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Abstract 31 
 32 

Graph-theoretic metrics derived from neuroimaging data have been heralded as powerful tools 33 

for uncovering neural mechanisms of psychological traits, psychiatric disorders, and 34 

neurodegenerative diseases. In N = 8,185 human structural connectomes from UK Biobank, we 35 

examined the extent to which 11 commonly-used global graph-theoretic metrics index distinct 36 

versus overlapping information with respect to interindividual differences in brain organization. 37 

Using unthresholded, FA-weighted networks we found that all metrics other than Participation 38 

Coefficient were highly intercorrelated, both with each other (mean |r| = 0.788) and with a 39 

topologically-naïve summary index of brain structure (mean edge weight; mean |r| = 0.873). In a 40 

series of sensitivity analyses, we found that overlap between metrics is influenced by the 41 

sparseness of the network and the magnitude of variation in edge weights. Simulation analyses 42 

representing a range of population network structures indicated that individual differences in 43 

global graph metrics may be intrinsically difficult to separate from mean edge weight. In 44 

particular, Closeness, Characteristic Path Length, Global Efficiency, Clustering Coefficient, and 45 

Small Worldness were nearly perfectly collinear with one another (mean |r| = 0.939) and with 46 

mean edge weight (mean |r| = 0.952) across all observed and simulated conditions. Global graph-47 

theoretic measures are valuable for their ability to distill a high-dimensional system of neural 48 

connections into summary indices of brain organization, but they may be of more limited utility 49 

when the goal is to index separable components of interindividual variation in specific properties 50 

of the human structural connectome.  51 
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1. Introduction 52 

 Over the past decade, network neuroscience has emerged as the premier conceptual and 53 

methodological toolkit for interrogating the organizational properties of the human brain 54 

(Farahani, Karwowski, & Lighthall, 2019; Bassett & Sporns, 2017). Network models leverage 55 

formal mathematical principles derived from graph theory to represent systems of physical and 56 

functional connections within the brain (see Sporns, 2013 for review). In particular, human brain 57 

structural connectivity is commonly modelled as a network, or structural connectome, composed 58 

of discrete regions of grey matter (nodes) that are connected by white matter fibers (edges).  59 

By concomitantly accounting for thousands or more complex interactions from across distributed 60 

brain regions, network approaches are viewed as offering more granular and more specific 61 

insights into the neural foundations of human behavior and disease than approaches that restrict 62 

analyses to isolated brain areas (e.g., region-of-interest analyses) (Tompson, Falk, Vettel, & 63 

Bassett, 2018). The promise is that “[b]rain network organization” will reveal the “[neural] 64 

fingerprint[s] of specific disorder[s].” (van Montfort et al., 2019, pp. 1).    65 

Graph-theoretic metrics are a popular method for capturing organizational information 66 

from brain networks (Sporns, 2013). Graph-theory is the mathematical study of graphs (or 67 

networks), which define pairwise relationships between objects, for example connectivity 68 

between brain regions. Commonly, indices that are defined at the level of individual network 69 

elements (i.e., node-level metrics) are averaged over the entire graph to provide a global 70 

reflection of how that network, writ large, instantiates a particular topological property (van 71 

Wijk, Stam, & Daffertshofer, 2010). For instance, average Degree has been used to measure “the 72 

extent to which the graph is connected,” whereas average Betweenness “provides a measure of 73 

the ‘hubness’ of a network.” (Wang, Zuo, & He, 2010, pp. 2; Haneef, Levin, & Chian, 2015, pp. 74 

286).  75 
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The resultant metrics are considered especially valuable in neuroscience for two reasons: 76 

(1) they distill highly complex patterns of thousands of brain connections into what are thought 77 

to be meaningful low-dimensional summaries of a network’s topology, and (2) their derived 78 

metrics are presumed to reflect distinct capacities of a neurological system (e.g., integration, 79 

segregation, centrality; see Rubinov & Sporns, 2010 for review) (see Table 1 for overview of 80 

commonly-used metrics). As such, interindividual variability in these metrics is commonly 81 

interpreted as providing some insights into the neural mechanisms of individual differences in 82 

psychological traits (e.g., Baum et al., 2017; Kim et al., 2016), psychiatric disorders (e.g., Zhou 83 

et al., 2021; Yao et al., 2019), and neurodegenerative diseases (e.g., Berlot, Metzler-Baddeley, 84 

Ikram, Jones, & O’Sullivan, 2016; Pereira et al., 2015). When an association is observed 85 

between a network metric and an outcome such as cognitive function, the temptation is to make 86 

inferences that are specific to that pairing. For example, Li et al. (2009) inferred from such an 87 

observation that “the efficiency of brain structural organization,” rather than some other 88 

organizational property or process, demarcates “an important biological basis for higher 89 

intelligence...[and] may provide new clues for understanding the mechanism of intelligence.” 90 

(pp. 11).  However, an empirical basis upon which to infer that such associations are, in fact, 91 

identifying a special meaning for a specific and distinct property of the brain is needed.   92 

Here, we examine the discriminant validity of a commonly-used set of global graph-93 

theoretic metrics in one of the largest samples of human structural connectomes to date (N = 94 

8,185). To corroborate claims that an association between a particular metric and an outcome 95 

actually represents the neurological “fingerprint” of that outcome, we must first know how that 96 

metric relates to a broad array of other graph-theoretic metrics and to topology-free information 97 

(e.g., the average connectivity of the system, divorced from its organization). In the ensuing 98 

analyses, we empirically tackle the “current challenge …to determine the families of network 99 
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diagnostics that provide complementary but not necessarily independent information about 100 

functional and anatomical brain organization.” (Bassett & Lynall, 2013, pp. 941).  101 

The current study aims to provide a comprehensive account of the intercorrelations 102 

between of global graph-theoretic indices derived from adult human brain structural 103 

connectomes. In 8,185 healthy individuals from UK Biobank (UKB), we constructed structural 104 

connectivity networks and investigated patterns of intercorrelations between indices presumed to 105 

measure network integration, segregation, and centrality in the whole brain. We investigated 106 

whether the patterns of correlations were susceptible to variation based on edge weighting or 107 

thresholding scheme. We examined whether these indices are uniquely predictive of an external 108 

criterion (age) relative, one of the best known and most consistent correlates of brain MRI 109 

measures (see Cox & Deary, 2022 for review), to simpler, aggregate MRI indices. We 110 

contextualized our results in a series of simulation analyses. This is amongst the largest and most 111 

comprehensive studies of the explanatory validity of topological indices from structural 112 

connectivity indices to date.  113 
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2. Material & Methods 114 
2.1 Participants 115 

 UK Biobank (UKB) is a population-based epidemiology study involving the collection 116 

and analysis of demographic, psychosocial, and medical data in over 500,000 individuals from 117 

across Great Britain from 2006 to 2010 (Sudlow et al., 2015). A subset of around 100,000 118 

participants were selected to undergo MRI approximately four years after initial assessment. 119 

MRI data collection is still in progress, but portions of the data have been made available. At the 120 

time of processing a total of 9,858 participants with compatible T1-weighted and diffusion tensor 121 

(dMRI) data were available for analysis. All participants were imaged on the same scanner at the 122 

UKB imaging center in Cheadle, Manchester, UK. Exclusion criteria are provided below. The 123 

current sample is composed of N = 8,185 generally healthy individuals (4,315 females) with 124 

complete MRI data, ranging in age from 44.64 – 78.17 years (mean = 61.9; SD = 7.45). Over 125 

97% of the sample self-identified as White. Substantial variability was evident in education level 126 

(college or university degree = 42.13%; high school qualification or equivalent = 44.02%; other 127 

professional qualification = 5.06%; none = 6.94%) and average total household income before 128 

tax (less than €18K = 11.86%; €18-31K = 21.76%; €31-52K = 27.65%; €52-100K = 22.85%; 129 

greater than €100K = 5.27%). UKB received ethical approval from the Research Ethics 130 

Committee (reference 11/NW/0382). All participants provided informed consent to participate. 131 

The current study was conducted under UKB application number 10279.   132 

 133 

2.2 Brain Image Acquisition and Processing 134 

2.2.1 MRI. All UKB participants were scanned on the same 3T Siemens Skyra MRI scanner (see 135 

Miller et al., 2016 and Alfaro-Almagro et al., 2018 for details). T-1 weighted volumes were 136 

acquired in the sagittal plane using a 3D MP-RAGE sequence. This data was preprocessed and 137 

analyzed by the UKB brain imaging team using FSL tools (http://www.fmrib.ox.ac.uk/fsl). A 138 
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detailed description of the preprocessing analytic pipeline is available at 139 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. Using the raw FoV-reduced T-1 140 

weighted volumes provided by UKB, we conducted local processing to reconstruct and segment 141 

the cortical mantle with default parameters in FreeSurfer v5.3 (Fischl & Dale, 2000; 142 

http://surfer.nrm.mgh.harvard.edu/) per the Desikan-Killiany atlas (Desikan et al., 2006). 143 

