LPBF. The simplified example has relatively low dimensionality and uncomplicated
nonlinearities. The codes of its implementation are available in the Github repository [32]. While the 2-norm relative
errors of the simplified example are below 3.56%, its infinity-norm relative errors are less than 12.69%. The average
running time is reduced from 1.34s to 0.89s saving 33.64% of time cost. The performance of time cost reduction
becomes more remarkable in the numerical experiments of LPBF where we simulate the printing process of two
straight lines scanned back and forth in a two-layer AlSi10Mg powder bed surrounded by an argon atmosphere.
18 numerical experiments are carried out with different laser power, scan speed, and static/random scale factor of
anisotropy. On average, 88.67% of execution time is saved while respectively suppressing the 2-norm relative errors
for 60.64% and 99.62% of tests below 2% and 3%. Therefore, the designed surrogate can be used as a fast-solving
alternative that is competent enough to deal with different printing parameters and some anisotropy randomness.
Since it swiftly and accurately emulates temperature profiles, melt pool sizes, and thermal histories, it is essential
in facilitating the prediction and analysis of the quality of the printed part such as its deformation and mechanical
properties. Compared with the two surrogates proposed in [8], its advantages are reflected in two aspects. First,
its basis generation, projection, and randomized sketching do not rely on a data-driven model trained and prepared
before simulations start. Therefore, its performance does not rely on the representativeness of training data and it
saves the preparation effort of data generation and training. Second, since the projection bases of the surrogate in this
paper are generated from hundreds of calibrated and adjusted Gaussian functions, they are feasible to cover a larger
range of temperature distributions which makes the surrogate become more robust in some anisotropy randomness.
Both advantages make the surrogate more practical and applicable in a real LPBF process. In principle, the surrogate
is also valid for other types of thermal-driven AM if we properly adjust the designs like the evolution of the domain
and the model of the heat source. Future work can focus on the application of the surrogate in solving problems
requiring large and/or fast thermal simulations such as possible process optimizations and controls.
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ppendix A. Finite element method

To solve the nonlinear thermal model of LPBF defined as Eqs. (1)–(7), we develop a high-fidelity numerical
olver with FEM. The temporal domain is discretized as tn = n∆t for n = 0, 1, . . . , N , while the spatial domain
s discretized into ns surface triangles, ne tetrahedron elements, and ñd = nd + n̄d nodes including nd DoF and
¯d nodes on the bottom surface Γb. The temperatures are approximated by linear combinations of basis functions

i for i = 1, . . . , ñd . In other words, the temperature at the nth time step is approximated as
∑ñd

i=1 ũni φi where
ñd nd n̄d
˜n ∈ R contains the temperature un ∈ R at nd DoF and the temperatures ū = ub × 1 ∈ R imposed as a
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Table A.1
The details of FEM.

Symbol Details
( j = 1, . . . , nd , j̄ = 1, . . . , n̄d ,
e = 1, . . . , ne , i = 1, . . . , ns )

Symbol Details
( j = 1, . . . , nd , j̄ = 1, . . . , n̄d ,
e = 1, . . . , ne , i = 1, . . . , ns )

K (un) ΦT
k Wk (un)Φk Dn(X (ι)) Dn

ee = |Je| |Ωe| wιρ(un(x (ι)
e ))c(un(x (ι)

e ))

M(un) ΦT W (un)Φ Dn
r (X (ι)) Dn

ri i
= |Ji | |Γi | σsεwιu(x (ι)

i )3

Qr (un) ΦT
r Wr (un)Φr Dc(X (ι)) Dci i = |Ji | |Γi | wιh

Qc ΦT
c WcΦc ds dsi = |Ji | |Γi | w(hua + σsεu4

a)

s ΦT
s ds Φs Φs∗ j = φ j (X )

l(tn) ΦT
l dl (tn) Φl Φl∗ j = [φ j (X (1)), . . . , φ j (X (nl ))]T

K̄ (un) ΦT
k Wk (un)Φ̄k Φ̄r Φ̄r

∗ j̄
= [φ j̄ (X (1)), . . . , φ j̄ (X (nr ))]T

Q̄r (un) ΦT
r Wr (un)Φ̄r Φ̄c Φ̄c

∗ j̄
= [φ j̄ (X (1)), . . . , φ j̄ (X (nc ))]T

Q̄c ΦT
c WcΦ̄c Φ Φ∗ j = [φ j (X (1)), . . . , φ j (X (nm ))]T

dl (tn)
[
dn

l (X (1)), . . . , dn
l (X (nl ))

]T
Φr Φr∗ j = [φ j (X (1)), . . . , φ j (X (nr ))]T

dn
l (X (ι)) dn

l1i
= |Ji | |Γi | wιq(x (ι)

i , tn) Φc Φc∗ j = [φ j (X (1)), . . . , φ j (X (nc ))]T

W (un)

⎡⎢⎢⎣
Dn(X (1))

. . .

