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Abstract 59 

When studying the dynamics of a pathogen in a host population, one crucial question is 60 

whether it transitioned from an epidemic (i.e. the pathogen population and the number of 61 

infected hosts are increasing) to an endemic stable state (i.e. the pathogen population 62 

reached an equilibrium). For slow-growing and slow-evolving clonal pathogens like 63 

Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it 64 

can be challenging to discriminate between these two states. This is a result of the 65 

combination of suboptimal detection tests, so that the actual extent of the pathogen 66 

prevalence is often unknown, as well as of the low genetic diversity, which can hide the 67 

temporal signal provided by the accumulation of mutations in the bacteria DNA.   68 

 69 

In recent years, the increased availability, efficiency and reliability of genomic reading 70 

techniques, such as whole-genome sequencing (WGS), has significantly increased the 71 

amount of information we can use to study infectious diseases, and therefore it has 72 

improved the precision of epidemiological inferences for pathogens like M. bovis.  73 

In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a 74 

developing country where the pathogen has been reported for decades. Ninety-one high-75 

quality sequences were obtained from tissue samples collected in four abattoirs, 64 of 76 

which with complete metadata. We combined these with environmental, demographic, 77 

ecological and cattle movement data to generate inferences using phylodynamic models.   78 

 79 

Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range 80 

over time, therefore endemic stability is unlikely. This suggests that animal movement plays 81 

an important role in transmission. The simultaneous prevalence of M. bovis in co-located 82 

cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using 83 

genomic tools as part of surveillance would vastly improve our understanding of disease 84 

ecology and control strategies. 85 

 86 

Keywords 87 

Mycobacterium bovis; whole-genome sequencing; phylodynamic analysis; genomic 88 

surveillance; livestock epidemics; zoonotic tuberculosis; One-health 89 

90 
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1. Introduction 91 

In the last two decades, the increased availability, efficiency and reliability of genomic 92 

reading techniques, such as whole-genome sequencing (WGS) techniques, have ignited a 93 

profound transformation in understanding disease ecology and epidemiology. This, coupled 94 

with improved statistical methodologies and high-performance computing, has enhanced 95 

our understanding of pathogen dynamics and evolution (1).  96 

Techniques such as WGS can identify polymorphisms in the genetic material, which is 97 

generated by transcription errors that can occur to the pathogen while replicating within 98 

their host (2). As the pathogen is transmitted through the host population, the 99 

accumulation of polymorphisms in its DNA/RNA can be used as a “transmission signature”. 100 

Therefore, by tracking these mutations across bacterial genomes sampled in a host 101 

population, we are now able to infer transmission events between individual hosts, sub-102 

populations, geographical areas or species, while at the same time gather insights about the 103 

evolutionary trajectory of a pathogen (2). Furthermore, when accurate spatial information 104 

on the sampled isolates is available, we can combine it with pathogen genetic data to 105 

disentangle the spatio-temporal dynamics of outbreaks, particularly in natural or other 106 

scarcely sampled animal populations (3). 107 

Despite these advances, many challenges still exist, including the reconciliation between the 108 

temporal signal of outbreaks with pathogen mutations (4). Mycobacterium tuberculosis 109 

Complex (MTBC) members are clonal species, and therefore recombination has been 110 

considered rare (although a recent publication showed otherwise (5)). A few mutations are 111 

expected to occur for these species per year, generating little diversity during outbreaks in 112 

host populations. Consequently, there is inherent uncertainty in establishing infection 113 

patterns within the infected population and their associated infections. Therefore, 114 

combining genomic information with metadata is essential for accurate transmission chain 115 

estimation (6). 116 

Mycobacterium bovis, a member of the MTBC group, is the aetiological agent of animal or 117 

bovine tuberculosis (bTB) in bovids and other mammalians and of zoonotic tuberculosis (TB) 118 

in humans (7). Its infections are characterised by chronic disease, with or without a latent 119 

period, where infected cattle are hard to identify, making it hard to quantify potential 120 

infectious contacts (8). The estimation of M. bovis prevalence is often affected by several 121 

factors, including the inaccuracy of diagnostic tests (9), and the potential co-infection with 122 
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other pathogens (10). Such challenges explain why M. bovis has only been successfully 123 

eliminated or controlled in a few countries. Yet, it still represents a significant threat to 124 

cattle industries and human health in many other countries. For example, zoonotic 125 

tuberculosis due to M. bovis is a major public health problem in low and medium-income 126 

countries (LMICs), where close interaction between people and livestock is common and the 127 

limited access to pasteurized milk (7,11). Indeed, the magnitude of this burden is likely 128 

underestimated since human-animal transmission is predominantly via ingestion of infected 129 

products and presenting with a range of non-specific symptoms (12). 130 

In Cameroon M. bovis is circulating in the cattle population, both in the southern areas (13) 131 

and, in particular, in the northern regions, where a previous study on cattle sampled at four 132 

regional abattoirs showed a sampled population prevalence ranging from 2.75% (31 positive 133 

over 1’129 cattle inspected, Northwest) to 21.25% (34 over 160, North (14)). Abattoirs 134 

surveillance, where carcases are inspected for TB-like lesions, is the only surveillance 135 

strategy regularly implemented in the country; in Bamenda (Northwest region), Awah-136 

Ndukum and colleagues (15) showed that the TB-like lesion in cattle increased in the period 137 

from 1994 to 2010.  138 

Commonly to many LMICs, bTB control in Cameroon is also made difficult by the absence of 139 

detailed records on cattle population, by local rearing practices such as pastoralism which 140 

expose animals to contacts with other herds and potential reservoir wildlife species, and by 141 

the transhumance cattle movements westward towards Nigeria, where the demand of meat 142 

is driven by a fast human population increase (16).   143 

In a previous study, Egbe et al. (16) employed two molecular typing techniques to 144 

understand the relatedness of M. bovis strains circulating in the region. These are 145 

spoligotyping and MIRU-VNTR typing: the former is based on the presence of multiple 146 

spacer oligonucleotides in the genome Direct Repeat region, while the latter is based on 12 147 

loci containing variable numbers of tandem repeats of mycobacterial interspersed repetitive 148 

units (17,18). Compared to WGS, these techniques consider a limited genome region and 149 

can be more subject to homoplasy (19). The results reported by Egbe (16) showed that most 150 

of the isolates belonged to the Af1 clonal complex (n = 250/total n = 255), while the 151 

remaining ones had an unidentified clonal complex. They also highlighted an unexpectedly 152 

high genetic diversity, as showed by the 37 sampled spoligotypes, of which 19 newly 153 
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observed, and a total of 97 genotypes, obtained by combining spoligotypes with MIRU-154 