Automated anatomical segmentation of subcortical structures – accumbens area, amygdala, 144 

caudate, hippocampus, pallidum, putamen, thalamus, ventral diencephalon, and brain stem – was 145 

achieved using the same default settings in FreeSurfer (Fischl, 2012). FreeSurfer outputs were 146 

manually inspected to exclude participants with substantial motion artifact or gross errors in 147 

skull stripping, tissue segmentation, or cortical parcellation. 842 participants were excluded due 148 

to incomplete FreeSurfer output or inspection failure.    149 

2.2.2 Tractography. Acquisition procedures for dMRI data are publicly available from the UKB 150 

website (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367) (see Miller et al., 2016 for 151 

further details). dMRI data were acquired using a spin-echo echo-planar imaging sequence (50 b 152 

= 1000 s/mm2, 50 b = 2000 s/mm2, and 10 b = 0 s/mm2, yielding 100 separate diffusion-encoding 153 

directions). The field of view was 104 x 104 mm with imaging matrix 52 x 52 and 72 slices with 154 

slice thickness of 2 mm, producing 2 x 2 x 2 mm voxels. The UKB team applied correction for 155 

head motion and eddy currents and then used BEDPOSTx to process the dMRI data with within-156 

voxel modeling of multi-fiber (up to three fibers per voxel) tract orientation structure. Upon 157 

acquiring the data from UKB, we used PROBTRACKx to perform probabilistic tractography 158 

with cross-fiber modeling (Behrens et al., 2003). Streamlines were seeded from each white 159 

matter voxel using 100 Markov Chain Monte Carlo iterations with a fixed step size of 0.5 mm 160 

between successive points. 831 participants were excluded due to missing dMRI data or 161 

processing failure.  162 
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2.2.3 Connectome Construction. Whole-brain structural connectomes were constructed based on 163 

an automated connectivity mapping pipeline (Buchanan et al., 2014; Buchanan et al., 2015). T1-164 

weighted volumes were decomposed into 85 discrete cortical and subcortical regions (nodes) per 165 

the Desikan-Killiany atlas (Desikan et al., 2006). Anatomical connections between nodes (edges; 166 

k = 3,570 possible edges) were estimated using six weighting schemes, reflecting different 167 

sources of information from dMRI thought to correspond with different properties of white 168 

matter. A whole-brain structural connectome, comprised of the 85 nodes and the 3,570 potential 169 

white matter edges, was therefore estimated six times for each participant in UKB. In a subset of 170 

n = 1500 randomly-selected participants, we used an alternative parcellation scheme that 171 

produces 375 cortical and subcortical nodes (Glasser et al. 2016). The k = 70,125 potential edges 172 

for this scheme were weighted using fractional anisotropy (see below for details). 173 

2.2.4 Weighting Schemes. Networks were constructed by identifying edges between all pairs of 174 

nodes. Streamlines were tracked from seed locations to the first node encountered and recorded 175 

in an 85 x 85 connectivity matrix. Normalized streamline count (SC) – the count of all of the 176 

streamlines identified between nodes i and j divided by the highest observed streamline count 177 

value across all participants – served as a weighting scheme. Network metrics calculated using 178 

SC did not meaningfully differ before and after normalization (mean r between network metrics 179 

calculated with absolute SC and normalized SC > 0.99). Two further weightings were estimated 180 

from water diffusion parameters: fractional anisotropy (FA), a measure thought to reflect the 181 

degree of anisotropic water molecule diffusion; and mean diffusivity (MD), a measure thought to 182 

reflect the magnitude of the diffusion. Three weightings were estimated from neurite orientation 183 

dispersion and density imaging (NODDI; Zhang et al., 2012) parameters: intra-cellular volume 184 

fraction (ICVF), a measure thought to reflect neurite density; isotropic volume fraction (ISOVF), 185 

a measure thought to reflect extra-cellular water diffusion; and orientation dispersion (OD), a 186 
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measure thought to reflect angular variation or fanning in neurite orientation. For each weighting 187 

scheme, individual edges were computed by estimating the mean value of the diffusion 188 

parameter in voxels identified along all interconnecting streamlines between nodes i and j. As is 189 

standard in the analysis of structural connectomes, all edges were considered undirected, 190 

resulting in a symmetric matrix. Diagonal elements – connections between a node and itself – 191 

were discarded for all matrices. Edge weights for all weighting schemes ranged from 0-1. We 192 

focus our primary analyses on FA-weighted connectomes, the most widely-used of these 193 

weighting schemes (Robinson et al., 2010; Verstraete et al., 2011). Additionally, we ran 194 

sensitivity analyses using binarized versions of FA-weighted matrices, wherein all present edges 195 

were coded as 1 and all absent edges were retained as 0.  196 

2.2.5 Thresholding Schemes. Analyses were conducted with each weighting scheme using 197 

unthresholded networks (i.e., networks in which all estimated edges are retained). To examine 198 

the sensitivity of our results to potential thresholding effects, we applied both proportional and 199 

consistency-based thresholding in FA-weighted networks only. Thresholding schemes remove 200 

potentially false positive edges in favor of sparser and more anatomically-accurate representation 201 

of the brain. Proportional thresholding was applied by retaining only those edges that were 202 

estimated as non-zero in more than two-thirds of the sample. Consistency-based thresholding 203 

was applied by removing edges that exhibited evidence of inflated variability across participants 204 

and edges that were implausibly strong for their length, potentially indicating the presence of 205 

spurious edges in subsets of participants (Roberts et al., 2017; Buchanan et al., 2020). This 206 

thresholding level was set to retain 30% of connections.  207 

 208 
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2.3 Network Metrics 209 

 Commonly-used graph theoretic metrics were estimated using the igraph version 1.2.9 210 

(Csardi & Nepusz, 2006) and Network Toolbox version 1.2.3 (Christensen, 2018) packages in R. 211 

To ensure proper estimation, metrics were estimated twice using either igraph, Network Toolbox, 212 

or Brain Connectivity Toolbox in Matlab and cross-validated. All metrics were confirmed to 213 

correlate at r = 1.0 across multiple estimation packages prior to running analyses. Network 214 

metrics were estimated for all UKB participants across each of the six weighting schemes and for 215 

both proportional and consistency-based thresholding schemes in FA-weighted networks only. 216 

Metrics were also estimated in unthresholded FA-weighted connectomes parcellated with the 217 

Glasser atlas. We prioritized estimating weighted metrics, but we report unweighted metrics 218 

when only unweighted versions exist or in situations in which weighted versions would be 219 

mathematically indistinguishable from other metrics of interest. This includes Degree (the 220 

number of adjacent edges connected to each node) and Density (the ratio of existing edges to 221 

possible edges). While there are multiple methods for estimating weighted versions of these 222 

metrics (Candeloro, Savini, & Conte, 2016; Darst, Reichman, Ronhovde, & Nussinov, 2013) 223 

both can become Strength if weighted (sum of edge weights connected to each node) and, if 224 

averaged across all nodes, can become perfectly collinear with mean edge weight. For these 225 

reasons, Strength and mean edge weight were excluded from the set of metrics estimated in 226 

binary networks.  227 

Metrics are classified according to 5 categories: (a) topologically-naïve, summarizing the 228 

overall amount of connectivity in an individual’s connectome that is not influenced by how the 229 

connections are organized; (b) centrality, reflecting the number or strength of connections to and 230 

from each node in the network, and thought to identify influential components of a system; (c) 231 

integration, reflecting the tendency for greater or stronger connections between different 232 
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elements or clusters of brain regions, which is thought to reflect a network’s ability to combine 233 

and process information from distributed brain regions; (d) segregation, reflecting the tendency 234 

for fewer or weaker connections between different elements or clusters of brain regions, which is 235 

thought to reflect the propensity for specialized processing to occur within interconnected groups 236 

of brain regions; and (e) balance, reflecting the propensity of a network to jointly achieve 237 

integration and segregation (Rubinov & Sporns, 2010; Joyce, Laurienti, Burdette, Hayasaka, 238 

2010). To obtain a single value for each metric that could be compared across individuals, we 239 

computed the graph-level average of node-level metrics (i.e., the average value across all nodes), 240 

as has been done in previous literature (e.g., Degree (Wang, Zuo, & He, 2010); Strength 241 

(Hagmann et al., 2010); Betweenness (Haneef, Levin, & Chiang, 2015); Closeness (Rubinov, 242 

Sporns, van Leeuwen, & Breakspear, 2009); Participation Coefficient (Godwin, Barry, & 243 

Marois, 2015)). We focus on global versions of graph-theoretic metrics given that they have 244 

demonstrated greater reliability than local metrics (Andreotti et al., 2014) and that they hold the 245 

potential to summarize how different properties of the whole-brain connectome are structured. A 246 

detailed description of each network metric along with its mathematical derivation is provided in 247 