Dn(X (nm ))

⎤⎥⎥⎦ Wr (un)

⎡⎢⎢⎣
Dn

r (X (1))
. . .

Dn
r (X (nr ))

⎤⎥⎥⎦

Wc(un)

⎡⎢⎢⎣
Dc(X (1))

. . .

Dc(X (nc ))

⎤⎥⎥⎦ Wk (un)

⎡⎣Wk3e−2,3e−2

Wk3e−1,3e−1

Wk3e,3e

⎤⎦ = |Je| |Ωe|
∑nk

ι=1 wικ(un(x (ι)
e ))λ

Φk

⎡⎣Φk3e−2, j

Φk3e−1, j

Φk3e, j

⎤⎦ = ∇φ j Φ̄k

⎡⎢⎣Φ̄k3e−2, j̄

Φ̄k3e−1, j̄

Φ̄k3e, j̄

⎤⎥⎦ = ∇φ j̄

constant temperature ub according to the Dirichlet condition as Eq. (6). The matrix A(un) ∈ Rnd×nd and the vector
b(un−1, un) ∈ Rnd in Eq. (8) are composed by

A(un) = K (un) +
1
∆t

M(un) + Qr (un) + Qc, (A.1)

b(un−1, un) =
1
∆t

M(un)un−1 + l(tn) + s − (K̄ (un) + Q̄r (un) + Q̄c)ū. (A.2)

As stated in Eq. (A.1), the matrices on the left hand side of Eq. (8) are defined on DoF including the matrix of
convection heat loss Qc ∈ Rnd×nd that are not temperature-dependent and three temperature-dependent matrices:
the stiffness matrix K ∈ Rnd×nd , the mass matrix M ∈ Rnd×nd , and the matrix of radiation heat loss Qr ∈ Rnd×nd .
On the right hand side of Eq. (8), there are the terms 1

∆t M(un)un−1 + l(tn) + s defined on nd DoF and the terms
K̄ (un) + Q̄r (un) + Q̄c being the coefficients of n̄d nodes on Γb. We subtract the terms relating to the Dirichlet
ondition (K̄ (un) + Q̄r (un) + Q̄c)ū to balance the left hand side that only contains the nd DoF. The matrices and
ectors in Eq. (A.1) and (A.2) are integrals approximated by Gaussian quadrature rules. There are respectively nkne,
mne, nr ns , ncns , ns , and nlns integration points and weights are appropriately chosen for K (un), M(un), Qr (un),

Qc, s, and l(tn) according to [33,34]. Further details are specified by Table A.1. The nonlinear heat equation is
hen solved via Picard iterations where the final temperature solution is obtained after several iterations solving
A−1b. As state in algorithm B.1 in [8], the iteration stops when the error ∥A(u(i+1)

n )u(i+1)
n − b(un−1, u(i+1)

n )∥2 or
u(i+1)

n − u(i)
n ∥2/∥u(i+1)

n ∥2 below a small value like 10−5 or the maximum number of iteration reaches [27].

ppendix B. Randomized SVD with sub-Gaussian random matrices

We deploy the randomized SVD as algorithm B.1 in [31] where the embedding parameter k in our case can be
et as 1 while maintaining the accuracy of projection bases.
17
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Table C.1
Thermal model parameters in the simplified example.

Symbol Definition Value Unit

nd the number of degrees of freedom 2986 –
n̄d the number of nodes on Γb 561 –
ne the number of elements 17453 –
– the size of domain 0.50 × 0.17 × 0.10 mm
– the side length of refined tetrahedron mesh 0.01 mm
– the side length of coarse tetrahedron mesh 0.025 mm
∆t A time step in temporal discretization 0.05 ms
N The total amount of time steps 15 –
v The moving speed of Gaussian heat source 400 mm/s
fs The amplitude of Gaussian heat source 45000 –
ε Emissivity 0.04 –
h Heat convection coefficient 10 W/(m2 K)
ς The effective radius of Gaussian heat source 50 µm
ua Ambient temperature 20 ◦C
ub The constant temperature on Γb 20 ◦C
κ Thermal conductivity u3

+ u2
+ u + 1 W/m K

ρ Density u + 1 kg/m3

c Specific heat capacity u + 1 J/kg K

Table C.2
The surrogate model parameters in the simplified example.

