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RESEARCH ARTICLE Open Access

Do routine hospital data accurately record
comorbidity in advanced kidney disease
populations? A record linkage cohort study
Ailish Nimmo1*, Retha Steenkamp2, Rommel Ravanan1† and Dominic Taylor1†

Abstract

Background: Routine healthcare datasets capturing clinical and administrative information are increasingly being
used to examine health outcomes. The accuracy of such data is not clearly defined. We examine the accuracy of
diagnosis recording in individuals with advanced chronic kidney disease using a routine healthcare dataset in
England with comparison to information collected by trained research nurses.

Methods: We linked records from the Access to Transplant and Transplant Outcome Measures study to the
Hospital Episode Statistics dataset. International Classification of Diseases (ICD-10) and Office for Population
Censuses and Surveys Classification of Interventions and Procedures (OPCS-4) codes were used to identify medical
conditions from hospital data. The sensitivity, specificity, positive and negative predictive values were calculated for
a range of diagnoses.

Results: Comorbidity information was available in 96% of individuals prior to starting kidney replacement therapy.
There was variation in the accuracy of individual medical conditions identified from the routine healthcare dataset.
Sensitivity and positive predictive values ranged from 97.7 and 90.4% for diabetes and 82.6 and 82.9% for ischaemic
heart disease to 44.2 and 28.4% for liver disease.

Conclusions: Routine healthcare datasets accurately capture certain conditions in an advanced chronic kidney
disease population. They have potential for use within clinical and epidemiological research studies but are unlikely
to be sufficient as a single resource for identifying a full spectrum of comorbidities.

Keywords: Comorbidity, Chronic kidney disease, Routine healthcare datasets, Record linkage, Secondary care

Introduction
Over 50% of individuals receiving kidney replacement
therapy (KRT) have a comorbid medical condition in
addition to their kidney disease [1]. Comorbidity is asso-
ciated with increased hospitalisation [2], reduced quality
of life [3], and mortality [4, 5]. It is therefore essential to
adjust for comorbidity when comparing clinical out-
comes, without which confounding due to differences in

case-mix may bias results [6, 7]. Further, inaccurate or
incomplete data may result in bias, so robust methods of
collecting comorbidity information are required.
In clinical research studies, data are often extracted

from clinical notes by specially trained staff. Benefits
of this approach include collection of high-quality,
consistent information with minimal missing data.
However, this is resource-intensive and the economic
implications of directly gathering information that is
already routinely collected elsewhere need to be
considered. Disease-specific registries, including the
UK Renal Registry (UKRR) record comorbidity
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information through clinician reporting but with low
data-completeness: the UKRR only captures comor-
bidity in half of individuals [1].
One way of improving the completeness of comorbid-

ity data is through linkage to routinely collected health-
care datasets such as Hospital Episode Statistics (HES)
[6]. These contain information recorded at the point of
care delivery, are cheaper than direct data collection and
of minimal burden to study participants and researchers.
Long-term follow up of large populations across geo-
graphical areas can be efficiently captured with reduced
attrition, no recall bias and the ability to adjust for re-
sidual confounding relating to the accrual of comorbid-
ity over time [8–10]. If data are of sufficient quality,
these datasets are an appropriate resource for use within
clinical research.
HES records detailed information on National Health

Service (NHS) funded hospital care in England and
Wales to inform reimbursement of health providers [11].
HES data are increasingly used in research to identify
participants and record outcomes [12–14], and the
UKRR established HES linkage to supplement its comor-
bidity information in 2018 [15].
Although the accuracy of HES in recording individual

medical conditions has been compared to various dis-
ease registries [16–18], its accuracy in people with ad-
vanced chronic kidney disease (CKD) is less well
documented. Clustering of comorbidities [19] and higher
hospitalisation rates [20] may lead to differences in the
quality of data compared to the general population and
merits further exploration.
The aim of this study was to investigate the accuracy

of HES comorbidity data in a cohort of individuals with
advanced CKD with reference to information collected
by trained research nurses. This is to identify whether
this resource can be reliably used within epidemiological
and clinical research in the KRT population.