Table 1.  248 

 249 

2.4 Data Preparation 250 

Prior to running analyses, we examined distributions and descriptive statistics for each 251 

network metric. All network metrics displayed approximately normal distributions across each of 252 

the six weighting schemes. As the left frontal pole was found to be entirely disconnected in two 253 

participants, Characteristic Path Length was estimated as infinity in two participants. These 254 

participants were excluded from analyses with this metric.   255 
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Next, we estimated intercorrelations using Pearson correlation coefficients between each 256 

metric in conventional FA-weighted unthresholded structural brain networks. To examine 257 

whether graph-based network metrics relate to topologically-naïve summary indices, we 258 

correlated each metric with both mean edge weight and mean node weight. As the mathematical 259 

calculation of network metrics depends on properties of edges rather than nodes, we focus on 260 

mean edge weight as it provides a more direct comparison. To test whether network metrics were 261 

incrementally valid of one another and of topologically-naïve indices, we estimated each 262 

metric’s correlation with age, before and after controlling for mean edge weight.  263 

After thresholding, certain network metrics – Density, Degree, Betweenness, and 264 

Modularity – displayed skewed distributions, suggesting the presence of outliers. To test whether 265 

this skewness would bias correlations with other metrics, we transformed these variables to 266 

remove skewness. First, we winsorized each variable, by replacing outliers with mean(x) +/- 267 

3.5*SD(x). For right skewed variables (Betweenness), we then took the square root of each value 268 

after subtracting the lowest value in the distribution and adding 0.1. For left skewed variables 269 

(Density and Degree), we reverse scored each variable before taking the square root in order to 270 

keep all values above 0, and then reverse scored once again after taking the square root. All 271 

variables displayed approximately normal distributions after these transformations. Correlations 272 

between originally-estimated variables and transformed variables were high across each metric 273 

(r’s > 0.865), suggesting that analyses of interindividual differences are likely to produce similar 274 

patterns of results regardless of whether the original or transformed variables are used. We 275 

therefore use original metrics in order to maintain the most direct comparability with metrics 276 

typically used in existing research.  277 

 278 
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2.5 Intercorrelations amongst graph-theoretic metrics across variable network conditions 279 

To contextualize our findings in UKB connectomes, we conducted a series of secondary 280 

analyses examining the association between graph-theoretic metrics under variable network 281 

conditions. These analyses provide additional information for interpreting the magnitude of 282 

associations between graph-theoretic metrics, mean edge weight, and age in the observed UKB 283 

connectomes.  284 

2.5.1 Null network analyses 285 

 We examined associations between the full set of graph-theoretic metrics, mean edge 286 

weight, and age in null networks constructed from unthresholded, FA-weighted UKB 287 

connectomes partialled by the Desikan-Killiany atlas. Following current recommendations for 288 

constructing null models (Váša & Mišić, 2022), we randomly reshuffled each of the k = 3,570 289 

edges uniformly across participants, such that e.g., for each participant, edge1 connecting node1 290 

and node2 was replaced by edge15. This approach preserves core architectural features of the 291 

network (e.g., degree; density distribution), while disrupting intrinsic network organization. 292 

Individual differences in graph-theoretic metrics and mean edge weight are retained because 293 

each randomly reshuffled edge weight still varies across participant.  294 

2.5.2 Simulation analyses 295 

To further examine how intercorrelations amongst global network metrics vary across a 296 

range of frequently observed network structures (i.e., random, community-structured, small-297 

world), we conducted a series of toy simulation analyses. We provide further context for the 298 

analyses conducted in UKB connectomes by extending the scope of our investigation to include 299 

simulated network conditions under which we might expect global graph-theoretic metrics to be 300 

more or less separable from one another and from mean edge weight. Importantly, the toy 301 
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simulations are comprised of 15 node networks and thus do not constitute a direct baseline 302 

reference to the UKB analyses.  303 

We can represent a population level undirected connectome composed of k nodes as a 304 

symmetric  ! × 	! connectivity matrix Cpop taking the following form, with ! ×	(! − 1)/2 305 

nonredundant off-diagonal elements, w representing edge weights and subscripts indicating the 306 

pairs of nodes that they connect: 307 

*+,+ =

⎣
⎢
⎢
⎢
⎡
12,4
⋮

16,4 16,2

⋱

…
16,9 ⎦

⎥
⎥
⎥
⎤

 308 

 309 
Nonzero values for a given weight 16,9 represent the presence of the connection between 310 

pairs of nodes i and j, whereas values of 0 represent the absence of that connection. The specific 311 

nonzero value of w represents the strength of the connection. Depending on the configuration of 312 

w, we can specify population networks with different degrees of sparsity and different network 313 

types (e.g. random network, small-world network).  314 

Given the population level connectome, Cpop, we can simulate individual connectomes 315 

(Cn) by drawing edge weights from a multivariate normal distribution:  316 

 317 

=>?ℎ[*B]~NE=>?ℎF*+,+G, ?H=(12,4. . 16,9)J 318 

 319 

where vech[C] represents the vectorized form of the connectivity matrix. This approach allows 320 

us to make various assumptions regarding the covariances among the edges, according to a 321 

(! × 6K4

2
) × (! ×

6K4

2
) covariance matrix taking the form: 322 

 323 
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?H=E12,4. . . 16,9J = Σ = M

=NO(12,4) 	 	

⋮ ⋱ 	
?H=(12,4, 16,9) … =NO(16,9)

P 324 

 325 

The diagonal elements of Σ represent the variances of the weights, e.g. the extent to 326 

which fractional anisotropy varies across individuals. The off-diagonal elements of Σ	may be set 327 

to 0 to represent a scenario in which the edges are uncorrelated, or they may be set to non-zero 328 

values to represent a scenario in which the edges covary with one another. Madole et al. (2020) 329 

reported a strong first principal component of edge weights within the FA-based structural 330 

connectome in the same data used here, indicating that a realistic scenario is one in which the off 331 

diagonal elements of Σ are positive and sizable. 332 

Per these specifications, we conducted a series of toy simulations to examine how 333 

variation in network architecture influences associations between graph-theoretic metrics. We 334 

focused our simulations on three key attributes of network architecture: (1) network type 335 

(random, community-structured, or small-world network); (2) network sparsity (the proportion of 336 

non-zero edges); (3) edge covariance (the extent to which edge weights are related to one 337 

another). Network type and network sparsity were represented at the level of the population 338 

(Cpop). Edge covariance was specified by Σ. For each of the 18 population-level conditions, we 339 

simulated Cn = 1000 individual connectomes of 15 nodes, where individual differences in the set 340 

of C1000 networks were specified by Σ.  A full description of each simulated condition is 341 

described below.   342 

Within each of the C1000 simulated connectomes for each condition, we estimated the set 343 

of graph-theoretic metrics used in our primary analyses, as well as mean edge weight. We report 344 

the mean absolute correlation between graph-theoretic metrics with one another and with mean 345 

edge weight for each condition.  346 
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2.5.1 Random Networks. Random network architecture was generated by sampling population-347 

level edge weights from a uniform distribution ranging from 0.30 to 0.80. Edge weights were 348 

sampled for each of the 105 non-redundant elements of the 15x15 matrix, representing a fully 349 

connected graph: 350 

 351 

*+,+ =

⎣
⎢
⎢
⎢
⎢
⎡
12,4 > 0

⋮
14S,4 > 0

14T,4 > 0

14U,2 > 0

14S,2 > 0

14T,2 > 0

⋱

…
⎦
⎥
⎥
⎥
⎥
⎤

 352 

 353 
 354 

 355 
From this fully saturated population matrix, we generated C1000 individual connectomes 356 

according to two versions of Σ:  357 

1. Where edges were moderately correlated with one another (r = 0.5): 358 

 359 

?H=E12,4. . . 16,9J = Σ = M

=NOE12,4J = .01 	 	

⋮ ⋱ 	

?H=E12,4, 16,9J = 	 .005 … =NOE16,9J = .01

P 360 

2. Where edges were essentially uncorrelated with one another (r = 0.05):  361 

?H=E12,4. . . 16,9J = Σ = M

=NOE12,4J = .01 	 	

⋮ ⋱ 	

?H=E12,4, 16,9J = 	 .00005 … =NOE16,9J = .01

P 362 

 363 

Variances were set at 0.01 (SD = 0.1) for each edge, meaning that, for any given edge, 364 

95% of edge weights fell within a range of 0.4 units. Specifying variance at this level ensured 365 

that edges would meaningfully vary across simulated connectomes while not deviating 366 

drastically from the range of 0.3 to 0.8 established by Cpop. All edges were set as positive prior to 367 

running analyses by taking the absolute value of any negative edge.  368 
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In the UKB connectomes, the distribution of weights across participants for a given edge 369 

generally resembles a zero-inflated normal distribution in which streamlines are not present for 370 

some participants, with connection strengths distributed approximately normally for the 371 

participants for whom a given streamline exists. To achieve this in our simulations, between two 372 

and eight edges were randomly selected to be set to 0 in each individual connectome prior to 373 

thresholding. Because this results in the patterning of non-zero edges varying across individuals, 374 

it has the added benefit of producing variation in the unweighted network metrics (Density and 375 

Degree).  376 

Thresholding masks were created by randomly selecting elements in the 15x15 matrix to 377 

be set to 0. Masks were created to impose sparsity at the level of 30%, 60%, and 90% nonzero 378 

connections. Masks were applied uniformly across each of the k = 1000 simulated networks, 379 

such that the same edges were removed from each network. In total, we tested associations 380 

between graph-theoretic metrics across six different conditions in random networks.   381 

