
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarity-based clustering for patterns of extreme values

Citation for published version:
de Carvalho, M, Huser, R & Rubio, R 2023, 'Similarity-based clustering for patterns of extreme values', Stat,
vol. 12, no. 1, e560. https://doi.org/10.1002/sta4.560

Digital Object Identifier (DOI):
10.1002/sta4.560

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Stat

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Jun. 2023

https://doi.org/10.1002/sta4.560
https://doi.org/10.1002/sta4.560
https://www.research.ed.ac.uk/en/publications/2a89318d-83e0-4204-93de-c8da9f986531


Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Similarity-based clustering for patterns of extreme values

Miguel de Carvalho*1 | Raphael Huser2 | Rodrigo Rubio3

1School of Mathematics, University of Edinburgh,
UK

2CEMSE Division, King Abdullah University of
Science and Technology, Saudi Arabia

3Data Analytics Section, BCI Bank, Chile

Correspondence
*M. de Carvalho, School of Mathematics, The

University of Edinburgh, James Clerk Maxwell

Building, Peter Guthrie Tait Road, Edinburgh EH9

3FD, UK. Email: Miguel.deCarvalho@ed.ac.uk

Present Address
This is sample for present address text this is

sample for present address text

Summary

Statistical modelling of the magnitude and the frequency of extreme observations is fundamental for

a variety of sciences. In this paper, we develop statistical methods of similarity-based clustering for

heteroscedastic extremes, which allow us to group time series of independent observations according to

their extreme-value index and scedasis function (i.e., the magnitude and frequency of extreme values,

respectively). Clustering scedasis functions and extreme-value indices involves the challenge of grouping

objects comprised of both a function (scedasis) and a scalar (extreme-value index), and thus the need

to partition a product-space. Our analysis reveals an interesting mismatch between the magnitude and

frequency of extreme losses on the London Stock Exchange and the corresponding economic sectors

of the affected stocks. The analysis further suggests that the dynamics governing the comovement of

extreme losses in the exchange contains information on the business cycle.

KEYWORDS:

Cluster analysis; Cluster functions and scalars; Extreme values; Risk diversification; Statistics of ex-

tremes.

1 INTRODUCTION

Small-probability events—such as a stock market crash—often lead to devastating economic and financial aftershocks. The need to assess the
likelihood of such rare events is nowwidely understood, and statistics of extremes (Balkema and Embrechts 2007; Beirlant et al. 2004; Coles 2001;
Davison and Huser 2015; de Haan and Ferreira 2006; Embrechts et al. 1997; Resnick 2007) provides an appropriate probabilistic framework
to address this issue in a mathematically rigorous manner. An overarching principle of statistics of extremes is that any sensible assessment of
risk, requires the application of resilient methods that are able to extrapolate into the tails of a distribution—often beyond observed extremes in
a dataset. For random samples, a key result in statistics of extremes is that if there is a nontrivial limiting distribution for the normalized sample
maxima, then it must be a generalized extreme-value (GEV) distribution (McNeil et al. 2015, Theorem 7.3). The shape parameter of the GEV
distribution governs the rate of tail decay, and is also known as extreme-value index, or tail index.

The main goal of this paper is to develop cluster analysis methods for highly volatile time series of extremes. Applying methods from statistics of
extremes to finance has a long history, including, Danielsson and de Vries (1997), Longin and Solnik (2001), Poon et al. (2003), Herrera and Schipp
(2013), Hilal et al. (2014), Chavez-Demoulin et al. (2014). Themonograph recently edited by Longin (2016) contains an up-to-date survey ofmethods
and applications for statistical modelling of extreme values in finance. To model the dynamics of extremes over time, parametric methods to handle
nonstationary data have been proposed by Davison and Smith (1990), Chavez-Demoulin and Davison (2005) and Eastoe and Tawn (2009), among
others. More recently, Einmahl et al. (2016) have developed a semi–parametric modelling and inference framework for heteroscedastic extremes;
their two main objects of interest being the scedasis function, which describes the dynamics of extremes over time, and the extreme-value index,
which describes the magnitude of extremes.

A recent paper by Ando and Bai (2017), which relates to ours in terms of applied motivation, considers the issue of clustering financial time series
based on observable and unobservable factors. In contrast, our approach clusters financial time series based on their resemblance in terms of risk.
More precisely, we build on Einmahl et al. (2016) and develop a clustering algorithm which allows us to group stocks that share similarities in their
univariate distribution in terms of the overall magnitude and the frequency of extreme losses. Since the extreme-value index carries information
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on the rate of tail decay while the scedasis tracks the evolution of extreme losses over time, these parameters form a natural basis for clustering
stocks to address our motivating question.

Clustering is an unsupervised learning problem, in the sense that the ‘true’ cluster labels are unknown and need to be estimated from the
data. Introductions to the subject of cluster analysis include Hastie et al. (2009), Everitt et al. (2011), and King (2014). The huge literature on data
clustering is difficult to survey in a few paragraphs, but a concise description of mainstream approaches is offered by Hennig and Liao (2013). The
most popular clustering approaches may be classified among similarity-based, model-based, and/or hierarchical clustering techniques. Similarity-
based methods includeK-means (MacQueen 1967) andK-medoids (Kaufman and Rousseeuw 1987). Model-based clustering is typically based on
mixture models (Fraley and Raftery 2002), whereas hierarchical clustering builds hierarchies of clusters, often represented in so-called dendograms
(Hastie et al. 2009). Hennig and Liao (2013) recently highlighted the lack of clear guidance on choosing an appropriate clustering algorithm for
a given problem, despite the many approaches that have been proposed in the literature. The literature discussing extremes is much sparser,
although much has been written about the clustering of extreme events within time series induced by short-term temporal dependence (see, e.g.,
Leadbetter et al. 1983). Clustering algorithms for parallel time series, tailored to specific extreme-value applications, are often intrinsically related
to the concept of dimension reduction. For example, Bernard et al. (2013) developed a clustering method for spatial climate extremes, and Chautru
(2015) and Vettori et al. (2020) proposed clustering and dimension reduction techniques for multivariate extreme events based on tree mixtures.

Clustering stocks with a similar scedasis function and extreme-value index entails clustering objects defined by the combination of a function
(scedasis) and a scalar (extreme-value index); recently, there has been much interest in clustering complex objects such as functions, and the
development of methods for clustering functional data is still an area of ongoing research, both from applied and theoretical viewpoints (Delaigle
et al. 2012; Peng and Müller 2008; Wang et al. 2015).