Materials and methods
Data sources and study population
We used data from the Access to Transplant and Trans-
plant Outcome Measures (ATTOM) observational co-
hort study linked to the HES dataset. ATTOM recruited
individuals aged 18 to 75 years in the United Kingdom
between 2011 and 2013. Patients had started dialysis or
received a kidney transplant within the preceding 90
days or were active on the deceased-donor waitlist, and
entered ‘incident dialysis’, ‘incident transplant’ or ‘wait-
listed’ cohorts respectively. Study methodology has been
described previously [21].
Research nurses collected data on patient demograph-

ics, socioeconomic indicators, primary renal disease
(PRD) and comorbidity (Supplementary table 1) at re-
cruitment. Demographic and clinical data were collected

from case notes whilst ethnicity and socioeconomic in-
formation were obtained from self-completed patient
questionnaires. Research nurses underwent data collec-
tion training and received documentation with clear def-
initions against which to gather information.
Independent data validation was performed by a senior
nurse in a randomly selected 5% of cases with a con-
cordance of over 98% for all collected variables [21].
Data from HES were available from 1st January 2006

to 31st December 2017, containing demographic and
clinical information from NHS secondary care encoun-
ters. Encounters are recorded as admitted patient care
(APC), outpatient (OP) or emergency department (ED)
attendances.
Diagnoses and procedures from APC and OP episodes

are coded using International Classification of Diseases
10th revision (ICD-10) and Office for Population Cen-
suses and Surveys Classification of Interventions and
Procedures version 4 (OPCS-4) criteria. Up to 20 diag-
nosis and 24 operation codes are recorded for each APC
episode. Information in the primary position reflects the
principal diagnosis, with subsequent positions docu-
menting comorbidities collated by professional clinical
coders [11].
Data were obtained by NHS Digital, stored at NHS

Blood and Transplant, and linked to the ATTOM data-
base by unique patient identifiers (Data Sharing Agree-
ment Number DARS-NIC-14342-Q8W0X-v1.4). Ethical
approval for ATTOM was obtained from the National
Health Service Health and Social Care Research Ethics
Committee (Ref: 11/EE/0120). Patients provided in-
formed consent at ATTOM recruitment for subsequent
analysis of outcomes. All data were stored in line with
the United Kingdom Data Protection Act 1998 require-
ments. Study methodology was performed in line with
the aforementioned ethical guidelines and regulations.
HES data were only available from hospitals in Eng-

land, so ATTOM participants from elsewhere in the UK
were excluded. From here we refer to ATTOM and HES
as ‘study data’ and ‘hospital data’ respectively.

Data completeness and healthcare utilisation
To determine the completeness of HES data, the dataset
linkage rate and number of HES entries per individ-
ual were determined. Methodology on dataset linkage
rate is described within Supplementary Material. As
diagnosis recording is most detailed within HES APC
[11, 22] only these episodes were used to extract comor-
bidity information (over 95% of OP episodes were coded
as ‘unspecified morbidity’). The number of patients with
an APC episode prior to study recruitment was calcu-
lated and number of admissions determined. Comorbidi-
ties among individuals with and without an APC episode
were compared.
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Comorbidity recording
The comorbidities recorded by study nurses are shown
in Supplementary table 1, alongside corresponding ICD-
10 and OPCS-4 codes. Codes were identified from a sys-
tematic search of data dictionaries alongside consult-
ation of established algorithms [23]. Comorbidities were
extracted from all diagnosis and operation positions
from hospital admissions between January 2006 and
study recruitment. If a condition was recorded once, it
was considered to persist on subsequent attendances in-
keeping with established methodology [24]. The preva-
lence of comorbidities were calculated using the denom-
inator of all individuals with dataset linkage and
complete study comorbidity records.
To maximise their statistical power, studies need to

identify conditions with an adequate sensitivity (propor-
tion of true ‘cases’ identified), specificity (proportion of
true ‘controls’ identified) and positive predictive value
(PPV; proportion of identified cases that truly have the
condition). A higher PPV leads to greater statistical
power through low misclassification of positive cases
which could ‘dilute’ any observed effect. False negatives
have less impact on power for conditions with a rela-
tively low prevalence as they join the larger control
population. If the condition of interest is rare, specificity
and negative predictive value (NPV) are generally high.
The study comorbidity dataset was taken to represent