2.5.2 Community-structured Networks. Community-structured networks are defined as having 382 

sets of nodes that separate into distinct clusters, with numerous or strong edges within clusters 383 

and relatively fewer or weaker edges between clusters (Girvan & Newman, 2002). To simulate 384 

community-structured networks, we first assigned each of the 15 nodes to one of three clusters, 385 

ranging from 4-6 nodes. Edges for each of the 105 off-diagonal elements were then sampled 386 

from a uniform distribution, such that within-cluster edges were sampled from a distribution of 387 

“strong” connections ranging from 0.65 to 0.80 and between-cluster edges were sampled from a 388 

distribution of “weak” connections ranging from 0.10 to 0.30. The resulting population matrix 389 

was a fully connected graph. As with random networks, we created k = 1000 individual 390 

connectomes for each condition of edge covariance. Prior to thresholding, between one and five 391 
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cross-cluster elements were randomly selected to be set to 0 in each individual connectome in 392 

order to impose variation in non-weighted network metrics.  393 

Thresholding masks were created by randomly selecting cross-cluster elements to be set 394 

to 0. As in the random networks, masks were created to impose sparsity at the level of 30%, 395 

60%, and 90% nonzero connections. Multiple metrics (e.g., Characteristic Path Length, Small 396 

Worldness) were undefined in 30% thresholded networks. As such, a thresholding mask was 397 

created to impose sparsity at the level of 40% nonzero connections, which returned estimates for 398 

all graph-theoretic metrics.  399 

2.5.3 Small-world Networks. Small-world networks can be conceptualized as an intermediate 400 

between lattice networks (wherein nodes only connect to their k nearest neighbors) and random 401 

networks (wherein all edges are randomly sampled from the same probability distribution) 402 

(Bassett & Bullmore, 2017). A network is considered to have small-world properties if it has a 403 

sufficiently short average path length and high degree of clustering (Gibson & Vickers, 2016). In 404 

essence, small-world networks represent a lattice model in which (a) some neighboring nodes are 405 

not connected with one another and (b) some non-neighboring nodes are connected (i.e., high 406 

local and global efficiency) (Muldoon, Bridgeford, & Bassett, 2016). Networks are said to have 407 

small-world properties if the small-worldness metric s is greater than 1.0 (s > 1.0; Bassett & 408 

Bullmore, 2017).  409 

To construct small-world networks, we first simulated a community-structured network 410 

(i.e., a network with three cluster of 4-6 nodes each, with strong within-cluster edges and weak 411 

between-cluster edges). Next, we randomly selected a proportion of weak between-cluster edges 412 

to be re-estimated as strong edges. We imposed thresholding on weak between-cluster edges 413 

only, such that 30%, 60%, or 90% of weak between-cluster edges were preserved. Said 414 

differently, thresholding schemes set 70%, 40%, or 10% of weak, between-cluster edges to 0, 415 
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such that as the number of strong between-cluster edges increases, the number of weak between-416 

cluster edges that gets set to 0 decreases because there are fewer weak connections to threshold. 417 

We then estimated Small Worldness using the equation displayed in Table 1. Small-world 418 

networks were achieved at the level of the population for all thresholding schemes when 419 

approximately half of the weak between-cluster edges were re-estimated as strong edges. As with 420 

other network types, we examined associations between graph-theoretic metrics across levels of 421 

thresholding and edge covariation. 422 

  423 
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Table 1. Overview of network metrics.  424 
 425 

Metric Description Type Weighted Level Mathematical Derivation 
Mean Edge 

Weight 
Average of k = 3,570 potential edges, 

including zero-weighted edges. 
Topologically-

naïve 
Weighted Graph-level 

  

Mean Node 
Weight 

Average of k = 85 node volumes. Topologically-
naïve 

Weighted Graph-level 

  

Density Ratio of the number of present edges to the 
number of possible edges. 

Centrality Unweighted Graph-level 
  

Degree Number of edges connected to each node. Centrality Unweighted Node-level  

Strength Sum of the edge weights connected to each 
node. 

Centrality Weighted Node-level   

Betweenness Proportion of times a node lies on the 
shortest path between all other pairs of 

nodes. 

Centrality Weighted Node-level 

 

Closeness Inverse of the average length of the 
shortest paths to and from all other nodes 

in the network. 

Centrality Weighted Node-level 
 

Participation 
Coefficient 

Strength of each node's intermodular 
connections. Communities empirically 

defined by Louvain clustering algorithm. 

Centrality Weighted Node-level 
 

Characteristic 
Path Length 

Average of the shortest path between each 
pair of nodes in the network. 

Integration Weighted Graph-level  

 
 

Global 
Efficiency 

Average inverted shortest path length 
between each pair of nodes in the network. 

Integration Weighted Graph-level 
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Clustering 
Coefficient 

Prevalence of clustered connectivity in the 
network (i.e., proportion of node's 

neighbors that are also neighbors of each 
other). 

Segregation Weighted Graph-level 
  

Modularity Efficacy of a network's clustering 
arrangement. Clustering empirically 

defined by Louvain clustering algorithm. 

Segregation Weighted Graph-level 
 

Small 
Worldness 

Extent to which network displays small 
world property: most nodes are not 

neighbors of one another, but neighbors 
are likely to be connected. 

Balance Weighted Graph-level 

 

 426 
Note. N = set of all nodes in the network; n = the number of nodes in the network; (i, j) is the edge between nodes i and j, where i and j are elements of N (i, j ∈ 427 
N); aij is the connection status between i and j: aij = 1 when edge (i, j) exists, aij = 0 otherwise (aii = 0 for all i);  L = set of all edges in the network; 428 

= the number of edges in the network. The weights of edges (i, j) are represented as wij. All weights are normalized such that 0 ≤ wij ≤ 1 for all i 429 
and j for all weighting schemes.  = the sum of all weights in the network. nw = the weight of a given node, reflecting the total volume of each 430 

grey matter region as measured by T1-weighted imaging.  = the number of shortest paths between h and j, and  = the number of shortest paths between h 431 

and j that pass through i.  = the shortest path length (distance) between nodes i and j, where  is the shortest path between i and j. If no path 432 

exists between nodes i and j, , but was recoded as missing and those edges were excluded from analyses. M = set of nonoverlapping modules (or 433 
communities); m = a specific module;  = 1 if the module containing node i, mi, = the module containing node j, mj, and 0 otherwise. 434 

 = the weighted geometric mean of triangles acround node i.  is the clustering coefficient of a random network with the same 435 

average degree as the observed network. Node-level metrics have subscript i on the left side of the equation to represent that the metric is calculated for each 436 

node. All node-level metrics were averaged across all nodes such that  can be added to the beginning of the right side of the equation to represent its 437 

average. Edge weights for distance-based metrics (Betweenness, Closeness, Global Efficiency, and Characteristic Path Length) were inverted by taking the 438 
reciprocal of each edge weight (i.e., 1/ wij) prior to estimation using the brainGraph function in R (Watson, 2020). Louvain clustering algorithm, a multi-level 439 
modularity optimization algorithm for detecting communities within a network, was performed on a single network for each weighting scheme, where edges 440 
represented the median edge weight across all UKB participants. Metric descriptions and mathematical terminology and equations come from Rubinov & Sporns 441 
(2010). Additional information regarding network metrics comes from Christensen (2018).  442 
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3. Results 443 

3.1 Unthresholded FA-weighted network metrics. 444 

 Correlations between the 11 different network metrics derived from unthresholded FA-445 

weighted matrices were on average quite large (absolute range = 0.034 to 1.0; absolute 446 

interquartile range (IQR) = 0.502 to 0.936; mean |r| = 0.645; Fig. 1). Approximately 44% (24 of 447 

55 r’s) of the pairwise associations between metrics were |r| > 0.75. Only 16.4% (9 of 55 r’s) of 448 

the pairwise associations were |r| < 0.25, each of which involved an association with 449 

Participation Coefficient, a measure of segregation based on the strength of each node’s 450 

connections within its community. With the exception of Participation Coefficient, all metrics 451 

displayed strong correlations, on average, with one another (see Table S1), suggesting that these 452 

metrics are not strongly dissociable from one another. Magnitudes of intercorrelations between 453 

network metrics estimated from binary networks1 were comparable to those from FA-weighted 454 

networks (absolute range = 0.054 to 1.0; absolute IQR = 0.121 to 0.978; mean |r| = 0.642). 455 

Likewise, intercorrelations between metrics estimated from FA-weighted networks parcellated 456 

with the Glasser atlas (k = 375 nodes) in a random subset of n = 1500 UKB participants were 457 

comparable to those from networks parcellated with the Desikan-Killiany atlas (absolute range = 458 

0.129 to 1.0; absolute IQR = 0.542 to 0.933; mean |r| = 0.682).  459 

 To assess whether network metrics are distinct from summary indices of brain structure, 460 

we examined the relationship between each network metric and mean edge and node weight 461 