To our knowledge, our paper is pioneer on tackling the challenging problem of performing a cluster analysis of both functions and scalars; to
tackle this problem, we develop a clustering approach that can be seen as aK-means method, but where clustering is executed in a product-space
defined in terms of the space of all scedasis functions and the positive real line. A weight parameter is then applied as defined by the analyst to
control whether the clustering algorithm should prioritize the frequency or the magnitude of extreme losses, which are respectively controlled
by the scedasis function and the extreme-value index. The proposed approach also allows for clustering stocks with similar risk loss patterns, by
identifying affinities in time-varying value-at-risk functions. To examine the periods of highest market uncertainty and how these affect different
stocks, we also explore how the maxima of the stocks’ scedasis functions are spread over time. Intuitively, if the maxima of all scedasis functions
coincided at a single time point, this would imply a perfect synchronization among all the examined stocks, and thus the largest market fluctuations
would reflect similarly on all stocks. To summarise this information, we define the mode mass function, which can be used to assess the degree
of synchronization of the maximum frequency of extreme losses between stocks. The latter approach has some connections with multivariate
extreme value modelling, which has been widely used by practitioners after the seminal papers of Longin and Solnik (2001) and Poon et al. (2004).
Note, however, that in the current paper we focus on univariate, but time-varying, characteristics of extremes, and as such we do not estimate
extremal dependence.

In Section 2, we discuss a K-cluster configuration for statistics of heteroscedastic extremes, and we introduce our similarity-based clustering
algorithm, as well as the mode mass function. Numerical experiments are reported in Section 3, and the analysis of the London Stock Exchange
data is documented in Section 4. Section 5 concludes with a discussion.

2 CLUSTER ANALYSIS FOR PATTERNS OF EXTREME VALUES

2.1 Cluster-based proportional tails model

Our starting point for modelling relies on an extended version of Einmahl et al. (2016) formulated forK time series clusters. We assume that the
true data generating process consists of N time series partitioned into blocks with homogeneous scedasis functions and extreme-value indices.
Specifically, the N time series are partitioned into K ⩽ N blocks Y [1], . . . ,Y [K], where the kth block consists of N [k] time series of length T ,
that is

Y [k] =


Y

[k,1]
1 · · · Y

[k,1]
T... ... ...

Y
[k,N [k]]
1 · · · Y [k,N [k]]

T

 . (1)

In Section 2.2, we assume that we observe all time series, but we ignore their underlying cluster labels (i.e., the first element in the superscripts in
(1)), which need to be estimated. Here, we assume that the jth time series in the kth cluster, i.e. the jth row in groupY [k], is formed by independent
random variables with infinite upper endpoints

Y
[k,j]
1 , . . . , Y

[k,j]
T

and with respective continuous distributions F [k,j]
1 , . . . , F

[k,j]
T .
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Following Einmahl et al. (2016), we assume that there exists a non-negative limit function c[k], called the scedasis function, such that for each
time series j in the kth cluster,

c[k]
(
t

T

)
= lim

y→∞

1− F [k,j]
t (y)

1− F [k,j](y)
, (2)

for some unknown continuous baseline distribution function F [k,j] with an infinite upper endpoint. Notice that in each cluster (k) the different time
series may possess various baseline distributions, but they share the same scedasis function (c[k]), as the left-hand side of (2) does not depend on
j. For identifiability reasons, we assume that ∫ 1

0 c
[k](w) dw = 1, such that c[k] is a valid density on the unit interval [0, 1]. Generally speaking, the

scedasis density carries information on the time dynamics of extremes; for instance, a uniform scedasis function (for which c[k](w) = 1, w ∈ [0, 1])
corresponds to a constant frequency of extremes over time. We further assume that for each cluster k, time series j, and time point t, one has

lim
m→∞

U
[k,j]
t (my)

U
[k,j]
0 (m){c[k](t/T )}γ[k]

= yγ
[k] (3)

for some constant γ[k] > 0, where U [k,j]
t = {1/(1 − F [k,j]

t )}← and ‘←’ is the left continuous inverse function. In other words, the data in each
cluster k are heavy-tailed with rate of tail decay controlled by the extreme-value index γ[k]. Thus, despite the fact that all variables in cluster k
have their own distributions, we assume that their tail behavior is characterized by the pair (c[k], γ[k]). Therefore, the extremal behavior of these
N [k] time series can be summarised by a single function c[k], describing the time variation in the frequency of extremes and a scalar γ[k] > 0,
controlling the overall amplitude of the largest extremes.

For example, (2) and (3) are satisfied when the data have a Pareto-like tail, i.e.,
1− F [k,j]

t (y) ∼
{

y

a[k,j]c[k](t/T )

}−1/γ[k]

, y →∞, (4)
where a[k,j] > 0 is an overall scale parameter, in which case the baseline distribution may be chosen as the Pareto distribution F [k,j]

0 (y) =

1 − (y/a[k,j])−1/γ[k] , with y > a[k,j]. From this example, it is clear that the extreme-value index γ[k] controls the tail weight, while c[k](t/T ) is
a time-varying relative scale component, both specific to the kth cluster. The extra time-invariant overall scale parameter a[k,j] > 0 accounts for
possible differences in scales between the different time series grouped together in the same cluster.

2.2 Estimation and inference

As mentioned above, in practice the cluster labels are unknown, so instead of having data partitioned as in (1), we observeN time series written as
Y i
1 , . . . , Y

i
T , which consist of independent observations respectively distributed as F i

1, . . . , F
i
T , for all i; but we ignore the data structure and their

tail properties. Instead, the first step of our approach targets estimations for a family of scedasis densities and extreme-value indices denoted by
{(ci, γi)}Ni=1.

Under theK-cluster proportional tails model described in Section 2.1, some of these scedasis functions and extreme-value indices are the same,
but we estimate them separately.

Let Y i
(1)

⩽ · · · ⩽ Y i
(T )

be the order statistics from the ith time series, Y i
1 , . . . , Y

i
T , and k ≡ kT be an intermediate sequence, i.e., kT → ∞ and

kT /T → 0, as T →∞. To estimate each element in the family of scedasis functions, we use the non-parametric kernel-based estimator of Einmahl
et al. (2016) for all i, that is

ĉi(w) =
1

k

T∑
t=1

I(Y i
t > Y i

(T−k))Kb(w − t/T ), w ∈ [0, 1], (5)
where Kb(·) = K(·/b)/b, is a kernel with bandwidth b ≡ bT > 0 such that bT → 0 and bT kT → ∞ as T → ∞. It is well known that the choice
of kernel does not affect the inference much, whereas bandwidth selection is crucial. Following Marron (2001, p. 533), we advocate conducting
inference over a wide range of bandwidths as a way to assess the sensitivity and reliability of the inference to the bandwidth.

