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Abstract. Positron Emission Particle Tracking (PEPT) is an imaging method for the

visualization of fluid motion, capable of reconstructing three-dimensional trajectories

of small tracer particles suspended in nearly any medium, including fluids that are

opaque or contained within opaque vessels. The particles are labeled radioactively, and

their positions are reconstructed from the detection of pairs of back-to-back photons

emitted by positron annihilation. Current reconstruction algorithms are heuristic and

typically based on minimizing the distance between the particles and the so-called lines

of response (LoRs) joining the detection points, while accounting for spurious LoRs

generated by scattering. Here we develop a probabilistic framework for the Bayesian

inference and uncertainty quantification of particle positions from PEPT data. We

formulate a likelihood by describing the emission of photons and their noisy detection

as a Poisson process in the space of LoRs. We derive formulas for the corresponding

Poisson rate in the case of cylindrical detectors, accounting for both undetected and

scattered photons. We illustrate the formulation by quantifying the uncertainty in

the reconstruction of the position of a single particle on a circular path from data

generated by state-of-the-art Monte Carlo simulations. The results show how the

observation time ∆t can be chosen optimally to balance the need for a large number of

LoRs with the requirement of small particle displacement imposed by the assumption

that the particle is static over ∆t. We further show how this assumption can be relaxed

by inferring jointly the position and velocity of the particle, with clear benefits for the

accuracy of the reconstruction.
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1. Introduction

Standard methods for fluid flow visualization, e.g. particle image velocimetry (PIV) and

particle tracking velocimetry (PTV), use high-speed cameras to capture the motion of

small tracer particles that follow the fluid motion. Although widely used, these methods

have two main drawbacks: the inability to visualize opaque flows – either flows of opaque

fluids or flows within opaque environments – and a limited ability to visualize three-

dimensional flows. Inspired by the physics of Positron Emission Tomography (PET), a

standard method for diagnosis in nuclear medicine, Parker et al. [1] developed Positron

Emission Particle Tracking (PEPT), in which radioactively labeled particles serve as

tracers of fluid flow. The radioactive decay of these particles emits positrons that are

annihilated on or near the particles, resulting in γ-radiation that is picked up by an array

of sensors, allowing for the triangulation of each particle position. Because of their high

energy, the γ photons penetrate even very dense media, making it possible to visualize,

for example, the flow of liquid metals [2] or of colloidal drugs in the bloodstream [3].

The triangulation process naturally recovers the full position of the particles, so the

reconstructed trajectories are inherently three dimensional.

The fundamental idea behind the triangulation of particle positions in PEPT is

simple. In most annihilation events, the positron and electron masses emit two photons

that travel in opposite directions to conserve momentum. The emitted photons are

picked up at the detection surface (an array of small detectors, see figure 1); two photons

detected within a very short time interval are interpreted as having been generated

by a single annihilation event. Such a pair detection represents a Line of Response

(LoR) – the straight line connecting the two detection points – along which the particle

is presumably located (red line and black dot in figure 1). Two nearly intersecting

LoRs are seemingly sufficient to determine a particle instantaneous position with great

accuracy. However, in practice, a much larger number of LoRs is required to cope with

various sources of uncertainty. These include Compton scattering [4], which leads to

outlier LoR detections (illustrated by the purple lines in figure 1), the finite size of the

detectors, which limits resolution, and positron range, that is, the small but non-zero

distance between the radioactive particle and the point of annihilation. The interested

reader will find explanations on these and other sources of uncertainty in the paper by

Moses [5].

There is a rapidly growing body of work devoted to PEPT (see the recent book

by Windows-Yule et al. [6] and references therein). This includes the development of

a variety of methods for the inversion of PEPT data [7, 8, 9, 10, 11, 12, 13], which are

assessed and compared in the recent review [14]. The methods proposed to date are

largely heuristic, and they do not estimate the error made on the recovered particle

positions. The main aim of this paper is to remedy this and propose a systematic

probabilistic framework for PEPT. This makes it possible to infer the particle positions

and quantify their uncertainty using Bayesian methods [15].

We first formulate the forward problem, describing the probability of observing a
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Figure 1: Schematic of a PEPT system: a representative positron-emitting particle

(black) is positioned inside a cylindrical array of detectors with radius R and height

H. The highlighted cells denote photon detections and the solid lines represent Lines

of Response (LoRs) that connect points of near-simultaneous detection. The red

line represents a true back-to-back photon pair detection, indicative of the particle’s

true position; the purple line is an outlier LoR that results from a scattering event.

The purple dotted line shows the true photon paths. The LoR parameterization

u = (ϕ1, ϕ2, z1, z2), with (zi, ϕi), i = 1, 2, the height and azimuthal angle detected

photon i, is also shown.

set of LoRs given the positions and activities of the particles as a Poisson process in

the space of LoRs and in time (§2). We then give an expression for the corresponding

rate in the case of a cylindrical detector, the most common geometry of PET/PEPT

scanners, accounting for the detection of outlier LoRs resulting from scattering (§3). We

illustrate the benefits of our framework by carrying out Bayesian inference for synthetic

data of a particle moving along a circular path (§4). This provides a quantification of

the uncertainty as a function of the time interval ∆t over which LoRs are observed,

a key parameter that is determined by trial and error in other PEPT reconstruction

algorithms. We also show how knowledge of the exact times of LoR detection can be

leveraged to improve the accuracy of the inference.

