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A B S T R A C T

A defining aspect of being human is an ability to reason about the world by generating and adapting ideas and
hypotheses. Here we explore how this ability develops by comparing children’s and adults’ active search and
explicit hypothesis generation patterns in a task that mimics the open-ended process of scientific induction.
In our experiment, 54 children (aged 8.97 ± 1.11) and 50 adults performed inductive inferences about a series
of causal rules through active testing. Children were more elaborate in their testing behavior and generated
substantially more complex guesses about the hidden rules. We take a ‘computational constructivist’ perspective
to explaining these patterns, arguing that these inferences are driven by a combination of thinking (generating
and modifying symbolic concepts) and exploring (discovering and investigating patterns in the physical world).
We show how this framework and rich new dataset speak to questions about developmental differences in
hypothesis generation, active learning and inductive generalization. In particular, we find children’s learning
is driven by less fine-tuned construction mechanisms than adults’, resulting in a greater diversity of ideas but
less reliable discovery of simple explanations.
‘‘We think we understand the rules when we become adults but what we
really experience is a narrowing of the imagination.’’—David Lynch

A central question in the study of both human development and
reasoning is how learners come up with the ideas and hypotheses
they use to explain the world around them. Children excel at forming
new categories, concepts, and causal theories (Carey, 2009) and by
maturity, this coalesces into a capacity for intelligent thought char-
acterized by its domain generality and occasional moments of insight
and innovation. Constructivism is an influential perspective in de-
velopmental psychology (Carey, 2009; Piaget, 2013; Xu, 2019) and
philosophy of science (Fedyk & Xu, 2018; Phillips, 1995; Quine, 1969)
that posits learners actively construct new ideas through a mixture
of thinking – recombining and modifying ideas – and play—exploring
and discovering patterns in the world (Bruner, Jolly, & Sylva, 1976;
Piaget & Valsiner, 1930; Xu, 2019). While the tenets and promise of
constructivist accounts are appealing, it has historically lacked the
formalization needed to distinguish it from alternative accounts of
learning, limiting its testable predictions or detailed insights into cog-
nition. We draw on recent methodological advances to formalize key
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bramleyccslab/computational_constructivism. This study was not preregistered. Thanks to Gwyneth Heuser for developmental data collection. Thanks to Jan-
Philipp Fränken for help with coding free text responses. This research was supported by an EPSRC New Investigator Grant (EP/T033967/1) to N.R. Bramley
and an NSF Award SMA-1640816 to F. Xu.

aspects of constructivism and use these to analyze children and adults’
behavior in an open-ended inductive learning task. We show that a
virtue of the constructivist account is that it captures the wide range
of ideas and testing behaviors we observe, particularly in children. We
use our account to examine developmental differences in hypothesis
generation and active learning. To foreshadow, we show children’s
hypothesis generation and active learning are driven by less fine-tuned
construction mechanisms than adults’, resulting in a greater diversity
of ideas but less reliable discovery of simple explanations and less
systematic coverage of the data space.

Concept learning

Classic work in experimental psychology suggests symbol manipula-
tion is required for humanlike reasoning and problem solving (Bruner,
Goodnow, & Austin, 1956; Johnson-Laird, 1983; Wason, 1968). How-
ever, classic symbolic accounts struggled to explain how discrete rep-
resentations could be learned or effectively applied to reasoning un-
der uncertainty (Oaksford & Chater, 2007; Posner & Keele, 1968).
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Meanwhile, statistical accounts of concept learning have flourished
by treating concepts as driven by ‘‘family resemblance’’ within a fea-
ture space—for instance, centered around a prototypical example or
set of exemplars (Kruschke, 1992; Love, Medin, & Gureckis, 2004;
Medin & Schaffer, 1978; Shepard & Chang, 1963). Such accounts
help explain how people assign category membership fuzzily, and
generalize effectively to novel stimuli (Shepard, 1987) but lack a core
representation capable of capturing how people construct conceptual
novelty (Komatsu, 1992).

Bayesian approaches have also played a major role in study of con-
cept learning, providing a principled way of modeling probabilistic in-
ference over both sub-symbolic and symbolic hypothesis spaces (How-
son & Urbach, 2006). On the symbolic side this includes inferences
about particular causal structures (Bramley, Lagnado, & Speekenbrink,
2015; Coenen, Rehder, & Gureckis, 2015; Gopnik et al., 2004; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003) as well as more general
causal theories (Goodman, Ullman, & Tenenbaum, 2011; Griffiths &
Tenenbaum, 2009; Kemp & Tenenbaum, 2009; Lucas & Griffiths, 2010).
Alongside Bayesian analyses, information theory has also featured
frequently as a metric of idealized evidence acquisition (Gureckis &
Markant, 2012), including choice of interventions and experiments that
reveal causal structure (Bramley, Dayan & Griffiths, 2017; Bramley
et al., 2015; Coenen et al., 2015; Steyvers et al., 2003). However,
since idealized Bayesian and information theoretic accounts describe
learning within a predefined hypothesis space, they do not directly
explain how a learner explores or generates possibilities within an
infinite latent space. That is, probabilistic accounts of induction on
are generally cast at Marr’s computational level (Marr, 1982), showing
people behave roughly as if they consider and average exhaustively
ver what is really an unbounded space of possible concepts. Thus,
hile these accounts provide a jumping off point for rational analysis of

ognition, we should take their limitations seriously when seeking to re-
erse engineer humanlike inductive inference (Simon, 2013; Van Rooij,
lokpoel, Kwisthout, & Wareham, 2019).

The goal of this paper is to examine children’s and adults’ inductive
earning in a rich open-ended task where the space of potential hy-
otheses and behaviors is effectively unbounded. In doing this, we will
reat constructivism as a form of rational process framework (Lieder

Griffiths, 2020), capturing how people are shaped by Bayesian and
nformation-theoretic norms but also why they diverge from and fall
hort of them outside of constrained scenarios. To do this, we fo-
us on recent work in cognitive science that has attempted to marry
ymbolic and statistical perspectives. This work characterizes compu-
ational principles driving both human development and intelligence
s resting on a capacity to flexibly generate, adapt, combine and re-
urpose symbolic representations when learning and reasoning, but
rucially to do so in ways that approximate probabilistic principles of
nference under uncertainty (Bramley, Dayan et al., 2017; Goodman,
enenbaum, Feldman, & Griffiths, 2008; Piantadosi, 2021; Piantadosi,
enenbaum, & Goodman, 2016).

onstructivism

Fundamentally, we take the constructivist account to depart from
omputational-level Bayesian accounts because it presumes represen-
ational incompleteness, and consequently stochasticity and path depen-
ence in a given individual’s learning trajectory. By this, we mean
hat the constructivist learner has not, and normally could not, con-
ider and weigh all the possibilities in play when learning. Instead,
hey must have some mechanism for generating and comparing finite
umbers of discrete possibilities (Sanborn & Chater, 2016; Stewart,
hater, & Brown, 2006). Eponymously, the construction mechanism
eeds to be capable of recursive construction: composing and recom-
osing symbolic elements so as to achieve the systemtaticity and pro-
uctivity required for a finite system to cover an infinite space of
2

deas (Piantadosi & Jacobs, 2016). In this way, constructivist views ‘
treat algorithmic-level cognition as necessarily symbolic and at least
somewhat language-like (Fodor, 1975) in its ability to make ‘‘infinite
use of finite means’’ (von Humboldt, 1863/1988).

For example, a constructivist learner might stochastically combine
elements from an underlying concept grammar to produce new ideas
that can be tested against evidence. Alternatively, they might use
their grammar to describe patterns in evidence or to adapt a previous
hypotheses to fit some new evidence (Bonawitz, Denison, Gopnik, &
Griffiths, 2014; Lewis, Perez, & Tenenbaum, 2014; Nosofsky & Palmeri,
1998; Nosofsky, Palmeri, & McKinley, 1994). Outside of narrow experi-
mental settings, this modal incompleteness seems completely normal. A
simple illustration is the gap between ease of evaluation versus gener-
ation of hypotheses (Gettys & Fisher, 1979). We can typically generate
fewer explanations on the fly – i.e., reasons why our car will not start
– than we would endorse if a list was presented to us. We would likely
come up with more as we looked under the hood than we would sat in
the car thinking. Inference about any area of active scientific inquiry,
like that reported in this journal, typically involve an enormous latent
space of potential explanatory theories only a fraction of which have
ever been articulated or tested and many of which were discovered
only serendipitously (Shackle, 2015). It is generally accepted that the
ground truth is unlikely to be among the set of theories already on the
table (Box, 1976) and that challenging results are as likely to lead to
theory modification as complete abandonment (Lakatos, 1976).

The constructivist perspective thus departs from a Bayesian analysis
by emphasizing that induction is as much about constructing candidate
possibilities, as optimizing within a set of candidates. This reframing
demystifies a number of behavioral patterns that look like biases from
the computational-level perspective. These include anchoring, order ef-
fects, probability matching and confirmation bias. For example, Anchoring
is a natural consequence of generating new hypotheses by making
local adjustments to an earlier hypothesis or from a salient starting
point such as a number mentioned in a prompt (Griffiths, Lieder, &
Goodman, 2015; Lieder, Griffiths, Huys, & Goodman, 2018). Order
effects, where the sequence of evidence encountered affects the final
belief, are pervasive in human learning. If new hypotheses are arrived
at through a limited local search starting from a previous hypothesis
then we should expect path dependence and auto-correlation between
a single learner’s hypotheses over time (Bramley, Dayan et al., 2017;
Dasgupta, Schulz, & Gershman, 2016; Fränken, Theodoropoulos, &
Bramley, 2022; Thaker, Tenenbaum, & Gershman, 2017; Zhao, Lucas &
Bramley, 2022). Probability matching is also natural under a construc-
tivist perspective. In experiments, participants often choose options in
proportion to their probability of being correct or optimal rather than
reliably selecting the best action, as we might expect if they had the full
posterior to hand Shanks, Tunney, and McCarthy (2002). However, it
can be shown that rather than being a choice pathology, probability
matching may be better seen as a best case scenario for a learner
limited to using the endpoint of a local search as their guess (Bramley,
Dayan et al., 2017). It has been argued that in a variety of plausible
everyday settings, a single-sample–based decision can be the appropri-
ate computation–accuracy tradeoff for a resource-limited learner (Vul,
Goodman, Griffiths, & Tenenbaum, 2009). Confirmation bias is also
ervasive in human reasoning and active learning (Klayman & Ha,
989) and hard to explain in purely Bayesian terms. Wason (1960)
amously asked participants to test and identify a hidden rule and ini-
ially simply told them that the sequence 2–4–6 followed the rule. The
ntended true rule was simply ‘‘ascending numbers’’ but participants
requently guessed more complex rules such as ‘‘numbers increasing
y two’’. Analysis of participants’ tests revealed that they frequently
enerated tests that would be rule-following under their hypothesis
such as 6–8–12), so failing to adequately challenge and disconfirm this
ypothesis. On a constructivist perspective, learners can only base their
xploration on testing hypotheses they have actually generated (or else
ehave randomly). To the extent that certain simpler hypotheses like
‘ascending numbers’’ were less likely to be generated on the basis of
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the provided example (cf. Oaksford & Chater, 1994; Tenenbaum, 1999),
it is not surprising that participants failed to actively exclude these
possibilities with their tests.

In the computational cognitive science literature, recent symbolic
search ideas manifest under the label of ‘‘learning as program induc-
tion’’. Such models have begun to be applied to synthesizing humanlike
problem solving and planning and tool use (Allen, Smith, & Tenen-
baum, 2020; Ellis et al., 2020; Lai & Gershman, 2021; Lake, Ullman,
Tenenbaum, & Gershman, 2017; Ruis, Andreas, Baroni, Bouchacourt,
& Lake, 2020; Rule, Schulz, Piantadosi, & Tenenbaum, 2018). We will
draw on these in examining children and adults’ hypothesis generation.

Constructivism in development

The ‘‘child as scientist’’ (Carey, 1985; Gopnik, 1996)—or recently,
‘‘child as hacker’’ (Rule, Tenenbaum, & Piantadosi, 2020) — perspec-
tive casts children’s cognition as driven by broadly the same inductive
processes as adults’ but at an earlier stage in a journey of construction
and discovery.

While children have been shown to be capable active learners (Mc-
Cormack, Bramley, Frosch, Patrick, & Lagnado, 2016; Meng, Bramley, &
Xu, 2018; Sobel & Kushnir, 2006) there is also evidence that children’s
ability to learn effectively from active learning data is more fragile than
adults’. For example, children’s play can look repetitive and inefficient
when held to information theoretic norms (Lapidow & Walker, 2020;
McCormack et al., 2016; Meng et al., 2018; Sim & Xu, 2017). Sobel and
Kushnir (2006) also found children were much less accurate at causal
structure identification in ‘‘yoked’’ conditions – where they had to use
evidence generated by someone else to learn – while adults are less
affected, sometimes able to learn about as well from others’ data as
their own (Lagnado & Sloman, 2006). This performance gap has been
argued to stem from the mismatch between whatever idiosyncratic
hypotheses are under consideration by the observer and those being
tested by the active learner, making the yoked learner less able to
use the data to progress their theories (Fränken et al., 2022; Markant
& Gureckis, 2014). Relatedly, children have been argued to be more
narrowly focused toward testing a single hypothesis at a time (Bramley,
Jones, Gureckis, & Ruggeri, 2022; Ruggeri & Lombrozo, 2014; Ruggeri,
Lombrozo, Griffiths, & Xu, 2016). This might reflect a less developed
working memory, restricting the number of hypotheses children can
keep track of and compare to evidence. An early emphasis on explo-
ration has also been argued to be an effective solution to a lifelong
explore–exploit tradeoff, since earlier discoveries can be exploited for
longer (Gopnik, 2020). Program induction also provides a potential
explanation for transitions between developmental ‘‘stages’’, character-
ized by occasional leaps forward in insight. For instance, Piantadosi,
Tenenbaum, and Goodman (2012) demonstrate how a program in-
duction model can reproduce a characteristic developmental transition
from grasping a few small numbers to discovering a recursive concept
of real numbers. We note that an important part of constructivism
is the idea that we cache the useful concepts we invent (cf. Zhao,

ramley & Lucas, 2022), meaning our conceptual library grows as
e do, becoming richer and more powerful for solving the tasks we

epeatedly face. We do not attempt to model this important aspect of
onstructivism in this paper but return to it in the General Discussion.

Differences between childlike and adultlike inductive inference
ight also be captured by parameterizable differences in search, poten-

ially reflecting principles of stochastic optimization (Lucas, Bridgers,
riffiths, & Gopnik, 2014). For instance, young children have been

ound to be quick to make broad abductive generalizations from
small number of examples—e.g. readily imputing novel physical

aws to explain surprising evidence (Schulz, Goodman, Tenenbaum, &
enkins, 2008). Building on this finding, children’s hypothesis gener-
tion and search has been framed as rationally ‘‘higher temperature’’
3

han adults’—producing more diversity of ideas at the cost of being c
noisier (Lucas et al., 2014). This is algorithmically sensible as opti-
mization over high dimensional spaces is known to be more effective
when proposals are initially large leaps and decrease over time, as in
simulated annealing (Van Laarhoven & Aarts, 1987). However, a high
diversity of guesses might also reflect that children have a rationally
flatter latent prior than adults, inherently entertaining a wider range
of hypotheses at the cost of entertaining high probability ones less
frequently. A third possibility is that children’s hypothesis generation
might be driven more by bottom-up processing than adults’. With less
established expectations, or less powerful primitive concepts to work
with, children’s hypotheses might more directly describe encountered
patterns, while adults might rely more on their existing knowledge
hierarchy to constrain hypothesis generation in a top-down way (Clark,
2012). We will contrast children’s and adults’ hypothesis generation
and active learning in a rich task setting that allows us to closely
investigate these ideas.

Task

In order to study inductive learning, we use a rich open-ended
task that extends on Wason (1960) and the logical rule-induction
tasks studied by Nosofsky et al. (1994), Lewis et al. (2014), Goodman
et al. (2008), and Piantadosi et al. (2016). Akin to the blicket-detector
paradigm in developmental causal cognition (Gopnik et al., 2004;
Lucas et al., 2014), our task has a causal framing, probing inductive
inferences about what conditions make an effect occur in a minimally
contextualized domain. However, departing from Blicket detector tasks,
we include a large and physically rich set of features that learners
can draw on in their inferences allowing test scenes to vary in the
number, nature and arrangement of objects. Our task is inspired by
a tabletop game of scientific induction called ‘‘Zendo’’ (Heath, 2004)
and builds on a pilot task examined in Bramley, Rothe, Tenenbaum,
Xu, and Gureckis (2018). In it, learners both observe and create scenes,

hich are arrangements of 2D triangular objects called cones (Fig. 1)
nd test them to see if they produce a causal effect (which arrangements
f blocks ‘‘make stars come out’’ in our minimal framing). The goal is
o both predict which of a set of new scenes will produce the effect
nd describe the hidden rule that determines the general set of circum-
tances produce the effect (try it here). Scenes could contain between
and 9 cones. Each cone has two immutable properties: size∈ {small,
edium, large} and color∈ {red, green, blue} and continuous scene-

pecific x∈(0,8), y∈(0,6) positions and orientations∈(0,2𝜋). In addition
o cones’ individual properties, scenes also admit many relational prop-
rties arising from the relative features and arrangement of different
ones. For instance, subsets of cones might share a feature value (i.e., be
he same color, or have the same orientation) or be ordered on another
i.e., be larger than, or above) and pairs of cones might have relational
roperties like pointing at one another or touching. This results in an
xtremely rich implicit space of potential concepts.