VNTR (16).  155 

While those techniques are instrumental to investigating potential infection clusters at a 156 

broader level, they can be limited for a more in-depth understanding of the spatio-temporal 157 

dynamics of the disease. This study aimed to fill these gaps and enhance our understanding 158 

of the M. bovis epidemiology and spatial dynamics in Cameroon using WGS. We applied 159 

novel phylogenetic techniques to determine whether there was endemic stability across 160 

Cameroon's cattle-rearing regions while examining the role of environmental and ecological 161 

variables and animal movements in the pathogen spread. 162 

We used 91 high-quality M. bovis sequences obtained from cattle’s tissues sampled at 163 

regional abattoirs as described by Egbe et al. (14). After determining the single nucleotide 164 

polymorphisms (SNPs), we built a tree by joining the Cameroonian WGSs with other African 165 

sequences obtained from publicly available repositories, in order to understand how the 166 

sampled population fit in the continent context. Then, we ran a continuous space 167 

phylogeographical analysis with BEAST (20) on the Cameroonian sequences while testing 168 

different random walk diffusion models (21). This was possible because the origin village of 169 

the cattle tested at the abattoir was known for 64 M. bovis cattle isolates, allowing us to 170 

associate spatial coordinates to these sequences.  Further, we tested the association 171 

between the spatial pathogen distribution obtained with the georeferenced phylogenetic 172 

tree and environmental, anthropic and ecological factors (22), and we finally ran a machine 173 

learning analysis to test whether the empirical cattle movement network (23) or other 174 

variables could explain the genetic diversity across isolates.  175 

Our findings strengthen the call for an improved M. bovis molecular surveillance in 176 

underrepresented regions and countries, so to gather insights on potential patterns that can 177 

be missed when limiting the studies to areas of low genetic diversity, consequence of strict 178 

control practices such as test-and-cull.  179 

180 
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2. Materials and methods 181 

2.1. Data collection 182 

Four regional abattoirs were sampled between 2012 and 2013, in the Northwest 183 

(Bamenda), Adamawa (Ngaoundere), North (Garoua) and Extreme North (Maroua) regions 184 

of Cameroon (Figure S1). As part of the regular operations, cattle carcases were inspected 185 

for the presence of TB-like lesions. The tissues, including lymph nodes, of all animals with 186 

lesions and of some randomly chosen without lesions were collected to be cultured, and 187 

information about the animal (age, breed, village of provenance, among others) were taken. 188 

A detailed description of the data collection and bacterial isolation can be found in Egbe et 189 

al. (14). The DNA extraction was conducted in BSL 3 facilities (Tuberculosis Reference 190 

Laboratories in Bamenda, Cameroon), and the procedure is fully described in Egbe et al. 191 

(16). Sequencing was also attempted for M. bovis isolates sampled in human hosts at the 192 

Bamenda hospital (Northwest region) during a cross-sectional study within the wider 193 

project. We reported a summary of the number of sampled animals and the number of M. 194 

bovis positive ones in Table S1. 195 

 196 

2.2. Whole genome sequencing processing 197 

The sequencing was carried out at Edinburgh Genomic facilities (University of Edinburgh). 198 

Samples were prepared with 1 TruSeq Nano 550 bp insert, 76 Pippin selected library from 199 

the supplied genomic DNA, while MiSeq v2 (Illumina) was used to generate 250 base paired-200 

end sequence from library to yield at least 11M+11M reads (1 run) at 30x coverage. The 201 

output was read from a 4 lane Miseq. A total of 124 M. bovis WGSs were obtained (two 202 

from human hosts), while for nine isolates (one from human) the sequencing failed.  203 

We used adapted BovTB-nf pipeline (24) for quality control. Reads were deduplicated using 204 

fastuniq, trimmed using Trimmomatics (25) (-phred33 ILLUMINACLIP:$adapters:2:30:10 205 

SLIDINGWINDOW:10:20 MINLEN:36), and mapped to the reference genome using bwa-206 

mem2 (26). The mapped reads were filtered (-ShuF 2308 -) and sorted using Samtools (27), 207 

and then classified using Kraken2 (28) (--quick) against a prebuilt Kraken 2 database 208 

(Minikraken v2 (28)). The Kraken2 output was summarized with Braken (29) (-r 150 -l S), and 209 

the top 20 list of species from the Bracken output was used to determine if the sample was 210 

contaminated with other microorganisms. Variants were called using bcftools (30) (--211 

IndelGap 5 -e ‘DP<5 && AF<0.8’) and strain-specific SNPs were used for classifying whether 212 
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the samples were M. bovis or not (custom script and differentiating SNPs taken from (24)). 213 

The percentage of coverage (>60%) on the reference, read depth (>10), and number of 214 

reads (> 600,000) were used to identify and remove samples with insufficient data. To 215 

curate aligned core-variants for the downstream phylogenetic analysis, variants were called 216 

and filtered using Snippy v4.6.0 (31) using the default settings (minimum coverage = 10, 217 

minimum VCF variant call quality = 100), with the M. bovis AF2122/97 genome (GeneBank: 218 

LT708304.1) as the reference genome. Variants from repeated regions were removed (mask 219 

for repetitive regions taken from (24)). Core-SNPs were determined by snippy-core function 220 

within Snippy, where a genomic position was considered to be a core-site when present in 221 

all samples. We defined as “high-quality” sequences the ones with genome coverage > 90% 222 

and reading depth > 10 (32), and we renamed the sequences with a string composed by the 223 

following information: host species, location (administrative subdivision, or country, see 224 

Section 2.3), sequential number, and date. 225 

For each sequence, the spoligotype and the clonal complex were retrieved from Egbe et al. 226 