2. Formulation

We consider K radioactive particles with positions X(t) = {x1 (t) , · · · ,xK (t)},
suspended in a fluid within the volume enclosed by an array of detectors (see figure

1 for a schematic of a system with a cylindrical array). The particles spontaneously
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Figure 2: Parameterization of LoRs: the direction n of a LoR is given by the polar

spherical angles φ and θ. The brown plane is normal to n and goes through the

origin; its intersection with the hemisphere tangent to the LoR is shown as a green

arc. The point on the LoR closest to the origin (red dot) is parameterized by the

two coordinates (aφ, aθ) in the planar frame (eφ, eθ), with (n, eθ, eφ) the standard unit

vectors of spherical polar coordinates.

emit positrons at random times, according to independent Poisson processes whose

rates are the activities ϱ = {ρ1, · · · , ρK}. These activities can be taken as constant

over the time ∆t of observation of a batch of LoRs. Positrons released from radioactive

decay are annihilated close to the particles, emitting a pair of back-to-back photons in

a random direction. The photons are subsequently picked up by a pair of detectors.

The LoRs joining each pairs of detectors constitute the data from which the particle

positions X(t) should to be retrieved. We adopt a Bayesian approach and formulate a

forward model, which gives the probability of observing a set of LoRs given the particle

positions X(t) and activities ϱ and is translated into a probability for X(t) and ϱ using

Bayes’s formula. The forward model is best expressed as a Poisson process in the space

of LoRs.

2.1. Forward model

The space of lines in R3 is 4-dimensional since lines can be characterized by a unit

vector n, giving their direction, and the closest point to the origin, which lies in the

plane normal to n. With the restriction nz ≥ 0, this identifies the space of lines with the

tangent bundle to a hemisphere. We parameterize n using the standard polar spherical

angles. The point on the line closest to the origin is then conveniently represented as

a = aφeφ + aθeθ (1)
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in terms of the unit vectors eφ and eθ of the spherical coordinate system (with er = n,

see figure 2). In this way, a LoR L is parameterized as

L = (φ, θ, aφ, aθ) ∈ [0, 2π]× [0, π/2]× R2. (2)

There is a natural measure on that space, dµ say, characterized by invariance in rotation

and translation [16]. In terms of the coordinates (2), this has the simple form

dµ = sin θ dφdθdaφdaθ. (3)

The generation of LoRs given the positions and activities of K radioactive particles

defines a Poisson point process in the space of lines and in time. This has long been

known in PET, with numerous works describing LoR generation as a Poisson process

(see, e.g., [17, 18]), however in PEPT the radioactive source position is inherently time

dependent. We denote by λ(L|x(t), ρ) the rate (or intensity) of the Poisson process

corresponding to the generation of LoRs by a single particle with activity ρ moving

along the path x(t). Thus λdµdt is the probability of finding a LoR in the volume

[φ, φ+ dφ]× [θ, θ + dθ]× [aφ, aφ + daφ]× [aθ, aθ + daθ] during a time interval [t, t+ dt].

The form of λ(L|x(·), ρ) depends on the geometry of the detectors and physics of positron

annihilation, scattering and other processes; we give an explicit form for a cylindrical

detector in §3. Note that λ(L|x(t), ρ) depends on time implicitly through the time

dependence of the particle position x. The rate of generation by K particles is simply∑K
k=1 λ(L|xk(t), ρk).

Using the standard formula for Poisson point processes [19], we can write down the

probability of observing N LoRs L1, · · · , LN at times 0 < t1 < · · · < tN < ∆t as

P (Lt|X(·), ϱ,∆t) = e−Λ(X(·),ϱ,∆t)

N∏
n=1

K∑
k=1

λ (Ln|xk(tn), ρk) . (4)

Here Lt = {(L1, t1), · · · , (LN , tN)} denotes the observed LoRs and times of observation

and we have defined

Λ(X(·), ϱ,∆t) =
K∑
k=1

∫ ∆t

0

∫
λ (L|xk(t), ρk) dµdt, (5)

with the integration with respect to dµ carried out over the entire space of LoRs. Note

that P (Lt|X(·), ϱ,∆t) is properly normalized, in the sense that

∞∑
N=0

∫ ∆t

0

dt1

∫ ∆t

t1

dt2 · · ·
∫ ∆t

tN−1

dtN

∫
· · ·
∫
P (Lt|X(·), ϱ,∆t) dµ1 · · · dµN = 1. (6)

In most inversion algorithms, the time interval ∆t is taken small enough that

particles can be assumed fixed (see Ref. [20], however). With this assumption,

information about the times of observations of the LoRs can be disregarded, and

we can focus on the probability of observing a set L = {L1, · · · , LN} of LoRs,
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irrespective of the times. This probability is obtained by integrating (4) with respect to

0 < t1 < t2 < · · · < tN < ∆t to find

P (L|X, ϱ,∆t) =
(∆t)Ne−Λ(X,ϱ,∆t)

N !

N∏
n=1

K∑
k=1

λ (Ln|xk, ρk) , (7)

where the notation emphasizes that X and xk are regarded as constant. Eq. (5) also

simplifies to

Λ(X, ϱ,∆t) = ∆t
K∑
k=1

∫
λ (L|xk, ρk) dµ. (8)

2.2. Bayesian inference

Bayes’ formula provides the means to infer a probability distribution for the particle

positions and activities from LoR data. Under the assumption of fixed particles, it

takes the form

P (X, ϱ|L,∆t) ∝ P (L|X, ϱ,∆t)P (X, ϱ), (9)

where P (X, ϱ|L,∆t) is the posterior probability for the (fixed) particle positions

X = {x1, · · · ,xK} and activities ϱ = {ρ1, · · · , ρK}, P (X, ϱ|L,∆t) is the likelihood

given in (7), and P (X, ϱ) is the prior. In the application of §4, we take a uniform

(improper) prior over the set of physically realisable particle positions and activities,

namely

P (X, ϱ) =

{
1 if xk ∈ V and ρk ≥ 0 ∀k
0 otherwise

, (10)

where V is the volume enclosed by the detectors.