(Fig. S1). Correlations between mean edge weight and Strength were excluded from analyses as 462 

these are metrics that both aggregate across all non-zero edge weights and thus produce perfectly 463 

collinear estimates. Mirroring the pattern of intercorrelations amongst network metrics, mean 464 

edge weight displayed a weak correlation with Participation Coefficient (|r| = 0.085), but was 465 

                                                
1 Under certain definitions, Strength is the weighted equivalent of Degree/Density and was therefore excluded from 
estimates of intercorrelations in unweighted networks to avoid redundancy.  
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strongly correlated with all other graph-based metrics (absolute range = 0.693 to 0.938; absolute 466 

interquartile range (IQR) = 0.842 to 0.932; mean |r| = 0.873). Correlations between mean edge 467 

weight and Closeness, Characteristic Path Length, Global Efficiency, Clustering Coefficient, and 468 

Small Worldness were nearly perfectly collinear (|r’s| > 0.972). This same pattern was found in 469 

FA-weighted networks parcellated by the Glasser atlas (|r| with Participation Coefficient = 0.318; 470 

mean |r| with all other metrics excluding Strength = 0.867). This suggests that across 471 

unthresholded FA-weighted matrices of different sizes, structural brain indices derived from 472 

graph-theoretical principles and a topologically-naïve index of white matter microstructure 473 

provide very similar information with respect to interindividual differences in structural brain 474 

connectivity. Associations with mean node weight (cortical and subcortical regional volume) 475 

were small across all network metrics (absolute range = 0.010 to 0.136; absolute IQR = 0.053 to 476 

0.106; mean |r| = 0.078) consistent with previous work in this sample finding that edges and 477 

node volumes are generally unrelated to one another (Madole et al., 2021).  478 
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 479 

Figure 1. Correlations between ten global network metrics (unthresholded, FA-weighted), mean edge and node weight, and age. Cells display absolute 480 
correlations between each index for ease of interpretation.   481 
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3.2 Sensitivity analyses. 482 

3.2.1 Effects of thresholding on correlations between FA-weighted network metrics. 483 

 To assess whether the large correlations between unthresholded FA-weighted network 484 

metrics were artifactually biased by the presence of spurious edges (Buchanan et al., 2020), we 485 

applied incrementally-stringent thresholding schemes to FA-weighted networks and re-estimated 486 

intercorrelations (see Method for details on thresholding schemes). Across both thresholding 487 

schemes, several metrics (Closeness, Characteristic Path Length, Global Efficiency, Clustering 488 

Coefficient, and Small Worldness) remained nearly perfectly collinear with one another 489 

(absolute r’s > 0.976) and with mean edge weight (absolute r’s > 0.941). Average correlations 490 

amongst all metrics, however, dropped considerably as a greater percentage of potentially 491 

spurious connections were removed (proportional thresholding: mean |r| = 0.520; consistency-492 

based thresholding: mean |r| = 0.379; Fig. S2). The same trend was observed when examining 493 

intercorrelations between metrics in consistency-based thresholded binary networks (mean |r| = 494 

0.564), though was not true in proportionally-thresholded binary networks (mean |r| = 0.804). 495 

Metrics from networks parcellated using the Glasser atlas remained strongly correlated across 496 

thresholding scheme (proportional thresholding: mean |r| = 0.616; consistency-based 497 

thresholding: mean |r| = 0.630).  498 

Network metrics displayed marginally weaker associations with mean edge weight after 499 

applying proportional thresholding (mean |r| = 0.698), though displayed a more substantial 500 

average reduction after applying consistency-based thresholding (mean |r| = 0.545), suggesting 501 

that graph-based indices of network architecture and summary indices of white matter integrity 502 

may be at least somewhat more dissociable as networks become sparser. However, the same 503 

reduction in associations with mean edge weight was not observed in networks parcellated using 504 
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the Glasser atlas (proportional thresholding: mean |r| = 0.770; consistency-based thresholding: 505 

mean |r| = 0.779). 506 

 To determine whether graph-theoretic metrics are incrementally predictive of an external 507 

criterion over and above mean edge weight, we examined zero-order correlations and 508 

standardized multiple regression coefficients between each graph-theoretic metric, mean edge 509 

weight, and age. We restrict our analyses to metrics derived from consistency-based thresholded 510 

networks, given previous work in this sample finding that associations between age and white-511 

matter microstructure are most pronounced under this thresholding condition (Buchanan et al., 512 

2020). All metrics other than Participation Coefficient showed small yet significant bivariate 513 

associations with age (r’s = -0.051 to -0.187, p’s < 0.0005; Table 2). In multiple regression 514 

analyses, associations with Closeness, Characteristic Path Length, Global Efficiency, Clustering 515 

Coefficient, and Small Worldness suffered from issues of multicollinearity with mean edge 516 

weight (i.e., highly inflated standard error relative to standard error of bivariate association; 517 

regression estimates inflated relative to bivariate association; sign changing from negative to 518 

positive across bivariate and multiple regression associations). Associations including Density, 519 

Degree, Participation Coefficient, and Modularity did not suffer from issues of multicollinearity, 520 

though Modularity was the only one of these metrics to be significantly predictive of age over 521 

and above mean edge weight (b = -0.175; p < 0.0005). To note, issues of multicollinearity varied 522 

slightly across thresholding schemes, but were in general more strongly pronounced under 523 

unthresholded and proportional thresholded conditions.  524 
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Table 2. Associations between global graph-theoretic metrics, mean edge weight, and age in consistency-based thresholded FA networks. 525 

 526 

 Note. SE= standard error. * = p-value < 0.0005.  † = issues of multicollinearity (inflated standard error relative to standard error of bivariate association; 527 
regression estimates inflated relative to bivariate association; sign changing from negative to positive across bivariate and multiple regression associations), 528 
estimates should be interpreted with caution.  529 
 530 

Metric 
Correlation with 

Age (SE) 
Correlation with Mean Edge 

Weight (SE) 

Beta1 (Age ~ Mean Edge Weight 
(controlling for graph metric in column 1)) 

(SE) 

Beta2 (Age ~ Graph Metric 
(controlling for Mean Edge Weight)) 

(SE) 
Mean Edge Weight -0.178 (0.011)* 1.0 (0.000) -0.178 (0.011)* N/A 

Density -0.051 (0.011)* 0.197 (0.011)* -0.174 (0.011)* -0.017 (0.011) 

Degree -0.051 (0.011)* 0.197 (0.011)* -0.174 (0.011)* -0.017 (0.011) 

Strength -0.178 (0.011)* 1.0 (0.000) -0.178 (0.011)* N/A 

Betweenness -0.043 (0.011)* -0.105 (0.011)* -0.182 (0.054)*† -0.062 (0.011)* 

Closeness -0.149 (0.011)* 0.978 (0.002)* -0.182 (0.011) 0.004 (0.367)† 

Participation Coefficient -0.012 (0.011) -0.019 (0.011) -0.178 (0.011)* -0.015 (0.011) 

Characteristic Path Length 0.150 (0.011)* -0.973 (0.003)* -0.585 (0.046)*† -0.419 (0.047)*† 

Global Efficiency -0.157 (0.011)* 0.991 (0.001)* -1.060 (0.076)*† 0.901 (0.076)*† 

Clustering Coefficient -0.187 (0.011)* 0.992 (0.001)* 0.367 (0.087)*† -0.573 (0.086)*† 

Modularity -0.178 (0.011)* 0.013 (0.011) -0.175 (0.010)* -0.175 (0.010)* 

Small Worldness -0.168 (0.011)* 0.986 (0.002)* -0.426 (0.066)*† 0.237 (0.066)*† 
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3.2.2 Effects of dMRI weighting schemes on correlations between network metrics. 531 

To examine whether the pattern of intercorrelations observed amongst network metrics 532 

calculated from FA-weighted matrices was specific to the properties of that weighting scheme, 533 

we conducted the same set of analyses in five alternative dMRI weighting schemes thought to 534 

capture different white matter properties (ICVF = Intra-cellular volume fraction; ISOVF = 535 

Isotropic volume fraction; MD = Mean diffusivity; OD = Orientation dispersion; SC = 536 

Streamline count (normalized)) (see Method for details). Within weighting schemes, magnitudes 537 

of correlations between network metrics were on average modestly weaker than those estimated 538 

using FA (mean |r’s| = 0.379 to 0.593; see Table 3A, Figure S3). Associations with mean edge 539 

weight were also marginally weaker than those estimated using FA, but were still strong (mean 540 

|r’s| = 0.538 to 0.753; see Table 3B, Figure S3). To explore potential sources of discrepancy 541 

across weighting scheme, we examined the average correlation amongst network metrics and 542 

mean edge weight in relation to an estimate of variation between edge weights within each 543 

scheme (average coefficient of variation (CoV) across each participant), given previous research 544 

that has suggested that “variability of connection weights within systems...may be an important 545 

feature...of [the] connectome.” (Jo, Faskowitz, Esfahlani, Sporns, & Betzel, 2021, pp. 8). We 546 

found that the average correlation amongst network metrics and the average correlation with 547 

mean edge weight were both strongly related to the degree of variation in edge weights (r’s 548 

between mean |r’s| amongst network metrics and with mean edge weight and average CoV < -549 