(16). In one case a sequence was missing the spoligotype number, however, it was assessed 227 

with the vSNP pipeline (33). For all bioinformatics tools we used the default settings, unless 228 

stated otherwise.  229 

We checked if divergent sequences belonged to other mycobacteria species. We tested the 230 

presence of RD (regions of difference) 1, 4, 9 and 12 patterns (34) in the outlier samples, 231 

raw reads from each sample were aligned to M. tuberculosis (NC_000962.3) with Burrows-232 

Wheeler Aligner v0.7.17 (35), and sorted and indexed with SAMtools v1.10 (36). Primer 233 

flanking regions for the RDs on M. tuberculosis were determined through querying the 234 

sequences using NCBI web nucleotide BLAST with the default parameters (37), while the 235 

presence of RDs were manually determined by examining the read alignment in Integrative 236 

Genomics Viewer v2.14.1 (38). 237 

 238 

2.3. Cameroonian M. bovis sequences in the African context 239 

We obtained other M. bovis genomes from online repositories: first, from the Patric (now 240 

BV-BRC) dataset (39), and second, selecting the appropriate genomes among the ones listed 241 

by Loiseau et al. (40) and obtained from the EBI dataset (for details and references, see 242 

Table S2). We selected all the available sequences sampled in Africa, in order to qualitatively 243 

detect potential genetic similarities between the sampled Cameroonian M. bovis population 244 
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and other isolates from the African continent, and thus provide a broader context to our 245 

analysis.  246 

When analysing sequences from Patric, genomes were shredded into pseudo by Snippy 247 

followed by the process of alignment and SNP identification described above. The core-SNP 248 

alignments were made with and without the other African genomes. We used iqtree web 249 

server (41,42) to compute a phylogenetic tree (n = 212) which included all the Cameroonian 250 

high-quality sequences (n = 91) and the other African ones plus the 1997 reference from UK 251 

(n = 121).  252 

 253 

2.4. Cameroonian sequences phylogenetic analysis 254 

The quantitative analyses were performed on a subsample of the Cameroonian sequences, 255 

obtained after removing the non-cattle ones, the ones missing the geographical 256 

coordinates, and potential outliers, i.e., isolates not clustering within the main Cameroonian 257 

clade. We initially joined the remaining sequences (n = 64) tree using the TN93 genetic 258 

distance model and Neighbour-Joining (NJ) algorithm ape package (43) in R v4.0.5 (44) 259 

with the sole purpose of estimating a temporal signal within the sample in TempEst v1.5.3 260 

(45). We then used the sequences SNP alignment completed with sampling dates, to infer 261 

time-scaled phylogenetic trees using BEAST v1.10.4 (20) with the BEAGLE library (46), and 262 

evaluated the results with Tracer v1.7.2 (47). Since the sequences had associated 263 

geographical location metadata, we included latitudes and longitudes as an additional 264 

continuous space variable for phylogeographic inference.  265 

To select the best model, we ran a series of exploratory models using a HKY (48) 266 

substitution model, similar to other studies (49–51), and a strict molecular clock. We 267 

sequentially selected the best continuous trait model first, then the best bacterial 268 

population size model (tree prior). We tested the Brownian random walk, Cauchy Relaxed 269 

Random Walk (RRW), lognormal RRW and Gamma RRW for the former, and constant 270 

population, exponential growth and Bayesian Skygrid (52,53) for the latter. In the 271 

exploratory BEAST runs, we chose a truncated (between 0 and 0.1) normally distributed 272 

clock rate prior, with mean and standard deviation set as the slope in the root-to-tip 273 

obtained in Tempest; the chain length was set to 108, sampled every 104 steps. The models 274 

were compared using marginal likelihood estimation (MLE), with path sampling (PS) and 275 

stepping-stone sampling (SS), if they reached a satisfactory effective sample size (>200). 276 
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Once the model features were selected, we ran a final one setting the chain length to 109 277 

steps, sampled every 105 steps. In this case, we used the clock rate posterior of the selected 278 

exploratory model as a prior for the final model. The maximum clade credibility (MCC) tree 279 

was extracted with TreeAnnotator v1.10.4 (part of the BEAST suite), and clades were visually 280 

defined within the MCC tree branches. The MCC tree was plotted against the sequences 281 

spoligotype and MIRU-VNTR typing to visually assess the correspondence between 282 

molecular typing and clades.  283 

 284 

2.5. Spatial statistics and environmental factors analysis 285 

From the final BEAST run, we extracted a set of 100 trees from the posterior distribution 286 

and further analysed using seraphim v1.0 (22,54) to obtain the spatial spread statistics: 287 

branch velocity and epidemic wavefront. The former was calculated for each branch dividing 288 

the geographical distance from the origin to the destination nodes by the time branch time 289 

duration. The epidemic wavefront shows the geographical range of the epidemic over time: 290 

at each time it is calculated as the geographical distance between the positions of the tree 291 

estimated root and the most distant node (spatial distance wavefront), or accounting for 292 

the distance of nodes closer to the root (patristic distance wavefront).  293 

Additionally, seraphim allows to statistically test hypothesis on the effect of environmental 294 

layers on the epidemic dynamics; the effect can either be of “conductance”, when the layer 295 

favours the pathogen diffusion, or “resistance”, when it hampers it. We tested nine layers: 296 

elevation, cattle population density, human population density, two describing the roads 297 

infrastructure (number of intersections and total road length), and four land cover types 298 

(waterbodies, forest, grassland and grazeland, and other vegetation types: mosaic, shrub, 299 

sparse vegetation). The original raster layers were downloaded from online repositories (see 300 

Table S3 for the sources) and adapted to a 5km x 5km grid using QGIS v3.26.1. For each cell, 301 

elevation, cattle and human populations were averaged for the 5x5km grids, while roads 302 

intersections were counted, and roads length were measured starting from the same road 303 

original raster. For land cover, each value represents the percentage of that cell covered by 304 

each land cover type. The original land cover raster included 38 different cover types. To 305 

ease computation, we selected the most relevant for the study and merged them in four 306 

layers: waterbodies, forest, cropland/grassland, and other vegetation, including mosaic, 307 

shrub, and partial cover (Table S4).  308 
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First, we ran a preliminary analysis on each variable, to determine if it could have played a 309 

role as conductance or resistance in the pathogen spread. For each of the 100 extracted 310 

trees, we estimated the correlation between dispersal duration and environmental distance. 311 