Symbol Definition Value Unit

η the scale factor of Gaussian function variance [0.5, 1, 1.5]T –
um the temperature threshold of node selection 30 ◦C
r the dimension of projection 40 –
ξ the multiplier of leverage score 4000 –
nt the number of FOM time steps 5 –
nu the number of previous temperatures 5 –
nµ the number of mean positions 2 –
p the selection proportion in randomized sketching 60% –
∆d the distance interval of translation 50 µm

Algorithm B.1 Randomized SVD with sub-Gaussian random matrices
Input: a matrix Q ∈ Rnd×nQ , an approximation rank nr , an embedding dimension k .
Output: the orthonormal basis Ψ ∈ Rnd×nr .

1: Generate two random sub-Gaussian matrices Υ1 ∈ RnQ×nr and Υ2 ∈ Rk×nd .
2: Λ1 = Q × Υ1.
3: Compute the orthogonal matrix Λ2 in the QR-decomposition of Λ1.
4: Compute the left singular vectors of (Υ2Λ2)†Υ2 Q as Ψ̄ .
5: Ψ = Λ2Ψ̄ .

Appendix C. The model parameters

C.1. Model parameters of the simplified example in Section 4.1

For the simplified model in Section 4.1, the parameters of the thermal model and the surrogate model are

espectively listed as Tables C.1 and C.2.

18
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Table C.3
Model parameters in the thermal model of LPBF [16,26,35,36].

Symbol Definition Value Unit

x (i)
s The start position of the i-layer simulations [0.29, 0.30, 0.10i]T mm

x (i)
e The end position of the i-layer simulations [0.29, 0.32, 0.10i]T mm

∆h Hatch distance 0.02 mm
– The size of the i-layer domain 1.54 × 0.70 × 0.10i mm
a Absorptivity 0.09 –
ς The effective laser beam radius 35 µm
ub The constant temperature on Γb 200 ◦C
ua Ambient temperature 20 ◦C
h Heat convection coefficient 10 W/(m2 K)
ε Emissivity 0.04 –

Table C.4
Parameters of the surrogate.

Symbol Definition Value Unit

η the scale factor of Gaussian function variance [0.5, 0.8, 1, 1.2, 1.5]T –
um the temperature threshold of node selection 500 ◦C
r the dimension of projection 200 –
ξ the multiplier of leverage score 80000 –
nt the number of FOM time steps 5 –
nu the number of previous temperatures 5 –
nµ the number of mean positions 3 –
p the selection proportion in randomized sketching 40% –
∆d the distance interval of translation 35 µm

Table D.1
The validation of the printing process with laser power 250 W and scan speed 200 mm/s.

Layer Type of results (Unit) Average simulation results Results in [16]

1
Highest Temperature (◦C) 1480 1482
Melt Pool Size (µm) 126.4 × 100.3 × 63.3 129.1 × 94.2 × 61.7

2
Highest Temperature (◦C) 1535 1548
Melt Pool Size (µm) 152.8 × 115.3 × 80.2 148.3 × 111.4 × 67.5

C.2. Model parameters of the numerical experiments in Section 4.2

For the numerical experiments in Section 4.2, the parameters of the thermal model and the surrogate model are
respectively listed as Tables C.3 and C.4.

Appendix D. The validation of the thermal model with FEM using published experiments

See Table D.1.

Appendix E. The parameter setting of tests

See Table E.1.
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Table E.1
Parameters of the 18 tests.

Test Laser power
(W)

Scan speed
(mm/s)

λ

S1 200 200 [2.5, 1, 3.2]T

S2 200 600 [2.5, 1, 3.2]T

S3 200 1000 [2.5, 1, 3.2]T

S4 250 200 [2.5, 1, 3.2]T

S5 250 600 [2.5, 1, 3.2]T

S6 250 1000 [2.5, 1, 3.2]T

S7 300 200 [2.5, 1, 3.2]T

S8 300 600 [2.5, 1, 3.2]T

S9 300 1000 [2.5, 1, 3.2]T

S10 200 200 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S11 200 600 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S12 200 1000 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S13 250 200 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S14 250 600 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S15 250 1000 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S16 300 200 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S17 300 600 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
S18 300 1000 λ1 ∼ U (1, 4), λ2 ∼ U (0.5, 1.5), λ3 ∼ U (1.5, 4.5)
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