We note that, by design, the dimensionality of this task makes
t extremely difficult. As with Wason’s 2-4-6 example, and genuine
uestions of scientific induction, the hard part of this task is not
valuating whether a candidate hypothesis can explain the data but
ather generating the right hypothesis in the first place. As with the
-4-6 task, there are always infinite data-consistent possibilities and
hile the bulk of these may be outlandishly complex, many others may

till be simpler or more salient than the ground truth. Without carefully
athered evidence with broad coverage of the space of possible scenes,
learner will frequently be unable to rule out simpler possibilities that
ore parsimoniously capture the data than the ground truth, essentially

eing left with evidence that would not lead even an unbounded
ayesian agent to the correct answer.2

2 In tabletop game form, Zendo typically takes dozens of rounds of tests
nd incorrect guesses by multiple guessers, as well as leading examples and
lues from the rule-setter for even simple hidden rules to be identified.

https://eco.ppls.ed.ac.uk/~nbramley/zendo_kas/demo.html
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Fig. 1. The experimental task: (a) Active learning phase. (b) An example sequence of 8 tests, the first is provided to all participants, and subsequent tests are constructed by
the learner using the interface in (a). Yellow stars indicate those that follow the hidden rule. (c) Generalization phase: Participants select which of a set of new scenes are rule
following by clicking on them. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Rules tested in experiment.
Rule Initial Example

1. There is a red
∃(𝜆𝑥1 ∶ =(𝑥1 , red, color),)

2. They are all the same size
∀(𝜆𝑥1 ∶ ∀(𝜆𝑥2 ∶ =(𝑥1 , 𝑥2 , size),),)

3. Nothing is upright
∀(𝜆𝑥1 ∶ ¬(=(𝑥1 , upright, orientation)),)

4. There is exactly 1 blue
𝑁=(𝜆𝑥1 ∶ =(𝑥1 , blue, color), 1,)

5. There is something blue and small
∃(𝜆𝑥1 ∶ ∧(=(𝑥1 , blue, color),=
(𝑥1 , 1, size)),)

We use mixed-methods (Johnson, Onwuegbuzie, & Turner, 2007),
analyzing both qualitative data in the form of freely generated guesses
about the symbolic rules and quantitative data in the form of forced
choice generalizations. Concretely, we adopt an expressive concept
grammar inspired by constructivist ideas in developmental psychology
and formalized using program induction ideas from machine learn-
ing. We assume the latent space of possible concepts in our task are
those expressible in first order logic combined with lambda abstrac-
tion (Church, 1932) and full knowledge of the potentially relevant
features of the scene (see Appendix Table A.1 for the grammatical prim-
itives we assume). Table 1 shows the five ground truth rules we used in
our experiment expressed in natural language and in lambda calculus
along with the initial rule-following example scene we provided to
participants.

Given the inherent difficulty of this type of task we expect absolute
accuracy to be fairly low for both children and adults (and for our
models). However, we expect that many participants will be able to
make guesses that are consistent with most of the evidence they have.
Since we might expect evaluation of evidence–hypothesis consistency
to be more error-prone in children, we expect adults’ guesses to be more
strictly consistent with their evidence. Finally, there is the question of
relative dominance of bottom-up and top-down processing in children’s
and adults’ guesses. To explore this, we consider two models that differ
in this dimension.
4

Context-free hypothesis generation

In examining children’s and adults’ inferences, we start by laying
out a ‘‘top-down first’’ approach to hypothesis generation, utilizing a
probabilistic context-free grammar (PCFG) to define and draw from a
latent prior over concepts expressible in first order logic. A PCFG is a
collection of ‘‘construction rules’’ that, when run repeatedly, stochas-
tically create expressions in an underlying grammar (Ginsburg, 1966).
A PCFG can be used to generate a prior sample of hypotheses that can
then be weighted by their likelihoods of producing observations—here,
their ability to reproduce the labels of the scenes that the participant
has tested. The hypotheses make predictions about new scenes which
can be weighted by their posterior probability and marginalized over
to make generalizations. Because parts of this production process and
underlying grammar involve branching – e.g., ‘‘and’’ and ‘‘or’’ – sam-
pled hypotheses can be arbitrarily long and complex, involving multiple
Boolean functions and complex relationships between an unlimited
number of bound variables. In this way, an infinite latent space (in our
case first order logic + lambda abstraction) is covered in the limit of in-
finite PCFG sampling (see Fig. 2a). Thus, one way to think of the PCFG
is as a computational level characterization of the problem of inductive
inference. However, we will argue that the generative mechanism at
the heart of the PCFG framework also elucidates important mechanistic
considerations and provides the representational framework needed
to ground algorithmic approximations that depart from this ideal and
reflect core constructivist ideas.

At the computational level, different PCFGs, containing different
primitives and expansions, can be compared against human behavior.
And the probabilities for the productions in a PCFG can be fit to
maximize correspondence with human judgments. In this way, recent
work has attempted to infer the ‘‘logical primitives of thought’’ (Good-
man et al., 2008; Piantadosi et al., 2016). Here we consider a single
expressive PCFG architecture and examine its behavior under limited
sampling. We examine its behavior with uniform production weights
but also with weights engineered to produce the characteristics of
‘‘childlike’ and ‘‘adultlike’’ symbolic guesses in our task. Crucially,
under all these weighting schemes, our PCFG embodies the principle
of parsimony: Simpler concepts – composed of fewer grammatical
parts (Feldman, 2000) – have a higher probability of being produced
and so are favored over more complex ones equally able to explain the
data.

While naively, we might expect children to entertain simpler con-
cepts than adults, this induction framework tends to predict the re-
verse. If we assume we start life at our most flexible, or ‘‘program-
able’’ (Turing, 2009), this would be like being born with concept
building mechanism that is initially ‘‘untuned’’, growing its concepts
essentially through blind mutation (Campbell, 1960) where each fork-
ing path on the road to a complete concept starts out equiprobable.
However as a learner gathers a lifetime of experience, we would expect
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these construction weights to become tuned so as to favor certain
elements or features that have proven useful in the past. A uniform-
weighted PCFG hypothesis generator will thus tend to produce greater
diversity than a more fine-tuned one. As such, it embodies the idea that
more elaborately or implausibly structured, or ‘‘weird’’, concepts will
come to the minds of children than adults.

What PCFG approaches have in common is a generative mechanism
for sampling from an infinite latent prior, here over possible logical
concepts. However, sampled ‘‘guesses’’ must also be tested against data.
Unfortunately, in our task – and perhaps even more so outside of it – the
vast majority a priori generated concepts are likely to be inconsistent
with whatever evidence a learner has already encountered.3 For this
reason, the procedure is astronomically inefficient, requiring very large
numbers of samples in order to reliably generate non-trivial rules. One
can also use a PCFG to adapt existing hypotheses, for instance using a
Markov Chain Monte Carlo scheme in which parts of a hypothesis are
regrown and accepted according to their fit to evidence (cf. Fränken
et al., 2022; Goodman et al., 2008). While we think this approach is
promising we do not model this here, and simply return to it in the
general discussion. However, we do additionally consider an alternative
to the PCFG, that provides a more sample efficient and, on the face of it,
more cognitively plausible mechanism for initializing new hypotheses.

Context-based hypothesis generation

Instance Driven Generation (IDG) (Bramley et al., 2018) is a recent
proposal related to the PCFG framework but with a key difference.
Rather than generating initial hypotheses prior to, or blind to the
current evidence, the IDG generates ideas inspired by encountered
atterns (cf. Michalski, 1969), thus incorporating bottom-up reactivity
o evidence into its conceptualization process. Each IDG hypothesis
tarts with an observation of features of one or several objects in a scene
nd uses these to back out a true logical statement about the scene in
stochastic but truth-preserving way. If the scene is rule following,

his statement constitutes a positive hypothesis about the hidden rule.
therwise, it constitutes a negative hypothesis, i.e. about what must not
e present. Thus, an IDG does not begin each learning problem with a
rior over all possible concepts, but rather draws its initial ideas from a
estricted space consistent with the extant patterns in a focal observa-
ion. Fig. 2b illustrates this approach. While a regular PCFG effectively
tarts at the top level (i.e. outermost nesting) of a compound concept
nd works downward and inward, the IDG starts from the central
ontent (drawn from its observation) and works upward and outward to
quantified statement, ensuring at each step that the statement is true
f the scene. The result is a mechanism that uses its concept grammar
o describe features and patterns in evidence. This means that the IDG
oes not entertain hypotheses that are possible but never exemplified
y a scene. For example, ‘‘at most five reds’’ would only be generated if
learner actually saw a rule-following scene containing five reds. A key
rediction of the IDG is an interaction between the scenes generated
y the participant and the hypotheses these subsequently inspire, with
impler scenes, embodying fewer extraneous or coincidental patterns
eing more likely to inspire the learner to generate the true concepts.

ypothesis-driven scene generation

ncertainty-driven learning
Normatively, test scenes should serve to minimize expected uncer-

ainty across the full hypothesis space. A direct way to approximate this

3 In our task, many more are simply tautological (i.e., ‘‘All cones are red
r not red’’), contradictory (i.e., ‘‘There is a cone that is red and not red’’),
r physically impossible (‘‘Two (different) objects have the same position’’).
ndeed, around 20% of the hypotheses generated by our PCFGs are tautologies,
nd 15% are contradictions. Many others combine a meaningful hypothesis
ith a tautological corollary (i.e., ‘‘There is a large red object that is larger
5

han all medium sized objects’’). f
here is to start with a prior sample of hypotheses (e.g. drawn context-
free) and progressively create scenes that serve to minimize expected
uncertainty over this sample by forking their predictions (Bramley
et al., 2022; Nelson, Divjak, Gudmundsdottir, Martignon, & Meder,
2014). We visualize this in Fig. 3a, imagining three labeled scenes
𝑑1 … 𝑑3 that progressively divide a prior sample of hypotheses (ℎs) until
a most-likely candidate emerges. The constructivist setting presents a
challenge for this norm since the hypothesis space is latent and is
initially unexplored.

Exploration-driven learning
An alternative hypothesis-free approach might be to explore the

data space directly, for instance generating scenes that vary in the
number and nature of objects they contain in the hope of naturally
uncovering concept boundaries and inspiring hypothesis generation.
We sketch this in Fig. 3b. Efficient uncertainty-driven and exploration-
driven learning both predict generation of scenes that differ substan-
tially from one another, ideally being anti-correlated so as to cover the
space efficiently (Osborne et al., 2012). However this does not seem
well matched to constructism, where we rather think of the learner as
entertaining a small but not completely empty set of possibilities and
hence unable to capitalize on such diverse evidence.

A constructivist way to think of active learning is as acting in ways
that challenge one’s current hypotheses and so facilitate their refine-
ment or the construction of better alternatives. We sketch two such
approaches: Confirmatory testing and Sequential Contrastive testing.

Confirmatory testing
With a candidate hypothesis in mind, a learner can seek to challenge

it through its generalizations (Nickerson, 1998; Popper, 1959). For
example, after encountering the scene in row 1 of Table 1, a learner
might generate the initial hypothesis that ‘‘there must be a small red’’
(since this describes one of the objects). To confirm this, they might
try a positive generalization test, i.e. keep the small red but remove
or randomize the other objects and predict the effect will still occur
(e.g. 𝑑1 in Fig. 3c). Alternatively they might use it to predict a way
to minimally alter 𝑑1 so it no longer produces the effect, removing
he small red and keeping the rest (e.g. 𝑑2). So long as the learner
ets the outcome they anticipate, they can stick with their hypothesis.
hen they do not they can either abandon or adapt it. For instance,

3 in Fig. 3c proves inconsistent with ℎ1, requiring a new hypothesis
e generated that can explain why 𝑑1 and 𝑑3 produce the effect but
ot 𝑑2. A limitation of a one-hypothesis-at-a-time approach is that it
s unclear how distinctive the hypothesis’s generalization predictions
re.4 For example, since the ground truth in this example is just ‘‘there
s a red’’, producing new scenes containing small reds will fail to reveal
hat the redness but not the smallness is causative of the label. Another
imitation is that it is unclear what to do when one’s hypothesis is ruled
ut, especially if the scene if the test that differs dramatically from
he ones with which it is consistent. For this reason, the education
iterature has long emphasized the utility of a ‘‘control of variables’’
trategy (Chen & Klahr, 1999; Klahr, Fay, & Dunbar, 1993; Klahr,
immerman, & Jirout, 2011). This amounts to manipulating exactly
ne design variable per test, such that any difference in the outcome
s straightforwardly attributable to the change in the input providing a
oute to adapting one’s hypothesis when it fails.

4 A general finding is that positive confirmatory tests are valuable to the
xtent that the outcome of interest is rare, e.g. if most scenes are not rule
ollowing. This is not generally the case in this task.
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Fig. 2. (a) Example generation of hypotheses using the PCFG. (b) Examples of IDG hypothesis generation based on an observation of a scene that follows the rule. New additions
on each line are marked in blue. Full details in Appendix A. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 3. Active learning strategies: 𝐻 = latent hypothesis space 𝐷 = data space. Arrows indicate direction of inferences. Stars indicate scenes that followed the rule. (a) Uncertainty-
driven tests over prior sample ℎ ∈ 𝐻 . Dotted lines separate hypotheses by outcomes they predict for initial example 𝑒 and self-generated scenes 𝑑1 … 𝑑3. Shading indicates which
ℎs mis-predict each outcome. (b) Exploration-driven testing. Scenes selected to explore 𝐷 without regard to 𝐻 . Outcomes may then inspire hypotheses. (c) Confirmatory testing:
Example 𝑒 inspires hypothesis ℎ1. Scenes then test its generalization predictions. Colored circles visualize space of scenes for which each hypothesis predicts outcome will be
produced. 𝑑1 and 𝑑2 are correctly predicted as rule following. 𝑑3 is mispredicted by ℎ1 in producing the outcome, leading to a new ℎ2. (d) Sequential contrastive testing: 𝑒 inspires
ℎ1 and ℎ1 inspires ℎ2, 𝑑1 contrasts these leading to rejection of ℎ1. ℎ2 then inspires ℎ3 and 𝑑2 contrasts these, etc. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Sequential contrastive testing
A related scheme that might allow a constructivist learner to escape

some pathologies of confirmatory testing is the iterative counterfactual
strategy described in Oaksford and Chater (1994). That is, learners
might first generate an alternative hypothesis ℎ2 by inverting some
feature of their initial hypothesis and then focus their next test on
separating ℎ1 from ℎ2 (e.g., Fig. 3d).5 For example, starting with

5 In Oaksford and Chater’s 1994 formulation, the complementary hypoth-
esis is then inconsistent with the scene that inspired the original hypothesis,
such as going from ‘‘increasing by two’’ (inspired by seeing 2-4-6) to ‘‘de-
creasing by two’’ such that its falsification may be mistaken for confirmation
of the original hypothesis. Here there are many ways to flip the content of
6

ℎ1:‘‘there is a small red’’, one local alternative would be to drop the
mention of size, leading to ℎ2: ‘‘There is a red’’. Now the learner has a
pair of hypotheses and a recipe distinguishing between them: Testing
a scene containing a red object that is not small (e.g. 𝑑1). This could
again be easily achieved by adapting the original scene, so the small
red is a different size (Chen & Klahr, 1999; Klahr et al., 1993, 2011). If
𝑑2 produces the effect, ℎ1 can be supplanted with ℎ2. Otherwise ℎ2 can
be rejected and a new ℎ3 can be generated. Either way, this approach
facilitates constructivism by providing a direction of travel however a

a hypothesis both with or without rendering it inconsistent with a scene that
inspired it.
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test comes out, so allowing a constructivist learner to explore both the
data and hypothesis spaces in parallel (Klahr & Dunbar, 1988).

As illustrated in Fig. 3, what constructivism-compatible hypothesis-
driven approaches have in common is a prediction of anchoring in data
space: Each new scene shares features with the scene that inspired the
earlier hypotheses that inspired it. This contrasts with the pattern we
would expect if participants followed a normative uncertainty-driven
approach or model-free exploration-driven approach since both tend
to predict each scene should be as different as possible to earlier
ones (although see Navarro & Perfors, 2011, for how this depends on
the structure of the hypothesis space). While we do not collect the trial-
by-trial guesses we would need to distinguish between all the accounts
we mention, we will look for an empirical signature of constructivist
active learning, in the form of anchored, incremental and systematic
testing patterns and assess whether these differ between children and
adults.