Results are summarised by two statistics: the number of positive variable’s coefficient of 312 

determination out of the 100 trees, and the number of positive Q statistic, calculated as 313 

𝑄 =	𝑅!"#$ − 𝑅%&''$  , that is the difference between the correlation R2 for the variable’s raster 314 

and for a null raster, again calculated for each tree (54). For the analysis, we used two path 315 

models: straight line (where the branch “weight” is calculated as the by summing the cells 316 

values through which the straight-line passes), and least cost path (where the branch 317 

“weight” is calculated by summing the values between adjacent cells along the least-cost 318 

path).  319 

Once we identified the potential resistance or conductance factor, we performed ten tree 320 

randomisations and calculated the statistics again. In this case, we used the Bayes Factor 321 

(BFe), calculated as BFe = pe /(1 – pe), were pe is the probability that Qobserved > Qrandomised. We 322 

used two criteria for trees randomisations: 1) randomisations of nodes positions while 323 

maintaining the branches lengths, the tree topology and the location of the most ancestral 324 

node; and 2) randomisations of nodes positions while maintaining only the branches 325 

lengths.  326 

 327 

2.6. Genetic distance regression and role of the cattle movements 328 

We finally tested which variables can better explain the genetic distances between the 329 

sampled M. bovis isolates, so to understand the signatures of temporal, spatial, and 330 

demographic factors (56,57). We ran this analysis using a Boosted Regression Trees (BRT) 331 

regression model (58) in R (packages dismo(59) and gbm(60)), a very flexible tool which 332 

combines decision trees and boosting techniques (61). In this model, the dependent 333 

variable was the genetic distance between M. bovis strains, expressed as SNPs. We tested a 334 

total of 28 relational variables, calculated for each pair of isolates (Table S5). Except for the 335 

temporal and spatial distance (which were calculated from the original isolates metadata), 336 

and for a binary variable indicating whether two sequences have the same spoligotype, 337 

MIRU-VNTR and clade (yes/no), the other variables are associated to the M. bovis isolates 338 

administrative subdivision.  339 
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We built two subdivision-level contact networks. The first one is a spatial network where 340 

nodes represent subdivisions and edges between them are positive if they share a border. 341 

This network is undirected (edges are not directional) and unweighted (all edges values are 342 

set to one). For this network we computed six variables to be associated with each pair of 343 

isolates: degree and betweenness centrality (62) of both isolates’ subdivisions; shortest path 344 

and a binary variable indicating whether the two subdivisions belonged to the same 345 

network’s community.  346 

The second network represented the cattle movements, and edges correspond to the 347 

number of animals moved between subdivisions over a year. We built this network by 348 

aggregating the empirical data collected by Motta et al. (23), which originally reported the 349 

monthly number of cattle exchanged between markets. For this network we computed 350 

eight variables: degree, strength and betweenness centrality of both isolates’ subdivisions; 351 

shortest path and the same community binary variable. The degree counts the number of 352 

each subdivision’s connections, while the strength is the sum of the number of cattle moved 353 

to and from each subdivision. All networks’ metrics were computed using the R package 354 

igraph (63). 355 

Once we computed all the variables (the full list is reported in Table S5), we trained the BRT 356 

model using 75% of the observations, while the remaining 25% were used for testing. We 357 

evaluated the models based on pseudo-R2 and Root Mean Squared Error (RMSE) on the test 358 

dataset. These were both calculated using the package caret (64). For BRT the relative 359 

influence of the variables is determined by the times each variable is selected to split the 360 

data in a decision tree, which in turn is weighted by the improvement in the model fit that 361 

resulted from that variable being used at each split (58). All models were fitted with a 10-362 

fold cross validation. The BRT algorithm has two main parameters: the learning rate, which 363 

controls the contribution of each tree to the final model, and the tree complexity, which 364 

corresponds to the number of nodes in the tree. We ran some preliminary tests to tune the 365 

BRT in order to improve the predictions. Finally, we set the learning rate to 0.05 and the 366 

tree complexity to 8.  367 

368 
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3. Results 369 

3.1. Cameroonian sequences in the African context 370 

We analysed 124 M. bovis sequences (nine of the original 133 failed), with 91 having enough 371 

read depth and genome coverage to allow further analyses (see Table S6 for further details). 372 

Two of these sequences came from isolates sampled humans, while for a third the 373 

sequencing failed. One of the excluded sequences was marked as not-M. bovis, and based 374 

on the presence of the four RD1, 4, 9 and 12 patterns (34), it was likely M. tuberculosis. All 375 

the high-quality M. bovis sequences were merged in a tree with other 22 obtained from the 376 

Patric dataset, 99 from EBI, and the 1997 UK Reference to provide a continental context. 377 

The qualitative phylogenetic tree in Figure 1 shows that most of the Cameroonian 378 

sequences (two of which obtained from human tissue samples) cluster with the Ghanaian 379 

human samples, and two Nigerians ones recovered from unreported hosts. All human 380 

samples from West Africa cluster with cattle sequences except for the Malian human 381 

sequence. Most sequences (n = 89) belonged to Af1 clonal complex and except one, the 382 

spoligotypes were already known; for the other, we identified a new pattern (hex code: 6F-383 

1F-5F-7F-BF-40). Being characterised by the absence of spacer 30, this spoligotype was 384 

considered as Af1 (65). The dominant spoligotype was SB0944 (n = 32/89).  385 

Two outlier sequences did not cluster with the rest of the sampled Cameroonian population. 386 

Their average distance from the rest of the Cameroonian population (respectively 235 and 387 

231 SNPs) was slightly higher than the average distance of the 1997 UK reference from the 388 

Cameroonian isolates (222 SNPs), and they did not cluster with any other WGS sequence 389 

sampled in Africa (Figure 1). For both outlier sequences, the spoligotype was SB2332, found 390 

for the first time in Cameroon and submitted for classification at www.Mbovis.org by Egbe 391 

et al. (16). Following Warren et al. (34), we tested the presence of RD1, 4, 9 and 12 patterns, 392 

finding only the first one, confirming that they are likely M. bovis. We compared this 393 

spoligotype pattern with all the others from the www.Mbovis.org database, and we 394 

identified four patterns differing by two spacers: SB0858 sampled in Spain (66) (different 395 

spacers 20 and 22), SB1102 sampled in Chad (65) and Cameroon (13) (different spacers 33 396 

and 34), SB2333 reported by Egbe et al. (16) (different spacers 22 and 34) and SB2691 397 

sampled in France (not found in publications, different in spacers 20 and 34). We also 398 

identified eleven patterns differing by three spacers, sampled in France (67), Portugal (68), 399 

and Spain (66).  400 
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 401 

3.2. M. bovis evolutionary time scale in Cameroon 402 

A total of 1’540 SNPs were determined from the Snippy core-SNP analysis on Cameroonian 403 