0.64), such that associations between graph-theoretic metrics themselves and with non-network 550 

summary indices of brain structure are more independent in weighting schemes that impose a 551 

greater degree of variation in edge weights.  552 
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To determine whether the pattern of intercorrelations was stable amongst weighting 553 

schemes, we correlated the set of 55 correlations estimated within each weighting scheme with 554 

the set of correlations estimated in each other weighting scheme (k = 15 correlations between the 555 

set of correlations from each weighting scheme). Correlations estimated across weighting 556 

scheme were strongly related to one another (mean r = 0.813; range = 0.602 to 0.967), indicating 557 

that the relative magnitudes of collinearity amongst metrics is preserved across weighting 558 

scheme differences. Figure 2 displays the average pairwise correlation between each metric 559 

across the six weighting schemes. Across weighting schemes, correlations with Participation 560 

Coefficient were small and highly stable (mean |r| = 0.120; mean SD for each pairwise 561 

correlation with Participation Coefficient = 0.069). Similar to thresholding analyses, correlations 562 

between Closeness, Characteristic Path Length, Global Efficiency, and Small Worldness were, 563 

on average, strong and stable across weighting scheme (mean |r| = 0.965; mean SD for each 564 

pairwise correlation = 0.052), with the exception of Clustering Coefficient which displayed 565 

somewhat smaller and more variable associations with this group of metrics across schemes 566 

(mean |r| = 0.804; mean SD for each pairwise correlation = 0.297). These metrics also displayed 567 

some of the strongest and most stable associations with mean edge weight (mean |r| = 0.872; 568 

mean SD for each pairwise correlation = 0.105). In other words, the metrics examined tended to 569 

be strongly related to overall white matter connectivity, irrespective of how this microstructure is 570 

measured.   571 



 30 

Table 3. Average absolute intercorrelation between network metrics and between network metrics and mean 572 
edge weight estimated within each weighting scheme using unthresholded networks. 573 
 574 

Weighting 
Scheme 

A. Average correlation amongst 
network metrics 

B. Average correlation with mean edge 
weight  

 SD IQR SD IQR 

FA 0.645 0.794 
0.315 0.502 to 0.936 0.260 0.835 to 0.930 

ICVF 0.593 0.753 
0.324 0.399 to 0.952 0.261 0.701 to 0.942 

ISOVF 0.398 0.595 
0.376 0.071 to 0.859 0.351 0.237 to 0.875 

MD 0.485 0.673 
0.339 0.207 to 0.867 0.296 0.690 to 0.870 

OD 0.542 0.717 
0.320 0.225 to 0.850 0.197 0.715 to 0.828 

SC 
0.379 0.538 

0.338 0.102 to 0.698 0.377 0.206 to 0.919 
 575 

Note. FA= Fractional anisotropy; ICVF = Intra-cellular volume fraction; ISOVF = Isotropic volume fraction; MD = 576 
Mean diffusivity; OD = Orientation dispersion; SC = Streamline count (normalized); IQR = Interquartile range. 577 
Note that Strength is excluded from associations with mean edge weight because these are perfectly collinear 578 
estimates. Note that the association presented between FA and mean edge weight is lower than the one presented in 579 
the text due to the inclusion of Participation Coefficient. 580 
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 581 
Figure 2. Average absolute correlation between each network metric and with mean edge weight across each of the six weighting schemes (FA, ICVF, ISOVF, 582 

MD, OD, SC). Color scale represents variation in associations across weighting scheme, such that red cells indicate pairwise associations that are stable across 583 

weighting scheme and yellow cells indicate pairwise associations that tend to vary across weighting scheme. Diagonal elements (i.e., the average correlation 584 

between a metric and itself across weighting schemes) were all estimated as 1 and are excluded here for ease of interpretation. 585 
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3.3 Intercorrelations amongst graph-theoretic metrics across null and simulated network 586 

conditions 587 

3.3.1 Null analyses 588 

 To contextualize our findings in the UKB sample, we estimated absolute correlations 589 

amongst the 11 graph-theoretic metrics estimated in primary analyses and mean edge weight in a 590 

degree-preserving null network. Average absolute associations between each metric were 591 

comparable to those in the observed UKB connectomes (absolute range = 0.010 to 1.0; absolute 592 

IQR = 0.285 to 0.861; mean |r| = 0.600). Likewise, average absolute associations with mean edge 593 

weight remained robust (mean |r| = 0.836), largely driven by the nearly perfect collinearity 594 

between mean edge weight, Closeness, Characteristic Path Length, Clustering Coefficient, and 595 

Small Worldness (|r’s| > 0.916). Of interest, Global Efficiency showed somewhat greater 596 

differentiation from this set of metrics than it did other under network conditions (mean |r| = 597 

0.547).   598 

3.3.2 Simulation analyses 599 

 We estimated absolute correlations amongst the 11 graph-theoretic metrics estimated in 600 

primary analyses and mean edge weight in a series of simulated networks (k = 1000 networks per 601 

condition; c = 18 conditions; see Table 4). Networks were comprised of 15 nodes and 105 602 

potential edges. Networks varied by network type (i.e., random, community-structured, and 603 

small-world networks), the magnitude of covariation amongst the edge weights, and the 604 

proportion of non-zero connections (see Method for full description).  605 

 As with our observed data, we found that Closeness, Characteristic Path Length, Global 606 

Efficiency, Clustering Coefficient, and Small Worldness were nearly perfectly collinear with one 607 

another (mean r’s = 0.785 to 0.990) and with mean edge weight (mean r’s = 0.746 to 0.995) 608 

across all simulated conditions. Degree, Strength, Betweenness, Participation Coefficient, and 609 
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Modularity showed relatively greater discriminancy with one another and with mean edge 610 

weight, particularly in small-world networks (mean r’s between metrics = 0.129 to 0.249; mean 611 

r’s with mean edge weight = 0.102 to 0.395), making it possible that this subset of graph-612 

theoretic metrics may capture some unique aspects of brain topology, independent of connection 613 

weight, under specific conditions. 614 

 Average correlations amongst graph-theoretic metrics varied across conditions, with 615 

mean correlations being highest in community-structured networks with strong covariation 616 

amongst edges (mean r’s = 0.632 to 0.648) and lowest in small-world networks with weak 617 

covariation amongst edges (mean r’s = 0.341 to 0.366). Metrics displayed strong average 618 

correlations with mean edge weight across all conditions (mean r’s = 0.521 to 0.780), indicating 619 

that the large associations between graph-theoretic metrics and mean edge weight are not simply 620 

artifacts of network type, sparsity, or edge covariation. As with the UKB data, we found that 621 

sparser networks tended to yield marginally more discriminant metrics, and demonstrated that 622 

this may be particularly true in networks where the edges are uncorrelated. It is important to note 623 

that, whereas the magnitudes of association between graph-theoretic metrics and mean edge 624 

weight were relatively high across all conditions, they were somewhat lower relative to our 625 

empirical findings in UKB. This is notable given that the observed UKB connectomes have a 626 

high degree of small-worldness (mean s in unthresholded FA-networks = 1.28), but may be, at 627 

least in part, driven by the sizable correlations between edges in UKB (Madole et al., 2021).  628 
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 629 
Table 4. Simulation results: average absolute correlations between graph-theory metrics for FA-like networks.  630 

 631 
Note. Group 1 metrics = Closeness, Characteristic Path Length, Global Efficiency, Clustering Coefficient, Small Worldness. Group 2 metrics = Degree, Strength, 632 
Betweenness, Participation Coefficient, Modularity. Density was excluded from Group 2 metrics due to perfect collinearity with Degree. Strength was removed 633 
from all estimates with mean edge weight due to mathematical equivalency and was removed from correlations between Group 1 & 2 metrics given the nearly 634 
perfect associations between Group 1 metrics and mean edge weight. Community-structured networks were thresholded at the level of 40% non-zero connections 635 
due to certain metrics being undefined at 30% thresholding. Thresholding for small-world networks applied only to weak, between-cluster connections and 636 
therefore preserved a greater number of non-zero connections than other network types.637 

 All Metrics Group 1 Metrics Group 2 Metrics Group 1-2 
Metrics 

Network Type Threshold Edges rMetrics_Mean 
(SD) 

rMEW_Mean 
(SD) 

rMetrics_Mean 
(SD) 

rMEW_Mean 
(SD) 

rMetrics_Mean 
(SD) 

rMEW_Mean 
(SD) 

rMetrics_Mean 
(SD) 

Random 90 Correlated 0.511 (0.409) 0.682 (0.409) 0.989 (0.010) 0.994 (0.005) 0.311 (0.293) 0.444 (0.374) 0.427 (0.341) 

Random 60 Correlated 0.500 (0.408) 0.669 (0.413) 0.983 (0.012) 0.990 (0.006) 0.303 (0.291) 0.407 (0.385) 0.382 (0.348) 