To estimate the family of extreme-value indices we follow Einmahl et al. (2016) and use the Hill estimator defined as
γ̂i =

1

k

k∑
t=1

log

(
Y i
(T−t+1)

Y i
(T−k)

)
, (6)

for all i. As shown in Einmahl et al. (2016), the estimator (6) is strongly consistent and asymptotically normal under the heteroscedastic proportional
tail model described in Section 2.1 and mild additional regularity conditions. Furthermore, it does not depend on the associated scedasis function
ci as T →∞. Asymptotic normality, and thus weak consistency, for the kernel-based estimator (5) is also established in Einmahl et al. (2016, p. 49),
but under rather stringent conditions. These appealing large sample properties suggest that our clustering algorithm developed in Section 2.3
should perform well in practice, which is confirmed by our numerical experiments in Section 3, especially for a large sample size T . The outcome of
this estimation stage yieldsN pairs of scedasis and extreme-value estimates, {(ĉi, γ̂i)}Ni=1, and we next describe how such pairs can be partitioned
intoK clusters.



4 DE CARVALHO ET AL

2.3 Similarity-based clustering for heteroscedastic extremes

Clustering scedasis functions and extreme-value indices requires overcoming the challenge of clustering objects comprised of both a function
(scedasis) and a scalar (extreme-value index). To approach this problem we consider a similarity-based clustering algorithm. Similarity-based clus-
tering methods usually require the true number of clusters K ⩽ N to be either known or specified a priori. For these methods, a data point
xi = (xi1, . . . , x

i
d)

T should be assigned to a certain cluster if its distance to the cluster centre
m[k] = (m

[k]
1 , . . . ,m

[k]
d )T

is minimal. Different variants lead to different concepts of a cluster centre, the most well-known beingK-means (MacQueen 1967) andK-medoids
(Kaufman and Rousseeuw 1987). Whereas in the case of theK-means algorithm a cluster centrem[k] is defined by a statistic (e.g., a cluster mean),
in the K-medoids algorithm a cluster centre is defined by a data point itself. To measure the dissimilarity of a data point xi from a cluster centre
m[k], it is common to resort to a dissimilarity function D : R2d → [0,∞), such that for all possible data points and cluster centres the following
properties are satisfied:

1. Non-negativity:D(xi,m[k]) ⩾ 0;
2. Identifiability:D(xi,m[k]) = 0 if and only if xi = m[k];
3. Symmetry:D(xi,m[k]) = D(m[k],xi).

The most widely-used dissimilarity function is the squared Euclidean distance
D(xi,m[k]) =

d∑
j=1

(xij −m
[k]
j )2.

As mentioned above, here we are faced with the need of extending the standard similarity-based clustering framework so to be able to cluster
both a function (scedasis) and a scalar (extreme value index). We mostly focus on the case where each cluster Y [k] in (1) is characterized by both
the same scedasis function and extreme-value index, which we refer to as partitioning in the product-space Π = C × (0,∞), where C denotes
the space of all scedasis functions (i.e., all densities defined on the unit interval). However, it might also be interesting in practice to cluster time
series according to their scedasis function—resulting inKc clusters—or extreme-value index—resulting inKγ clusters. We refer to these cases as
partitioning in the profile-spaces C and (0,∞). Clearly,K does not necessarily coincide withKc andKγ . This is the case when there are no two time
series that have the same scedasis function but a different extreme-value index, or vice versa. In general, one hasmax(Kc,Kγ) ⩽ K ⩽ KcKγ .

Clustering is performed here with the aid of an encoder, i.e., a map L : {1, . . . , N} → {1, . . . ,K} assigning each time series i = 1, . . . , N to a
cluster label k ∈ {1, . . . ,K}. Standard encoders assign single observations to a cluster (Hastie et al. 2009), while here whole sets of observations
are assigned simultaneously to a cluster.

In the time series context of heteroscedastic extremes, suppose that we are given a family of estimated scedasis functions and extreme-value
indices, {(ĉi, γ̂i)}Ni=1, obtained using the procedure discussed in Section 2.2. We measure dissimilarity by relying on a family of functions

Dα : Π×Π→ [0,∞), α ∈ (0, 1), Π = C × (0,∞),

such that
lim
α→1

Dα(π
i, πj) = Dc(ci, cj), lim

α→0
Dα(π

i, πj) = Dγ(γi, γj), (7)
where πi = (ci, γi) ∈ Π and πj = (cj , γj) ∈ Π; with

Dc : C × C → [0,∞), Dγ : (0,∞)× (0,∞)→ [0,∞),

being dissimilarity measures specific to the scedasis function and to the extreme-value index, respectively. Equation (7) requires dissimilarity in the
product-space to be compatible with the dissimilarities in the corresponding profile-spaces, when α→ 0 and α→ 1. Roughly speaking, α ∈ (0, 1)

can also be interpreted as a tuning parameter, controlling whether the dissimilarity function should apply more weight to the dissimilarity in terms
of the scedasis density or the extreme-value index. Examples 1 and 2 below are two possible valid families of dissimilarity functions obeying (7),
although many others may be designed.
Example 1 (Convex linear dissimilarity in product-space). Let Dconv

α (πi, πj) = αDc(ci, cj) + (1 − α)Dγ(γi, γj), where πi = (ci, γi) ∈ Π and
πj = (cj , γj) ∈ Π, withDc : C → C andDγ : (0,∞)→ [0,∞) being dissimilarity measures.
Example 2 (Max-linear dissimilarity in product-space). Let Dmax

α (πi, πj) = max{αDc(ci, cj), (1 − α)Dγ(γi, γj)}, where πi = (ci, γi) ∈ Π and
πj = (cj , γj) ∈ Π, withDc : C → C andDγ : (0,∞)→ [0,∞) being dissimilarity measures.
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Algorithm 1 K-means algorithm for heteroscedastic extremes
• Step 0 (Initialisation)

Randomly selectK cluster centres
µ(old) = ((c[1], γ[1])(old), . . . , (c[K], γ[K])(old)).

• Step 1 (Cluster (re)assignment)
Allocate time series to clusters using the rule

L(new)(i) = argmin
k

Dα((ĉ
i, γ̂i), (c[k], γ[k])(old)).

• Step 2 (Cluster-centre updating)
Search for cluster centres which minimize total dissimilarity, given the latest cluster assignment made; we thus look for

µ(new) = arg min
µ∈Π

N∑
i=1

K∑
k=1

I(L(new)(i) = k)Dα((ĉ
i, γ̂i), (c[k], γ[k])).

Update cluster assignment and centres iteratively until a stopping criteria is fulfilled.

It can be shown that, if Dc and Dγ are distance functions, then so are Dconv
α and Dmax

α in Examples 1 and 2, respectively, for every value of
α ∈ (0, 1).