M. bovis genomes (Figure S2). This reduced to 1’106 SNPs when the dataset was reduced to 404 

the 64 samples with complete metadata and excluding the non-cattle ones (two sampled in 405 

humans), which were used for the downstream quantitative analysis. The median SNP 406 

distance among the remaining high-quality sequences was 70 SNPs (mean 68, range from 0 407 

to 144, 2.5th and 97.5thquantiles 14 and 118). For two cattle (one from Bibemi, the other 408 

from Touboro), two M. bovis isolates sequenced were available (obtained from different 409 

tissues). In both cases, the two strains were identical (Bibemi 3 and 4, Touboro 7 and 8, 410 

Figure 2), which suggests a single infection disseminated in different organs, rather than two 411 

separate infections. 412 

The analysis in Tempest showed a slightly positive temporal signal (coefficient of 413 

determination 0.11, and correlation coefficient 0.33) and a slope of 1.267 x 10-2 (Figure S3). 414 

We used a sequential approach in BEAST to select the best spatial model and bacterial 415 

population models. Based on the MLE estimation of the exploratory models (Table S7) we 416 

determined the best model included a Gamma Relaxed Random Walk (RRW) spatial model 417 

(first step of the sequential analysis) and the SkygGrid population model (second step). The 418 

final BEAST model was run with 10 bins and a cut-off of 400 years. The population trend is 419 

shown in Figure S4. The model estimates suggest the mean age of the root was in July 1950 420 

(95th high-posterior density, HPD, April 1938 – August 1961), while the average clock rate 421 

was 1.32 ´ 10-7 substitution/site/year (95th HPD 1.20 ´ 10-7 – 1.44 ´ 10-7). The maximum 422 

clade credibility (MCC) tree is reported in Figure 2, which also shows the division in four 423 

clades: clade 1 (green, 22 isolates), clade 2 (blue, 17 isolates), clade 3 (purple, 19 isolates) 424 

and clade 4 (red, 5 isolates). One sequence was excluded from all clades (Belel 4, Figure 2, 425 

reported as “no clade” in the figures). The geographical distribution of the clades is reported 426 

in Figure 3, showing the number of M. bovis isolates per administrative subdivision, which 427 

ranged from 1 to 17 (see Table S8 for the number of isolates per clade by regional abattoir). 428 

In Figure 4, we superimposed the MCC tree with spoligotypes; the most prevalent 429 

spoligotype, SB0944, occurred 26 times (out of 64 sequences) and was present in three of 430 

the four clades. The second most prevalent spoligotypes were SB0953 and SB2312, the first 431 

occurring five times in two clades, the latter occurring five times in one clade only (clade 2). 432 
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We also superimposed the MIRU-VNTR types as shown in Figure S5. The most prevalent 433 

MIRU-VNTR type in the sampled population was V89, which occurred nine times; V82 and 434 

V37 respectively occurred six and four times; and V81, V76 and V100 all occurred three 435 

times. Seven MIRU-VNTR types occurred twice, while 39 types occurred only once.  436 

 437 

3.3. Spatio-temporal pathogen expansion 438 

The estimated mean branch velocity was 53.1 km/year (95th CI 18.4 – 219.0, temporal trend 439 

reported in Figure S7). The wavefront statistics in Figure 5 suggests that the pathogen 440 

expansion was slow until the mid 1960s, but accelerated thereafter to reach the entire 441 

study area, with a slow but constant expansion in the following period. This is reflected in an 442 

increase of the branch velocity at the same time (Figure S7), which is approximately the 443 

period when the branches formed the observed clades (Figure 2). The timing of the different 444 

branches in space is reported in Figure 6 (95th HPD in Figure S8, with nodes coloured by 445 

estimated/observed date). 446 

We tested the association between nine geographical variables with the dispersal duration. 447 

Table 1 shows the results obtained using the straight line and the least cost path models, 448 

the latter run considering the variables as potential conductance or resistance factor. Six 449 

variables resulted in a significant association (positive coefficients for all at least 95 out of 450 

100 trees, and above 75% of positive Q): mosaic, shrub and other vegetation cover (with 451 

both path models, as resistance in the least cost one); forest cover, elevation and 452 

waterbodies cover (all as conductance); and cattle density (as resistance). However, when 453 

their statistical significance was tested through the randomisation, only forest cover and 454 

elevation (both as conductance) showed a Bayes Factor significant (≥ 3 (69)). The result was 455 

robust against two different trees randomisation algorithms for the forest layer, while for 456 

the elevation this was true only when maintaining only the branches length and excluding 457 

the other tree topological characteristics. 458 

 459 

3.4. Factors associated with genetic distance 460 

The RMSE of the boosted regression trees BRT model ran using all 28 variables was 20.23, 461 

while the R2 was 0.450. We simplified the model using the dismo package, which tests the 462 

performance of the model by dropping the less important variables with a procedure similar 463 

to backward selection in regression (58). The algorithm brought to eliminating 12 variables 464 
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(see Table S5), nonetheless the model run using the remaining 16 variables performed very 465 

similarly to the original one (RMSE = 20.22 and R2 = 0.452). Therefore, we used the latter to 466 

calculate the variable importance (Figure 7). 467 

As expected, the most relevant variables were the temporal distance between the samples 468 

(1st) and the binary variable indicating whether the two M. bovis isolates belonged to the 469 

same clade in the MCC tree (2nd). The variables describing the subdivisions’ population were 470 

also relevant in the model (population.y, 3rd, and population.x, 5th), as well as whether two 471 

isolates shared the same MIRU-VNTR (4th). This was more relevant than if two isolates 472 

shared the same spoligotypes (11th), suggesting the former as more useful to discriminate 473 

closer M. bovis strains. The markets movement network strength (i.e. the number of cattle 474 

moved from/to a subdivision) was the most important (6th and 9th) among network-related 475 

variables, while the betweenness (8th and 10th) was the only spatial network variable 476 

retained in the simplified model. Interestingly, when both variables were selected for the 477 

same metric, the one related to the youngest isolate (marked by y) was always preferred to 478 

the one related to the oldest isolate (marked by x). The partial dependency plots, showing 479 

the relationship between SNP distance and variables, are reported in Figure S9. 480 