Overview

In summary, the main goal of this paper is a close investigation of
developmental differences in active open-ended hypothesis generation
examined through the lens of a constructivism-inspired rational-process
framework that puts stochastic generation and incremental search at
the center of the individuals’ learning. To foreshadow, we find that
children make more complex guesses about the hidden rule that are
only a marginally worse fit to the evidence than adults’ guesses. Chil-
dren also create more complex learning data than adults but do so less
systematically. We then show that both children’s and adults’ guesses
reflect an evidence-inspired process of compositional concept formation
as modeled by our Instance Driven Generation algorithm over a top-
down–first PCFG norm, capturing that their guesses are inspired by
discovery of patterns in their learning data. We show these behavioral
patterns are a natural result of children having a less fine-tuned concept
generation mechanism. Crucially, we also show that both children’s and
adults’ symbolic guesses causally drive their generalizations, as opposed
to these being driven by surface feature resemblance as emphasized
in statistical views of concepts (cf. Medin & Schaffer, 1978; Posner &
Keele, 1968). Finally, we show that both children and adults create
scenes by adapting earlier scenes, which we argue is consistent with
confirmatory or iterative counterfactual testing rather than uncertainty-
or exploration-driven testing.

Experiment

Methods

Participants
We recruited 54 children in the lab (23 female, aged 8.97 ± 1.11)

and 50 adults online (22 female, aged 38.6 ± 10.2). Forty children
completed all five trials and the remaining 14 completed 2.71 ± 1.07
trials before indicating that they had enough. For these children we
simply include the trials that they completed. We collected participants
until we reached our intended sample size of 50 per agegroup after
exclusions. We chose this sample size simply to exceed our 2018 (N
= 30) pilot with adults.6 Ten additional adult participants completed
the task but were excluded before analysis for providing nonsensical or
copy-pasted text responses. Adult participants were paid $1.50 and a
performance related bonus of up to $4 ($1.96 ± 0.75). Children’s ses-
sions lasted between 30 minutes and an hour. For adults, the task took
27.49 ± 12.09 minutes of which 9.8 ± 7.9 was spent on instructions.
The children’s and adults’ versions of the task are available to try here
https://github.com/bramleyccslab/computational_constructivism.

6 While we note that 104 is not a large sample by modern standards,
ur focus is on modeling inferences at the individual level. Each participant
roduces an exceptionally rich dataset and our analyses have unusually large
torage and compute requirements making a larger sample infeasible to
nalyze.
7

Design
All participants faced the same five learning problems in an in-

dependently randomized order (see Table 1). For each learning prob-
lem participants were given an initial positive example, as shown in
the table, and then performed self tests of their own before making
generalizations and free guesses as to the hidden rule.

Materials and procedure

Child sample Instructions. Participants sat in front of a laptop with

a mouse attached, with the experimenter sitting next to them and
interacted with the task through the browser.

The experimenter read out the instructions for the participant.
These explained how the game worked and showed the participant
five examples of possible rules the blocks could have (relating to
color, size, proximity, angle, or relation). The instructions also included
videos showing the participant how to manipulate the blocks using the
mouse and keyboard. After the instructions, the participant was given
a comprehension check of five true or false questions. If they did not
get them all right on their first try, the experimenter read through the
instructions again and asked them again. All participants passed the
comprehension check the second time.

Learning phase. The participant was then introduced to an initial ex-
ample of a block type (‘‘Here are some blocks called [name]s. We are
going to click test to see if stars will come out of the [name]s’’.). The
initial example of each block type (i.e., each rule) was constant across
participants. Since every initial example of a block type was a positive
example, a star animation played when the ‘‘Test’’ button was clicked.
The participant was encouraged to use either the trackpad or the mouse
to click the ‘‘Test’’ button, whichever was comfortable for them.

After the initial positive example, the participant was shown a blank
scene with blocks available to add to it, and was asked to test the blocks
seven more times (Fig. 1a). The scene creation interface was subject
to simulated gravity, meaning there were physical constraints on how
the objects can be arranged. The experimenter told them they could
now play with the blocks like they saw in the instructional video. The
experimenter also reminded the participant of how to add, remove,
move, and rotate blocks on the screen using the mouse and keyboard.
Participants were encouraged to ask for help with moving the blocks if
needed. If they seemed to be having trouble, the experimenter would
ask if they needed help with setting up the blocks. The participants
were told that when they had finished moving the blocks around, they
should press the ‘‘Test’’ button to see if stars came out of them. For
positive tests, the experimenter would neutrally say: ‘‘Stars did come
out of the [name]s that time’’ and for negative tests: ‘‘Stars did not
come out of the [name]s that time’’.

Question phase. After testing the blocks a total of eight times (Fig. 1b),
participants were shown a selection of eight more pre-determined
scenes containing blocks (Fig. 1c). The experimenter asked them to
click on which pictures they thought the stars would come out of,
reminding them that they could pick as many as they wanted, but they
had to pick at least one. Unknown to participants, half of these scenes
were always rule following but their positions on screen were inde-
pendently counterbalanced. The test scenes and their labels remained
visible on the screen throughout the Learning and Question phases.

Free responses. Participants were then presented with a blank text
box and asked, ‘‘What do you think the rule is for how the [name]s
work?’’ The experimenter typed into the text box the participant’s
verbal answer verbatim, or as close as possible.

The Testing, Question, and Free Response phases were repeated
identically for each of the five block types. After the five trials were
completed, the participant was shown the results including each true
rule and how well they did on each problem and was thanked for
playing the game. As compensation, participants were allowed to pick a
small toy out of a prize box, and parents were given a paper ‘‘diploma’’
to commemorate their child’s visit.

https://github.com/bramleyccslab/computational_constructivism
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Adult sample. We recruited our adult sample from Amazon Mechanical
Turk and adults completed the task on their own computers. They com-
pleted the same instructions as the children with an additional section
about bonuses and had to successfully answer comprehension ques-
tions, including an additional two about the bonuses, before starting
the main task. Specifically, adults were bonused 5 cents for each correct
generalization (up to a possible 40 cents for each of the five trials) and
an additional 40 cents for a correct guess as to the hidden rule, again for
each of the five trials. Aside from having no experimenter in the room,
and filling out the text fields themselves, the procedure was identical
to the children’s task. Full materials including experiment demos, data
and code are available at the Online Repository.

Results

We first look at the qualitative characteristics of children’s and
adults’ explicit rule guesses then assess relative accuracy of partici-
pants’ rules and generalizations about new scenes before comparing
the features of the scenes produced by adults and children. We will
then turn to a series of model-based analyses that attempt to reproduce
participants distributions of free guesses, generalizations and scenes
within the constructivist framework.

Guess complexity and constituents
We had human coders translate participants’ free text guesses about

the hidden rule wherever possible into an equivalent logical expres-
sion using the grammatical elements available to our learning models.
We were able to do this for 86% (n = 205) of children’s trials and
88% (n = 219) of adults’ trials. For example, if the participant wrote
‘‘There must be one big red block’’ this was converted into 𝑁=(𝜆𝑥1 ∶
∧(= (𝑥1, large, size),= (𝑥1, red, color)), 1,). This logical version can be
automatically evaluated on the scenes and can be read literally as
asserting ‘‘There exists exactly one 𝑥1 in the set of objects  such that 𝑥1
has the size ‘large’ and the color ‘red’ ’’. We had a primary coder, blind
to the experimental hypotheses code all responses, and a second coder
blind spot check 15% of these (64). The two coders agreed in 95% of
cases. We provide further details about the coding in Appendix B and
full coding resources and full coding data in the Online Repository.

To explore structural differences in children’s versus adults’ hy-
potheses, we first break down these encoded rule guesses into their
logical parts. This primarily reveals that children’s encoded rules were
substantially more complex than those generated by adults and that
both were substantially more complex than the ground truth rules.
Children’s and adults’ rules also differed in terms of the prevalence
of particular elements and features (see Fig. 4). As an example, one
child’s rule for problem 1 was ‘‘You must have two reds and one blue’’
which was translated to 𝑁=𝜆𝑥1 ∶ 𝑁=(𝜆𝑥2 ∶ (∧(= (𝑥1, red, color),=
(𝑥2, blue, color)), 1,), 2,), requiring two quantifiers (𝑁=), one boolean
(∧), 2 equalities (= ()), and two references to the feature color. The typ-
ical child-generated-rule used 2.25 quantifiers (4c), 2.06 booleans (4d),
1.55 equalities and inequalities (4e), referred to 1.39 different primary
features (color, size, orientation, x- or y-position, groundedness, 4f) and
0.37 relational features (contact, stackedness, pointing, or insideness,
4g). In contrast, the average adult generated rule required just 1.84
quantifiers, 1.20 booleans, 1.47 equalities and inequalities, and referred
to 1.44 primary features but only 0.16 relational features. Children thus
used significantly more quantification (i.e. referred to more separate
entities) 𝑡(102) = 3.98, 𝑝 < .0001, more booleans 𝑡(102) = 3.59, 𝑝 <
.0001 and relational features 𝑡(102) = 3.12, 𝑝 < .002 than adults, but
the agegroups did not differ significantly in mentions of (in)equalities
𝑡(102) = −0.05, 𝑝 = 0.96 and references to the objects’ basic features
𝑡(102) = −.91, 𝑝 = .36. When children posited that an ‘‘at least’’,
‘‘at most’’ or ‘‘exactly’’ a certain number of objects must have certain
features, the number they chose was substantially higher than that for
adults (2.36 compared to 1.58, 𝑡(68) = 3.72, 𝑝 = 0.0004). In terms of
eatures, adults frequently gave rules relating to color (58% compared
o 39% of children’s rules, 𝑡(102) = 2.27, 𝑝 = 0.025), while children were
ore likely to refer to positional properties (26% compared to 18% of

dults’ rules 𝑡(102) = 2.15, 𝑝 = 0.034).
8
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Accuracy
Having observed systematic differences in the content of children’s

and adults’ hypotheses, we now ask if these manifest in children’s and
adults’ inferential success; their ability to identify the ground truth and
make accurate generalizations.

Guesses. Both children and adults were occasionally able to guess
exactly the correct rules, doing so a respective 11% and 28% of trials.
Adults produced the correct rule more frequently than children 𝑡(102) =
4.0, 𝑝 < .001 and were more likely then children to guess correctly (at
a corrected significance level of 0.01) for the ‘‘All are the same size’’,
‘‘One is blue’’ and ‘‘There is a small blue’’ rules (see Fig. 5a). The plot
reveals that no child identified rule 4 exactly ‘‘One is blue’’ and only
one identified rule 5 ‘‘There is a small blue’’, while a slightly greater
proportion of children than adults identified the positional ‘‘Nothing
is upright’’ rule. Note that chance level baseline for these free guesses
is essentially 0%. There are an unlimited number of wrong guesses
and a small set of semantically correct guesses. It is also the nature of
this inductive problem that there are an infinite number of wrong yet
perfectly evidence-consistent rules for any evidence and often there is a
simpler evidence-consistent rule available than the ground truth.7 Thus,
it is instructive to ask whether participants’ rules, where not exactly
correct, are nevertheless consistent with the evidence they gathered.

While, a completely random rule would only be consistent with
all 8 scenes around 0.58 × 100 = 0.4% of the time, children’s explicit
ule guesses were perfectly consistent with the labels of the 8 training
cenes 30% of the time and Adult’s guesses were fully consistent 54%
f the time. There was a moderate difference in average proportion
f the learning data explained by children’s compared to adults’ rules
1% ± 27% vs 87% ± 17% 𝑡(98) = 5.6, 𝑝 < .001. Similarly there was
difference the proportion of the participants’ generalizations that
ere consistent with their rule guess 72% ± 21% vs 84% ± 16%,
(98) = 4.1, 𝑝 < .001 (see Fig. 5c for a by-rule breakdown).

eneralizations. We now report participants performance in predicting
hich of 8 new scenes will produce stars (i.e. follow each hidden rule).
cross the five tasks, both children and adults guessed more accurately

han chance (50%): children mean±𝑆𝐷 59% ± 11%, 𝑡(53) = 5.9, 𝑝 < .001;
dults 70% ± 14%, 𝑡(49) = 10.3, 𝑝 < .001. Adults’ generalizations were
ignificantly more accurate than children’s 𝑡(102) = 4.6, 𝑝 < .001 and
hildren’s accuracy improved significantly with age 𝐹 (1, 52) = 6.2, 𝜂2 =
11, 𝑝 = 0.015. Indeed, adults’ generalization accuracy was above a
onferroni-corrected chance level of 𝑝 ≤ 0.01 for all five rules and
hildren were similarly above chance except for rules 1. ‘‘There is a
ed’’ (𝑡(46) = 2.5, 𝑝 = .015) and 4. ‘‘One is blue’’ (𝑡(46) = .1, 𝑝 = .915; see
ig. 5b).

cene generation
As well as generating more complex rules, children tended to create

ore complex test scenes than adults. The average child-generated
cene contained 3.7 ± 0.88 objects (close to the average in the example
cenes) compared to 2.8 ± 0.57 objects for adults (𝑡(102) = 5.8, 𝑝 <
001). The complexity of a learner’s test scenes was inversely related
o their performance overall (𝐹 (1, 102) = 39.0, 𝛽 = −0.08, 𝜂2 = .28, 𝑝 <
001) and also within both the children (𝐹 (1, 52) =, 𝛽 = −0.056, 𝜂2 =
20, 𝑝 < .001) and adults (𝐹 (1, 49) = 9.1, 𝛽 = −0.096, 𝜂2 = .16, 𝑝 < .001)
aken individually (see Fig. 6a). Within the children, age was inversely
ssociated with scene complexity, with an average of 0.35 fewer objects
er scene for each additional year 𝐹 (1, 52) = 12.6, 𝜂2 = .19, 𝑝 <
001. Aside from this difference, we also assess whether children’s or
dults’ scenes bear the hallmarks of being driven by confirming or
istinguishing between a small set of possible rules.

7 Although as more evidence arrives the ground truth is increasingly likely
o be among ‘‘simplest’’ rules in a posterior sample.
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Fig. 4. (a) Length of Children’s and Adults’ rule guesses. (b) Relative frequency of rule elements in logic coded versions of these rules, c–g with respect to quantifiers, booleans,
(in)equalities, basic and relational features respectively. Error bars show normal 95% confidence intervals. Yellow points in a show ground truth frequency. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. (a) Percentage children and adults guessing correct rule. (b) Generalization accuracy. Bars show mean ± bootstrapped 95% CIs. In a–b, Black vertical lines denote chance
performance. Blue and red points show performance of simulated PCFG and IDG learners as described in Modeling section. Circles = guessing the MAP rule or MAP generalization
(after marginalizing over posterior). ‘‘ + ’’ shows accuracy of a single posterior sample. Both models here use agegroup-consistent production weights, CIs show bootstrapped 95%
confidence intervals. (c) Consistency between subjects’ rule guess and their (self-generated) learning data, and generalizations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
If participants do follow a control of variables, confirmatory, or it-
erative counterfactual approach, we would expect the scenes generated
by participants to be more similar to the initial example or one of their
own preceding scenes, than to a random scene or a scene drawn from a
different learning problem. If they are rather maximizing information
with respect to a larger set of hypotheses, or exploring the data space
efficiently, we would expect the opposite pattern of independence
or anticorrelation. To explore this, we constructed a distance metric
that we used to measure the feature-dissimilarity between any pair of
scenes. The metric is based on edit distance, encoding how much and
9

how many of the features (positions, colors, shapes) of the objects in
one scene would have to be changed to reproduce the other scene.
This involved 𝑧-scoring and combining a ‘‘minimal-edit set’’ of feature
differences and incorporating a proportional cost for additional or
omitted objects and scaling by the number of objects in the scenes. We
provide a detailed procedure and example of how we computed these
edit distances and break them down into their separate components
in Appendix C. The mean distance between any randomly selected pair
of participant-generated scenes was M ± SD = 3.67 ± 0.94. Taken as a
whole, the scenes generated by children were more diverse than adults’
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Fig. 6. (a) Generalization accuracy by number of objects per test scene. (b) Average dissimilarity between self-generated scenes at different levels of aggregation. Error bars show
standard errors for subject means. (c) Average similarity matrices between initial example and self generated scenes 2 to 8. See Appendix C for detailed procedure and similarity
matrices separated by component.
with average dissimilarity of 3.70 ± 0.14 compared to 3.63 ± 0.08,
𝑡(102) = 2.9, 𝑝 = 0.0048.

However, this diversity seems to be primarily between rather than
within subject for children’s choices. Within subject but across trials,
the average inter-scene dissimilarity for children was 3.60 ± .33 similar
to that for adults’ 3.65±.22, 𝑡(102) = .83, 𝑝 = .4. Focusing more narrowly,
within the scenes produced by an individual subject while learning
about a single rule, we see a reversal of the aggregate pattern. That
is, within a learning task, children’s scenes are marginally less diverse
on average than adults’ (children: 3.30 ± 0.459, adults: 3.44 ± 0.33,
𝑡(102) = 1.77, 𝑝 = 0.08, Fig. 6b&c).

Fig. 6c breaks down the within-trial scene dissimilarity by test
position for the two agegroups. Adults’ scenes are clearly anchored to
the initial example (right hand facet) – shown by the dark shading in
the top row indicating high similarity decreasing from left to right for
later tests – Adults’ scenes also look sequentially self-similar—shown by
the relatively darker shading along the diagonal compared to the off-
diagonal. In contrast, children’s similarity patterns look more uniform.
However, for both adults and children, the first self-generated scene is
more similar to the initial example than any other scene.