Algorithm 1 describes the K-means type of algorithm underlying our clustering procedure, detailing the three main steps: initialisation, clus-
ter (re)assignment and cluster-centre updating, of which the last two need to be recursively iterated until convergence. Below we focus on
Dconv

α (πi, πj), with Dc(ci, cj) =
∫ 1
0 {c

i(w) − cj(w)}2 dw and Dγ(γi, γj) = (γi − γj)2, although there are many other variants, e.g., replacing
the ℓ2 dissimilarity with the ℓ1 dissimilarity, or focusing on specific features of the scedasis function (e.g., its maximum) rather than its overall be-
havior. Unreported results show that the choice of dissimilarity measure (e.g., ℓ1 versus ℓ2) does not affect the results much. With our choice of
dissimilarity measure, the algorithm outlined in Algorithm 1 becomes a genuine K-means algorithm in the sense that cluster centres are indeed
found using the actual means; more precisely, Step 2 can be replaced with µ(new) = {(c[k], γ[k])}Kk=1, where

c[k](w) =
1

N̂ [k]

∑
L(i)=k

ĉi(w), γ[k] =
1

N̂ [k]

∑
L(i)=k

γ̂i, (8)
with N̂ [k] =

∑N
i=1 I(L(i) = k), for all k; see Appendix for a proof. Note that c[k](w) and γ[k] are compatible with the assumptions made in

Section 2.1, namely ∫ 1
0 c

[k](w) dw = 1 and γ[k] > 0. This implies that the cluster centres are formed by valid scedasis functions and extreme-value
indices, corresponding to a distribution in the maximum domain of attraction of the Fréchet distribution.

AK-medoids type of algorithm can also be applied, in which case the cluster centres correspond to the scedasis and extreme-value index of the
observed time series. In practice this implies that Steps 0 and 1 are the same as for the K-means algorithm, but that the cluster-centre updating
rule in Step 2 needs to be modified as follows: For each cluster k search for the time series in this cluster that minimizes the total dissimilarity to
other time series in the same cluster

i∗k = arg min
{i:L(i)=k}

∑
L(i′)=k

Dα((ĉ
i, γ̂i), (ĉi

′
, γ̂i

′
)),

and set c[k] ≡ ĉi
∗
k , γ[k] ≡ γ̂i

∗
k , for all k, and µ(new) = ((ĉi

∗
1 , γ̂i

∗
1 ), . . . , (ĉi

∗
K , γ̂i

∗
K )). The K-medoids algorithm requires however a larger

computational investment than theK-means approach.
The cluster centres of theK-medoids algorithm, c[k] = ĉi

∗
k and γ[k] = γ̂i

∗
k , are obviously compatible with the assumptions made in Section 2.1,

that is, c[k] is a valid scedasis function and γ[k] > 0, for all k. Other variants of theK-means andK-medoids algorithms for clustering heteroscedas-
tic extremes can also be constructed similarly, e.g., using Partition Around Medoid (PAM) and Clustering Large Applications (CLARA) (Kaufman and
Rousseeuw 2009, Ch. 2–3).

2.4 Clustering risk loss patterns

This section capitalizes on the setup introduced so far to offer another natural way to cluster financial time series. Time-varying value-at-risk (VaR),
at confidence level p ∈ (0, 1), can be defined as VaRt(p) = inf{y : Ft(y) ⩾ p}, where p is typically taken as a high probability such as p = 0.95 or
p = 0.99. More specifically, using the scedasis function and extreme-value index estimators (5) and (6), respectively, we can obtain an estimator
for the (functional) value-at-risk for each time series i = 1, . . . , N , by

V̂aRi

w(p) =
âi

(1− p)γ̂i
ĉi(w), w ∈ [0, 1], p→ 1, (9)
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Algorithm 2 K-geometric means algorithm for value-at-risk
• Step 0 (Initialisation)

Randomly selectK cluster centres
µ(old) = (VaR[1]

, . . . ,VaR[K]
).

• Step 1 (Cluster (re)assignment)
Allocate time series to clusters using the rule

L(new)(i) = argmin
k

D(V̂aRi

w(p),VaR[k]
).

• Step 2 (Cluster-centre updating)
Search for cluster centres which minimize total dissimilarity, given the latest cluster assignment made; we thus look for

µ(new) = arg min
µ∈Π

N∑
i=1

K∑
k=1

I(L(new)(i) = k)D(V̂aRi

w(p),VaR[k]
).

Update cluster assignment and centres iteratively until a stopping criteria is fulfilled.

where the estimated scale parameter âi = Y(T−k)kγ̂
i
/{
∑T

t=1 ĉ
i(t/T )1/γ̂

i}γ̂i is obtained in closed form by setting k/T = T−1
∑T

t=1{1 −
F i
t (Y(T−k))}, combined with the Pareto-like tail specification (4).
Below we focus on D(V̂aRi

w(p), V̂aRj

w(p)) =
∫ 1
0 {log V̂aRi

w(p) − log V̂aRj

w(p)}2 dw. With this choice of dissimilarity measure, Algorithm 2
becomes a K-geometric means algorithm in the sense that cluster centres can be shown to be geometric means; more precisely, Step 2 can be
replaced with µ(new) = {VaR[k]

w (p)}Kk=1, where

VaR[k]
w (p) =

 ∏
{i:L(i)=k}

V̂aRi

w(p)

1/N̂ [k]

, (10)
with N̂ [k] =

∑N
i=1 I(L(i) = k); the proof is tantamount to that in the Appendix.

2.5 Mode mass function

To summarise the periods of highest market uncertainty and to see how these periods reflect on each specific stock, we suggest studying how the
modes of the various scedasis functions for different stocks are spread over time through the mode mass function. Assume that each estimated
scedasis function ĉi has a unique global maximum and define its unique modemi ∈ [0, 1] as

mi = arg max
w∈[0,1]

ĉi(w), i = 1, . . . , N. (11)
Note that (11) can also be written asmi = argmaxw∈[0,1] V̂aRi

w(p), under the Pareto-like tail specification in (4); recall Equation (9). A smoothed
version of the mode mass function may be computed using a beta kernel density as

M̂(w) =
1

N

N∑
i=1

β
{
w; νmi, ν(1−mi)

}
, w ∈ [0, 1], (12)

where β(w; a, b) denotes the Beta density function with parameters a, b > 0. In the parametrization (12), the beta kernels have mean mi and
ν > 0 is a concentration parameter. From an analytical perspective, the smoothed mode mass function in (12) is related to the smooth Euclidean
likelihood spectral density estimator proposed by de Carvalho et al. (2013, p. 16). Conceptually, it operates similarly to standard kernel smoothing,
in the sense that it ‘centres’ a beta kernel at each scedasis mode; but here the kernels are asymmetric for mi ̸= 0.5 and they are tailored for
observations defined in the unit interval.

If the modes of all scedasis functions coincide at a single point in time, i.e., M̂(w) concentrate around a certain w0 ∈ [0, 1], then the periods at
which the frequencies of extreme losses are the largest for the different stocks are perfectly synchronized; on the other hand, if the modes of the
scedasis functions are uniformly spread over time, i.e., M̂(w) ≈ 1, w ∈ [0, 1], then this suggests that the different stocks’ maximum frequencies of
extremes are not related at all.