The assumption of fixed particle positions that underlies (9) restricts the length

of the observation time ∆t and hence of the number of observed LoRs. Depending on

the speed of the particles, this can severely limit the accuracy of the inversion. To

overcome this, we can retain information about the times of LoR observations and

carry out Bayesian inference for the particle trajectories rather than fixed positions,

using (4) as the likelihood. In practice, the trajectories must be parameterized, say as

xk(t) = x̂(t, ϑk), where ϑk groups the parameters of the trajectory of particle k. Bayes’

formula is then used in the form

P (ϑ, ϱ|Lt,∆t) ∝ P (Lt|ϑ, ϱ,∆t)P (ϑ, ϱ), (11)

where ϑ = {ϑ1, · · · , ϑk} and the likelihood P (Lt|ϑ, ϱ,∆t) is obtained from (4) by

substituting the parametric form of the trajectories. A simple parameterization can

be constructed by a Taylor expansion of the particle trajectory around the middle of

the observation time. We follow Manger et al. [9] by writing

xk (t) =
M∑

m=0

1

m!

dmxk

dtm

∣∣∣∣
∆t/2

(t−∆t/2)m +O
(
∆tM+1

)
. (12)
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and use the position and its M first derivatives as parameters:

ϑk =

(
xk|∆t/2 , · · · ,

dMxk

dtM

∣∣∣∣
∆t/2

)
. (13)

We refer to inference of this type as high-order inference and to M as the order of the

inference. We implement the M = 1, first-order inference in §4.4.

3. Poisson rate

We now derive the Poisson rate λ(L|x, ρ) for a cylindrical detector configuration with

radius R and height H as depicted in figure 1. We assume that positron annihilation

takes place close enough to the radioactive particle that the photons can be assumed to

travel on a line through x. This line has a random direction, distributed uniformly and

parameterized by two spherical angles φ′ and θ′, say, with probability density

p(φ′, θ′) =
sin θ′

2π
. (14)

The angles φ′ and θ′ differ from the angles φ and θ attributed to the LoR because of

measurement errors which we now model.

3.1. Detection error

The LoRs are detected on a surface of discrete detectors, in our case a cylindrical

envelope. The line through x intersects this cylinder at two points which we

parameterize as

u′ = (ϕ′
1, ϕ

′
2, z

′
1, z

′
2) ∈ [0, 2π]× [0, 2π]× [−H/2, H/2]× [−H/2, H/2] , (15)

where ϕ′
1,2 and z

′
1,2 are the azimuthal angles and heights of the two points (see figure 1 for

illustration of this parameterization). Measurement uncertainty introduces a deviation

between the detected coordinates u of these intersections and the exact intersection

u′. As a result, the coordinates L = (φ, θ, aφ, aθ) of the observed LoR differ from the

coordinates L′ = (φ′, θ′, xφ′ , xθ′) of the line followed by the photons. The uncertainty

associated with the finite size of the detectors implies that the intersection parameters

u of the observed LoR are distributed uniformly over the area of the two detectors

intersected by the true LoR. To avoid discontinuous distribution and to group all

measurement errors in a single, simple model, we replace this uniform distribution by a

normal distribution: we assume that u is normally distributed about u′ according to

u|L′ ∼ N (u′, C), where C =


g2/R2 0 0 0

0 g2/R2 0 0

0 0 g2 0

0 0 0 g2

 . (16)
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Here g2 is the variance of the detected heights z1 and z2; assuming that the uncertainty

about the true LoR is isotropic, it follows that the variance in ϕ1, ϕ2 is g2/R2. In

practice, we fix g to ensure the Gaussian distribution does not strongly deviate from a

top hat function; specifically, we take g such that the difference between integrating the

top hat and Gaussian distributions over a single detector is minimized.

There is a one-to-one map between the coordinates of LoRs and the coordinates u

of the detected points which we denote by u = F (L) (see appendix Appendix A for its

explicit form). In the linear approximation, the normal distribution (16) implies that L

is also normal, specifically

L|L′ ∼ N (L′,Σ), where Σ = [∇F (L)]−1C [∇F (L)]−T . (17)

We deduce the probability that a LoR L is detected given that a positron is

annihilated at x by marginalising over the angles ϕ′ and θ′ of L′ distributed according

to (14). Using that g/R ≪ 1, we can approximate the Gaussian in ϕ′ and θ′ by

δ(ϕ′ − ϕ)δ(θ′ − θ) to obtain this probability as

sin θ

2π |detΣ2|1/2
exp

(
−∆TΣ−1

2 ∆/2
)
, (18)

where Σ2 is the lower-right 2× 2 block of Σ, given explicitly in (A.10), and

∆ =

(
∆φ

∆θ

)
=

(
aφ − xφ
aθ − xθ

)
. (19)

Finally, the intensity of the Poisson process in the space of LoRs and time is obtained

as

λ (L|x, ρ) = ρ

2π |detΣ2|1/2
exp

(
−∆TΣ−1

2 ∆/2
)
χ(L ∈ D(xk)), (20)

with the factor sin θ absorbed in the volume element dµ in (3). The characteristic

function χ(·) in (20) ensures that λ is non-zero only if L belongs to the set D(xk) of

LoRs through xk that intersect the detector.