Interim discussion

In sum, in our experiment we found children were only moderately
less able to come up with rules that fit the evidence than adults and
there were only moderate differences in the compatibility between
children’s and adults’ rules and their subsequent generalizations. Most
striking was the fact that children’s guesses appeared to overfit the
evidence more, producing more complex, perhaps more naïve, char-
acterizations of the rule-following scenes than did adults. This can be
10
seen in the larger number of quantifiers and relations mentioned in
children’s rules than in adults’, essentially referring to more different
objects and more complex properties of the learning scenes that were
actually irrelevant to their label. As well as generating more complex
concepts, children created more complex test scenes that appeared
to be more repetitive overall, yet also appeared to be varied less
systematically than adults’.

Model comparison

To explore the basis for the diversity of guesses and generaliza-
tions, and of the differences between children and adults’ learning,
we now turn to model-based characterization of the behavioral data.
We focus first on the guesses, then the generalizations, and finally
the scene creation. We will assess whether participants guess and
generalization patterns are better captured by Bayesian inference over
samples from an expressive latent prior – Probabilistic Context Free
Generation (PCFG) – or rather by the partially bottom-up generation—
Instance Driven Generation (IDG) limited to hypotheses inspired by
patterns in scenes (Bramley et al., 2018). We then assess whether new
scenes are better captured as independently generated – consistent with
uncertainty-driven or exploration-driven testing – or as adaptations of
earlier scenes—consistent with confirmatory or iterative contrastive
testing.

To foreshadow, we find convergent evidence that both children’s
and adults’ guesses are better accounted for by Instance Driven Gener-
ation (IDG) of hypotheses than by an approximately normative Prob-
abilistic Context Free Grammar (PCFG) norm. We then demonstrate
that neither children’s nor adults’ generalizations can be explained
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by surface similarity between rule-following and generalization probe
scenes, but that they are well predicted by the learners’ own symbolic
guess. Finally, we show that almost all children’s and adults’ scenes are
more likely to have been created by making edits to either the previous
or the initial scene—in line with hypothesis-driven confirmatory or
contrastive testing—rather than being generated independently from
scratch—consistent with uncertainty-driven or direct exploration of the
data space.

Guesses

Participants produced a huge variety of guesses but despite this,
these guesses were consistent with the majority of their evidence.
Children’s guesses were more complex and a little less data-consistent
on average than adults’. We now explore using PCFG and IDG sampling
to produce similar guesses.

We first assume a PCFG as a computational level framework and
reverse engineer what production weights it requires to generate the
kinds of guesses we see adults and children make. Next, we contrast
the prior sample-based PCFG approach to rule generation with our
proposed data-inspired IDG, showing that the IDG does a better job
of capturing participants’ accuracy by problem type and agegroup
and is also better able to produce the specific guesses made by the
participants.

Reverse engineering childlike and adultlike production weights
Having encoded all the rule guesses from adults and children (in

the section on Rule complexity and constituents), we created PCFG pro-
duction weights that produce similar guesses as adults and children.
To do this, we worked back from the observed counts for each rule
element doing this separately for children’s and for adults’ guesses
(see Appendix A). Of course, the guesses are samples from a range of
different participants’ posteriors, since guesses were always based on
some evidence. However, since this evidence differs dramatically be-
tween trials and across the rules we considered and scenes participants
created, and since the structural elements of the grammar (booleans,
quantifiers etc) are not tightly tied to scene-specifics, this still provides
a helpful elucidation of generation differences behind child-like and
adult-like guesses. A full set of fitted prior weights for both adults and
children are visualized in Fig. 7. This analysis simply demonstrates
that a natural way to understand children’s guesses are as emanating
from a less fine-tuned generation mechanism adults’, with flatter, more
entropic branching at 12 of the 14 forking production steps we assumed
in our PCFG model. Indeed probability distribution over productions at
each stage averaged 1.28±0.50 bits for children compared to 1.03±0.59
bits for adults, 𝑡(13) = 3.2, 𝑝 = 0.007.

Modeling accuracy by participant and rule
We now compare participants patterns of accuracy to simulated

approximately normative inference over a PCFG-generated sample and
IDG hypothesis generation algorithms provided with the active learning
data generated by the human participants. We generated a sample of
10,000 hypotheses based on uniform production weights �̂�PCFGu, and
similarly for the IDG generated a sample based on uniform productions
for each task �̂�𝑝,𝑡

IDGu. Additionally, for each participant 𝑝—and sepa-
rately for each learning task 𝑡 in the case of the IDG—we generated
another 10,000 possible rules using age-consistent prior production
weights derived above �̂�𝑝

PCFGh and �̂�𝑝,𝑡
IDGh that have statistics matched

to those in Fig. 4a–f.8 The PCFG samples act as an approximation to
an infinite latent prior over rules 𝑃 (ℎ) before seeing any data. The
uniform-weight PCFG samples capture a generic inductive bias for
simpler hypotheses while fitted held-out child- and adult-like weights

8 For these, we held out the subjects own guesses when setting the weights
o avoid double dipping the data.
11
additionally attempt to capture ‘‘learned’’ inductive biases common to
the requisite age-group (but not specific to the participant). The IDG
samples are additionally idiosyncratically constrained in the sense of
only reflecting rules referring to features or relations actually present
in at least one of the learning scenes. We split the IDG sample evenly
across tests such that 1250 were ‘‘inspired’’ by each learning scene,
necessarily repeating this procedure for each trial for each participant
since each generates different evidence. In order to approximate a
posterior over rules given self-generated learning scenes 𝐝, we then
weighted these samples by their likelihood of producing all eight scene
labels 𝑙 observed during the learning phase

𝑃 (ℎ|𝐥;𝐝) ∝ 𝑃 (𝐥|ℎ;𝐝)𝑃 (ℎ) (1)

≈ 𝑃 (𝐥|ℎ;𝐝)
∑

ℎ̂∈�̂�

I(ℎ = h) (2)

and combined this with their prior weight—given by counting how
often they appear in the prior sample, with indicator function I(.) denot-
ing exact or semantic equivalence. To test for semantic equivalence, we
computed predictions for the first 1000 participant-generated scenes for
each rule and clustered together those that made identical predictions.
We rounded positional features to one decimal place in evaluating rules
to accommodate perceptual uncertainty. Concretely, we assumed the
following likelihood function

𝑃 (𝑙 = 1|ℎ;𝐝) ∝ exp(−𝑏 ×𝑁mispredictions) (3)

mbodying the idea that: the more learning scene labels a rule cannot
xplain, the less likely it is to have produced them. For a large 𝑏,
he likelihood function approaches the true deterministic behavior of
he rules. However, in our analyses we simply assume a 𝑏 = 2 to
llow for some noise while maintaining computational tractability. This
orresponds to a likelihood function that decays rapidly from ∝ 1 for
ules that predict all 8 scenes’ labels, to ∝ .13 for a single misprediction,
nd ∝ .02 for 2 mispredictions, and so on.

To generate IDG predictions, we merged the production probabil-
ties from the PCFG into the Instance Driven Generation procedure
etailed in Appendix A. For scenes that did not follow the rule we
ollowed the same procedure as for scenes that did, but wrapped the
ule in a negation. For example, observing a non-rule-following scene
n which there are objects in contact might inspire the rule that ‘‘no
ones are touching’’.

The resulting model guess accuracy is shown visualized in Fig. 5a.
e distinguish between two possible decision mechanisms: (1) Taking

he maximum a posteriori (MAP) estimate from a large posterior sample
(guessing in the event of ties), which we take as closer to a normative
ideal and (2) taking the accuracy of a single posterior sample, which
we take to be more consistent with the best-case-scenario output of
a process in which a given learner searches over hypotheses driven
by a combination of prior complexity and fit. Under all models, the
MAP lines up with the correct hypothesis more often than participants
do (15–37% based on children’s active learning and 20–51% based on
adults’, recalling that children guessed correctly of 11% of trials and
adults on 28% of trials). For instance, under a uniform-weighted prior
sample, the PCFG MAP is correct on 15% of all children’s trials and 20%
of all adults’ trials. Note that since these simulations use the same prior
sample, the small differences we see are due to the different learning
data generated by children and adults. However, accuracy improves
substantially and better reproduces the empirical child–adult accuracy
difference when we use samples based on reverse-engineered weights
that reproduce the qualitative properties of other participants in the
same agegroup (see Appendix A and Fig. 7). For age-appropriate prior
samples, the PCFG guesses correctly on 18% of children’s trials and
32% of adults’ trials. Using an age-inappropriate ‘‘flipped’’ prior sample
(i.e. child-like weights for adults and adult-like weights for children)
obliterates this difference, resulting in 23% for children and 22% for

adults. We see a similar pattern for the IDG algorithm, but higher
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Fig. 7. Visualization of (a) child-like and (b) adult-like PCFGs, reverse engineered to produce rules with empirical frequencies matched to children’s and adults’ guesses. A rule
is produced by following arrows from ‘‘Start’’ according to their probabilities (line weights and annotation), replacing the capital letters with the syntax fragment at the arrow’s
target and repeating until termination.
Table 2
Accuracy of rule guesses by simulation models.

Algorithm Prior Accuracy MAP (%) Accuracy Posterior Sample (%)

Children’s data Adults’ data Fit Children’s data Adults’ data Fit

PCFG Uniform 14 ± 16 20 ± 14 −229 9 ± 5 12 ± 5 −226
PCFG Agegroup 17 ± 17 32 ± 15 −230 11 ± 7 20 ± 7 −225
PCFG Flipped 22 ± 20 22 ± 15 −231 15 ± 9 15 ± 6 −229
IDG Uniform 26 ± 22 39 ± 21 −226 9 ± 5 14 ± 6 −217
IDG Agegroup 36 ± 25 51 ± 18 −226 14 ± 8 24 ± 8 −212
IDG Flipped 26 ± 20 52 ± 18 −230 13 ± 8 23 ± 8 −223

‘‘Children’’ and ‘‘Adults’’ columns show the M ± SD% by-subject accuracy of the requisite algorithm.
‘‘Fit’’ shows the log likelihood for a logistic mixed-effects regression using model accuracy to predict if the
participant guesses correctly on each trial.
b
p
i

ccuracy across the board. The IDG achieves the best accuracy on both
hildren’s and adults’ trials, guessing over half of the hidden rules
orrectly (51%) in the case of adults’ trials. However, achieving this
evel requires maximizing over the full sample, while we have argued
hat process level accounts are more likely to yield behavior closer
o posterior sampling (Table 2, right hand columns). Indeed posterior
amples provide a visually closer fit to the by-rule guess rates (Fig. 5a).

To check what provides the better account of participants trial-by-
rial accuracy patterns, we fit logistic mixed-effect regression models
sing the response under each algorithm and prior combination to
redict each participant’s by-task probability of guessing correctly,
ncluding random effects for both rule type and participant. For the
aximization models, we softmaxed the posterior with a low ‘‘temper-

ture’’ parameter (𝜏 = 1∕500, Luce, 1959), meaning predictions were
close to 1 or 0 excepting where multiple hypotheses were tied, where
they were close to 1∕𝑁 for the 𝑁 tied hypotheses. The ‘‘Fit’’ columns
f Table 2 shows the log likelihood for each of these models, revealing
hat participants’ correct judgments were most in line with posterior
ampling under an IDG prior, with age-appropriate production weights
log likelihood = 211.5, 𝛽 = 5.44 ± 1.74, 𝑍 = 5.99, 𝑝 < .001) improving

over a baseline fit of −234.3 for a model with only intercept and
random effects.

Modeling rule guess
As a more direct test of the constructivist PCFG and IDG models’

ability to explain participants’ free response guesses, we also attempted
12

i

to estimate the probability of each approach generating exactly the
participant’s encoded guess based on their active learning data.

By definition, all 87% of trials in which participant gave an un-
ambiguous rule, we were able to encode in our concept grammar, so
all have nonzero support under a PCFG prior. Due to the stochasticity
we assumed in our likelihood function, all possibilities also nonzero
have posterior probability, meaning they are guaranteed to appear in
a sufficiently large PCFG sample.9 However, in practice it is impossible
to cover an infinite space of discrete possibilities with a finite set of
samples, meaning there are a substantial number of cases in which
we did not generate the participants’ guess. The proportion of rules
that were generated at least once in 10,000 samples with agegroup
fitted weights was highest for the IDG with fitted weights (69% for
children 76% for adults), decreasing to 49% and 62% using uniform
weights. This was still higher than for the PCFG which generated 42%
for children’s and 53% for adults’ guesses with the fitted prior weights
and 45% for children’s and 50% for adults’ rules from a uniform prior.

Table 3 details model fits to participants’ guesses. The IDG is again
the stronger hypothesis generation candidate, assigning higher proba-
bilities on average to the rules that participants provided. As expected,

9 They would not necessarily appear in an infinitely large IDG sample
ecause many of the more complex concepts are merely possible without being
ositively present. For example ‘‘there is a red and fewer than five small blues’’
s consistent with Fig. 1b but would never be generated by the IDG procedure
nspired by these scenes.
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Table 3
Model probability of producing participants’ exact rule guesses.

Algorithm Prior Children Adults

Mean (%) N best Mean (%) N best

PCFG Uniform 3.3 ± 5.0 13 7.2 ± 7.2 10
PCFG Agegroup 4.3 ± 7.4 13 12.5 ± 12.0 15
IDG Uniform 3.4 ± 5.1 10 8.7 ± 8.6 2
IDG Agegroup 4.5 ± 7.1 15 14.1 ± 13.6 22

Note: N best columns show the number of participants in each agegroup best fit by
each model.

the variants of the PCFG and IDG with agegroup-consistent production
weights were better aligned with participants’ guesses than variants
with uniform (or mismatched) weights. However, all models produced
adults’ guesses with a much higher probability than children’s guesses.

Fig. 8a additionally visualizes participants’ guesses in terms of their
posterior probability under PCFG and IDG sampling and compares this
to what we would expect if guesses are samples from the posterior
(black line), the result of finding the maximum a posteriori guess of the
10,000 considered hypotheses (dashed line) or else are simply samples
from the prior (dotted line). This visualization shows that, under all the
models we consider, adults’ guesses are distributionally more consistent
with posterior sampling than posterior maximization, while children’s
appear somewhere between prior and posterior sampling.

To better understand why we were not able to generate all of
participants guesses, we also examined those frequently generated by
the models and contrasted these with those never generated under
any of our model variants. Table 4 shows two examples of each
for children and adults and the full set is available in the Online
Repository. Unsurprisingly, the participant guesses our models failed
to generate tended to have more complex forms and a concomitantly
low generation probability. Assuming uniform weights, the syntax of
the children’s guesses that we did generate had marginally higher
log prior generation probabilities Median (Inter-Quartile Range) −10.2
(5.0) than those we did not were unable to generate −13.9 (16.31)
(Mood’s median test, 𝑍 = 1.9, 𝑝 = 0.053). For adults this difference
was more pronounced −9.9 (5.0) compared to −14.9 (14.0) (Mood’s
median test, 𝑍 = 4.5, 𝑝 =< .001).10 This examination revealed that
one class of rules our participants guessed but our models did not
generate were those that could be expressed much concisely with more
powerful logical grammar. For example, we saw a number of cases
of universal quantification over feature values, such as ‘‘one of each
color’’, mentioned in both a child and an adult guess in Table 4. This
kind of rule can be expressed parsimoniously in second order logic
with a single universal quantifier over color properties while in our
grammar it required a separate quantification for each color. The fact
that children produced about as many apparently higher-order-logic
rules as adults seems to suggest that the PCFG we assumed, despite its
ostensively complex structure, is still a simplification of the basis from
which children constructed their ideas (cf. Piantadosi et al., 2016).

Generalizations

We next examine our models’ ability to account for participant’s
generalization performance. As with the guesses, we first examine pat-
terns of accuracy by comparing participants to simulated constructivist
PCFG and IDG learner benchmarks before fitting a range of models to
the specific generalizations participants made.

10 Note that these prior generation probabilities are a lower bound on the
hance of generating a particular semantic rule since many syntactic forms can
xpress the same semantic content (Fränken et al., 2022). This captures why
ome relatively frequently generated semantic classes of guess nevertheless had
low probability for each specific syntactic expression.
13
Modeling generalization accuracy
To do this, we use their requisite predictive distributions to model

labeling generalizations 𝐥∗ to the set of test scenes 𝐝∗

𝑃 (𝐥∗|𝐥;𝐝,𝐝∗) = ∫𝐻
𝑃 (𝐥∗|𝐻 ;𝐝∗)𝑃 (𝐻|𝐥;𝐝) 𝑑𝐻 (4)

≈
∑

ℎ∈�̂�

𝑃 (𝐥∗|ℎ;𝐝∗)𝑃 (ℎ|𝐥;𝐝) (5)

Provided with the active learning data generated by the human
articipants, both performed in the human range at generalization.
s with predicting the guesses, taking the marginally most likely
eneralization labels over a posterior weighted sample of agegroup-
ppropriate IDG prior productions performed best overall and repro-
uced the difference between children’s and adults’ generalization ac-
uracies (68.8% ± 20.1% and 74.2% ± 21.7%). The uniform-production
DG still performed slightly better than the PCFG, generalizing at
5.2% ± 19.3% from children’s active learning data and 69.0%±21.0%
rom adults’. Using agegroup-appropriate priors, the PCFG also repro-
uces the empirical difference between children’s and adults’ accuracy:
2.8% ± 19.8% for children’s trials and 68.8% ± 20.9% for adults’
rials. Using the PCFG with uniform production weights yielded ac-
uracies of 61.4%±19.6% for children’s and 63.5%±20% for adults’
ata.