‘gold standard’. The sensitivity, specificity, PPV and NPV
of comorbidities derived from hospital data were calcu-
lated. Cohen’s kappa statistic was used to compare the
agreement of recording between sources. Accepted
values were taken to indicate poor (< 0.2), fair (0.21–
0.40), moderate (0.41–0.6), substantial (0.61–0.8) and
good (> 0.8) agreement [25]. The ICD-10 and OPCS-4
codes of comorbidities with a PPV below 50% were scru-
tinised to identify diagnoses giving false positive results.
To examine whether disease prevalence associates with
recording accuracy, pooled sensitivities and PPVs were
calculated using a subgroup meta-analysis.
Operations preferentially generate cost codes for hos-

pital episodes and the condition being treated by an op-
eration could be more likely to be ‘truly’ present if
requiring an intervention. A subgroup meta-analysis
compared the sensitivity and PPV of conditions identi-
fied using ICD-10 criteria alone to those also derived
from OPCS-4 codes. A random-effects model was used
due to heterogeneity in the prevalence of comorbidities
and variation in the sensitivity and PPV of comorbidities
derived from hospital data reported previously [17, 18].
The renal modified Charlson score was calculated

using comorbidities derived from study and hospital data
(Supplementary table 2) [26]. The sensitivity, specificity,
PPV and NPV of the Charlson score derived from hos-
pital data were calculated.

Statistical analyses
Descriptive statistics were used to report baseline char-
acteristics with non-parametric continuous variables
expressed as median [interquartile range, IQR] and cat-
egorical variables as frequency (percentage). The Chi-
square test and Mann-Whitney U test were used to
compare categorical and non-parametric continuous var-
iables respectively. Results of regression analyses were
presented as odds ratios with 95% confidence intervals.
Statistical significance was defined as a p-value < 0.05.
Analyses were performed using Stata 15 (Statacorp, Col-
lege Station, TX).

Results
Data sets and study population
In total, 5703 patients were recruited to ATTOM from
an English renal centre. Study and hospital records were
linked for 5506 (97%) individuals. Of the 197 individuals
whose records did not link, 49 had non-English post-
codes and likely received treatment elsewhere in the UK,
leaving 148 (2.6%) unmatched (Fig. 1). Factors associated
with dataset linkage are described in the Supplementary
Material and shown in Supplementary table 3 and Sup-
plementary table 4.
Of those individuals with linked datasets, the me-

dian age was 53 years [IQR 43–63], 62% of individuals
were male and 76% were of white ethnicity. Overall,
20% of individuals had a PRD classified as ‘other’,
with a further 19% each having diabetes and glomer-
ulonephritis (Table 1).

Healthcare utilisation
The median time covered by hospital data prior to study
recruitment was 6.7 years [IQR 6.4–7.0]. Of the 5506 in-
dividuals whose datasets linked, 5437 (99%) had an APC
episode prior to recruitment. The median number of
APC episodes was 9 [IQR 5–16] and median time from
last admission to recruitment was 58 days [IQR 19–258].
Of those individuals with an admission, 89% had an ad-
mission within 1 year of recruitment and 95% within 2
years. Details of the 69 individuals without an admission
prior to study recruitment are shown in the Supplemen-
tary Material; these individuals are included in subse-
quent analyses and counted as having no comorbidity in
hospital records.