A particularly simple expression for λ is obtained under the assumption aφ, aθ ≪ R

valid when the particle is located well away from the detector, as is the case for

experiments carried out in small vessels. Eq. (20) is then well approximated by setting

aφ = aθ = 0 to obtain

λ (L|x, ρ) = ρ

πg2 sin θ
exp

(
−
[
∆2

φ

g2
+

∆2
θ

g2 sin2 θ

])
χ(L ∈ D(xk)). (21)

3.2. Outliers

Statistically, a proportion of the photons emitted from annihilation events are scattered,

resulting in outlier LoR detections (see figure 1 for a visualization of such detection).
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We account for these outliers by adding to the Poisson process describing the generation

of LoRs by K particles a component independent of the particle positions and activities.

This captures the fact that scattering leads to the identification of spurious LoRs whose

distribution is not directly related to the particle positions. For simplicity, we assume

this distribution to be uniform over the entire space of LoRs. We therefore re-write the

probability density (7) for the detected LoRs as

P (L|X, ϱ,∆t) =
(∆t)Ne−Λ(X,ϱ,∆t)

N !

N∏
n=1

(
ρ0
σ2
0

+
K∑
k=1

λ (Ln|xk, ρk)

)
, (22)

where

Λ (X, ϱ,∆t) = ∆t

(
ρ0 +

K∑
k=1

∫
D
λ (L|xk, ρk) dµ

)
, (23)

in which D is the set of all the possible LoRs for a specific detector configuration, ρ0
is the rate of scattered events, which is treated as independent of the activities ρk for

simplicity, and

σ2
0 =

∫
D
dµ (24)

is the outlier variance. Note that the activities ρk now stand for the rate of generation

of ‘true’ LoRs, as opposed to outlier LoR resulting from scattering events. The total

activity from all particles is
∑K

k=0 ρk.

The evaluation of the integrals (23) and (24) defining Λ and σ0 requires to determine

the sets D and D(xk) of, respectively, all LoRs intersecting the detectors twice and LoRs

through xk intersecting the detectors twice. We detail in Appendices Appendix B and

Appendix C the parameterization of these sets and the computation of the integrals.

The outlier variance is found as

σ2
0 =

πHR

8β

(
2β + 1−

√
4β2 + 1

)
, (25)

where β = R/H. This is proportional to the detecting surface area Ad = 2πRH. In

the limit β → 0 corresponding to a cylindrical detector that resembles a long tube, all

LoRs are detected and σ2
0 → Ad/8. In the limit β → ∞, corresponding to a detecting

surface that resembles a ring in which no true LoRs are detected, σ2
0 → 0 as expected.

The rate Λ is approximated as

Λ (X, ϱ,∆t) = ∆t

(
ρ0 +

K∑
k=1

ρkG (xk)

)
, (26)

assuming that the distance between the particles and the detectors in much larger than

g. Since g ≪ R, this assumption holds for realistic PEPT setups. Here, G (x) is a solid

angle subtended by the cylindrical detector from xk divided by 4π; it can be written as

G (x) =
1

2π

∫ 2π

0

dφ

∫ π/2

θmin

sin θ dθ =
1

2π

∫ 2π

0

cos θmin (x, φ) dφ, (27)
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Figure 3: Function G (r, z), computed numerically from (C.5) for the aspect ratio

β = R/H = 1/4 (left), 1/2 (center), and 1 (right). The function quantifies the reduction

in particle detectability depending on its position relative to the detector.

where θmin, given explicitly in (C.2), is the minimum angle required for the LoR to

intersect the cylindrical detector twice.

According to (26), ρkG(xk) can be interpreted as an ‘effective’ activity for particle

k that accounts for failure of detection of LoRs caused by detector geometry through

the factor 0 ≤ G(xk) ≤ 1. Figure 3 shows G as a function of the cylindrical coordinates

(r, z) of the particle (G is independent of the azimuthal angle by symmetry) for three

aspect ratios β = R/H. As β is increased G trivially decreases throughout the domain;

the maximum value is always obtained at the origin r = z = 0. We derive asymptotic

approximations for G at small and large β in appendix Appendix C.

4. Application

To demonstrate the effectiveness of our framework, we carry out the Bayesian inference

of the instantaneous position and activity in a simulation of a single radioactive particle

moving along a circle. The circle is concentric with the cylindrical detector surface

so that, by symmetry, G(x) is constant along the particle trajectory. Extending the

simulation and Bayesian inference to multiple particles is straightforward in principle;

however, the corresponding increase in the number of inferred parameters complicates

the analysis and significantly increases the computational cost. Considering an upper

limit of a few hundred parameters in Bayesian inference [21], a realistic limit on the

number of particles and/or the inference order can be easily estimated..

4.1. Simulations

We carry out our analysis on synthetic data produced by GATE [22], a unique

software for positron emission simulations. This has the benefit of providing the exact
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particle position as ground truth, thus enabling the exact measurement of the inference

error. We consider a cylindrical detector surface with R = 200 and H = 230mm

(β = R/H = 0.87), composed of identical 4 × 4 mm detector elements. The rotating,

positron-emitting particle is suspended in water, and its ‘corrected’ activity, that is

accounting for the effect of detector deadtime which is not represented explicitly in

the present work, is ρ = 5 · 104 emissions/s. LoRs are recorded over a period of one

second, providing ample data for the inference. We carry out simulations in four different

conditions with varying circle radii and rotation frequencies: r = 50 mm at f = 1 and

2 Hz, and r = 100 mm at f = 0.5 and 1 Hz. This yields two distinct particle velocities

2πfr ≈ 0.3 and 0.6 m/s, each repeated twice at varying acceleration 4π2f 2r.