The stronger generalizations of the IDG compared to the PCFG
eplicates the findings of Bramley et al. (2018) and extends this to
hildren as well as adults. Intuitively, this is because the bottom-up
echanism ties the hypotheses generated to features of the learning

ases, narrowing in on plausible hypotheses more efficiently. More
roadly, these simulation results underscore the inherent difficulty of
his task in particular and open-ended inductive inference in general.
he PCFG and IDG were not statistically better or worse than par-
icipants at any rule inference after Bonferroni correction with the
xception that the IDG outperformed children on rule 4 𝑡(96) = 4.7, 𝑝 <
0001. Thus strikingly, even in this ‘‘small world’’ with known and
ully observed features, and even allowing simulations to sample and
aximize over implausibly large numbers of hypotheses, we could not

obustly outperform human adults.11 This also reveals that building
n human inductive biases boosts generalization performance (cf Lake
t al., 2017) and the idea that adults’ have formed stronger inductive
iases than children goes some way to explain differences in how they
eneralize.

A complicating factor is that children generated different learning
ata to adults. However, our PCFG and IDG simulations suggest expo-
ure to different data cannot explain most of the accuracy differences
etween children and adults. Using identical production weights and
he scenes generated by adults and children led to only small differ-
nces in accuracy for the PCFG and moderate for the IDG, while using
‘‘flatter’’ set of productions fit to match childlike rules, and a more

‘peaked’’ set fit to adults’ rules, better reproduces the accuracy differ-
nces. We take this to suggest hypothesis construction differences drive
large portion of the differences in children’s and adult’s inductive

nferences.

odeling specific generalizations
A standard benchmark for models of concept learning is a fit with

articipants’ generalizations to new exemplars. Thus, we compared a
ange of models’ ability to account for participant’s specific generaliza-
ions. The set of models we consider allows us to test our core claims
hat children’s and adults’ induced representations are symbolic and
ompositional, as opposed to statistical and similarity-based.

11 It is likely that other approximate inference methods, such as an MCMC
or greedy posterior search approach, could improve on this sample efficiency.
However they also introduce other challenges for the learner (i.e. escaping
local minima) and the modeler (getting good coverage of the response space
and aggregating auto-correlated samples).
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Table 4
Example guesses.

Agegroup Rule Example syntax log Prior
Uniform

log Prior
Agegroup

log(Likelihood) N/10k

Children ‘‘One is on top of the
other’’

∃(𝜆𝑥1 ∶ ∃(𝜆𝑥2 ∶
𝛤 (𝑥1 , 𝑥2 , stacked),),)

−9.5 −8.4 0 117

Children ‘‘Only different
colors’’

∀(𝜆𝑥1 ∶ ∀(𝜆𝑥2 ∶ ∨(= (𝑥1 , 𝑥2 , ID),¬(=
(𝑥1 , 𝑥2 , color))),),)

−9.8 −8.0 0 260

Adults ‘‘If there are multiple
small blocks.’’

𝑁≥(𝜆𝑥1 ∶= (𝑥1 , 1, size), 2,) −9.9 −19.6 0 609

Adults ‘‘There is at least one
small green triangle.’’

∃(𝜆𝑥1 ∶ ∧(= (𝑥1 , green, color),=
(𝑥1 , 1, size)),)

−13.8 −21.3 0 532

Children ‘‘They have to be
with all three
different colors’’

∃(𝜆𝑥1 ∶ ∃(𝜆𝑥2 ∶ ∃(𝜆𝑥3 ∶ ∧(∧(=
(𝑥1 , red, color),= (𝑥2 , green, color)),=
(𝑥3 , blue, color)),),),)

−22.3 −16.6 −2.0 0

Children ‘‘There has to be one
small blue piece and
there has to be more
than one piece’’

∃(𝜆𝑥1 ∶ 𝑁≥(𝜆𝑥2 ∶ ∧(= (𝑥1 , 1, size),=
(𝑥1 , blue, color)), 2,),)

−12.5 −11.3 0 0

Adults ‘‘When there is a
cone from each color
of the same size’’

∃(𝜆𝑥1 ∶ ∃(𝜆𝑥2 ∶ ∃(𝜆𝑥3 ∶ ∧(∧(∧(∧(=
(𝑥1 , red, color),= (𝑥2 , green, color)),=
(𝑥3 , blue, color)),= (𝑥1 , 𝑥2 , size)),=
(𝑥1 , 𝑥3 , size)),),),)

−20.5 −11.11 −2.0 0

Adults ‘‘one piece has to be
leaning on another’’

∃(𝜆𝑥1 ∶ ∃(𝜆𝑥2 ∶
∧(𝛤 (𝑥1 , 𝑥2 , contact),¬(=
(𝑥2 , upright, orientation))),),)

−18.5 −21.3 −3.9 0

Note N/10k shows how many times we generated this rule in 10,000 samples assuming agegroup-specific weights and counting any semantically
equivalent expressions.
Fig. 8. (a) Posterior probability of participants’ guesses under PCFG and IDG samples with agegroup weights. Full black line compares with posterior samples, dashed line with
election of the posterior maximum a posteriori hypothesis (or sampling from them if there are more than one), dotted line compares with samples from the prior. (b) Individual
eneralization model fits showing BIC improvement over baseline per trial (higher is better). Opaque points show mean±SE, faint points show individual fits, with triangles used

to mark where the model (of the 17 blind to the symbolic guess) is the best fit for that participant.
We fit a total of 18 models to the generalization data. All models had
between 0 and 2 parameters. For each model, we fit the parameter(s)
by maximizing the model’s likelihood of producing the participant data,
using R’s optim function. We compared models using the Bayesian
Information Criterion (Schwarz, 1978) to accommodate their different
numbers of fitted parameters.

The models we fit were:

• 1. Baseline. Simply assigns a likelihood of .5 to each general-
ization ∈ {rule following, not rule following} for each of the 8
generalization probes for each of the 5 learning trials.

• 2. Bias. Acts a stronger baseline by allowing participants to have
an overall bias toward or against selecting generalization scenes
as rule following. For this model, 𝑏 = 1 if > 50% of generalizations
predict the scene is rule following and 0 otherwise. The model is
fit using a mixture parameter 𝜆 to mix this modal prediction with
the baseline prediction of .5 𝑃 (choice) = 𝜆𝑏 + (1 − 𝜆).5.
14
• 3–8. PCFG {Uniform, Flipped, Agegroup} {No Bias, Bias}.
These models base their generalizations on the marginal like-
lihood that each generalization scene is rule following under
the Probabilistic Context Free Generation (PCFG) posterior 𝑟 =
𝑃PCFG(𝐥 ∗ |𝐥;𝐝,𝐝 ∗). ‘‘Uniform’’ uses a prior with uniform produc-
tion weights. ‘‘Flipped’’ uses a prior generated with mismatched
weights—that is, adultlike weights for children’s generalizations
and childlike weights for adults’ generalizations. ‘‘Agegroup’’ uses
a sample based on weights derived from other participants in
the same agegroup holding out the participants’ own guesses. In
each case, these predictions are then softmaxed using 𝑃 (choice) =

𝑒𝑟∕𝜏
∑

𝑟∈𝑅 𝑒𝑟∕𝜏
, with temperature parameter 𝜏 ∈ (0,∞) (Luce, 1959) op-

timized to maximize model likelihood. Large positive 𝜏 indicates
random selection. 𝜏 → 0 indicates hard maximization. Variants
with a bias term also mix this prediction with the subject’s modal
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response 𝑏 as in

𝑃 (choice) = 𝜆𝑏 + (1 − 𝜆) 𝑒𝑟∕𝜏
∑

𝑟∈𝑅 𝑒𝑟∕𝜏
. (6)

• 9–14. IDG {Uniform, Flipped, Agegroup} {No Bias, Bias}.
These models use the marginal likelihood of each generalization
scene as rule following under the Instance Driven Generation
based posteriors with variants as with the PCFG variants and
again fit with softmax parameter 𝜏 ∈ (0,∞).

• 15–16. Similarity {No Bias, Bias}. Inspired by Tversky’s sta-
tistical and similarity based contrast model of categorization (cf.,
Tversky, 1977), we used the inter-scene similarity between each
generalization scene and each training scene to compute the
relative average similarity of each generalization case to the
rule-following vs. the not rule-following training scenes. Simi-
larities were computed using the same procedure used in the
Active Learning section of the Results and detailed in Appendix C.
We computed the mean difference between rule-following and
not-rule following similarities as a 𝛥Similarity score for each
participant×trial×item combination. Positive scores mean gener-
alization item has a greater feature similarity to the rule follow-
ing learning scenes than the not rule-following learning scenes.
Negative scores mean the reverse. To convert these into choice
probabilities, we take a logistic function of these scores 𝑟 =
𝑒𝛥Similarity

𝑒𝛥Similarity+1
and again fit these 𝑟 values to maximize the likelihood

of participants’ choices using a softmax function with inverse
temperature parameter 𝜏 ∈ (0,∞). Intuitively, this model provides
a non-symbolic alternative account of generalization behavior.

• 17–18. Symbolic Guess {No Bias, Bias}. This model takes par-
ticipants’ free guess of the hidden rule, coded in lambda ab-
straction, and uses these directly to generate a prediction vector
𝑟 ∈ 𝑅 ∶{rule-following=1, not rule-following=0} for each scene. For
trials in which the participant does not provide an unambiguous
rule, the model assigns a .5 likelihood to each generalization
choice. These were again fit with a softmax parameter 𝜏 ∈ (0,∞).

A good fit for Symbolic Guess would support our core claim that
participants’ inductive generalizations are directly driven by their con-
structed symbolic ideas. Meanwhile, a better fit for Similarity would
suggest that generalizations are rather based on sub-symbolic feature
similarity, with participants guesses relegated to a supporting role as
rough symbolic re-descriptions of an ultimately sub-symbolic represen-
tation (e.g., Dennett, 1991; Johansson, Hall, & Sikström, 2008). To the
extent that our constructivist simulations reflect participants’ inductive
inference mechanisms, we expect the end-to-end PFG and IDG models
to also capture generalization patterns even though they are blind to
the individual participants’ explicit guesses. This also acts as a sanity
check for our approach for any readers skeptical about the validity of
self-report data.

We fit all models to the children’s and adults’ data, and then
separately to each individual participant. The full table of model fits
is presented in the Appendix (Table A.3). Individual level results are
highlighted in Fig. 8b. At the individual level, the PCFG + Bias and
IDG + Bias models performed no better than the unbiased PCFG or IDG
models, thus we omit these from Fig. 8b for simplicity.

In line with our core hypothesis, Symbolic guess + Bias is the best
fitting model of both children’s and adults’ generalizations outperform-
ing all the models we considered based just on only the learning data.
For children’s generalizations taken together, Symbolic guess + Bias has
BIC 2149, improving 490 over Baseline with bias term mixture weight
of 𝜆 = .26 and choice temperature parameter 𝜏 = 0.80. For adults, this
is BIC 1776 with a larger BIC improvement of 996 over Baseline, with
a 𝜆 = 0.08 indicating less bias and temperature 𝜏 = 0.50 indicating
tighter alignment with the guessed-rule’s predictions. Probing this bias,
we see children undergeneralized substantially on average, selecting
just 2.75 ± 1.42/8 scenes compared to adults’ 3.42 ± 1.03/8 (unknown
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to the participants, there were always 4 rule following generalization
scenes). Focusing on individual fits, the picture is mixed for children’s
generalizations, with 16/50 best fit by the Bias only model, followed by
15 by the Symbolic guess model, 9 by the Symbolic Guess + Bias model
and a further 7 by the fully random Baseline. No other model best fit
more than 2 children. For adults, 32/52 were best fit by Symbolic guess,
6 by Bias, 4 by Symbolic guess + Bias and no other model best fit more
than 2 participants.

If we restrict our comparison to models blind to the participant’s
symbolic guess then the IDG with the Agegroup-derived prior is the best
fitting model for both children and adults. In this set, at the individual
level, IDG Agegroup best fits the most adults (15/50), with 28/50 best
fit by one of the IDG variants, compared to 6/50 by a PCFG variant and
5/50 by a Similarity model. The majority of children were better fit by
Bias (25/54) or Baseline (13/54), but of the 16 individually better fit by
one of the inference models, 11 were best captured by an IDG variant, 3
by a PCFG variant and 2 by a similarity variant (see triangles in Fig. 8b
and Appendix Table A.3).

Overall, children’s generalizations were much harder to predict than
adults’ with end-to-end constructivist accounts of their generalizations
performing close to Baseline. This is partly to be expected since our
child-like construction weights inherently produce a very diverse set of
guesses and correspondingly diffuse set of generalization predictions.
However, conditioning on Children’s symbolic guesses we were able
to predict their generalizations far better than by Similarity, Bias or any
other model we considered. Adults’ generalizations seem more straight-
forwardly driven by their symbolic guesses, with better individual fits
on average using their guess directly without adjusting by any bias
toward or against predicting scenes to be rule-following. This makes
sense: with a clear hypothesis in mind, there is little rationale to select
more or fewer than the generalization scenes consistent with that rule.

As with the free rule guesses, the IDG was robustly more aligned
with participants’ generalizations than the PCFG, particularly for adults,
and particularly when using agegroup-appropriate weights rather than
Uniform or age-inappropriate Flipped production weights. Thus, this
model comparison also supports the idea that participants were inspired
by patterns present in the learning data, such as the objects and
relations in the initial positive example. However, this does not appear
to be a developmental difference per se, with both children’s and adults’
judgments better accounted for by the IDG than our PCFG algorithm
across all analyses.

These results support a key aspect of the constructivist framework,
participant’s idiosyncratic symbolic guesses seem to do the work in
driving generalizations, rather than these being driven by family re-
semblance in the features of the scenes. The constructivist account
anticipates that generalization patterns are dependent on what concept
the learner has arrived at by the end of learning, and our end-to-end
models of this process demonstrate the sheer breadth of concepts that
learners can reasonably end up with in this task.

Scene generation

We finally turn to participants’ scene generation. We compare par-
ticipants generated scenes to several benchmarks before comparing a
set of models of scene generation to test the idea that participants
adapted earlier scenes to isolate and test the role of features mentioned
in their hypotheses.

Comparison with information norms
According to an information gain analysis, children’s and adults’

scene generation resulted in differences in the quality of the total
evidence generated. For example, using the unweighted PCFG sam-
ple, prior entropy is 7.74 bits and children’s evidence produces an
information gain (reduction in uncertainty) of 1.93 ± 0.45 bits while
adults’ data average an information gain of 2.11 ± 0.38 bits 𝑡(102) =
2.12, 𝑝 = 0.035 (see Fig. 9). Relative to the agegroup-fitted PCFG priors,
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a

Fig. 9. Uncertainty reduction under different priors. Triangles = random scene selec-
tion. Circles = greedy expected information maximizing scene selection. ‘‘ + ’’ symbols
= Ideal teaching scenes.

the difference in information gains is rather larger, with children’s
scenes leading to information gain at 2.28 ± 0.66 bits (prior entropy
7.87 ± 0.05), and adults’ at 2.96 ± 0.64 (prior entropy 7.77 ± 0.04)
𝑡(102) = 5.3, 𝑝 < .0001. Under the flipped priors – that is, taking
the adultlike PCFG prior for children and childlike PCFG prior for
adults – children’s tests look more informative than under their own
prior, generating 2.58 ± 0.68 bits, and adults’ tests slightly less infor-
mative than under their own prior 2.55 ± 0.57 bits, eliminating the
statistical difference 𝑡(102) = 0.24, 𝑝 = 0.81. On the face of it, this
is evidence against the idea that children’s more elaborate hypothesis
generation and concomitantly flatter construction weights are driving
them rationally toward more elaborate testing choices. However, as we
noted information-theoretic analyses as limited in what can reveal. It
is predicated on an implausibly complete representation of uncertainty
that we approximated by using a large sample of prior hypotheses,
while we have characterized constructivist learning as driven by more
focal testing of a handful of similar possibilities.

We also compared participants against three scene selection bench-
marks. In Fig. 9, black triangles show the reduction in uncertainty
resulting from supplementing the initial example with 7 scenes se-
lected at random from among participant generated scenes. Circles
show the result of repeatedly selecting from a sample of 1000 of the
participant-generated scenes, greedily selecting whichever one maxi-
mizes the expected information gain with respect to the prior at that
test. Plus symbols show the reduction in uncertainty resulting from
observing scenes selected by an ideal teacher—i.e. the seven scenes
that, in combination with the initial example, best reveal the true con-
cept.12 One striking feature of these benchmarks is the low performance
of the uncertainty-driven norm under all PCFG priors. Expected in-
formation gain slightly outperforms participants and random selection
assuming the agegroup priors, but is actually worse than random scene
selection under a flat uniform prior sample. This poor performance
stems from the fact that the prior space of hypotheses is just so
large and symmetric, making most scenes similarly informative at first.
Furthermore, a large class of PCFG hypotheses predict that all possible
scenes will be rule following, or that all possible scenes will be non-
rule following. These hypotheses are incorrect and rarely entertained
by participants, yet have an outsized effect on the greedy selection
of scenes that maximize expected information gain. Scenes selected to
maximally convey each concept are far more informative, highlighting
gulf between self-teaching and optimal teaching in inductive settings.