Comorbidity recording
There was variation in the sensitivity, specificity, PPV
and NPVs of comorbidities (Table 2). Diabetes, ischae-
mic heart disease and malignancy were most prevalent
(Fig. 2) and recorded with a high sensitivity and PPV of
97.7 and 90.4% for diabetes, 82.6 and 82.9% for ischae-
mic heart disease and 62.8 and 71.9% for malignancy
(Figs. 3 and 4). Alongside heart valve replacement, these
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conditions had a kappa statistic over 0.6 indicating ad-
equate agreement.
Heart failure, chronic lung disease, mental illness

and peripheral vascular disease each had greater sen-
sitivities relative to their PPV, reflecting a greater pro-
portion of false positive cases in hospital data. False
positive cases of chronic lung disease reflected record-
ings of asthma or COPD in 85% of cases, and false
positive cases of mental illness were recorded as de-
pression in 46% and harmful or dependent use of al-
cohol in 32% of cases (Supplementary table 5).
Peripheral vascular disease was identified using both
ICD-10 and OPCS-4 codes and had a sensitivity of
67.2% and PPV of 47.7%. Examining the ICD-10 code
alone gave a similar sensitivity (51.2, 95% CI 45.3–
57.1) and PPV (51.5, 95% CI 45.6–57.4).
Blood borne viruses and abdominal aortic aneurysm

had the lowest sensitivities but proportionately greater
PPVs reflecting a higher rate of false negative cases.
Liver disease and dementia both had poor sensitivities

and PPVs under 50%. False positive liver disease cases
were due to coding of liver transplant, fatty change of
the liver and liver failure otherwise unspecified.
To examine whether disease prevalence was associated

with the accuracy of comorbidity recording, pooled sen-
sitivities and PPVs were calculated. The three most
prevalent comorbidities comprising diabetes, heart dis-
ease and malignancy had a greater pooled PPV than all
other conditions combined at 81.8% (95% CI 70.1–93.6)
versus 48.1% (95% CI 37.1–59.0) (p < 0.001) but the as-
sociation between recording accuracy and disease preva-
lence was not linear.
The conditions identified through ICD-10 codes alone

or a combination of ICD-10 and OPCS-4 codes are
shown in Supplementary table 1. There was no variation
in sensitivity or PPV with coding system. The pooled
sensitivity of conditions identified from ICD-10 and
OPCS-4 criteria was 69.6% (95% CI 56.4–82.8), and from
ICD-10 codes alone 59.8% (95% CI 39.7–80.0) (p = 0.43).
The pooled PPV of ICD-10 and OPCS-4 diagnoses was

Fig. 1 Flow chart depicting individuals included in the study. There were 69 individuals without an admitted patient care episode prior to study
recruitment, but 67 of these had a subsequent admitted patient care episode after recruitment
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58.1% (95% CI 43.3–73.0) and for ICD-10 diagnoses
alone was 53.5% (95% CI 29.5–77.5) (p = 0.74).
The sensitivity and PPV of Charlson comorbidity scores

derived from hospital data are shown in Table 3. These de-
clined with rising Charlson score. The sensitivity and PPV
of a Charlson score of 0 were 88.2 and 82.9% respectively,
and for a Charlson score of 1–2 were 83.9 and 66.6%.

Discussion
This observational study of over 5000 individuals with
advanced CKD describes the accuracy of comorbidity

recording in the Hospital Episode Statistics dataset com-
pared to data collected by trained research nurses. The
record linkage rate and proportion of individuals with
comorbidity data before starting kidney replacement
therapy are high, but there is variation in the sensitivity
and positive predictive values of conditions derived from
the hospital dataset. We suggest hospital data are ad-
equate for capturing comorbidities including diabetes, is-
chaemic heart disease and malignancy but caution
should be used if using this resource to identify a full
spectrum of conditions.

Table 1 Study dataset linkage by patient demographic and clinical factors. Data are expressed as number (%) or median [IQR].
Standardised differences of 0.2, 0.5 and 0.8 reflect small, medium and large standardised differences respectively

Variable Linked dataset
N = 5506

Non-linked dataset
N = 148

P Standard diff.