4.2. Data analysis

We employ a standard Metropolis–Hastings Monte Carlo Markov Chain (MCMC)

algorithm [23] to sample the posterior distribution for the particle position x and

activities ρ0 and ρ1. The likelihood and prior are those given in (22), with λ in (20),

and (10). For the current setup with 4× 4 mm2 detectors, the detecting error variance

in (20) gives g = 2.43 mm.

The MCMC algorithm produces samples from the posterior distribution as a

sequence of (statistically dependent) sets of inferred parameters. This sequence is

constructed iteratively, with a new set of parameters obtained by proposing a random

change to a single randomly chosen parameter, then accepting or rejecting the change

depending on a likelihood ratio [21]. We use Gaussians as proposal density functions for

the difference between each old and new parameter. We increase/decrease the variance

of these Gaussians by a factor of two if 40 consecutive steps were accepted/rejected,

which resulted in an averaged acceptance rate of 0.26. The initial values of the Gaussian

proposal density are set as follows: the position variance is initially set to g2; the activity

standard deviation is initially taken as 5% of the particle activity. We use 105 steps

to infer the position and activity at each run. We start each MCMC sampling with

ρ0 = ρ1 = ρ/2 (with ρ the prescribed particle activity); to speed up the computation,

we start from the exact particle position thus not requiring a burn-in period for the

MCMC.

For each pair of values of the radius r and frequency f of the particle trajectory,

we infer the position and activity of the particle at 10 equally spaced times ti using the

LoRs collected in the time interval ti−∆t/2 < ti < ti+∆t/2. The statistics of each set

of 10 MCMC samplings makes it possible to characterize the variability of the inference

process that arises from the randomness of the positron emission. Our main focus is on

the dependence of the accuracy of the inference on the choice of the observation interval

∆t. We therefore run the entire MCMC computation for a range of values of ∆t and

compare the results.
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(a) (b)

Figure 4: Posterior pdf for the instantaneous position of a particle moving at v = 0.3m/s

estimated by MCMC sampling using (22) with ∆t = 10ms. The figures show conditional

pdfs in the (a) horizontal plane (x, y, 0), and (b) vertical plane (x,−3.56, z). The

majority of steps in the chain are enclosed within a 2 mm edge cube, demonstrating

the localization of the PDF. For reference, the true position at the midst of the time

interval is x = (49.87,−3.56, 0) mm.

4.3. Results

We first show the results of a single MCMC sampling, carried out for a particle rotating

with frequency f = 1Hz at a radius r = 50mm, resulting in the tangential velocity

v = 2πfr ≈ 0.3 m/s. The time interval is chosen as ∆t = 10ms which yields

approximately 250 detected LoRs.

In figure 4 we show two-dimensional histograms of the posterior pdf for the particle

position in the (x, y, 0) horizontal (a) and (x,−3.56, z) vertical (b) planes. (the particle

true position at the midst of the time interval is x = (49.87,−3.56, 0)) The results

illustrate the localization of the posterior defined by (22), with nearly the entire pdf

supported in a 2 × 2mm2 area in both the horizontal and vertical. To quantify the

uncertainty in the inference of the particle position more systematically, we estimate a

covariance matrix for the particle position from the MCMC samples. We use its three

eigenvalues, Li say, to compute the metric

s = R3

(
3∏

i=1

√
Li

)1/3

, (28)

where R3 = 2.79, such that s is the radius of a sphere that marks the 95% confidence

level for the Gaussian distribution with the estimated covariance. (R3 is the three-

dimensional equivalent of the more famous R1 = 1.96 that gives the 95% confidence

interval for a one-dimensional Gaussian distribution.) The pdf in figure 4 has s = 0.79
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(a) (b)

Figure 5: Uncertainty metric s defined in (28) (blue curves, left axes) and error |x−x∗|
in the inferred instantaneous particle position (red curves, right axes) as functions of

the observation time interval ∆t for the tangential velocities v = 0.3 (a) and 0.6 m/s

(b). Curves and error bars are averages and standard deviations estimated from 10

experiments with particles distributed uniformly along their circular trajectory. Solid

and dashed curves correspond to trajectory radii of 50 and 100 mm.

mm, five times smaller than the detector side of 4 mm.

Next, we run multiple MCMCs with increasing ∆t in order to assess the trade-off

between (i) the reduction in uncertainty associated with the larger number of LoRs, and

(ii) the increase in uncertainty caused by the particle displacement during ∆t. Indeed,

in the absence of motion, we expect s to decrease as N−1/2 ≈ (ρ∆t)−1/2, but the particle

displacement introduces an error in the model underpinning (22) that increases with ∆t.

One may wonder why the activity ρ is not increased to alleviate the uncertainty in the

moving particle position. Increasing ρ provides more data over the same ∆t and hence

monotonically decreases the uncertainty. In fact, ρ may be sufficiently increased such

that the particles are quasi-static over ∆t, in which case s ∝ ρ−1/2. However, in PEPT,

as opposed to PET, activity cannot be increased by simply introducing more radioactive

material with the same activity density. Here each particle is radiolabeled separately,

and the requirement that particles remain small so that they are easily suspended in fluid

makes it challenging to increase each particle activity. We therefore analyze particles

with fixed activity, rotating with the two tangential velocities 0.3 and 0.6 m/s obtained

by changing either the frequency or radius of the circular trajectory. In this way, we

can examine the effect of varying the acceleration while maintaining a constant velocity.