DE CARVALHO ET AL 7

3 NUMERICAL EXPERIMENTS

3.1 Simulation setting and preliminary experiments

We start by describing the data-generating processes used to assess the performance of our clustering algorithm. We simulate independent
observations according to the structure (1) using a generalized extreme-value distribution defined as

F
[k,j]
t (y) = exp

[
−
{
1 + γ[k]

(y − c[k](t/T )
c[k](t/T )

)}−1/γ[k]

+

]
,

for time t = 1, . . . , T , clusters k = 1, . . . ,K , and time series j = 1, . . . , N [k], where a+ = max(0, a). We consider three simulation scenarios.
In Scenario A, the true scedasis densities are defined as c[k](w) = τ(w; pk), pk ∈ [0, 1], where,

τ(w; pk) =

 4(1− pk)w + pk, 0 ⩽ w < 0.5;

−4(1− pk)(w − 1) + pk, 0.5 ⩽ w < 1,

yielding triangular-shaped scedasis functions with peaks at the centre point w = 0.5, and the true extreme-value indices are set to γ[k] = 0.7 or 1.
In Scenario B, the true scedasis functions c[k](w) = β(w;αk, βk) are Beta(αk, βk) densities and the extreme-value indices are set to γ[k] = 0.7

or 1. In Scenario C, the scedasis densities are either τ(w; pk) or β(w;αk, βk), and the extreme-value index is set to γ[k] = 0.7.
The simulation settings and our choice of parameter values are reported in Table 6 and illustrated in Figure 2; for Scenarios A and B, we consider

K = 4 true clusters in the product-space, but Kc = Kγ = 2 clusters in the respective profile-spaces, comprising a total of N = 30 time series.
We simulate five independent time series with parameters (c1, γ1), five with (c2, γ1), ten with (c1, γ2) and ten with (c2, γ2); the scedasis densities
c1, c2 with their parameters and the extreme-value indices γ1, γ2 are specified in Table 6. Scenario C differs from this setting, as it is characterized
by three different scedasis functions and a single extreme-value index, which yields K = Kc = 3 and Kγ = 1. For each cluster, we simulate
N [k] = 10 time series independently for a total of N = 30 time series.

For Scenarios A, B, and C, a single-run experiment was performed using our methods to obtain the estimated cluster centres and scedasis
functions. These are compared with the true scedasis functions in Figure 2. To estimate each scedasis function, we consider the sample sizes
T = 500, 1000, 2000, 5000 with the number of upper order statistics k = 34, 62, 112, 250, chosen according to the intermediate sequence kT ∝
⌊T/ log T ⌋, which corresponds to the increasing threshold probabilities 93.2%, 93.8%, 94.4% and 95.0%, respectively. We use the kernel-based
estimator of Einmahl et al. (2016) with Kb(w) = 15{1− (w/b)2}2/(16b), for w ∈ [−1, 1]. We select the bandwidth values based on b = Ak−1/5,
with the constant A > 0 set by visual inspection in order to improve estimation in a sensitivity analysis (not shown) considering a grid of possible
values for A; using this approach, the values of the bandwidth b that we consider here are 0.2, 0.15, 0.1 and 0.1 for each sample size, respectively.
The extreme-value index is estimated using the Hill estimator.

Here and below, we use the convex linear combination dissimilarity from Example 1, i.e., Dconv
α (πi, πj) = αDc(ci, cj) + (1 − α)Dγ(γi, γj),

with Dc(ci, cj) =
∫ 1
0 {c

i(w)− cj(w)}2 dw, and Dγ(γi, γj) = (γi − γj)2; recall that in such a case the cluster centres can be obtained as in (8).
In Figure 2, we set α = 0.5. While Figure 2 suggests that our clustering method performs rather well, firm conclusions can only be drawn from a
rigorous Monte Carlo study. This is investigated in the next section.

3.2 Monte Carlo simulations

Here we conduct an extensive simulation study to assess the performance of our clustering algorithm in grouping different time series into separate
clusters defined in terms of magnitude and dynamics of the extremes. We calculate the Rand (Rand 1971) and silhouette indices (Rousseeuw
1987), whose mathematical definition are given in the Supporting Information, based on 1000 runs of our algorithm under the settings described
in Section 3.1. Notice that the silhouette index can be computed even if the true data partition is unknown. By contrast, the Rand index is used to
measure the similarity between two different partitions, one of which is considered the true partition in our simulation study.

Table 6 reports theMonte Carlo means of the Rand and silhouette indices for the simulation settings described in Section 3.1, as a function of the
sample size T and the weight parameterα. We can observe that both validity measures are almost always maximised whenα = 0.5 for all scenarios
(i.e., ‘weighting’ equally the scedasis density and the extreme-value index). However, as T →∞, the clustering performance in Scenario C should
improve as α → 1 (i.e., more weight on the scedasis density than on the extreme-value index), becauseKγ = 1 and therefore all information for
identifying distinct clusters is contained in the scedasis profile space. At subasymptotic levels (in this case, T = 5000 and k = 250), values of α
close to 0.5 seem to work better. Furthermore, as expected, performance improves as T increases; so with larger sample sizes, the estimation of
the scedasis functions and extreme-value indices in the first step of our procedure is more accurate, which then in the second step reflects on the
estimated clusters.

When the number of clusters K is unknown or uncertain, as is typically the case in practice, it is useful to perform clustering over a range of
values forK , and then compare the resulting diagnostics. We now explore the use of the elbow method, proposed by Tibshirani et al. (1987) and
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adapt it to clustering heteroscedastic extremes. The method is presented here specifically for the K-means algorithm and convex combination
Dα of ℓ2 dissimilarity measures (recall Example 1), but it can also be designed more generically. The elbow method is based on the statistic D[k],
defined as

D[k] =
∑

i,j∈I[k]

Dα(π
i, πj) = 2N [k]

∑
i∈I[k]

Dα(π
i, µ[k]), µ[k] = (c[k], γ[k]),

where I[k] is the index set corresponding to the kth clusterC[k], and µ[k] = (c[k], γ[k]) is the cluster centre obtained using theK-means algorithm;
D[k] represents the sum of intra-cluster dissimilarities between ‘points’ in a given cluster C[k], and the corresponding cluster centres. The sum of
normalized intra-cluster sums of squares measures the overall ‘compactness’ of our clustering procedure:

WK =

K∑
k=1

1

2N [k]
D[k]. (13)

The elbow method runs the K-means algorithm for heteroscedastic extremes on the dataset for a range of values of K , then plots the sum
of squared errorsWK as a function of K. The plot should, in principle, be monotonically decreasing with K until the true value of K is reached,
and then stabilize for larger values of K. The optimal number of clusters is therefore found at the ‘elbow’ of the plotted curve. To illustrate this
approach, we consider the three aforementioned simulation Scenarios A, B and C with a sample size T = 5000 and weight parameter α = 0.5.
The results are displayed in Figure 3. As expected, the ‘elbow’ is found at K = 4 for Scenarios A and B, but at K = 3 for Scenario C, which all
correspond to the true number of clusters.