Age (n = 5654) 53 [43–63] 51 [41–61] 0.09 0.15

Sex (n = 5654)

Male 3422 (62) 84 (57) 0.18 0.11

Ethnicity (n = 5632)

White 4192 (76) 100 (69) < 0.001 0.47

Black 497 (9) 35 (24)

Asian 750 (14) 10 (7)

Mixed 48 (1) 0 (0)

Index of Multiple Deprivation (n = 5654)

1 – Most deprived 1420 (26) 31 (21) 0.51 0.11

2 1169 (21) 29 (20)

3 1052 (19) 35 (24)

4 983 (18) 27 (18)

5 – Least deprived 882 (16) 26 (17)

ATTOM cohort (n = 5654)

Dialysis 2150 (39) 49 (33) 0.14 0.16

Transplant 1780 (32) 59 (40)

Wait listed 1576 (28) 40 (27)

PRD (n = 5590)

Polycystic kidney disease 676 (13) 22 (15) 0.005 0.38

Diabetes 1026 (19) 14 (10)

Glomerulonephritis 1057 (19) 36 (24)

Pyelonephritis 460 (8) 15 (10)

Hypertension 340 (6) 9 (6)

Renovascular disease 97 (2) 7 (5)

Other 1090 (20) 33 (22)

Uncertain 697 (13) 11 (8)

Charlson comorbidity index (n = 5571)

0 3031 (56) 100 (68) 0.007 0.33

1–2 1518 (28) 37 (25)

3–4 583 (11) 7 (5)

5+ 292 (5) 3 (2)

Abbreviations: PRD Primary renal diagnosis
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There are several possible explanations for the vari-
ation in recording accuracy. First, accuracy may be influ-
enced by the likelihood of a condition being directly
implicated in hospital admission. Acute coronary syn-
dromes and the management of malignancy are likely to
require hospitalisation and were accurately recorded,
whilst conditions predominantly monitored as an out-
patient such as blood borne viruses and aortic aneu-
rysms had lower sensitivities. Whilst the working
diagnosis will influence the likelihood of hospital admis-
sion, this will also vary with clinician, social and

geographical factors. We were not able to examine vari-
ation in recording accuracy between hospitals due to in-
dividuals having admissions across multiple sites and the
small number of individuals attending certain hospitals,
but inter-centre variation may also exist.
Second, variations in diagnostic criteria may lead to

discrepancies in recording. For example, echocardiogram
abnormalities are common in people on dialysis in the
context of volume overload but there may not structural
or functional cardiac dysfunction when the patient is at
their dry weight [27]. Extracellular fluid overload could

Table 2 Sensitivity, specificity, positive and negative predictive values and Kappa statistic of hospital data comorbidity as compared
to study data. Conditions are ordered by prevalence

Comorbidity Sensitivity (95% CI) Specificity (95% CI) PPV (%)
(95% CI)

NPV (%)
(95% CI)

Kappa

Diabetes (n = 5461) 97.7 (96.8–98.4) 96.1 (95.4–96.7) 90.4 (88.9–91.8) 99.1 (98.7–99.4) 0.91

Ischaemic heart disease (n = 5450) 82.6 (79.6–85.4) 93.4 (92.7–94.1) 82.9 (77.3–87.6) 90.2 (89.4–91.0) 0.68

Malignancy (n = 5453) 62.8 (58.3–67.2) 97.7 (97.2–98.1) 71.9 (67.3–76.2) 96.5 (96.0–97.0) 0.64

Chronic lung disease (n = 5450) 86.0 (82.3–89.2) 90.4 (89.5–91.2) 41.9 (38.6–45.4) 98.8 (98.4–99.1) 0.52

Cerebrovascular disease (n = 5448) 56.6 (51.2–61.9) 96.7 (96.2–97.2) 53.6 (48.3–58.9) 97.1 (96.6–97.5) 0.52

Mental illness (n = 5451) 55.1 (49.7–60.5) 94.0 (93.3–94.7) 38.1 (33.8–42.6) 96.9 (96.4–97.5) 0.41

Peripheral vascular disease (n = 5452) 67.2 (61.5–72.6) 95.8 (95.2–96.3) 47.7 (42.8–52.6) 98.1 (97.7–98.5) 0.53

Heart failure (n = 5450) 68.4 (61.3–75.0) 91.4 (90.6–92.1) 22.3 (18.9–25.9) 98.8 (98.4–99.1) 0.30

Blood borne viruses (n = 5450) 15.5 (10.2–22.2) 100 (99.9–100) 96.0 (79.6–99.9) 97.6 (97.1–98.0) 0.26