Random 30 Correlated 0.470 (0.359) 0.634 (0.380) 0.911 (0.071) 0.948 (0.057) 0.307 (0.234) 0.358 (0.316) 0.318 (0.273) 

Random 90 Uncorrelated 0.468 (0.355) 0.650 (0.367) 0.980 (0.017) 0.980 (0.010) 0.263 (0.148) 0.319 (0.201) 0.265 (0.173) 

Random 60 Uncorrelated 0.442 (0.353) 0.633 (0.366) 0.942 (0.054) 0.958 (0.018) 0.228 (0.172) 0.292 (0.219) 0.229 (0.162) 

Random 30 Uncorrelated 0.492 (0.256) 0.641 (0.275) 0.785 (0.195) 0.869 (0.151) 0.402 (0.114) 0.401 (0.148) 0.322 (0.134) 

Community-structured 90 Correlated 0.648 (0.444) 0.780 (0.399) 0.969 (0.030) 0.984 (0.023) 0.579 (0.472) 0.713 (0.459) 0.703 (0.412) 

Community-structured 60 Correlated 0.642 (0.430) 0.769 (0.401) 0.966 (0.030) 0.979 (0.024) 0.561 (0.465) 0.696 (0.458) 0.693 (0.388) 

Community-structured 40 Correlated 0.632 (0.363) 0.742 (0.353) 0.939 (0.048) 0.958 (0.044) 0.568 (0.336) 0.634 (0.374) 0.633 (0.337) 

Community-structured 90 Uncorrelated 0.580 (0.370) 0.713 (0.338) 0.936 (0.050) 0.941 (0.038) 0.504 (0.336) 0.578 (0.329) 0.549 (0.324) 

Community-structured 60 Uncorrelated 0.544 (0.343) 0.663 (0.314) 0.892 (0.098) 0.896 (0.055) 0.474 (0.297) 0.505 (0.272) 0.487 (0.290) 

Community-structured 40 Uncorrelated 0.469 (0.310) 0.521 (0.288) 0.786 (0.215) 0.746 (0.117) 0.374 (0.246) 0.348 (0.205) 0.406 (0.259) 

Small-world 90 Correlated 0.476 (0.431) 0.657 (0.438) 0.988 (0.010) 0.994 (0.010) 0.249 (0.305) 0.395 (0.401) 0.384 (0.356) 

Small-world 60 Correlated 0.469 (0.404) 0.651 (0.414) 0.989 (0.010) 0.995 (0.010) 0.228 (0.246) 0.366 (0.315) 0.354 (0.283) 

Small-world 30 Correlated 0.429 (0.396) 0.613 (0.427) 0.990 (0.010) 0.995 (0.010) 0.194 (0.169) 0.273 (0.223) 0.261 (0.202) 

Small-world 90 Uncorrelated 0.363 (0.398) 0.564 (0.435) 0.945 (0.051) 0.967 (0.014) 0.150 (0.140) 0.179 (0.150) 0.142 (0.135) 

Small-world 60 Uncorrelated 0.366 (0.395) 0.560 (0.438) 0.952 (0.046) 0.971 (0.011) 0.167 (0.140) 0.157 (0.100) 0.122 (0.091) 

Small-world 30 Uncorrelated 0.341 (0.416) 0.535 (0.469) 0.962 (0.036) 0.977 (0.010) 0.129 (0.174) 0.102 (0.085) 0.081 (0.073) 
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4. Discussion 638 

Graph-theoretic indices are a common tool for indexing various aspects of the topological 639 

organization of structural brain networks (Sporns, 2013). Particularly in light of recently 640 

highlighted challenges to estimating unbiased, reproducible estimates of brain-behavior 641 

associations from high-dimensional brain imaging data (Marek, 2022), global graph-theoretic 642 

metrics are especially appealing in their ability distill the organization of thousands of brain 643 

connections into low-dimensional summary indices. In a large sample of human structural 644 

connectomes from middle-aged and older adults in UK Biobank (UKB), we examined 645 

associations between commonly-used global graph-theoretic metrics with (a) one another, (b) 646 

topologically-naïve indices of brain structure, and (c) an external criterion (age). We found that 647 

across unthresholded FA-weighted networks of variable node sizes, all metrics other than 648 

Participation Coefficient were highly correlated, both with each other and with a topologically-649 

naïve summary index of brain microstructure. Removing potentially spurious edges improved the 650 

dissociability of metrics in FA-weighted networks. However, even after this procedure, several 651 

commonly-used metrics (Clustering Coefficient, Closeness, Characteristic Path Length, Global 652 

Efficiency, Small Worldness) remained nearly perfectly collinear with one another and with 653 

mean edge weight across several observed and simulated conditions. Graph-theoretic metrics 654 

varied in their average associations with one another across alternative dMRI weighting 655 

schemes, such that schemes that imposed greater variation in edge weights yielded more 656 

discriminant metrics. Pairwise associations between metrics nevertheless tended to be consistent 657 

in magnitude across weighting scheme, even for other commonly-used weighting schemes such 658 

as streamline count.  659 

Investigations of the interrelations amongst graph-theoretic metrics outside of a 660 

neuroscience framework have indicated that theoretically-distinct metrics at both a local and 661 
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global level can be highly collinear (Kogotkova, Oehlers, Ermakova, & Fabian, 2018; Strang, 662 

Haynes, Cahill, & Narayan, 2018; Bounova & de Weck, 2012; Jamakovic & Uhlig, 2008). A 663 

growing body of research suggests that similar patterns of collinearity are observed when 664 

applying graph-theoretic principles to structural connectomes, but such observations have not 665 

tended to be fully appreciated and are often reported as ancillary findings. In a large sample of 666 

over 700 FA-weighted connectomes, theoretically-distinct metrics (Strength, Global Efficiency, 667 

and Clustering Coefficient) reported high intercorrelations with one another (all r’s > 0.8; Alloza 668 

et al., 2018). Such substantial associations have been corroborated in smaller samples but with 669 

larger sets of network metrics (Roine et al., 2019). The high degree of overlap between graph-670 

theoretic metrics is also apparent in the functional connectivity literature (Lynall et al., 2010; Li, 671 

Wang, De Haan, Stam, & Van Mieghem, 2011). Importantly, some metrics are mathematically 672 

dependent, for instance by virtue of being directly proportional to one another (e.g., mean edge 673 

weight and Strength; Degree and Density) or conceptual inverses of one another (e.g., 674 

Characteristic Path Length and Global Efficiency). Likewise, some metrics may be similar to one 675 

another (e.g., efficiency-based measures) because of how they capture local diffusion properties 676 

(Goñi et al., 2013). Treating such metrics as conveying separable information is of course 677 

problematic. As would be expected, the observed pairwise correlations between these metrics are 678 

high, and mean correlations across the full set of metrics may be upwardly biased by the 679 

inclusion of mathematically overlapping metrics. Importantly, however, these cases are 680 

insufficient to explain the pervasive pattern of interrelatedness documented here, which 681 

encompasses both theoretically- and mathematically-distinct metrics (e.g., Clustering Coefficient 682 

and Global Efficiency) as well as a metric of connectivity not rooted in graph theory (mean edge 683 

weight).  684 
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By itself, the substantial collinearity observed between mathematically-distinct network 685 

metrics is not necessarily problematic, when such correlations are themselves empirical 686 

observations that warrant scientific investigation and explanation. However, the fact that such 687 

correlations also arise pervasively across simulation conditions, including conditions in which 688 

edges are generated to be essentially uncorrelated, suggest that they may be a byproduct of the 689 

analytic approach rather than a meaningful empirical observation. It is also of particular note that 690 

graph-theoretic metrics correlated strongly with mean edge weight, a topologically-naïve average 691 

of network weights, across virtually all observed and simulated conditions. Of course, the level 692 

of collinearity that a researcher finds concerning is at least partly subjective, and may differ 693 

depending on the intended application and inferences to be drawn.  694 

From a practical standpoint, researchers planning to use global graph-theoretic metrics to 695 

probe more specialized properties of the brain would benefit from examining associations 696 

between selected metrics and general summary indices of brain structure before drawing 697 

conclusions about the relevance of that specialized property to the outcome under consideration. 698 

Our findings converge with recent research in a small clinical sample finding that network 699 

properties “provide only a small added benefit” relative to general white matter diffusion metrics 700 

and cautioning that metrics such as global efficiency “should thus not be understood as the 701 

“efficiency” of the brain network, but rather be interpreted as a global diffusion marker of the 702 

brain network.” (Dewenter et al., 2022, pp. 1020; 1030). We extend these findings in a large-703 

scale sample of the general population to show that this pattern extends to multiple metrics 704 

beyond global efficiency.  705 

It is well-established that network construction parameters, such as network size and 706 

density, can influence the comparison of graph-based metrics (van Wijk, Stam, & Daffertshofer, 707 

2010). Our findings extend this by demonstrating that removing potentially spurious edges or 708 
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employing measurement schemes that impose greater variation in edge weights may help to 709 

reduce correlations among graph-based metrics when applied to structural connectivity data. 710 