4 ANALYSIS OF STOCK MARKET DATA FROM THE LONDON STOCK EXCHANGE

4.1 London Stock Exchange: Data and main modelling goals

We gathered the data from Yahoo Finance. After some preliminary analysis detailed in Section 4.2, we retained 139 stocks from the London Stock
Exchange, and Figure 1 presents the daily negative log-returns for a selection of 26 stocks, including GlaxoSmithKline, Royal Dutch Shell B, Tesco,
among others. The stocks displayed in Figure 1 cover nine economic sectors of the exchange, namely: oil and gas, basic materials, industrials,
healthcare, consumer goods, consumer services, financials, utilities, and technology; about 40% of these selected stocks are FTSE 100 companies.
The period under analysis ranges from December 1989 to May 2016, and thus it includes stock market crashes clearly visible from the time series
plots, such as black Wednesday (1992), the dot-com bubble (2000), and the most recent financial crisis (2008–2009); it also takes into account
the turbulence in the eminence of the Brexit referendum, which took place on June 23, 2016. The preparations for post-Brexit have actually been
creating a wealth of challenges and opportunities for institutional investors, professional money managers, and traders; for example there are plans
for the exchange to take on board further companies from the Middle East in a near future (Reuters 2017). One of our applied goals is to develop
and apply statistical methods that can be used to partition stocks such as those presented in Figure 1 into meaningful clusters from the viewpoint
of risk; the latter might, or might not, reflect the nine economic sectors. More precisely, an overall objective of our analysis is to group stocks
according to the magnitude and frequency of univariate extreme losses. As negative log-returns can be regarded as a proxy for losses, we focus on
the right tail of the data shown in Figure 1. Our quantitative analysis is here intended to complement the overall picture provided by exploratory,
qualitative or expert-based diagnostics. For example, a quick visual inspection of Figure 1 could perhaps suggest that Stocks 1 (Royal Dutch Shell
B) and 5 (Johnson Matthey) look reasonably similar in terms of magnitude of extreme losses, but whether the dynamics of their extreme losses
over time is similar is far from clear. The methods presented in this paper will offer answers to these and related questions.

4.2 Preliminary analysis and selection of stocks

We now apply our model to the London Stock Exchange data briefly presented in Section 4.1. To use our model, we need to test whether the
extreme-value index γ is constant over time for each stock. For this, we consider Test 4 of Einmahl et al. (2016, p. 37), based on the comparison of
γ estimates from four subperiods. For each stock, we assume that the negative log-returns on each day follow possibly different heavy-tailed dis-
tributions as in (1), and we test whether the extreme-value index of the negative log-returns is constant between 1989 and 2016. More concretely:
first, we identify the stocks for which we had data available in the period between 1989 and 2016, obtaining 240 companies; second, we consider
all stocks for which we do not reject the null hypothesis of constant extreme-value index using the same criteria as in Einmahl et al. (2016, Test 4,
p. 37). The main findings are similar for the analysis for the 139 stocks retained according to these two step procedure and for the selection of 26
stocks displayed in Figure 1; therefore, we focus below on the latter for presentation clarity; in the Supporting Information, we also present the
extended analysis based on the full dataset with 139 stocks. The 26 selected time series, plotted in Figure 1, are of length T = 6893 days. In the
Supporting Information, we show that extremes of these stocks are weakly dependent, and that thus that the methodology proposed in Section 2
can be applied. Table 1 presents a list of the 26 selected firms, their economic sectors, their estimated scedasis functions (recall (5)) and the Hill
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estimates (recall (6)) corresponding to the negative log-returns of each of these stocks, setting k = 332 (corresponding approximately to taking the
threshold as the 95%-percentile) and b = 0.1. At first glance, we can see that the estimated scedasis functions and extreme-value indices do not
appear to be homogeneous within each economic sector, but rather there is a remarkable match between each stock’s estimated scedasis function
and its corresponding cluster centre as determined by our new clustering procedure; more details about our results are provided in Section 4.3.

4.3 Do clusters mirror economic sectors?

In this section we examine whether the clusters obtained through our approach have any connection with the stocks’ economic sectors. Ex-ante,
an investor could be tempted to believe that stocks belonging to the same economic sector might be characterized by similar extreme-value
properties, but whether this actually holds true is another matter.

To conduct the proposed inquiry, we run the proposedK-means algorithm for heteroscedastic extremes from Section 2.3 to group the selected
companies into new clusters. To run our clustering procedure, we first need to choose the number of clusters K; Figure 4 displays the sum of
squared errorsWK defined in (13) as a function ofK = 1, . . . , 20 for various weight parametersα = 0, 0.1, . . . , 0.9, 1. Following the elbowmethod
described in Section 3.2, the number of clusters K should be only about two or three when α is small (placing heavier weight on the extreme-
value index), perhaps due to the high variability in the estimation of the extreme-value index γ. For larger values of α (placing heavier weight on
the scedasis function), the elbow method suggests thatK > 3. However, the optimal value ofK is not obvious as the curve does not completely
stabilize. Here, we fixK = 9 for the rest of the analysis to contrast our results with the nine economic sectors. To reduce the possibility that theK-
means algorithm for heteroscedastic extremes generates a suboptimal clustering, we set the initial cluster centres using the approach by Arthur al.
(2007). In addition, for each value of αwe run the algorithm 500 times and select the solution L∗ with the smallest value of the objective function

W (L∗) =
N∑
i=1

K∑
k=1

I(L∗(i) = k)Dα((ĉ
i, γ̂i), (c[k], γ[k])).

Figure 5 (i) and Table 2 show the scedasis function estimates of the selected companies and the cluster centre estimates produced by ourmethod,
when α = 0.5. The choice of the latter value is motivated by the numerical experiments reported in Section 3, which suggest that the validity
measures are almost alwaysmaximisedwhenα = 0.5; a sensitivity analysis with respect to the choice ofα is reported in the Supporting Information.
We can see a significant difference between the grouping of companies in Table 1 and the new classifications given in Table 3, suggesting that there
is no direct connection between the stocks’ economic sectors and their classification in terms of magnitude and frequency of extreme losses.