481 
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4. Discussion 482 

We sought to unravel the characteristics of the spread of a pathogen with zoonotic 483 

potential in time and space to improve our understanding and inform control and 484 

preparedness strategies. Our basic premise is that the accumulation of mutations in the 485 

pathogen’s genome can be used as signatures of transmission events from host to host 486 

across time and space. Within space, the environment can create barriers which influence 487 

the population dynamics of diseases, i.e., altering host-to-host and pathogen-host 488 

interactions has direct effects on the genetic structure of the pathogen (70). The availability 489 

of high-throughput genomic techniques means we can interrogate the structural changes 490 

linked to the environment over time to gain critical insights into how the epidemic has 491 

evolved. In this study, we aimed to characterise M. bovis sampled from cattle in Cameroon 492 

using genetic and demographic data to understand whether the pathogen is in a stable 493 

endemic state and the influence on the spread dynamic of environmental and ecological 494 

factors and cattle movements. 495 

 496 

4.1. Evidence of dynamic endemicity 497 

An important question was whether the M. bovis outbreak in North Cameroon was in a 498 

steady state, at an endemic equilibrium, or if it was expanding. Determining whether a 499 

pathogen is endemic has implications on risk perception and, consequently, on resource 500 

allocation. At the same time, the chances of zoonotic transmission are likely to be higher in 501 

the case of endemicity. In our analysis, the Bayesian model estimation with SkyGrid as a 502 

population model showed an increasing pathogen effective population size, corresponding 503 

to a constant increase in the disease velocity after the sudden jump during the mid-to-late 504 

1960s. This suggests that the pathogen is not in a state of endemic stability, instead it has 505 

been expanding at various rates over the years. This is in agreement with a previous 506 

publication using spoligotypes and MIRU-VNTR (16) and with the work by Awah-Ndukum et 507 

al. (15). The expansion of M. bovis might represent an issue for livestock and humans, 508 

particularly as we showed that the bacterium is circulating in both. At the moment, disease 509 

control in the area is absent, while on the other hand, the dairy industry in Africa is 510 

generally expanding. A lack of widespread milk pasteurization could lead to an increase in 511 

zoonotic TB cases, which already represent a problematic issue in the region (12).  512 

 513 
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4.2. Genetic diversity of M. bovis in Cameroon 514 

We observed a high diversity of M. bovis, confirming earlier observations with molecular 515 

typing techniques providing less granular information (16), considering the short time span 516 

of the sampling campaign and the small sample size. This contrasts with areas such as Great 517 

Britain and other European countries, where strict control measures, such as routine testing 518 

and stamping out of positive individuals, have been in place for decades. This can act as a 519 

bottleneck with a consequent reduction in the pathogen’s genetic variability by reducing the 520 

time a pathogen has to develop inside a domestic host, therefore, the likelihood of 521 

substitutions in the DNA. As an example, Crispell et al. (57) reported a similar SNP distance 522 

range (0 to 150), albeit across a much bigger sample (n = 230), with a lower median (20 523 

SNPs) and with isolates dating back two decades, while in a similar size monophyletic 524 

outbreak (n = 64), Rossi et al. reported a maximum SNP distance of only 6 SNPs (56). In 525 

Spain, Pozo et al. (71) found a similar SNP distance average and range (62, and 0 to 150) in a 526 

bigger M. bovis population, sampled in both cattle and wildlife over 13 years. It is 527 

noteworthy that high diversity can be associated with dynamic epidemiology and not with 528 

endemic stability.  529 

All 64 core isolates belonged to the clonal complex Af1, which was observed in the region in 530 

previous studies (65). The most common spoligotype, SB0944, was found by Müller et al. 531 

(65) as the most prevalent in West Africa and considered as the original of the Af1 clonal 532 

complex. Our findings also suggest zoonotic transmission in West Africa, as sequences 533 

recovered from humans in Cameroon and Ghana clustered with Cameroonian cattle M. 534 

bovis isolates (72). Because it is known that zoonotic TB represents a minoritarian but still 535 

crucial part of all TB cases in Africa, these results strengthen the case for One Health 536 

approaches to control, that involve humans, livestock, wildlife and environmental health 537 

(12,73). Except for the one sequence in Mali and the two Cameroonian outliers, all the 538 

sequences from West Africa clustered together, hinting to a high connectivity likely caused 539 

by cattle movements throughout the area, as previously showed by another study (74). Our 540 

results showed that the areas with the highest M. bovis diversity were in the Adamawa and 541 

North regions, both reporting all the clades identified by the maximum clade credibility 542 

(MCC) tree. All clades were also sampled in the towns of Touboro and Tchollire, both 543 

located in the North region but close to the Adamawa border. Previous studies reported 544 

that this area receive cattle from neighbouring country as part of the transhumance 545 
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migration, suggesting that cattle movements and markets play an important role in defining 546 

the dynamics of the pathogen, and therefore influencing its genetic diversity (16,23). The 547 

Northwest region was underrepresented in the sample, with only five high-quality 548 

sequences on 31 infected cattle detected at the abattoir. This inherently reduces the level of 549 

diversity, which is far lower than reported using spoligotypes and MIRU-VNTR (16).  550 

Despite covering a smaller portion of the genome and the higher occurrence of homoplasy 551 

with respect to WGS, in other contexts spoligotypes have been used as a proxy cluster, or to 552 

narrow down potential transmission within the study population (57,75). Our results 553 

showed that this cannot be done for areas with high diversity such as the one we 554 

considered, as we observed little correspondence between the MCC tree branches and the 555 

spoligotypes. Similarly, other studies pointed out the limitations of such typing techniques 556 