Liver disease (n = 5452) 44.2 (34.0–54.8) 98.0 (97.6–98.4) 28.4 (21.3–36.4) 99.0 (98.7–99.3) 0.33

Heart valve replacement (n = 5448) 92.6 (82.1–97.9) 99.5 (99.3–99.7) 65.8 (54.0–76.3) 99.9 (99.8–100) 0.77

Permanent pacemaker (n = 5449) 84.9 (72.4–93.3) 98.6 (98.3–98.9) 37.5 (28.8–46.8) 99.8 (99.7–99.9) 0.51

Abdominal aortic aneurysm (n = 5447) 29.5 (16.8–45.2) 99.9 (99.7–99.9) 61.9 (38.4–81.9) 99.4 (99.2–99.6) 0.40

Dementia (n = 5453) 44.4 (13.7–78.8) 99.9 (99.7–99.9) 36.4 (10.9–69.2) 99.9 (99.8–100) 0.40

Abbreviations: PPV Positive predictive value, NPV Negative predictive value

Fig. 2 Prevalence of comorbidities derived from study and hospital datasets
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Fig. 3 Forest plot displaying sensitivity (%) with 95% confidence intervals for individual comorbidities derived from hospital data. Comorbidities
are ordered by prevalence. ES: effect size, represents sensitivity (%)

Fig. 4 Forest plot displaying positive predictive values (%) with 95% confidence intervals for individual comorbidities derived from hospital data.
Comorbidities are ordered by prevalence. ES: effect size, represents positive predictive value (%)
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be misinterpreted as heart failure and recorded as such
in clinical notes, but stricter diagnostic criteria were
used in the study proforma. Variation may also reflect
how ‘presumed’ diagnoses are recorded e.g. malignancy
without histological confirmation.
Third, the granularity of ICD-10 and OPCS-4 coding

systems should be considered. Amputations are coded as
a procedure within hospital data but the reason for am-
putation is not documented. We assumed lower limb
amputations related to peripheral vascular disease,
though some may have traumatic, infective, or malignant
aetiologies. Examining ICD-10 diagnosis codes for per-
ipheral vascular disease alone did not substantially im-
prove the PPV. Previous studies have suggested that
severe disease is more likely to be correctly recorded
[28], so it might have been expected that individuals
with peripheral vascular disease requiring amputation to
also have ICD-10 coding.
Previous studies have assessed the accuracy of hospital

coding with reference to primary care and disease regis-
try data, and recommended ways to maximise data qual-
ity. Herrett et al. examined the recording of acute
myocardial infarction, reporting a PPV of 91.5% in hos-
pital data with reference to a myocardial infarction regis-
try. However, a third of cases were missed and they
suggest linked datasets from more than one source can
reduce biased estimates [16, 29]. Careful selection of
ICD-10 codes is also important: a meta-analysis examin-
ing stroke recording found a wide variation in PPV, with
the most accurate studies using stroke-specific as op-
posed to general cerebrovascular disease codes [17]. Fi-
nally, the PPV can be increased if diagnoses are
recorded only if they correlate to the treating specialty,
are in the primary diagnosis position or documented
more than once [30]. These techniques will however
reduce sensitivity so a balance must be found.
Lessons on improving routine healthcare data quality

can also be taken from countries which successfully
gather this information [31]. Denmark has a similar
healthcare system to the UK and has excellent routine
healthcare data which is easily accessible for research
purposes. Consultants prospectively enter medical diag-
noses in clinical databases that record the quality of
healthcare delivered, and as these are used to assess

treatment effectiveness and in research there are con-
stant efforts to ensure the data is valid [32].
One study has previously examined the accuracy of