The results are shown in figures 5a for v = 0.3 m/s and 5b for v = 0.6 m/s. The blue

curves, with the left vertical axis, show the metric s, averaged over the 10 positions

of the particle, as a function of ∆t, with the error bars indicating the corresponding

standard deviation. The red curves, with the right vertical axis, show the absolute error
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(a) (b)

Figure 6: Inferred ratio ψ = ρ1/(ρ0 + ρ1) of rate of unscattered LoR detection to

total LoR detections (blue curves, left axes) and error in inferred and error |x− x∗| in
the inferred instantaneous particle position (red curves, right axes) as functions of the

observation interval ∆t for the tangential velocities v = 0.3 (a) and 0.6 m/s (b). Curves

are averages from 10 experiments, and solid and dashed curves correspond to trajectory

radii of 50 and 100 mm, as in figure 5.

|x− x∗| between the average inferred position x and the particle actual position x∗.

The solid and dashed curves are calculations for particles rotating with r = 50 and 100,

respectively, corresponding to a twofold decrease in particle acceleration. The scales in

both the left and right vertical axes in figure 5 are equal for ease of comparison.

All the uncertainty curves (blue, left vertical axis) exhibit minima, reflecting the

trade-off mentioned above. As could be expected, s is smaller for v = 0.3 m/s than for

v = 0.6 m/s as a result of smaller particle displacements with the same rate of LoR

generation, and for the same velocity, s is smaller for the smaller acceleration. The

curves are asymmetric about the minima, with a sharp decrease, and a much milder

increase (and even some further decrease at large ∆t for v = 0.6 m/s and r = 100 mm

(solid curve in figure 5b)). The error (red, right vertical axis), in contrast, increases

unambiguously for large ∆t, reflecting the expected model’s inability to accurately infer

the instantaneous position when the particle moves significantly over ∆t. To provide

reference to our results, we also analyzed the data with the Birmingham algorithm

[1], the most commonly used method for PEPT inversion [14], and the expectation-

maximization algorithm [9]. The error |x− x∗| achieved by both methods (not shown

in the figures) is roughly 1 mm – typically larger than our error at small ∆t but smaller

at large ∆t. Other inversion algorithms may be tested and compared against our

results; however, our primary aim is to quantify the uncertainty in PEPT rather than

developping an alternative algorithm. Accordingly, no attempts were made to optimise

our method by, for instance, testing various priors.
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It might seem paradoxical that the uncertainty does not increase substantially

with increasing ∆t while the error does. This is the result of our weakly constrained

model of scattering: LoRs that are inconsistent with emission by a fixed particle are

attributed to the scattered component of the likelihood, whether they arise because

of scattering or because of particle motion. This explanation is confirmed in figure 6

which shows the inferred relative activity ψ = ρ1/ (ρ0 + ρ1) of unscattered LoRs (blue

curves, left axis). Although, the correct, physical activity should be independent of ∆t,

the inferred value decreases, as a result of the increasing misattribution of LoRs to the

scattered component. One way of remedying this artifact is to constrain the ratio ρ1/ρ0
or, equivalently, ψ to a physically sensible range using the prior. Another way is to

account for the particle motion in the likelihood. We adopt the latter approach next by

implementing the Taylor-expansion-based first-order inference described in §2.2.

4.4. First-order inference

The first-order inference relies on the form (11) of Bayes’ formula, with the time-

dependent likelihood (4) and a linear approximation to the particle trajectory, so both

the particle position and velocity in the middle of the observation interval need to be

inferred. For simplicity, we approximate x(t) ≈ x(t0) = const. in the factor Λ in (5)

and use expression (8) that depends on positions only. The dependence on velocities is

then through the rates λ(L|xk(t), ρk).

We carry out MCMC sampling for the first-order (M = 1) inference in the case

r = 100 mm and v = 0.6 m/s and compare it with the results of the position-only

inference (M = 0) of the previous section. For this comparison we use the same number

of MCMC steps for M = 1 as for M = 0, even though the number of parameters to

estimate increases from 5 to 8. The results are shown in figure 7a which shows the

uncertainty metric s (blue, left axis) and the position error (red, right axis), with the

same conventions as in figure 5.

Both the M = 1 uncertainty and error curves lay below their counterparts for

M = 0. This demonstrates that inferring the instantaneous velocity increases the

measurement accuracy. Furthermore, the variance of the set of 10 experiments, indicated

by the error bars, is also smaller. The difference between the errors for M = 0 and 1

is marginal at ∆t ≲ 20 ms, where the particle moves less than v∆t ≈ 12 mm over the

time interval. At larger ∆t, however, the M = 0 error curve rises at a much steeper

rate compared with the M = 1 one. The increased particle movement is then tackled

better by inferring the particle trajectory over ∆t as linear in t rather than fixed. Note

that we carried out the M = 1 inference for ∆t up to 200 ms (not shown in figure 7a)

to verify that s reaches a minimum value, found to be ∆t ≈ 150 ms.

A benefit ofM = 1 inference overM = 0, in addition to an increase accuracy, is that

it estimates directly the particle velocity, often the main quantity of interest for fluid

dynamical applications, which otherwise needs to be deduced from the positions, e.g.,

using finite differences. We show the uncertainty and error on the inferred particle
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(a) (b)

Figure 7: (a) Comparison between inference of activity and position (M = 0, dashed

curves) and inference of activity, position and velocity (M = 1, solid curves) for a particle

on a circular trajectory with r = 100 mm and v = 0.6 m/s: uncertainty metric s (blue

curves, left axis) and absolute error |x−x∗| (red curves, right axis). (b) Uncertainty sv
(blue curve, left axis) and error |v−v∗| on the velocity (red curve, right axis) inferred for

M = 1. In both (a) and (b), curves and error bars are averages and standard deviations

estimated from 10 experiments with particles distributed uniformly along their circular

trajectory.

velocity in figure 7b. The blue curve (left axis) shows the mean (over 10 particle

positions, as before) uncertainty metric sv defined as in (28) but using the eigenvalues of

the velocity covariance matrix, with error bars indicating the standard deviation. The

red curve shows the mean error |v−v∗| between the inferred particle velocity v and the

exact velocity of the circular motion v∗. The qualitative behavior of the uncertainty and

error on the inferred velocity is roughly similar to that corresponding to the position,

though the minimum error appears for a larger ∆t. The decrease in inferred uncertainty

as ∆t increases is related to the misattribution of LoRs to the scattered components, as

discussed in §4.3.