Our algorithm defines new ‘sectors’, which are more homogeneous in terms of the magnitude and frequency of extreme losses, and highlights
an interesting mismatch between stocks’ economics sectors and clusters of risk in terms of frequency and magnitude of extreme losses. In more
detail, Table 3 shows the partition of stocks on the product and profile spaces obtained using our clustering method. Here, α = 0.5 corresponds to
the scenario where we put equal interest on the frequency andmagnitude of the extremes losses. If an investor is more interested in the magnitude
of extreme losses than their frequency, then (s)he should consider a classification from Table 3 with α = 0; on the other hand, if (s)he is more
interested in the frequency of extreme losses than in their magnitude, then (s)he should consider a classification from Table 3 with α = 1. All in
all, either in the product-space or in the profile-space, our analysis suggests that clusters of magnitude and dynamics of extreme losses present
no straightforward connection with the economic sectors of the corresponding stocks. The same finding holds if clustering is based on risk loss
patterns as introduced in Section 2.4. Table 4 contains the partition of stocks obtained using time-varying value-at-risk. Although the two clustering
algorithms in Tables 3 and 4 are based on different criteria, they still produce remarkably similar results. In addition, as can be seen from Table 4 the
partition of stocks obtained using time-varying value-at-risk is quite robust to changes in the confidence levels. All in all, both results in Tables 3
and 4 agree that the estimated clustering of stocks presents no straightforward connection with the economic sectors of the corresponding stocks,
which implies that stocks from the same economic sector may have very different risk loss patterns.

4.4 Economic contraction periods and the mode mass function

In this section we examine the mode mass function as defined in (12) and compare its shape with the contraction periods for the UK and US
economies. Stylized facts on the UK business cycle can be found in Chadha and Nolan (2002). Business cycle dating for the US economy is con-
ducted by the National Bureau of Economic Research (NBER). While it might seem odd to compare financial information from one country (UK)
with economic figures from another country (US), it is well known that the US economy is a major player in the world economy, and some studies
suggest that the UK business cycle is actually more synchronized with the US than with countries in the Euro area zone, such as Germany (Al-
bulescu 2017). Figure 5 (ii) shows how the modes of the scedasis functions are spread over time. The mode mass function in this figure suggests
four periods of great synchronization in terms of the maximum frequency of extremes losses. The gray rectangles represent contraction periods of
the US economy, from peak (P) to trough (T). We can see that the local maxima of the mode mass function are relatively close to these economic
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contraction periods. The scedasis function maxima tend to be reasonably well aligned with the contraction periods dated by the NBER, which ap-
pears compatible with the hypothesis that around periods of contraction, the maximum frequencies of extremes losses are more synchronized.
Our findings are also in line with the business cycle peak to through dates for the UK from the Economic Cycle Research Institute (ECRI). Inter-
estingly, however, for the period under analysis ECRI only identifies the peak and through dates May 1990–March 1992 and May 2008–January
2010, and thus their chronology does not consider that the 2000 dot-com bubble has left its footprint on the cycle.

5 DISCUSSION

This paper develops and applies statistical similarity-based clustering techniques for heteroscedastic extremes which can be used to group time
series of independent observations that are alike in terms of magnitude and dynamics of extreme observations. yields a data-driven partition of
stocks into clusters of risk. Our method yields a data-driven partition of stocks into clusters of risk, and can be used to uncover which stocks
resemble each other the most in terms of probabilistic features that are critical from a risk management perspective.

Clustering scedasis functions and extreme-value indices involves the challenge of grouping objects comprised of both a function (scedasis) and
a scalar (extreme-value index), and thus the need to partition a product-space. To address this issue, we have proposed valid dissimilarity measures
able to transition from one profile-space to the other, characterized by a tuning parameter to be set by the analyst, deciding where the clustering
algorithm should place more weight. To our knowledge, this is the first paper tackling the challenging problem of conducting a cluster analysis of
both functions and scalars. Similarly to Einmahl et al. (2016), our approach cannot treat stocks for which the extreme-value index varies in time.

Our clustering algorithm is designed to group stocks whosemarginal distributions of extremes over time have similar characteristics. In particular,
considering the scedasis function and extreme-value index as objects of interest, our clustering method puts strong focus on the dynamics of
univariate extremes over time (through the scedasis function) and the overall magnitude of the most extreme losses (through the extremal index);
in addition to the scedasis function (‘relative’ scale parameter) and extreme-value index (tail shape parameter), it is possible to use a Pareto-like
tail specification to estimate the ‘overall’ scale parameter and deduce the time-varying value-at-risk, which provides a more complete description
of extreme losses. As described in our paper, this can be used to cluster univariate risk loss patterns. In future work, it would also be interesting
to devise a clustering algorithm that takes extremal dependence into account as a way of tracing and outlining portfolios exhibiting joint (i.e.,
simultaneous) extreme losses. In particular, the characterization of extremal dependence among stocks is crucial for assessing the risk of an index,
defined for example as a weighted sum of the prices of the individual stocks. We leave such an important question for future research.

Some final remarks on our financial illustration are in order. In practice, return series may exhibit serial dependence and volatility clustering.
While an option to come closer to the independence assumption is to work with monthly returns, that also leads to a substantial reduction in
the amount of data, hence weakening the case for learning about limiting objects—such as the scedasis and the extreme value index. In addition,
it should be noted that the allocations devised via our method are not static as the scedasis evolves over time. Thus, recent events such as the
COVID-19 pandemic, the Black Monday 2020 crashes, rising inflation and the war in Ukraine, can naturally impact the allocations reported in our
illustration—and so can any other future event that influences stock markets. Finally, we acknowledge survivorship bias in our empirical findings,
as the analysis focuses on companies that have succeeded in the market—while ignoring those that have failed.

APPENDIX

6 DERIVATION OF CLUSTER CENTRES IN PRODUCT-SPACE

This appendix provides details on the cluster-centre updating step in the K-means algorithm for heteroscedastic extremes. Recall that in Step 0
of the K-means algorithm in Section 2.3, we select K cluster centres randomly, µ(old) = ((c[1], γ[1])(old), . . . , (c[K], γ[K])(old)) in the product-
space Π = C × (0,∞), then we classify all times series using the estimates {(ĉi, γ̂i)}Ni=1, and in the last step we update the cluster centres
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µ(new) = ((c[1], γ[1])(new), . . . , (c[K], γ[K])(new)), as:
µ(new) = arg min

µ∈Π

N∑
i=1

K∑
k=1

I(L(new)(i) = k)Dα((ĉ
i, γ̂i), (c[k], γ[k]))

= arg min
µ∈Π

K∑
k=1

{
α

∑
{i:L(new)(i)=k}

1∫
0

{ĉi(w)− c[k](w)}2 dw + (1− α)
∑

{i:L(new)(i)=k}

(γ̂i − γ[k])2
}

= arg min
µ∈Π

K∑
k=1

[
α
{ ∑
{i:L(new)(i)=k}

1∫
0

{ĉi(w)− s[k](w)}2 dw + N̂ [k]