(19), in case of an expanding infection where transmission is steadily ongoing, compared to 557 

point-source ones (76). The high SNP distances among the sampled isolates also precluded 558 

the use of methods to infer direct transmission between hosts (8,77).  559 

When considering the entire sampled population, therefore including the sequences with 560 

incomplete metadata, we found two of the 91 sequences not belonging to the clonal 561 

complex Af1. In their spoligotype pattern (SB2332), we noted the absence of spacer 21 (78), 562 

and the closest relatives analysed by Loiseau et al. (40) were identified as part of the clonal 563 

complex Eu2, including isolates sampled both in South-western Europe (SB0837, SB1090, 564 

SB1308) and West Africa (SB1102, isolated in Cameroon as well (13)). We can then 565 

speculate that these sequences likely belong to Eu2 as well, although we could not exclude 566 

one of the “unknown” clonal complexes identified by other studies (40,79). Further 567 

development on this point was beyond the scope of this study, as we focused on the 64 core 568 

sequences to gather insights on the pathogen dynamics in the area.  569 

 570 

4.3. Tracking the spread of M. bovis in Cameroon 571 

We acknowledge that our estimates for the most recent common ancestor (MRCA) have a 572 

wide credible interval around it (23 years). This uncertainty is likely due to the short 573 

duration of the samples collection campaign, which also generated a weak temporal signal, 574 

although the coefficient of determination was similar to other M. bovis studies in highly 575 

sampled populations (56,57). Nonetheless, our estimates coalesce around 1950, suggesting 576 

that the pathogen has been spreading in the area for at least six decades at the time of 577 
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sampling. For the same reason, the estimated clock rate was higher than others in the 578 

literature but in the same order of magnitude (0.67-1.26 ´ 10-7, n = 2625 (40)). 579 

The estimated MCC tree located the most recent common ancestor (MRCA) in Touboro 580 

(North region) and, from there, a rapid expansion of the outbreak reaching most of the 581 

study area by the early 1970s. From the estimated origin, the pathogen likely spread first 582 

northward to Garoua (in the same region) and westward, to the Nort West region, and later 583 

to the Extreme North and Adamawa regions and again to the Northwest.  584 

The results of the spatial factors analysis showed that forest cover and elevation were the 585 

only significant ones, both acting as “conductance”. Forest cover could be a proxy for 586 

potential wildlife interactions, as M. bovis is known to be quite effective in spreading at the 587 

wildlife-livestock (and humans) interface (73,80). The elevation as conductance was 588 

counter-intuitive, however, this could be linked to cattle movements in pastoralist 589 

communities within the plateau located in the study area. This is important because, if 590 

confirmed, altitude could be used as a proxy for the missing pastoralist movements.  591 

Our regression model performed reasonably well, although the amount of variability 592 

explained was below 50%. However, our objective was to understand which variables could 593 

better explain the genetic distance between M. bovis isolates, expressed as SNP distance. 594 

Except for the between isolates temporal distance and clade, the demographic variables 595 

were the most effective in explaining SNP distance, particularly the administrative 596 

subdivision human population size. These variables had a negative effect on the SNP 597 

distance, meaning that smaller population was associated to a close relatedness of the M. 598 

bovis strains. This could be an effect of the population distribution in the country because 599 

the northern regions, where cattle are most concentrated, are less populated compared to 600 

the cities in the south. The simplified model performed similarly to the full model, 601 

suggesting some variables were not important in explaining the genetic distance. Beyond 602 

the human population size, also the other demographic variables (population and cattle 603 

density) were all retained. Conversely, only five network related variables were retained, 604 

three for the cattle movement network (out of eight) and two for the spatial network (out 605 

of six). All network related variables had a positive effect on the SNP distance, with the 606 

number of cattle moved in or out a subdivision (i.e., strength) having the higher predictive 607 

effect. Interestingly, this result was similar to other studies where cattle movements alone 608 

could not fully capture M. bovis genetic diversity (56,57).  609 
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 610 

4.4. Limitations 611 

The major limitation of this dataset was the short data collection time window, less than a 612 

year and a half, which resulted in uncertainty in the MRCA estimate and a weak temporal 613 

signal. While we can speculate the sampled bacterial population already reached the entire 614 

study area before the 1970s, a wider sampling time window would likely allow a stronger 615 

temporal signal and improve our estimate of the MRCA, which might be prior with respect 616 

to the current estimate. In turn, this affected the pathogen’s expansion patterns, including 617 

the branch velocity and wavefront, which are also limited by the sampled area size. The 618 

spatial uncertainty might also be affected by the absence of dense cattle movements 619 

records, so the known spatial coordinates associated with each sequence correspond to the 620 

last village the animal lived in. The Adamawa and Northwest regions are home to 1.25 621 

million and 450.000 cattle respectively (23), and while this abattoir-based study provides a 622 

very informative snapshot of the M. bovis population in North Cameroon, it adds to the calls 623 

to improve cattle records and movements routine data collections in LMICs (81), as well as 624 

bTB detection efforts.  625 

The low-quality WGSs disproportionally affected the Northwest region, as reported in Table 626 

S7. This could have hampered the representativeness of the M. bovis diversity in that 627 

region, reducing the number of clades observed. The Adamawa region was the most 628 

represented, despite most of the sequences excluded from the quantitative analysis 629 

because of missing coordinates, came from the Ngaoundere abattoir. The bacterium 630 

diversity in the Northwest might also be affected by the demographic of the slaughtered 631 

cattle in the region (14): because the region is highly populated by humans and more 632 

isolated in the trade network (23), local animals of both sexes and at any age are 633 

slaughtered. Conversely, young male calves from the Adamawa, North and Extreme North 634 

regions are often sent to richer southern regions to maximise their economic values, leaving 635 

the older cows to be slaughtered. By being exposed to the M. bovis for longer, the latter 636 

have more chances to develop lesions. On the other hand, these trends likely reduce the 637 

impact of missing information on the previous location of the animals, because these 638 

animals have more chances of being reared locally.  639 

In agreement with many studies, and with the vSNP analysis result, we used AF2122/97 as 640 

reference genome (50,51,56,57,79,82,83). In order to account for genes, absent in M. bovis, 641 



 22 

Loiseau et al. (40) used M. tuberculosis H37Rv, a choice driven by the different purpose of 642 

their work compared to ours (define the origin and the global population structure of M. 643 

bovis). Generally, the pipelines used to call the SNPs differed in many of the aforementioned 644 

studies, contributing to the estimates uncertainty and potentially generating biases the 645 

analysis results and the clock rate calculations.  646 

 647 

5. Conclusion 648 

 In conclusion, our study indicates endemic stability of M. bovis is unlikely in North 649 