Thresholding networks at the sample (rather than individual) level is considered advantageous 711 

for preserving a common density across individuals, as density is a well-known factor that drives 712 

the values of global, mesoscale, and local scale network metrics (van Wijk, Stam, & 713 

Daffertshofer, 2010). However, the utility of this strategy will depend both on parameters in the 714 

analytical pipeline and on the graph-theoretic metrics under consideration. Degree, Betweenness, 715 

Participation Coefficient, and Modularity demonstrated some of the most distinct patterns of 716 

interindividual variation, particularly in sparse small-world networks with uncorrelated edges. 717 

Likewise, although we examine collinearity amongst metrics across a wide range of network 718 

construction parameters, we nevertheless capture only a subset of the array of potential analytic 719 

pipelines for processing diffusion MRI data and constructing structural brain networks (Parker et 720 

al., 2014). Researchers employing other analytic pipelines would benefit from inspecting the 721 

associations amongst relevant graph-theoretic metrics prior to the application of these metrics in 722 

primary analyses. For example, although we examine correlations amongst metrics across two 723 

commonly-used thresholding schemes, there are alternative schemes for thresholding and 724 

streamline reconstruction (e.g., Smith, Tournier, Calamante, & Connelly, 2015) to which the 725 

generalizability of our findings is not known.    726 

From a theoretical standpoint, our findings suggest caution in drawing strong conclusions 727 

about mechanisms based on associations within individual global graph-theoretic metrics alone. 728 

Indeed, a growing theoretical literature has begun to provide a framework for drawing 729 

mechanistic explanations from neural networks (Bertolero & Bassett, 2020; Zednik, 2019). 730 

Population-level differences in global graph-theoretic metrics derived from static structural brain 731 

networks may not be equipped to provide mechanistic insights, even if discriminable, because 732 
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they fail to capture the dynamic and generative processes through which white matter gives rise 733 

to higher-order thought (Bassett, Zurn, & Gold, 2018). Nevertheless, population-level 734 

differences in global metrics derived from static structural brain networks can provide useful 735 

descriptions of brain organization, architecture and topology, and this “description [can] offer 736 

evidence for a mechanistic model.” (Bertolero & Bassett, 2020). Building mechanistic models 737 

requires accurate and meaningful descriptions of a system.  738 

 Although this study examined a set of commonly-used graph-theoretic metrics in the 739 

largest sample of structural connectomes to date, it is not without limitations. First, network 740 

science returns an extensive set of graph-theoretic metrics (Bullmore & Sporns, 2009). We 741 

selected metrics that are (a) widely-used in the field (Welton, Kent, Auer, & Dineen, 2015; Tsai, 742 

2018; Messaritaki, Dimitriadis, & Jones, 2019; Yuan et al., 2019) and (b) indicative of the major 743 

categories of topological organization in a system (e.g., integration, segregation, centrality) 744 

(Rubinov & Sporns, 2010). Certainly, researchers have continued to develop novel and 745 

sophisticated network metrics since the introduction of the global metrics selected for the current 746 

analyses. Nevertheless, we focus on these global metrics as they represent a popular and 747 

commonly used application of network neuroscience (Xiong et al., 2022; Samantaray, Saini, & 748 

Gupta, 2022; Li et al., 2022; Cai et al., 2022; Prasad et al., 2022), and our general 749 

recommendations to examine incremental validity relative to topologically-naïve metrics still 750 

pertains to other measures not examined here. Second, our primary analyses were conducted 751 

using FA-weighted networks acquired on a single scanner. Network properties are known to be 752 

both highly scanner-specific (even if connectome methods are closely matched; Buchanan et al., 753 

2021) and influenced by connectome methods, such as brain parcellation, dMRI processing, and 754 

tractography algorithm (Qi et al., 2015). Therefore, findings may differ with other structural 755 

connectome data. Further investigation of the discriminant and explanatory validity of graph-756 
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based metrics in other types of MRI data (e.g., functional) will be critical for continuing to assess 757 

the conditions in which these metrics may inform mechanistic theories about the neural basis of 758 

human traits. Relatedly, it is not known whether our data possessed cryptic structure due to either 759 

site-specific scanner differences or familial relatedness. Certainly, the UKB imaging protocol 760 

was designed to “maximize data compatibility” by having “identical scanners with fixed 761 

platforms (i.e., no major software or hardware updates throughout the study)” (Miller et al., 762 

2016, online methods) and researchers are currently seeking to elucidate the pervasiveness of 763 

family structure on this dataset (Bycroft et al., 2018). Third, our examination of structural brain 764 

networks was restricted to metrics that aggregate information across the topology of the whole 765 

brain (i.e., global or averaged node-level metrics), collected at a single point in time (Betzel & 766 

Bassett, 2017a). Our analyses can only comment on the use of global metrics to compare graph-767 

level differences between people, and it may be that “graph theory... [remains] very 768 

beneficial...for pinpointing (local) network features.” (van Wijk, Stam, & Daffertshofer, 2010, 769 

pp. 11). Further, network models that represent the human brain across multiple scales of space, 770 

time, and topology may help to shift the field’s “current emphasis beyond network taxonomy – 771 

i.e., studying subtle individual- or population-level differences in summary statistics – towards a 772 

science of mechanisms and processes.” (Betzel & Bassett, 2017b, pp. 2). Lastly, our analyses 773 

focused on individual differences in global graph metrics, and therefore cannot comment on the 774 

utility of absolute mean levels of these metrics for investigating species-typical organizational 775 

properties of the human brain. Though there is a high degree of overlap brain structure across 776 

individuals (Huntenburg, Bazin, & Margulies, 2018), observed and simulated connectomes in 777 

our analyses were not identically structured (e.g., variation in edge weights, presence/absence of 778 

edges, degree of small worldness). We agree that “individual differences in network organization 779 

[are] an important prerequisite for understanding neural substrates shaping behavior...” (Jo, 780 
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Faskowitz, Esfahlani, Sporns, & Betzel., 2021, pp. 1). However, the results of the current study 781 

suggest that global graph metrics may be limited in their capabilities to provide specific 782 

information about these individual differences. 783 

4.1 Conclusions 784 

Network neuroscience is a heterogeneous constellation of methods and analytic 785 

techniques for probing the topological organization of the brain. Determining which features of 786 

this rapidly expanding toolbox are best equipped for building mechanistic models of the brain is 787 

a crucial step in maximizing the return of this field. This study represents a comprehensive 788 

investigation into the discriminant and explanatory validity of global graph-based metrics in 789 

structural brain networks. Our findings suggest that careful examination of the types of metrics 790 

being used and the properties of the network upon which these metrics are based (e.g. network 791 

type, sparsity, (co)variation in edge weights) will be critical for gleaning the types of specific and 792 

meaningful conclusions that network neuroscience promises to provide.   793 

  794 
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Supplementary Materials 1058 

 1059 
Table S1. Average absolute correlations between network metrics in unthresholded FA-weighted networks.  1060 
 1061 
 1062 

Metric Mean |r| with other metrics Range of |r’s| with other metrics 

Participation 
Coefficient 

0.099 0.034 - 0.314 

Metric Mean |r| with other metrics 
(excluding Participation Coefficient) 

Range of |r’s| with other metrics 
(excluding Participation Coefficient) 

Density 0.740 0.561 - 1.00 
Degree 0.740 0.561 - 1.00 
Strength 0.873 0.693 - 0.938 

Betweenness 0.732 0.549 - 0.996 
Closeness 0.797 0.476 - 0.996 

Characteristic Path 
Length 

0.799 0.481 - 0.996 

Global Efficiency 0.776 0.445 - 0.993 
Clustering 
Coefficient 

0.788 0.508 - 0.990 

Modularity 0.621 0.445 - 0.833 
Small Worldness 0.802 0.496 - 0.994 

 1063 
Note. Due to the dissociability of Participation Coefficient from all other metrics, this metric was excluded from 1064 
estimates of average absolute correlations to improve detection of dissociability amongst other network metrics.  1065 
  1066 
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 1067 
Figure S1. Scatterplots of associations between mean edge weight and each graph-theoretic metric in unthresholded, 1068 
FA-weighted networks. Association between mean edge weight and Strength is not displayed due to perfect 1069 
collinearity between these two estimates.1070 
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Figure S2. Correlations between A) proportional thresholded FA-weighted network metrics, mean edge and node weight, and age and B) consistency-based 
thresholded FA-weighted network metrics, mean edge and node weight, and age. Cells display absolute correlations for sake of interpretation.
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 1 

 2 
 3 
Figure S3. Raincloud plots reflecting distributions of absolute correlations between network metrics estimated for 4 
each dMRI weighting scheme. Density distributions reflect absolute correlations amongst each of the 11 network 5 
metrics, excluding mean edge weight. Individual data points reflect pairwise absolute associations between network 6 
metrics. Overlaid boxplot reflects interquartile range of distribution of absolute correlations between each network 7 
metric and mean edge weight. Code for this plot was adapted from 8 
https://gist.github.com/dgrtwo/eb7750e74997891d7c20 and https://wellcomeopenresearch.org/articles/4-63/v1. 9 
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