Fig. 10 compares an example scene sequence selected by a child
and an adult against a random selection from all participant scenes,

12 We selected these by generating 10,000 sets of seven scenes for each rule,
nd selecting the set that best reduced entropy.
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uncertainty-driven selection and those selected to maximally convey
the concept. This visual comparison highlights how human scene selec-
tion involves recognizable repetition and patterning that look quite un-
like random and uncertainty-driven selection. In particular, several of
the scenes selected to minimize expected uncertainty are very complex
compared to participants’ selections. Theoretically, uncertainty-driven
scenes do an excellent job of dividing the hypothesis space, shown by
their ceiling-level EIG (Fig. 10f). However, since the target rule in this
case turns out to be simple, this sophistication does not benefit the
uncertainty-driven learner overall (Fig. 10g).

Models of scene selection
We hypothesized participants might adopt incremental hypothesis-

driven testing strategies to deal with the challenges of the inductive
setting. We suggested this might involve testing nearby confirmatory
generalizations of a focal hypothesis (Klayman & Ha, 1989), or con-
trasting nearby variants to this hypothesis (Oaksford & Chater, 1994).
In either case, we argued this would result in patterns of similarity (re-
tention of rule-critical elements and creation of minimal contrast pairs)
and simplification (removal of non-rule critical elements) quite dis-
tinct from the predictions of information-driven or uncertainty-driven
testing. We indeed observed anchoring within learning problems. In
particular, participants scenes appeared to be anchored both persis-
tently to the initial positive example and sequentially (Fig. 6c). We
here operationalize this by creating a family of scene adaptation models
that assume learners create new scenes by mutating either the initial
positive example, or their own previous scene. We compare these
against baselines that rather assume learners generate each new scene
from scratch. Concretely, the models we fit were:

1. Generate {Uniform}: Adds a random number of objects to
each scene. Uniform assumes each object has uniformly se-
lected features (color, size, orientation and groundedness).13

This model has zero fitted parameters so acts as an overall
baseline. Otherwise with this and all subsequent models we
assumed each feature was sampled from its mean prevalence to
act as a stronger baseline.

2. Generate Simple: Adds a number objects to each scene drawn
from an exponential distribution (truncated to the maximum
allowable number of objects) with fitted rate parameter 𝜆, se-
lecting the features of these objects at random. This models a
tendency to create simple scenes containing fewer objects, with
the mean number of objects per generated scene given by 1

𝜆 .
3. Adapt Initial {Simple}: Assumes the learner creates each new

scene by adapting the initial scene. Concretely, we assume the
learner samples either the same number of objects as in the
initial scene with probability 𝜂, or a random number with prob-
ability 1 − 𝜂. The objects in new scene are assumed to be a
mixture of the features of the matching object in the initial
scene (replicating the original feature with probability 𝜂) or
selected randomly from their support (with probability 1 − 𝜂).
We marginalize over all possible object mappings between scene
𝑖 and 𝑗. 𝜂 = 1 corresponds to perfectly reliable copying of the
number and nature while 𝜂 = 0 denotes always resampling the
feature. The simple variant assumes the number of objects in the
scene, if not drawn from the inspiration scene, is drawn from an
exponential distribution with parameter 𝜆 as above.

4. Adapt Previous {Simple}: This model works as above but uses
the preceding scene rather than the initial scene as its starting
point.

13 We do not attempt to predict the relational features or absolute positions
in this analysis.
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Fig. 10. Example sequences for the ‘‘There is a red’’ problem. (a) A child’s scenes (b) An adult’s scenes (c) Random selection from all participant generated scenes (d) Uncertainty
driven selection from all participant scenes (e) Optimal scene selection for communicating the concept. (f) Expected Information Gain and (g) achieved uncertainty reduction for
sequences in a–e.
5. Adapt Mixed {Simple}: This model simply mixes the predic-
tions of Adapt Initial and Adapt Previous to capture the behavior
of a learner who sometimes adapts the initial scene (with prob-
ability 𝜃) or by their own preceding scene with probability (1 −
𝜃).

We fit the models to each agegroup, and separately every individual
participant (see Appendix B for details). Table 5 shows the resulting
agegroup-level BICs the number of individuals best fit by each model
and the spread of parameter values for each. Adapt Mixed Simple was
the best model for both agegroups overall and the best model for 48% of
children and 38% of adults. No participant was better fit by Generate
or Generate Simple, capturing that every single participant exhibited
some degree of positive anchoring on the number or nature of the
earlier scenes. 80% of children and 96% of adults additionally showed
an additional preference for simple scenes. Almost half of adults (48%)
were best characterized as adapting the previous scene than repeatedly
adapting the initial scene or a mixture of both while this was only
true for 19% of children. Fitted simplicity rate 𝜆 was larger for adults
(≈ 0.5) than children (≈ 0.3) capturing their stronger tendency to create
scenes with fewer objects. Fidelity of copying features of inspiration
scenes 𝜂 was similar for children and adults (≈ .3). Note that this is
an underestimate due to the need to marginalize over many possible
object–object mappings and two potential inspiration scenes. Mixture
parameter 𝜃 was below .5 on average for both children and adults
suggesting dominance of the initial scene over the previous scene.

In sum, this model comparison supports the idea that learners
adapted their earlier tests often retaining the same number of objects
and tending to keep many of the same features. Adults were more likely
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than children to reduce the number of objects and had more tendency
to adapt sequentially, gradually traveling further away from the initial
example.

General discussion

In this paper, we explored children and adults’ active hypothesis
generation and inductive inference in an interactive task where the
space of possibilities and actions is compositional, open and practically
unbounded. Our results are rich and nuanced but broadly we found
that:

1. Children’s guesses and tests were more complex than those of
adults.

2. We could synthesize the diversity and distribution of children
and adults’ guesses with a constructivist – symbolic, gener-
ative – inference framework, reproducing both their sporadic
correct guesses but also capturing the spread of their incorrect
ideas and offering a framework for modeling differences between
children’s and adults’ inductive inference.

3. Children’s guesses reflected less fine-tuned construction mech-
anisms than adults’, producing more diversity but were conse-
quently less predictable.

4. Both children’s and adults’ hypothesis generation appeared data-
inspired, shown by better fit throughout our model-based anal-
yses by our Instance Driven Generation account – inspired by
patterns in the learning scenes – over our approximately nor-
mative (PCFG) account—that generated hypotheses a priori and
weighted them with the evidence.
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Table 5
Models of scene generation.

Children

Model BIC/scene N Best 𝜆 𝜂 𝜃

Generate Uniform 40.2 0
Generate 34.9 0
Generate Simple 30.7 0 0.34 ± 0.1
Adapt Initial 30.4 2 .29 ± .19
Adapt Previous 30.1 8 .25 ± .18
Adapt Mixed 30.0 1 .27 ± .19 .40 ± .29
Adapt Initial Simple 29.3 7 0.33 ± 0.11 .34 ± .16
Adapt Previous Simple 29.0 10 0.34 ± 0.13 .31 ± .17
Adapt Mixed Simple 28.7 26 0.34 ± 0.12 .33 ± .17 .40 ± .24

Adults
Model BIC/scene N Best 𝜆 𝜂 𝜃

Generate Uniform 32.8 0
Generate 27.8 0
Generate Simple 23.1 0 0.50 ± 0.18
Adapt Initial 23.6 0 .23 ± .14
Adapt Previous 23.4 1 .21 ± .13
Adapt Mixed 23.3 1 .21 ± .13 .35 ± .26
Adapt Initial Simple 22.4 5 0.50 ± 0.20 .29 ± .12
Adapt Previous Simple 21.9 24 0.54 ± 0.30 .23 ± .13
Adapt Mixed Simple 21.8 19 0.54 ± 0.27 .24 ± .13 .32 ± .25

Note: BIC/scene shows the fit of the model at the agegroup level divided by the number of scenes for easier comparison. 𝜆 (simplicity), 𝜂
(fidelity) and 𝜃 (mixture) show 𝑀 ± 𝑆𝐷 of best fitting model parameters variant across subjects. Boldface indicates the best fitting model.
5. The logical form of both children and adults’ symbolic guesses
predicted their generalizations to new scenes far better than
feature similarity.

6. Both children and adults scenes generation seemed to involve
modifying previous scenes, with adults doing so more systemat-
ically and with more tendency to simplify them.

We now discuss these results more broadly, first highlighting some
limitations, then expanding on what we see as the implications of this
work for theories of concepts and of development and finally pointing
to some future directions.

Limitations

Experimental control
While this task and new dataset provide an exceptionally rich win-

dow on inductive inference, some of what is gained in open-endedness
is lost in experimental control. There is considerable residual ambiguity
about the extent that differences in active learning shaped differences
in hypothesis generation and visa versa. One way to try and partial
this out could be to run more experiments that fix the evidence and
probe the hypotheses generated, or that fix the hypotheses in play and
probe what evidence is sought. However, we have argued that such con-
strained tasks run the risk of short-circuiting natural cognition: Learners
may struggle to test hypotheses they did not conceive themselves, and
are known to struggle to use data they have not generated to evaluate
their hypotheses (Markant & Gureckis, 2014; Sobel & Kushnir, 2006).
Sole focus on scenarios that fix one or other aspect of the inductive
inference loop may provide a misleading perspective on end-to-end
active inference in the wild. We feel our open ended task provides a
valuable complementary perspective. In future work hope, we plan to
elicit more fine-grained online measures of learners’ thought process—
e.g. asking them to list their hypotheses after each guess or describe
how they construct test scenes. This would support comparison of
process-level accounts of both hypothesis adaptation and active search
and allow identification of individual differences.

Theoretical expressivity
There are many ways we could have set up the primitives, param-

eters and productions of our PCFG and IDG models. This makes for a
dangerously expressive set of theories of cognition. We do not claim to
have explored this space exhaustively here but rather that our modeling
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lends support to the idea that some symbolic and compositional process
drives children and adults’ active inductive inferences about the world.
That is, we can explain the variability and productivity of human
hypothesis formation in symbolic terms. Identifying the computational
primitives of thought may not be a realistic empirical goal since a
feature of constructivist accounts is their flexibility. Learners can grow
their concept grammar over time, caching new primitives that prove
useful (Piantadosi, 2021). Moreover, it is well known many different
symbol systems can mimic one another (Turing, 1937), meaning that
expressivity alone cannot distinguish between them. Since, we expect
different learners to take different paths in an inherently stochastic
learning process, this limits universal claims about representational
content.

Feature selection
We assumed our scenes had directly observable features and cued

these to participants in our instructions. However, a number of re-
cent models in machine learning combine neural network methods for
feature extraction with compositional engines for symbolic inference,
creating hybrid systems that can learn rules and solve problems from
raw inputs like natural images (cf. Nye, Solar-Lezama, Tenenbaum,
& Lake, 2020; Valkov, Chaudhari, Srivastava, Sutton, & Chaudhuri,
2018). We see these approaches as having promise to bridge the gap
between subsymbolic and symbolic cognitive processing.

Elicitation differences between children and adults
One potential concern is that the complexity of children’s guesses

relative to adults stems partly from their being collected verbally and
in the presence of an experimenter rather than typed during an online
experiment. Speaking carries different cognitive demands than typing
and may lead to children simply responding in a more verbose way than
adults. While we cannot rule this out, we do not think this is a major
concern. Adults were well compensated for accuracy, meaning their
motivation was primarily to be correct rather than brief. The semantic
content of both children’s and adults’ rules were extracted through our
coding of them into lambda calculus meaning that surface differences
in concise expression can be separated from logical complexity. Fur-
thermore, children’s guesses were not the only thing that was more
elaborate about their behavior. They were also more elaborate in their
active testing choices, producing more complex scenes despite having
to create these in the same manner as adults. Since the testing interface
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was reset on each trial, this complexity took more effort, with children’s
scenes requiring substantially more clicks and more time to produce
than adults’.

Use of verbal protocols
Another worry about our use of free responses is that they rely on a

capacity for precise linguistic expression not to mention the assumption
that learners have insight into the structure of their own concepts. It
is known that children’s vocabularies differ from adults’, raising the
concern that some of our results reflect language use rather than the
concepts being articulated. While our artificial environment contains
only simple objects and basic features that are familiar to even young
children, there is evidence that children’s speech does not distinguish
as well among quantifier usage (e.g., all, each, every) until late in child-
hood (Brooks & Braine, 1996; Inhelder & Piaget, 1958). Thus, it could
be that linguistic imprecision is behind some of the differences between
children’s and adults’ guesses. For instance, this seems like a potential
explanation for the lack of any exactly correct guesses from children
about the quantifier-dependent rule 4 ‘‘exactly one is blue’’. However, a
closer look at responses reveals that only 11/47 children guessed a rule
that mentioned blue at all. Meanwhile 37/50 of adults’ rules mentioned
blue, but all but seven of these were wrong about the particulars of the
quantification. In many cases other potential quantifications were not
ruled out by adults’ testing. For instance, several subjects never tried
adding more than one blue object to a scene and later responded that at
least one object must be blue. Thus, it seems that children’s rules simply
picked out different features of the scenes than adults. An interesting
question is whether, in the cases where a child’s guess is logically
inconsistent with some of their learning data, this is because their
representation itself is imprecise, or because their verbal description
imprecisely describes their representation. Another possibility could be
that adults are better introspectors than children, better able to ‘‘read
out’’ the structure of their own representations (Morris, 2021). While
these are intriguing possibilities our current experiment cannot fully
resolve these explanations.

Implications for theories of concepts

Psychological theories of concepts have oscillated between symbolic
accounts – that seek to explain conceptual productivity and creativity
– and similarity accounts—that seek to explain how concepts drive
probabilistic generalization. The constructivist framework is based in
the symbolic camp, however it inherits many of the advantages of
similarity accounts by maintaining a relationship with probabilistic
inference embodied by the stochastic mechanisms of generation and
search. Thus, we see our findings as support for recent claims that
higher level cognition utilizes some form of stochastic generative sam-
pling to approximate rational inference (Bramley, Dayan et al., 2017;
Sanborn et al., 2021; Zhu, Sanborn, & Chater, 2020) and that this might
also explain aspects of human cultural and technological development
that take place over populations and multiple generations (Krafft,
Shmueli, Griffiths, Tenenbaum, et al., 2021).

While neither the PCFG or IDG are oven-ready process models of
human concept formation, they provide a useful starting point for
thinking about process accounts. The PCFG framework describes nor-
mative inference in the limit of infinite sampling, but also provides a
mechanism for both generating and adapting samples. The IDG is a
hybrid that seeds hypotheses by trying to describe patterns that are
present in observations rather than merely possible, making it more
sample-efficient as a brute force approach to inference in situations
where a learner already has some positive or demonstrative evidence of
a concept. However its success is dependent on the learner generating
or encountering scenes that exemplify and isolate causally relevant
features. With enough evidence both approaches should favor the
ground truth but with little evidence the PCFG will tend to entertain
many concepts that the IDG does not.
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While the IDG captured the data better here, it is not a complete ac-
count because, even with instance-inspired stating point, we still need
to explain how a learner adapts in light of new evidence. Following a
number of recent research lines (Bramley, Mayrhofer, Gerstenberg &
Lagnado, 2017; Dasgupta, Schulz, & Gershman, 2017; Ullman, Good-
man, & Tenenbaum, 2012), we see incremental mutation of one or a
few focal hypotheses in the light of evidence as a promising approach.
For instance, a learner might use an observation to generate an initial
idea akin to our IDG, but then explore permutations to this to generate
new scenes to test (Oaksford & Chater, 1994), and to account for these
tests (Fränken et al., 2022). While older models like RULEX (Nosofsky
& Palmeri, 1998; Nosofsky et al., 1994) provide candidate heuristics for
achieving such a search over theories, their long run behavior lacks a
clear relationship with computational-level rationality (Navarro, 2005).
However, if a learners’ adaptations approximate a valid approxima-
tion scheme, for instance accepting proposed permutations with the
Metropolis–Hastings probability max(1, 𝑃 (ℎ

′)
𝑃 (ℎ𝑡) ) (Bramley, Dayan et al.,

2017; Dasgupta et al., 2016; Hastings, 1970; Thaker et al., 2017), they
can start to explain why more probable hypotheses are discovered more
often as well as explaining probability matching and order effects are
inevitable consequences of approximation (see Fränken et al., 2022).
Since the endpoint of an MCMC search approaches an independent
posterior sample, we would expect a population of such searchers
to end up with a set of hypotheses that look like posterior samples.
Moreover, since individual searchers have finite time to search, we
would expect order effects and dependence in their ideas over time.
To the extent that participants deviate from a probabilistically valid
approximation scheme, for instance ‘‘hill climbing’’ or accepting only
strictly better fitting ideas, we might also explain how they can get
stuck in local optima and exhibit mal-adaptive order effects like garden
paths (Gelpi, Prystawski, Lucas, & Buchsbaum, 2020). Taking the idea
that earlier hypotheses carry information about older evidence and
inference, we might also think of a population of such hypotheses as
a kind of particle filter (Bramley, Dayan et al., 2017; Daw & Courville,
2008). While acting primarily as a computational level norm, the PCFG
prior provides useful infrastructure for hypothesis search. For example,
prior production weights can be used to adapt an existing hypothesis
by partially ‘‘regrowing’’ it (Goodman et al., 2008). Furthermore, prior
production weights implied by a generative prior mechanism combined
data likelihoods allows for the principled acceptance or rejection of
new proposals in an MCMC-like search scheme. This could result in
much greater sample efficiency than either the PCFG or IDG presented
here, and it would be interesting to consider combinations of prior-
or instance-driven initializations with permutation-based search. For
this to become a fully satisfying account of constructivist inference
this would need to be paired with a mechanism for scene generation
in line with those we sketch in Fig. 3c&d, so explaining anchoring,
order effects, probability matching and confirmation bias in a unified
account (Klahr & Dunbar, 1988).