Cameroon, but rather the disease is slowly expanding over time. Our findings highlight the 650 

importance of collecting data in underrepresented areas to enrich insights in the current 651 

body of literature, predominantly from developed countries. Moreover, our results pave the 652 

way for future research aimed to understand whether the observed M. bovis high genetic 653 

diversity affects the spread dynamics.  654 

 Our findings underscore the need to adopt a one-health surveillance strategy for M. bovis 655 

control (12). More work on combining tools such as phylogeography, statistical modelling, 656 

landscape and ecology will be beneficial to map spread patterns and effectively inform 657 

control and preparedness strategies (56).  658 

659 
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Figures 927 

 928 
Figure 1: Phylogenetic tree of the African Mycobacterium bovis whole-genome sequences 929 

considered in the study. The tree includes 91 high-quality Cameroonian sequences, 101 930 

from the EBI dataset, 20 from Patric and the 1997 UK M. bovis reference. 931 

 932 



 33 

 933 
Figure 2: Phylogenetic time scaled MCC tree of the 64 high-quality M. bovis whole-genome 934 

sequences sampled in Cameroon in 2012 and 2013. The thin lines represent the 95th HPD of 935 

the internal node dates, while the branch colours represent different clades: 1 (green), 2 936 

(blue), 3 (purple) and 4 (red). A non-time scaled tree showing the genetic distance between 937 

the 64 sequences is reported in Figure S6. 938 

 939 

 940 
Figure 3: Geographic distribution of the 64 high-quality M. bovis whole-genome sequences 941 

in Cameroon. Circle sizes correspond to the number of sequences per administrative 942 

subdivision, and colours represent different clades (clade 1 green, clade 2 blue, clade 3 943 

purple and clade 4 red).  944 
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 945 

 946 
Figure 4: Visual comparison between the M. bovis phylogenetic time scaled MCC tree and 947 

the spoligotypes obtained by Egbe et al. (16). Ten sequences were associated with two 948 

spoligotypes, because multiple samples from the same animal (up to three) were submitted 949 

for spoligotyping.  950 
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 952 
Figure 5: The estimated epidemic wavefront over time (panel A) and the expansion of the 953 

epidemic wavefront on the map (panel B). A: mean (lines) and 95th HPD (shades) of the 954 

epidemic wavefront spatial distance (blue) and patristic distance (red) over time. B: 955 

different yellow shades represent the epidemic wavefront at sequential point in time 956 

(marked by vertical dotted lines in panel A), and lighter shades of yellow correspond to 957 

more recent expansion; the estimated tree’s root location is indicated by the black cross, 958 

diamonds represent the internal nodes estimated locations, and circles the sampled isolates 959 

(coloured by clade: 1 green, 2 blue, 3 purple and 4 red).  960 

 961 
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 962 
Figure 6: The Cameroonian M. bovis epidemic estimated expansions in space and time. 963 

Nodes are coloured by clade (1, green; 2, blue; 3 purple; 4, red; no clade, light grey; internal 964 

nodes, dark grey; tree root, black), while the branches are coloured by estimated movement 965 

date, from 2007 (purple) to 2013 (yellow).  966 
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 968 
Figure 7: Relative influence of the most relevant variables in the simplified boosted 969 

regression tree (BRT) model. The purpose of the BRT model was to explain the SNP distance 970 

between the 64 high-quality M. bovis isolates. Many variables are calculated between 971 

isolates pairs, x refers to the oldest isolate’s subdivision, and y to the youngest one. 972 

973 
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 974 

Variable Type Path model 
Number of 

positive 
coefficients 

Number of 
positive  

Q statistic 

Mean Bayes Factor 

(Randomisation #1) (Randomisation #2) 

Mosaic_shrub_otherv Resistance Least cost 100 99 1.89 1.83 
Forest Conductance Least cost 100 96 3.66 3.66 
Mosaic_shrub_otherv NA Straight line 100 89 0.62 1.32 
Elevation Conductance Least cost 100 88 2.39 3.00 
Waterbodies Conductance Least cost 100 87 1.10 0.97 
Cattle_density Resistance Least cost 99 77 2.49 2.88 
Cattle_density NA Straight line 100 73 Not run Not run 
Cattle_density Conductance Least cost 100 70 Not run Not run 
Grassland_cropland Resistance Least cost 100 66 Not run Not run 
Grassland_cropland NA Straight line 100 56 Not run Not run 
Mosaic_shrub_otherv Conductance Least cost 100 44 Not run Not run 
Roads_intersections Conductance Least cost 100 42 Not run Not run 
Waterbodies Resistance Least cost 100 38 Not run Not run 
Waterbodies NA Straight line 100 27 Not run Not run 
Grassland_cropland Conductance Least cost 100 15 Not run Not run 
Forest Resistance Least cost 100 12 Not run Not run 
Elevation NA Straight line 100 7 Not run Not run 
Forest NA Straight line 100 3 Not run Not run 
Pop_density Conductance Least cost 99 40 Not run Not run 
Elevation Resistance Least cost 99 15 Not run Not run 
Roads_length NA Straight line 97 0 Not run Not run 
Pop_density NA Straight line 96 16 Not run Not run 
Pop_density Resistance Least cost 96 7 Not run Not run 
Roads_length Conductance Least cost 92 11 Not run Not run 
Roads_length Resistance Least cost 59 0 Not run Not run 
Roads_intersections NA Straight line 56 1 Not run Not run 
Roads_intersections Resistance Least cost 6 1 Not run Not run 

 975 

Table 1: Results of the analysis on nine spatial variables, assuming two path models, straight 976 

line and least cost, and for the least cost path, whether the variable worked as a 977 

conductance or resistance. Results show the number of positive coefficients for the 100 978 

sampled trees, the number of positive Q statistics, and the mean Bayes factor calculated 979 

over 10 randomisations, testing two algorithms: 1) randomisations of nodes positions while 980 

maintaining branches lengths, tree topology and location of the most ancestral node; and 2) 981 

randomisations of nodes positions while maintaining only the branches lengths.  982 
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