HES comorbidity data in individuals on KRT, using
UKRR comorbidity returns as their reference [6].
They reported overall ‘good’ concordance between
sources, but the information was not as granular as is
presented here and 50% of individuals had missing
UKRR comorbidity information. HES comorbidity was
however predictive of mortality and partially explained
variation in outcomes between centres [6]. It is there-
fore possible that hospital data could minimise bias
arising from comorbidity accrual in longitudinal ob-
servational studies [33, 34].
Using routine healthcare data for research purposes

comes with economic and practical advantages: it is of
low burden to participants and researchers, captures a
large study population with high data completeness
(96% in our study) and allows longitudinal follow up of
individuals. Datasets used for hospital reimbursement
also provide a ‘real-world’ view of hospitals care and
insight into the financial impact of treatment.
Challenges however do exist. First, not all individuals

are represented within hospital data and 2.6% of datasets
in our study were not linked. This could be explained by
individuals opting-out of record sharing between NHS
Digital and third parties which results in the loss of 2%
of hospital episodes [11].
Second, HES does not capture treatment in primary

care, in the private sector or outside of England. The de-
velopment of comorbidity is often associated with hospi-
talisation and nearly 90% of individuals had an
admission within a year of KRT start, so for this popula-
tion it seems unlikely for significant uncaptured commu-
nity comorbidity accrual to have occurred. It is also not
known if the absence of hospital data reflects no hospital
contact or a loss to follow up. Similarly, hospital data
cannot code conditions as absent, so lack of documenta-
tion does not definitively confirm absence of disease.
Third, the data inputted into HES are extracted from

patient notes often completed by junior members of the
medical team, with trained medical coders selecting the
best aligned ICD-10 and OPCS-4 codes. The quality of
the data depends on the documented information [35],

Table 3 Sensitivity, specificity, positive and negative predictive values and Kappa statistic of hospital data Charlson comorbidity
index as compared to study data

Charlson comorbidity index Sensitivity (95% CI) Specificity (95% CI) PPV (%)
(95% CI)

NPV (%)
(95% CI)

Kappa

0 (n = 3031) 88.2 (86.8–89.5) 87.2 (86.1–88.4) 82.9 (81.3–84.4) 91.3 (90.3–92.3) 0.74

1–2 (n = 1518) 83.9 (82.3–85.4) 70.9 (69.3–72.5) 66.6 (64.8–68.3) 86.5 (85.1–87.7) 0.53

3–4 (n = 583) 73.1 (69.6–76.5) 84.7 (83.6–85.7) 39.3 (36.6–42.1) 95.9 (95.2–96.4) 0.42

5+ (n = 292) 67.9 (61.9–73.5) 93.0 (92.2–93.6) 32.8 (28.9–36.9) 98.3 (97.9–98.6) 0.40

Abbreviations: PPV Positive predictive value, NPV Negative predictive value
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experience of the coder and whether any systematic er-
rors occur during the data collection process.
Finally, whilst cheaper than employing staff to gather

patient information, the time and cost in gaining access
to hospital data may be a barrier to its use. A new appli-
cation for HES data costs £1030 and linking a bespoke
dataset costs £2060 [36]. The time to receive data varies
depending on the information required, but for this pro-
ject took 2 years.
Our study has several strengths. We examine a large

cohort of individuals with advanced CKD who are
broadly representative of the UK KRT population [21]
and report the accuracy of national hospital data with
greater granularity and a lower rate of missing reference
data than previous studies [37]. Our reference data col-
lected by trained research nurses is likely to be accurate
and reflects standard practice in most clinical research
studies.
We acknowledge this study’s limitations. Study co-

morbidity was used as a gold standard, and although
data validation suggested a high concordance between
staff this source may still contain errors. Current HES
data quality may differ from the 2006–2013 dataset
used here. A rise in the number of completed coding
fields in HES over time could yield greater data ac-
curacy, but the possibility of over-diagnosis should be
considered [37, 38].
In conclusion, the routinely collected HES dataset

captured comorbidity information in 96% of individ-
uals before the start of KRT, but there is variation in
data accuracy. HES data were accurate for more
prevalent conditions, but less suitable for recording a
full complement of comorbidities. Understanding pat-
terns of comorbidity among people with advanced
kidney disease is crucial in informing policy and ser-
vice planning, and in shared decision-making with pa-
tients. Our work will inform the use of routinely
collected data to improve the efficiency of future
research.
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