Our modeling of generalizations revealed that there is no straight-
forward family resemblance between the features of rule-following
training scenes (generated by the participant) and rule-following gen-
eralization scenes (as pre-selected for the experiment). This resulted in
the Similarity model performing at chance and also being completely
uncorrelated with participants while all our symbolic model variants
received support. While this is far from an exhaustive comparison
with sub-symbolic concept models, even a successful similarity-driven
account of generalizations would only account for half of the behavior
in this task. As well as generalizing systematically, participants gave
detailed natural language descriptions of their ideas. The majority of
these we could convert into logical statements (86%) that predicted
most generalizations (72%: children, 84%: adults) and were consistent
with the majority of their learning data (71%: children, 87%: adults).
Any subsymbolic account of concepts would essentially need to be
paired with an explanation for how people generate these verbal de-

scriptions of their non-symbolic concepts that nonetheless reflect their
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use (cf. Dennett, 1988). Arguably, this task is no easier than the one
of generating a symbolic hypothesis about the nature of the world in
the first place. Thus we feel that our results are more straightforwardly
explained by our symbolic account whereby the logical structure of
the hypotheses participants describe is actually the causal mechanism
driving their generalizations rather than some form of computationally
expensive but behaviorally impotent retrospective confabulation (cf.
Johansson et al., 2008). Our generalization analysis also showcases
the difficulty of predicting human behavior in a setting where there
is such a large and long-tailed space of similarly plausible rules an
individual might be using to drive their generalizations. Modeling
symbolic inference directly from the learning input had some predictive
power for adults’ generalizations, but simply by asking participants for
their best guess, we could immediately get a far better handle on how
they would generalize.

While we did not provide a fully satisfying model of scene gen-
eration, we did show that participant-generated scenes were better
understood as adapting earlier scenes than as being created from
scratch. We argued that this is consistent with testing driven by one or
a couple of conceptually neighboring hypotheses, either generalizing
their predictions or contrasting them. This is in some ways a return
to pre-Bayesian ideas in philosophy of science in that testing permits
falsification but not confirmation. Even when a hypothesis ℎ survives
repeated confirmatory tests, or repeated head-to-head challenges from
local alternatives, we might think of it as gaining a degree of con-
firmation, but there always remains the spectre of potential future
falsification (cf. Popper, 1959). We think this better reflects the state of
a constructivist learner who cannot know, until discovering it, whether
some better hypothesis is waiting in the wings.

For a learner limited to a few hypotheses at a time, the approach
has clear virtues: It links the process of adapting a hypotheses with that
of coming up with new scenes to test and links the outcome of tests to
the subsequent inferential step of supplanting or reinforcing the current
favored hypothesis. Since learners are always reusing at least some
feature or other, it allows the learner’s two tasks to support the other,
with reuse of modified previous tests and minimal positive examples
minimizing the cognitive and physical costs of generating both new
tests and new hypotheses (Gershman & Niv, 2010).

Implications for theories of development

Our analyses revealed a variety of developmental differences. Chil-
dren’s guesses were more complex than adults’, and consequently we
could capture them with a significantly ‘‘flatter’’ generation process that
inherently produced a wider diversity of hypotheses. This is potentially
normative: Having been exposed to less evidence, with less idea what
conceptual compositions and fragments will be useful in understanding
their environment, we should expect children’s construction process to
be less fine-tuned. In other words, children are justified in entertaining
a wider set of ideas than adults. However, we noted there are several
algorithmic stories that could underpin this diversity: (1) children
might simply have hypothesis generation mechanism that embodies
a rationally flatter latent prior, (2) they might additionally explore
theory space more radically, over and above differences in the relative
credibility their latent prior actually attaches to different possibili-
ties (Gopnik, 2020; Lucas et al., 2014; Wu, Schulz, Speekenbrink,
Nelson, & Meder, 2018) or (3) we also considered that children’s gener-
ation mechanisms might be more dominated by ‘‘bottom-up’’ processes.
We take our comparison of PCFG and IDG to speak against option 3.
Adults’ hypotheses were, as far as we could tell, at least as anchored
to idiosyncratic patterns of their learning data as children’s. However,
these data do not distinguish clearly between options (1) and (2). To do
this, one would need to measure children and adults’ prior distributions
directly. If children’s guesses shift within a problem in a way that is
less sensitive to their own relative subjective probabilities than adults,
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this would support the idea that children’s hypothesis generation is
more ‘‘high temperature’’ exploratory than adults’ (Gopnik, 2020), over
and above differences in the flatness of their latent prior. Importantly,
while the endpoints of children’s theorizing were more diverse than
adults’, the cognition required to produce their hypotheses is still highly
systematic. Children were able to implement a stable-enough symbolic
generation or adaptation mechanism to produce meaningful symbolic
hypotheses on the large majority of trials, referring to the features and
relations they encountered. Even when their hypotheses did a poor job
of explaining all the learning data, the hypothesis construction process
did not break down entirely as it would if childlike brain activity were
simply random and disorganized. However, the issue remains whether
there is just more noise in children’s behavior – e.g., they are just a bit
more easily distracted compared to adults – as opposed something like
a greater inclination to explore.

Another aspect of constructivism that we did not focus on here
but that is critical to understanding development, is the idea that
over time, learners can chunk, cache and recursively reuse concepts
to build ever richer ones (cf. Zhao, Bramley et al., 2022). As such the
conceptual library of an adult ought to be more advanced, containing
more powerful and complex concepts that can be readily reused to build
new concepts. This might lead to a prediction of a different pattern of
guesses than we found here. That is, we might have expected adults’
concepts to look more complex than children’s, not because they are
built from more parts, but because the parts they are built from are,
themselves, more complex. We suspect that the reason we did not
find this sort of pattern here is that our task used very basic abstract
features. Presumably our shape and geometric relation concepts are
fairly established by around the age of 10. We predict that this would
not hold in more applied domains where adults are able to draw
on advanced concepts. For instance, when theorizing about economic
conditions an adult might refer advanced primitives like ‘‘power laws’’,
‘‘compound growth’’ or ‘‘arbitrage’’ that we would not expect to exist
yet in the conceptual repertoire of many 9–11 year olds.

As well as producing more complex guesses, children also pro-
duced more elaborate scenes during learning. One possible characteri-
zation is that children’s active scene construction was more exploration-
driven and less hypothesis-driven than adults’ (Wu et al., 2018), per-
haps mixing more exploration-driven actions in with hypothesis-driven
ones (Meder, Wu, Schulz, & Ruggeri, 2021). Indeed, differences in
active exploration are the other side of the coin of the high temperature
search idea (Friston, FitzGerald, Rigoli, Schwartenbeck, Pezzulo, et al.,
2016; Gopnik, 2020; Klahr & Dunbar, 1988; Schulz, Klenske, Bramley,
& Speekenbrink, 2017). However within each trial, children’s testing
was more repetitive than adults’, suggesting that they made slower
progress in exploring the problem space, or were generally less able
to keep track of what they had done. The problem of generating
informative tests is not quite the same as that of finding the right
hypothesis. It is important to avoid redundancy and, in combination,
serve to test a wide variety of salient hypotheses. In this sense, adults’
testing behavior was more systematic, better reducing global measures
of uncertainty and potentially reflecting a more metacognitive control
over learning (Kuhn & Brannock, 1977; Oaksford & Chater, 1994).

Curiously, children were more likely to refer to relational and posi-
tional properties in their guesses, while adults were most likely to make
guesses that pertained to the primary object features (color and size).
This is an independently interesting finding. Since relational features
are structurally more complex than primitive features, we might have
predicted they would be more readily evoked by adults. It could be
that children bought in more to the scientific reasoning cover story,
treating mechanistic explanations, such as that objects must touch or
be positioned in particular ways to produce stars, as credible (Gelman,
2004). Conversely, adults may have been more likely to expect Gricean
considerations to apply, e.g. that experimenters would likely set simple
rules using salient but abstract features like color over perceptually
ambiguous properties like position (Szollosi & Newell, 2020). However,

it could also be the case that there are deeper differences between the
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experiences of children and adults that render structural features more
relevant to children and surface features more relevant to adults.

Children’s guesses were also less consistent with their evidence
than adults’. This might be because they were less able to extract
common features across all eight learning scenes (Ruggeri & Feufel,
2015; Ruggeri & Lombrozo, 2015). However, it could also be a con-
sequence of a more generalized limitation in ability to generate, store
and compare hypotheses. With a flatter prior and limited sampling, one
has a lower chance of ever generating a hypothesis that can explain all
the evidence. Children also under-generalized, often selecting only 1 or
2 of the 8 test scenes (there was actually always 4) doing so even when
their symbolic guesses predicted more should be selected. It could be
that children found this part of the task overwhelming, perhaps tending
to stop after identifying one or two hypothesis consistent scenes rather
than evaluating all of them. In sum, it seems children were less able
to come up with a concise description of all the evidence generated,
reflecting both a less developed metacognitive awareness and the skills
needed (both verbal and conceptual) to extract patterns.

Conclusions

We analyzed an experiment combining rich qualitative and quanti-
tative measures of children’s and adults’ inductive inference. We found
a number of developmental differences and demonstrated that we can
make sense of these through a constructivist lens. Our results add
empirical support and theoretical detail to recent characterizations of
children as more diverse thinkers and active learners than adults, and
bring us closer to a computational understanding of human learning
across the lifespan.
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Appendix A. Models

Generating PCFG model predictions

We created a grammar (specifically a probabilistic context free
grammar or PCFG; Ginsburg, 1966) that can be used to produce any
rule that can be expressed with first-order logic and lambda abstrac-
tion referring to the features participants referred to in our task. The
grammatical primitives we assumed are detailed in Table A.1.

There are multiple ways to implement a PCFG. Here we adopt a
common approach to set up a set of string-rewrite rules (Goodman
et al., 2008). Thus, each hypothesis begins life as a string containing
a single non-terminal symbol (here, 𝑆) that is replaced using rewrite
rules, or productions. These productions are repeatedly applied to the
string, replacing non-terminal symbols with a mixture of other non-
terminal symbols and terminal fragments of first order logic, until no
non-terminal symbols remain. The productions are so designed that the
resulting string is guaranteed to be a valid grammatical expression and
all grammatical expressions have a nonzero chance of being produced.
In addition, by having the productions tie the expression to bound vari-
ables and truth statements, our PCFG serves as an automatic concept
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generator. Table A.2 details the PCFG we used in the paper.
We use capital letters as non-terminal symbols and each rewrite is
sampled from the available productions for a given symbol.14 Because
some of the productions involve branching (e.g., 𝐵 → 𝐻(𝐵,𝐵)), the
resultant string can become arbitrarily long and complex, involving
multiple boolean functions and complex relationships between bound
variables.

We include a variant that samples uniformly from the set of possible
replacements in each case, but we also reverse engineer a set of
productions that produce exactly the statistics of the empirical samples,
as described in the main text.

We used the process described in Table A.2 to produce a sample
of 10,000 with a uniform generation prior and an additional 10,000
for each participant with a ‘‘held out’’ age-consistent prior based on
the rule guesses of other participants in the requisite agegroup. For the
flipped prior analyses, we used the sample generated for the chrono-
logically first participant from the other agegroup. We chose 10,000
simply because this provided reasonable coverage of the task without
exhausting our storage and computational capacity.

Generating instance driven (IDG) model predictions

We used the algorithm proposed in Bramley et al. (2018) to produce
a sample of 10,000 ‘‘grounded hypotheses’’ for each participant and
trial, splitting these evenly across the 8 learning scenes that participant
produced and tested. For each, we generated two sets: One using a
uniform construction weights, and one with an age-appropriate ‘‘held
out’’ set of weights based on the rule guesses of other participants in the
requisite agegroup. For the flipped prior analyses, we used the weights
from the chronologically first participant from the other agegroup to
generate samples inspired by the current participants’ evidence.

To generate hypotheses as candidates for the hidden rule, the model
uses the following procedure with probabilities either set to uniform
or drawn from the PCFG-fitted productions for adults or for children
(Fig. 7) and denoted with square brackets:

1. Observe. either:

(a) With probability [𝐴 → 𝐵]: Sample a cone from the obser-
vation, then sample one of its features 𝑓 with probability
[𝐺 → 𝑓 ]—e.g., {#1}15: ‘‘medium, size’’ or {#3}: ‘‘red,
color’’.

(b) With probability [𝐴 → Start]: Sample two cones uniformly
without replacement from the observation, and sample
any shared or pairwise feature—e.g., {#1,#2}: ‘‘size’’, or
‘‘contact’’

2. Functionize. Bind a variable for each sampled cone in Step 1
and sample a true (in)equality statement relating the variable(s)
and feature:

(a) For a statement involving an unordered feature there is
only one possibility—e.g., {#3}: ‘‘= (𝑥1, red, color)’’, or for
{#1,#2}: ‘‘= (𝑥1, 𝑥2, color)’’

(b) For a single cone and an ordered feature, this could also
be a nonstrict inequality (≥ or ≤). We assume a learner
only samples an inequality if it expands the number of
cones picked out from the scene relative to an equality—
e.g., in Fig. 2b in the main text, there is also a large cone

14 The grammar is not strictly context free because the bound variables
(𝑥1, 𝑥2, etc.) are automatically shared across contexts (e.g. 𝑥1 is evoked twice
in both expressions generated in Fig. 2a). We also draw feature value pairs
together and conditional on the type of function they inhabit, to make our
process more concise, however the same sampling is achievable in a context
free way by having a separate function for every feature value, i.e. ‘‘‘isRed()’’
and sampling these directly (c.f. Rothe, Lake, & Gureckis, 2017).

15 Numbers prepended with # refer to the labels on the cones in the example

observation in Fig. 2b.



Cognition 238 (2023) 105471N.R. Bramley and F. Xu
Table A.1
A concept grammar for the task.

Meaning Expression

There exists an 𝑥𝑖 such that... ∃(𝜆𝑥𝑖 ∶,)
For all 𝑥𝑖 ... ∀(𝜆𝑥𝑖 ∶ .,)
There exists {at least, at most, exactly} 𝑁 objects
in 𝑥𝑖 such that...

𝑁{<,>,=}(𝜆𝑥𝑖 ∶ ., 𝑁,)

Feature 𝑓 of 𝑥𝑖 has value {larger, smaller, (or)
equal} to 𝑣

{<,>,≤,≥,=}(𝑥𝑖 , 𝑣, 𝑓 )

Feature 𝑓 of 𝑥𝑖 is {larger, smaller, (or) equal} to
feature 𝑓 of 𝑥𝑗

{<,>,≤,≥,=}(𝑥𝑖 , 𝑥𝑗 , 𝑓 )

Relation 𝑟 between 𝑥𝑖 and 𝑥𝑗 holds 𝛤 (𝑥𝑖 , 𝑥𝑗 , 𝑟)
Booleans {and, or, not} {∧,∨,≠}(𝑥)

Object feature Levels

Color {red, green, blue}
Size {1:small, 2:medium, 3:large}
𝑥-position (0, 8)
𝑦-position (0, 8)
Orientation {Upright, left hand side, right hand side, strange}
Grounded true if touching the ground

Pairwise feature Condition

Contact true if 𝑥1 touches 𝑥2
Stacked true if 𝑥1 is above and touching 𝑥2 and 𝑥2 is

grounded
Pointing true if 𝑥1 is orientated {left/right} and 𝑥2 is to 𝑥1s

{left/right}
Inside true if 𝑥1 is smaller than 𝑥2 + has same 𝑥 and 𝑦

position (±0.3), false

Note that {<,>,≥,≤} comparisons only apply to numeric features (e.g., size).
Table A.2
Prior production process.