5. Conclusion

In this paper, we propose a probabilistic model for the detection of random LoRs emitted

by moving positron-emitting particles with prescribed trajectories and activities. The

model lays the foundation for the systematic quantification of uncertainty in PEPT.

For simplicity, the model bundles various sources of uncertainty into a single Gaussian

error for the position of the LoRs. It would however be straightforwardly generalized to

include detailed representations of specific uncertainty sources including positron range,

discrete detectors, imperfect alignment of the paths of the pair of photons, etc.
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The generation of LoRs is described as a Poisson process in the space of LoRs,

which leads to a general formulation largely independent of the details of the PEPT

device, in particular of the detector configuration. We give an explicit formula for the

Poisson rate in the case of a cylindrical configuration. The derivation involves various

geometric properties and approximations. It incorporates a model of scattering that

assumes that scattering occurs at a rate independent of the position of the radioactive

particles and leads to a uniform distribution of LoRs. These are major simplifications

whose relaxation would introduce technical rather than conceptual complications.

The likelihood associated with the Poisson process makes it possible to use a

Bayesian approach to infer the position and activity of the radioactive particles. This

has benefits over existing PEPT inversion methods including the systematic nature of

the inference, its capability to include the model refinements mentioned above, and the

quantification of uncertainty. Furthermore, the Bayesian formulation is directly adapted

to the inference of particle trajectories and time-dependent activities instead of fixed

positions and activities. We take advantage of this to propose a hierarchy of Bayesian

inversion procedures, based on a M -term Taylor expansion of the particle trajectories,

which requires the inference of the M first derivatives of the positions in addition to

the positions themselves. We demonstrate the potential of these procedures by carrying

out a full Bayesian uncertainty quantification for a single rotating particle using M = 0

and M = 1 inference. The Taylor-expansion-based procedures remain local in time in

that they are carried out independently in small time interval. It will be of interest

to develop alternative Bayesian procedures that infer entire trajectories, parameterized,

for instance, as splines (cf. [20]). We leave this for future work.
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Appendix A. Mapping F and covariance matrix Σ

We first derive an explicit form for the mapping F between the representation

L = (φ, θ, aφ, aθ) ∈ [0, 2π]× [0, π/2]× R2 (A.1)

of LoRs and the coordinates

u = (ϕ1, ϕ2, z1, z2) ∈ [0, 2π]× [0, 2π]× [−H/2, H/2]× [−H/2, H/2] (A.2)

of their two intersections with the cylindrical detector. A parametric representation

of an LoR is x = aφeφ + aθeθ + ωer, with ω ∈ R the parameter such that ω = 0

corresponds to the point closest to the origin. Using standard expressions for the eφ, eθ
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and er in terms of the canonical Cartesian basis, we can write the condition that the

LoR intersects the cylinder of radius R at (ϕ, z) as

aθ cos θ cosφ− aφ sinφ+ ω sin θ cosφ = R cosϕ, (A.3)

aθ cos θ sinφ+ aφ cosφ+ ω sin θ sinφ = R sinϕ, (A.4)

−aθ sin θ + ω cos θ = z. (A.5)

Adding the squares of (A.3) and (A.4) gives the values

ω1,2 =
−aθ cos θ ±Υ

sin θ
, (A.6)

where Υ =
√
R2 − a2φ, for the parameter corresponding to each intersection.

Substituting these values into (A.3)–(A.5) gives the mapping u = F (L) as
ϕ1

ϕ2

z1
z2

 =


tan−1 ((aφ cosφ+Υsinφ) / (−aφ sinφ+Υcosφ))

tan−1 ((−aφ cosφ+Υsinφ) / (aφ sinφ+Υcosφ))

(−aθ +Υcos θ)/sin θ

(−aθ −Υcos θ)/sin θ

 . (A.7)

We next compute the covariance Σ from (17). We calculate the Jacobian matrix

∇F and invert it to obtain

(∇F [u])−1 =
1

2Υ
× (A.8)

Υ Υ 0 0

−aφ cos θ sin θ aφ cos θ sin θ − sin2 θ sin2 θ

Υ2 −Υ2 0 0

−aφxθ cos2 θ aφxθ cos
2 θ − sin θ (Υ + aθ cos θ) sin θ (Υ− aθ cos θ)

 .

The covariance matrix then follows from (17) as

Σ =
g2

2R2
× (A.9)

1 0 0 0

sin2 θ
(
R2/Υ2

(
1 + sin2 θ

)
− cos2 θ

)
/2 −aφ sin (2θ) /2 aθ sin (2θ)

(
R2/Υ2 − sin2 θ

)
/2

Υ2 −aφaθ cos2 θ
R2 sin2 θ + a2θ cos

2 θ (R2/Υ2 − cos2 θ)

 ,

where we use that Σ = ΣT to avoid writing the lower triangle entries. The final

covariance matrix Σ2 is simply the 2× 2 lower diagonal block of (A.9), that is

Σ2 =
g2

2R2

(
Υ2 −aφaθ cos2 θ

−aφaθ cos2 θ R2 sin2 θ + a2θ cos
2 θ (R2/Υ2 − cos2 θ)

)
. (A.10)
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Figure B1: Top view of a cylindrical detector surface, with a representative LoR (red)

emanating from a particle at x = {r, z} (black dot).