1∫
0

{s[k](w)− c[k](w)}2 dw
}

+ (1− α)
{ ∑
{i:L(new)(i)=k}

(γ̂i − ψ[k]
)2 + N̂ [k](ψ

[k] − γ[k])2
}]
,

where s[k](w) = (N̂ [k])−1
∑
{i:L(new)(i)=k} ĉ

i(w), ψ[k]
= (N̂ [k])−1

∑
{i:L(new)(i)=k} γ̂

i, and N̂ [k] =
∑N

i=1 I(L
(new)(i) = k). Since,

∑
{i:L(new)(i)=k}

1∫
0

{ĉi(w)− s[k](w)}2dw ⩾ 0,
∑

{i:L(new)(i)=k}

(γ̂i − ψ[k]
)2 ⩾ 0,

for each k ∈ {1, . . . ,K}, the expression in Step 2 of theK-means algorithm outlined in Section 2.3 is indeed minimized with c[k] and γ[k] as in (8).
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Figure 1 Negative log-returns for 26 selected stocks from the London Stock Exchange.
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Figure 2 The dashed blue lines depict the cluster centre estimates produced by our method, plotted against the true scedasis functions (solid black) definedin Table 6; the scedasis function estimates are depicted in gray. Scenarios A, B and C (left to right) are presented for sample sizes T = 500, 1000, 2000, 5000(top to bottom).
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Table 1 Estimated scale parameters (â), extreme-value indices (γ̂), and scedasis functions (ĉ) (solid black) plotted over time, for the stocks under
analysis and corresponding economic sectors. The dashed blue curves correspond to the scedasis’ cluster centres estimated by our algorithm. The
daggers (†) represent FTSE 100 companies.
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Table 2 Cluster centre estimates corresponding to the nine extreme-value indices, for the partition of stocks obtained with α = 0.5. Ticker symbols are thesame as in Table 1

Cluster centre extreme-value index (γk)
0.385 0.466 0.575 0.346 0.843 0.385 0.432 0.382 0.377

Stocks 1, 5, 12, 15, 18 2, 6, 8, 16, 22 7, 13, 21, 25 10, 14, 17, 19, 20, 23, 24 26 3 9 4 11

Table 3 Nine clusters of heteroscedastic extremes of companies over a grid of values of α. Ticker symbols are the same as in Table 1
Tuning parameter (α)

Groups 0 0.5 11 3, 4, 5, 11, 15, 18, 23 1, 5, 12, 15, 18 1, 5, 10, 11, 15, 18, 20, 23, 242 8, 9, 22 2, 6, 8, 16, 22 2, 6, 9, 223 13, 16, 25 7, 13, 21, 25 134 1, 6, 12, 20, 24 10, 14, 17, 19, 20, 23, 24 14, 17, 19, 21, 255 26 26 266 2 3 37 21 9 8, 168 10, 14, 17, 19 4 49 7 11 7, 12

Table 4 Nine clusters of value-at-risk functions of companies over a grid of values of p. Ticker symbols are the same as in Table 1
Confidence level (p)

Groups 0.95 0.98 0.99 0.995 0.9991 1, 5, 12, 15, 18, 22 1, 5, 12, 15, 18, 22 1, 5, 12, 15, 18 1, 12, 15 1, 5, 12, 14, 152 6, 8, 9 6, 8, 9 6, 8, 9, 22 8, 9, 16 8, 9, 163 13, 19 13, 19 13 13 134 4, 10, 11, 14, 17 4, 10, 11, 14, 17 4, 10, 11, 14, 17, 19 4, 10, 11, 14, 17, 19 4, 10, 11, 17, 1920, 23, 24 20, 23, 24 20, 23, 24 20, 23, 24 20, 23, 245 26 26 26 26 266 3 3 3 3 37 2, 16 2, 16 2, 16 2, 5, 6, 18, 22 2, 6, 18, 228 25 25 25 25 259 7, 21 7, 21 7, 21 7, 21 7, 21

Table 5 Data-generating scenarios. For Scenarios A, B and C, each row reports the number of clusters in the product-space (K), the number of
clusters in the respective profile-spaces (Kc andKγ ), the different scedasis functions and extreme-value indices involved, and the cluster sizes.†

Scenario Number of clusters Scedasis density Extreme-value index Cluster size
(K,Kc,Kγ) ci γj Ni,j

A (4, 2, 2) τ(w; 0.001); τ(w; 0.8) 0.7;1 N1,1 = N2,1 = 5, N1,2 = N2,2 = 10

B (4, 2, 2) β(w; 2, 5);β(w; 5, 2) 0.7;1 N1,1 = N2,1 = 5, N1,2 = N2,2 = 10

C (3, 3, 1) β(w; 2, 5);β(w; 5, 2); τ(w; 0.5) 0.7 N1,1 = 10, N2,1 = 10, N3,1 = 10

†Ni,j is the number of time series simulated independently in a specific cluster characterized by the scedasis ci and extreme-value index γj



DE CARVALHO ET AL 19

Table 6 Validity measures for Scenarios A, B, and C as defined in Section 3.1 obtained from 1000Monte Carlo simulations. The Rand and silhouette
indices evaluate the clustering of theK-means algorithm for heteroscedastic extremes as a function of the sample size (T ) and theweight parameter
(α).†

Scenario A
Rand index Silhouette index

α\T 500 1000 2000 5000 500 1000 2000 5000

0.1 0.74 0.85 0.86 0.87 0.47 0.52 0.64 0.76
0.3 0.77 0.79 0.86 0.88 0.49 0.64 0.81 0.81
0.5 0.79 0.83 0.89 0.93 0.50 0.72 0.87 0.95
0.7 0.78 0.81 0.85 0.87 0.42 0.44 0.53 0.92
0.9 0.68 0.73 0.78 0.81 0.31 0.42 0.51 0.74
Scenario B

Rand index Silhouette index
α\T 500 1000 2000 5000 500 1000 2000 5000

0.1 0.76 0.86 0.88 0.90 0.33 0.50 0.76 0.79
0.3 0.80 0.83 0.87 0.94 0.48 0.61 0.79 0.86
0.5 0.79 0.89 0.90 0.92 0.41 0.65 0.77 0.95
0.7 0.74 0.81 0.85 0.88 0.40 0.53 0.75 0.85
0.9 0.70 0.74 0.77 0.82 0.36 0.43 0.62 0.80
Scenario C

Rand index Silhouette index
α\T 500 1000 2000 5000 500 1000 2000 5000

0.1 0.77 0.81 0.86 0.90 0.54 0.66 0.74 0.82
0.3 0.80 0.83 0.89 0.92 0.65 0.71 0.82 0.88
0.5 0.82 0.84 0.90 0.94 0.70 0.64 0.90 0.94
0.7 0.79 0.82 0.85 0.91 0.68 0.66 0.85 0.89
0.9 0.74 0.79 0.86 0.88 0.65 0.69 0.74 0.80

†Values closer to one correspond to better performance
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