Production Symbol Replacements→

Start 𝑆 → ∃(𝜆𝑥𝑖 ∶ 𝐴,) ∀(𝜆𝑥𝑖 ∶ 𝐴,) 𝑁𝐼 (𝜆𝑥𝑖 ∶ 𝐴,𝐾,)
Bind additional 𝐴 → B S
Expand 𝐵 → C 𝐽 (𝐵,𝐵) ¬(𝐵)
Function 𝐶 → =(𝑥𝑖 , 𝐷1) 𝐼(𝑥𝑖 , 𝐷2) =(𝑥𝑖 , 𝑥𝑗 , 𝐸1)a

𝐼(𝑥𝑖 , 𝑥𝑗 , 𝐸2)a 𝛤 (𝑥𝑖 , 𝑥𝑗 , 𝐸3)a

Feature/value 𝐷1 → value, feature
(numeric only) 𝐷2 → value, feature
Feature 𝐸1 → feature
(numeric only) 𝐸2 → feature
(relational) 𝐸3 → feature
Boolean 𝐽 → ∧ ∨ . . .
Inequality 𝐼 → ≤ ≥ >

<
Number 𝐾 → 𝑛 ∈ {1, 2, 3, 4, 5, 6}

Note: Context-sensitive aspects of the grammar:
aBound variable(s) sampled uniformly without replacement from set; expressions
requiring multiple variables censored if only one.

{#1} so either ≥ (𝑥1,medium, size) or = (𝑥1,medium, size)
might be selected with uniform probability.

(c) For two cones and an ordered feature, either strict or non-
strict inequalities could be sampled if the cones differ
on the sampled feature, equivalently either equality or
non-strict inequality could be selected if the cones do not
differ on that dimension—e.g., {#1,#2} > (𝑥1, 𝑥2, size),
or {#3,#4} ≥ (𝑥1, 𝑥2, size). In each case, the production
weights from Fig. 7 for the relevant completions are
normalized and used to select the option.

3. Extend. With probability [𝐵→𝐷]
[𝐵→𝐷]+[𝐵→𝐶(𝐵,𝐵)] go to Step 4, other-

wise sample a conjunction with probability [𝐶(𝐵,𝐵) → And] or
a disjunction with probability [𝐶(𝐵,𝐵) → Or] and repeat. For
statements with two bound variables, Step 3 is performed for
𝑥1, then again for 𝑥2:

(a) Conjunction. A cone is sampled from the subset picked
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out by the statement thus far and one of its features
sampled with probability [𝐺 → 𝑓 ]—e.g., {#1} ∧( =
(𝑥1, green, color), ≥ (𝑥1,medium, size)). Again, inequalities
are sample-able only if they increase the true set size
relative to equality—e.g., ‘‘∧( ≤ (𝑥1, 3, xposition), ≥ (𝑥1,
medium, size))’’, which picks out more objects than ‘‘∧(=
(𝑥1, 3, xposition),≥ (𝑥1,medium, size))’’.

(b) Disjunction. An additional feature-value pair is selected
uniformly from either unselected values of the current fea-
ture, or from a different feature—e.g., ∨(= (𝑥1, color, red),
= (𝑥1, color, blue)) or ∨(= (𝑥1, color, blue),≥ (𝑥1, size, 2)).
This step is skipped if the statement is already true of all
the cones in the scene.16

4. Flip. If the inspiration scene is not rule following wrap the
expression in a ¬().

5. Quantify. Given the contained statement, select true quanti-
fier(s):

(a) For statements involving a single bound variable (i.e.,
those inspired by a single cone in Step 1) the possible
quantifiers simply depend on the number of the cones in
the scene for which the statement holds. If the statement
is true of all cones in the scene Quantifier is selected
using probabilities [Start→] combined with [𝐿 →] where
appropriate. If it is true of only a subset of the cones
then ∀(𝜆𝑥𝑖 ∶ 𝐴,) is censored and the probabilities re-
normalized. 𝐾 is set to match number of cones for which
the statement is true.

(b) Statements involving two bound variables in lambda cal-
culus have two nested quantifier statements each selected
as in (a). The inner statement quantifying 𝑥2 is selected
first based on truth value of the expression while taking
𝑥1 to refer to the cone observed in ‘1.’. The truth of the
selected inner quantified statement is then assessed for
all cones to select the outer quantifier—e.g., {#3,#4}
‘‘∧(= (𝑥2, green, color),≤ (𝑥1, 𝑥2, size))’’ might become ‘‘∀

16 We rounded positional features to one decimal place in evaluating rules
to allow for perceptual uncertainty.
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Fig. A.1. Three example scenes. Objects indices link the most similar set of objects in b to those in a. Numbers below indicate the edit distance for each object (i.e. the sum of
caled dimension adjustments).
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(𝜆𝑥1 ∶ ∃(𝜆𝑥2 ∶ ∧(= (𝑥2, green, color),≤ (𝑥1, 𝑥2, size)),),)’’
The inner quantifier ∃ is selected (three of the four cones
are green {#1, #2, #4}), and the outer quantifier ∀ is
selected (all cones are less than or equal in size to a green
cone).

Note that a procedure like the one laid out above is, in principle,
apable of generating any rule generated by the PCFG in Fig. 7(a)&7(b),
ut will only do so when exposed to an observation that exemplifies
hat rule, and will do so more often when the observation is inconsistent
ith as many other rules as possible (i.e., a minimal positive example).
tep 4. allows that non-rule following scenes can be used to inspire
ules involving a negation, for instance that ‘‘something is not upright’’
which is semantically equivalent to saying that ‘‘nothing is upright’’.
asing hypotheses on instances may improve the quality of the effective
ample of hypotheses that the learner generates.

One way to think of the IDG procedure is as a partial inversion of
PCFG. As illustrated by the blue text in the examples in Fig. 2b in

he main text. While the PCFG starts at the outside and works inward,
he IDG starts from the central content and works outward out to a
uantified statement, ensuring at each step that this final statement is
rue of the scene.

We note that it is possible, in principle, to calculate a lower bound
n the prior probability for the PCFG or IDG generating a hypothesis
hat a participant reported, even if it does not occur in our sample. This
an be achieved by reverse engineering the production steps that would
e needed to produce the precise encoded syntax. This is a lower bound
ecause it does not count semantically equivalent ‘‘phrasings’’ of the
ypothesis that e.g. mention features in different orders or use logically
quivalent combinations of booleans. We found that complex expres-
ions tend to have a large number of ‘‘phrasings’’. In our sample-based
pproximation we implicitly treat semantically equivalent expressions
s constituting the same hypothesis but note that determining semantic
quivalence is an nontrivial aspect of constructivist inference that we
o not fully address here.

everse engineering production child-like and adult-like production weights

To roughly accommodate the fact that each guess is based on
ifferent learning data, we regularized these counts by including a prior
seudo-count of 5 on all productions. This value was not fit to the
ata, and simply serves to smooth the predictions a little. For example,
hildren’s rules involved ∃ 263 times, ∀ 108 times and 𝑁 297 times,
o we assumed prior production weights of {263 + 5, 108 + 5, 297 +
5}∕(263 + 108 + 297 + 15) = {.39, .17, .44}. To avoid double counting
the data in modeling subjects’ specific guesses, we created a separate
agegroup-appropriate prior production weighting for each participant
based on the guesses of the other participants’ from the same agegroup,
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but omitting their own guesses.
Appendix B. Model fitting details

Full generalization model fits

As described in main text, we fit 18 model variants to participant’s
data. All models have between 0 and 2 parameters. For each model, we
fit the parameter(s) by maximizing the model’s likelihood of producing
the participant data, using R’s optim function. We compare models
using the Bayesian Information Criterion (Schwarz, 1978) to accom-
modate their different numbers of fitted parameters.17 Full results are
n Table A.3.

cene generation model fits

We used a grid search in increments of 0.05 to optimize 𝜂 and 𝜃 and
directly optimized 𝜆 for each setting of 𝜂 and 𝜃.

Appendix C. Free response coding

To analyze the free responses, we first had two coders go through
all responses and categorize them as either:

1. Correct: The subject gives exactly the correct rule or something
logically equivalent

2. Overcomplicated: The subject gives a rule that over-specifies the
criteria needed to produce stars relative to the ground truth. This
means the rule they give is logically sufficient but not necessary.
For example, stipulating that ‘‘there must be a small red’’ is
overcomplicated if the true rule is ‘‘there must be a red’’ because
a scene could contain a medium or large red and emit stars.

3. Overliberal: The opposite of overcomplicated. The subject gives
a rule that under-specifies what must happen for the scene to
produce stars. For example, stipulating that ‘‘there must be a
blue’’ if the true rule is that ‘‘exactly one is blue’’. This is logically
necessary but not sufficient because a scene could contain blue
objects but not produce stars because there is not exactly one of
them.

17 On one perspective, our derivation of the child-like and adult-like produc-
tions constitutes fitting an additional 39 parameters (𝑚−1 for each production
step), so evoking an additional BIC parameter penalty of 39 × log(3940) = 323
for PCFG Agegroup over PCFG Uniform and similarly for the IDG. If we were to
apply this penalty, the uniform weighted variants would be clearly preferred
under the BIC criterion at the aggregate level. It is less clear how to apply
this penalty at the individual level since the held out priors are fit to different
data than that being modeled. We chose to include the fitted versions alongside
the uniform versions here without penalty as demonstrations of the differences

that arise from different generation probabilities.
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Table A.3
Models of participants’ generalizations.

Model Group log(Likelihood) BIC 𝜆 𝜏 N N blind Accuracy

1. Baseline children −1319.75 2639.50 7 13 50%
2. Bias children −1218.96 2445.47 0.32 16 25 50%
3. PCFG Uniform children −1319.72 2647.00 58.17 0 1 61%
4. PCFG Uniform + Bias children −1208.93 2432.97 0.35 2.18 0 0
5. PCFG Flipped children −1318.46 2644.47 8.97 1 1 66%
6. PCFG Flipped + Bias children −1207.28 2429.67 0.34 2.07 0 0
7. PCFG Agegroup children −1319.58 2646.71 24.17 1 1 63%
8. PCFG Agegroup + Bias children −1208.63 2432.36 0.35 2.15 0 0
9. IDG Uniform children −1298.73 2605.02 1.78 1 2 65%
10. IDG Uniform + Bias children −1193.90 2402.90 0.32 1.19 0 0
11. IDG Flipped children −1315.49 2638.54 4.35 1 4 66%
12. IDG Flipped + Bias children −1199.22 2413.54 0.35 1.38 0 0
13. IDG Agegroup children −1308.05 2623.65 2.51 2 5 69%
14. IDG Agegroup + Bias children −1193.41 2401.93 0.34 1.19 0 0
15. Similarity children −1316.44 2640.42 −1.99 0 1 41%
16. Similarity + Bias children −1214.71 2444.52 0.32 −1.30 1 1

17. Symbolic Guess children −1143.69 2294.92 1.02 15 62%
18. Symbolic Guess + Bias children −1067.18 2149.47 0.26 0.80 9

1. Baseline adults −1386.29 2772.59 2 5 50%
2. Bias adults −1364.90 2737.40 0.15 6 6 50%
3. PCFG Uniform adults −1320.64 2648.89 1.27 0 0 63%
4. PCFG Uniform + Bias adults −1253.52 2522.25 0.26 0.68 0 0
5. PCFG Flipped adults −1294.91 2597.42 1.06 1 1 66%
6. PCFG Flipped + Bias adults −1229.18 2473.55 0.24 0.63 0 0
7. PCFG Agegroup adults −1266.96 2541.51 0.94 1 5 69%
8. PCFG Agegroup + Bias adults −1203.64 2422.47 0.23 0.59 0 0
9. IDG Uniform adults −1228.21 2464.02 0.67 2 8 69%
10. IDG Uniform + Bias adults −1179.12 2373.44 0.20 0.48 0 0
11. IDG Flipped adults −1245.56 2498.72 0.76 0 5 73%
12. IDG Flipped + Bias adults −1179.23 2373.65 0.24 0.48 0 0
13. IDG Agegroup adults −1188.28 2384.17 0.62 2 15 74%
14. IDG Agegroup + Bias adults −1134.58 2284.37 0.20 0.44 0 0
15. Similarity adults −1359.05 2725.70 −0.73 0 1 37%
16. Similarity + Bias adults −1337.55 2690.30 0.14 −0.61 0 4

17. Symbolic Guess adults −893.49 1794.58 0.56 32 70%
18. Symbolic Guess + Bias adults −880.59 1776.38 0.08 0.50 4

Note: Boldface indicates best fitting model overall. N blind restricts comparisons to models blind to the symbolic guess. Underlines indicate
best fitting blind model. Accuracy column shows performance of the requisite model on 100 simulated runs through the task using participants’
active learning data with 𝜏 set to 1/100 (i.e. hard maximizing over the model predictions). Biased models perform strictly worse so are not
included in this column.
Table A.4
Agreement matrix for independent coders’ free response classifications.

correct overliberal overspecific different vague no rule multiple

correct 93 1 5 0 0 0 0
overliberal 5 13 1 8 0 1 0
overspecific 1 2 42 12 0 0 0
different 0 5 3 224 15 3 0
vague 0 1 2 3 11 6 0
no rule 0 0 0 0 0 31 0
multiple 0 1 0 2 0 0 0
4. Different: The subject gives a rule that is intelligible but different
from the ground truth in that it is neither necessary or sufficient
for determining whether a scene will produce stars.

5. Vague or multiple. Nuisance category.
6. No rule. The subject says they cannot think of a rule.

We were able to encode 205/238 (86%) of the children’s responses
and (219/250) 87% for adults as correct, overcomplicated, overliberal
or different. Table A.4 shows the complete confusion matrix. The two
coders agreed 85% of the time, resulting in a Cohen’s Kappa of .77
indicating a good level of agreement (Krippendorff, 2012).

We then had one coder familiar with the grammar go through each
free response that was not assigned vague or no rule, and encode it as
a function in our grammar. The second coder then blind spot checked
15% of these rules (64) and agreed in 95% of cases 61/64. The 6 cases
of disagreement were discussed and resolved. In 5/6 cases, this was in
24

favor of the primary coder. The full set of free text responses along with
the requisite classification, encoded rules are available in the Online
Repository.

Appendix D. Scene similarity measurement

To establish the overall similarity between two scenes, we need
to map the objects in a given scene to the objects in another scene
(for example between the scenes in Fig. A.1 a and b) and establish a
reasonable cost for the differences between objects across dimensions.
We also need a procedure for cases where there are objects in one
scene that have no analogue in the other. We approach the calculation
of similarity via the principle of minimum edit distance (Levenshtein,
1966). This means summing up the elementary operations required to
convert scene (a) into scene (b) or visa versa. We assume objects can
be adjusted in one dimension at a time (i.e. moving them on the 𝑥 axis,

rotating them, or changing their color, and so on.
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Fig. A.2. (a) The average minimum edit distance summed up across shared objects. (b) Rescaling a by dividing by the number of objects. (c) The penalty for additional or omitted
objects. (d) Combined distance as in main text.
Fig. A.3. Generalization accuracy by number of objects per test scene comparing with 10 rule adult pilot from Bramley et al. (2018).
Before focusing on how to map the objects between the scenes we
must decide how to measure the adjustment distance for a particular
object in scene a to its supposed analogue in scene b. As a simple
way to combine the edit costs across dimensions we first 𝑍-score each
dimension, such that the average distance between any two values
25
across all objects and all scenes and dimensions is 1. We then take
the L1-norm (or city block distance) as the cost for converting an
object in scene (a) to an object in scene (b), or visa versa. Note this
is sensitive the size of the adjustment, penalizing larger changes in
position, orientation or size more severely than smaller changes, while
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changes in color are all considered equally large since color is taken
as categorical. Note also that for orientation differences we also always
assume the shortest distance around the circle.

If scene (a) has an object that does not exist in scene (b) we assume
a default adjustment penalty equal to the average divergence between
two objects across all comparisons (3.57 in the current dataset). We do
the same for any object that exists in (a) but not (b).

Calculating the overall similarity between two scenes involves solv-
ing a mapping problem of identifying which objects in scene (a) are
‘‘the same’’ as those in scene (b). We resolve this ‘‘charitably’’, by
searching exhaustively for the mapping of objects in scene (a) to
scene (b) that minimizes the total edit distance. Having selected this
mapping, and computed the final edit distance including any costs for
additional or removed objects, we divide by the number shared cones,
so as to avoid the dissimilarities increasing with the number of objects
involved.

Fig. A.2 computes the inter-scene similarity components that go
into Fig. 6c in the main text. Summing up the edit distances across
all objects, children’s scenes seem much more diverse than adults
(Fig. A.2a). However this is primarily due to their containing a greater
average number of objects. Scaling the edit distance by the number of
objects in the target scene gives a more balanced perspective (Fig. A.2b)
but does not account for the fact that the compared scene may contain
more or fewer objects in total. Fig. A.2c visualizes just the object
difference showing that children’s scenes contain roughly as many
objects on average as the initial example while adults’ scenes contain
around 0.75 fewer objects than are present in the initial example (dark
shading in top row). Thus, we opted to combine b and c by weighting
the unsigned cone difference by the mean inter-object distance across
all comparisons to give our combined distance measure (Fig. A.2d and
Fig. 6c in the main text).

Appendix E. Comparison with Bramley et al. (2018)

Finally, for interest and to demonstrate replication of our core
results. We provide a direct comparison between the generalization
accuracies in the current sample of children and adults and those in
the sample of 30 adults modeled in Bramley et al. (2018). Bramley
et al. (2018) included 10 ground truth concepts, and the current paper
uses just the first five of these. Fig. A.3 shows these accuracy patterns
side by side, revealing the adults in the current experiment performed
approximately as well as those in the original conference paper.
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