Appendix B. Derivation of σ2
0

We evaluate the outlier variance (24), defined as the volume of detectable LoRs:

σ2
0 =

∫
D
dµ =

∫ 2π

0

dφ

∫ R

−R

daφ

∫ π/2

θmin

dθ

∫ a+θ

a−θ

daθ. (B.1)

Here, the integration limits θmin and a±θ are determined by the condition that the LoR

intersects the cylindrical detector twice. They are found by first substituting (A.6) into

(A.5) to obtain the heights of the two intersections points

z1,2 =
−aθ ±Υcos θ

sin θ
, (B.2)

then requiring that −H/2 ≤ z1,2 ≤ H/2, to find

a±θ = ∓Υcos θ ±H sin θ/2. (B.3)

Equating these gives the minimum angle for detectable LoRs,

θmin = tan−1 (2Υ/H) . (B.4)

Integrating (B.1) using (B.3)–(B.4) gives expression (25) for σ2
0.

Appendix C. Derivation of G

We obtain an explicit form for G(x) in (27) which can be interpreted as a solid angle

subtended by the cylindrical detector from the point x. By symmetry, this depends only

on the cylindrical coordinates (r, z) of the point x which we can assume to be along the

x-axis. The geometry of the LoR is then as depicted in figure B1 when projected on the

plane through the origin perpendicular to the generator of the cylinder. The lengths b±
of the projections of the segments of the LoR above and beyond the planes are found as
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b± =

√
R2 − (r sinφ)2 ± r cosφ. (C.1)

The conditions for the LoR to intersect twice the detector are then that b± cot θ ≤
z ±H/2, hence the minimal value of θ for two intersections is

θmin (r, z, φ;R,H) = max

[
tan−1

(
b−

H/2− z

)
, tan−1

(
b+

H/2 + z

)]
. (C.2)

It is convenient to non-dimensionalize variables by letting r = Rr̂ , z = Hẑ, and

β = R/H. Eq. (C.2) can then be written explicitly as

θmin (r̂, ẑ, φ; β) =

{
tan−1 (βf−) for r̂ < |2ẑ| , and for r̂ > |2ẑ| and φ > α,

tan−1 (βf+) for r̂ > |2ẑ| and φ < α,
(C.3)

where we have defined

f± (r̂, ẑ, φ) =

√
1− (r̂ sinφ)2 ± r̂ cosφ

1/2± ẑ
, α (r̂, ẑ) = cos−1

√
(2ẑ)2

1− (2ẑ)2
1− r̂2

r̂2
. (C.4)

Substituting (C.3) into (27) yields

G (r̂, ẑ) =


1

π

∫ π

0

(1 + β2f 2
−)

−1/2 dφ for r̂ < |2ẑ| ,
1

π

(∫ α

0

(1 + β2f 2
+)

−1/2 dφ+

∫ π

α

(1 + β2f 2
−)

−1/2 dφ

)
for r̂ > |2ẑ| .

(C.5)

The integrals can be evaluated numerically.

In the limits β ≪ 1 and β ≫ 1 corresponding to a narrow vertical cylinder and a

ring, respectively, the integrands may be simplified using a series expansion in β and

β−1

1√
1 + β2f 2

±
=

{
1 +

∑
n (−1)n cnβ

2nf 2n
± for β ≪ 1,∑

n (−1)n+1 cnβ
1−2nf 1−2n

± , for β ≫ 1.
, (C.6)
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with cn = 1/2, 3/8, 5/16, 35/128, 63/256, · · · Substituting (C.6) into (C.5), we obtain

G (r̂, ẑ; β) = 1− 2β2

(1− 2ẑ)2
+

4β2H (r̂ − |2ẑ|)
π (1− 4ẑ2)2

[
2ẑ
(
2α + r̂2 sin 2α

)
−
(
1 + 4ẑ2

)
× (C.7)

(
arcsin (r̂ sinα) + r̂ sinα

√
1− (r̂ sinα)2

)]
+O

(
β4
)
, for β ≪ 1

G (r̂, ẑ; β) =
(1− 2ẑ)

6πβ (1− r̂2)

(
F
(
r̂2
) [(1− 2ẑ)2

β2
+H (|2ẑ| − r̂)

r̂2 (4 + 7r̂2 − 3r̂4)

(1− r̂2)

]
(C.8)

+ 6E
(
r̂2
) [

1− (1− 2ẑ)2 (7 + r̂2)

24β2 (1− r̂2)2

])
+

H (r̂ − |2ẑ|)
πβ (1− r̂2)

×([
2ẑE

(
α|r̂2

)(
1− (7 + r̂2) (3 + 4ẑ2)

24β2 (1− r̂2)2

)
− r̂ sinα

]
+

1

6β2 (1− r̂2)2
×[

r̂ (1 + 12ẑ2) (9 sinα + r̂2 sin 3α)

4
+ ẑ

(
3 + 4ẑ2

)
×(

2F
(
α|r̂2

) (
1− r̂2

)
− r̂2 sin 2α

√
1− (r̂ sinα)2

)])
+O

(
β−5
)
, for β ≫ 1

whereH is the Heaviside step function, and F and E are the incomplete elliptic integrals

of the first and second kind, respectively,

F (Θ| ξ) =
∫ Θ

0

(
1− ξ sin2 φ

)−1/2
dφ, E (Θ| ξ) =

∫ Θ

0

(
1− ξ sin2 φ

)1/2
dφ, (C.9)

with F (ξ) = F (π/2, ξ) and E (ξ) = E (π/2, ξ) the corresponding complete integrals.
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