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Abstract: 

As a highly efficient and cost-saving approach, modeling is significantly important in the 

development of proton exchange membrane fuel cells (PEMFCs). With the rapid development 

of computer technologies in the past three decades, PEMFC models have been upgraded from 

simple one-dimension (1D) single-cell models to sophisticated three-dimension (3D) multi-

physics and multi-phase fuel-cell stack models, leading to the wider application of modeling in 

the diagnosis, design, optimization, and development of novel PEMFCs. This chapter provides 

the chronological development of PEMFC modeling approaches with a focus on those in 

modeling the catalyst layer and water formation and transport inside the PEMFCs. Numerical 

optimizations of PEMFCs with respect to electrodes, flow fields, fuel cell stacks, and operating 

conditions are summarised. The multi-variable optimization and data-driven modeling are also 

introduced in this chapter.  
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1. Introduction 

Modeling plays a significant role in the process of proton-exchange-membrane and related fuel 

cell design and development [1]. Normally, fuel cell design and development processes begin 

with a set of requirements, including power output, operating conditions, size limitations, safety 

specifications, and others. Based on the knowledge of materials and processes involved in the 

fuel cells, modeling is performed to predict the fuel cell performance. Modeling helps the 

designers and developers to determine the best candidate designs or improve the existing 

designs that satisfy the requirement. Modeling provides a better understanding of the 

electrochemical reactions and mass transport that occurred within the fuel cells, for example, 

the reactants profiles, temperature distribution, and polarisation curves [2-5]. It can give a quick 

prediction of the fuel cell performance under various given operating conditions, material 

properties, and fuel cell geometries. Modeling reduces the time, effort, and cost associated with 

the experimental studies, and provides theoretical guidance on the development and 

optimization of the fuel cells. 

The processes that occurred inside the porous electrode of proton exchange membrane fuel cells 

(PEMFCs) constitute a fully coupled reaction-diffusion process. Due to the competitive 

relationship between the electrochemical reaction and species transport [6], optimal cell 

performance requires graded distributions of the functional compositions inside the electrodes 

and novel flow fields, where the optimal parameters for maximized cell performance, e.g., 

platinum (Pt) loading, ionomer loading, porosity and hydrophobicity of the electrodes, vary 

according to the different operational requirement of PEMFCs. The optimal distributions of 

different functional components and novel flow field design could be achieved through multi-

variable optimization approaches. Thus, modeling and optimization could accelerate the 

commercialization and industrialization of PEMFC technology. 

2. Fuel cell modeling approach and key physicochemical and operating parameters 

A complete PEMFC model includes several sub-models, including gas flow, mass and heat 

transport, mechanical properties of the electrodes, water transport through the membrane, gas-

liquid two-phase flow, proton, and electron transport,  reaction kinetics and current distributions, 

as shown in Figure 3.1. The interaction of different sub-models describes the computational 

process in solving a completed PEMFC model. To reduce the complexity of the model, several 

sub-models are typically excluded.  For example, when heat transfer is omitted, a PEMFC 

model becomes an isothermal model. When the generation and transport of liquid water are 

neglected, the PEMFC model can be simplified to a single-phase flow model. In most PEMFC 

models, the gas flow, mass transport, and current distribution are essential. Key operating 
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parameters include inlet gas velocity, relative humidity, operating pressure, temperature and 

cell voltage. To reflect the catalytic activity and mass and ion transport resistance of the porous 

electrode, Pt-loading, platinum and carbon mass ratio, ionomer volume fraction, conductivity, 

porosity, and electrode thickness are also important. The governing equations describing fluid 

momentum, diffusive and convective mass transport, electrochemical reaction kinetics, and 

heat transport could be found in Chapter 2. Different from other high-temperature fuel cells, 

water management is critical in low-temperature fuel cells, which are typically operated below 

100C. The following sections focus on the modeling of water formation and transport of 

PEMFCs. 

 

 

FIGURE 3.1  Schematic computational process in solving a multi-physics, non-isothermal, multi-phase 

flow model of a PEMFC. Symbols have their usual meanings and are described in Chapter 2. 

 

2.1 Water formation and transport in fuel cells 

Perfluorinated membranes, such as Nafion, are typically used as the electrolyte in PEMFCs. 

Nafion ionomer is required in the catalyst layers (CLs) to facilitate proton transport from the 

anode CL, through the membrane, to the cathode CL. On the membrane-CL boundary, the 

membrane is closely connected with the ionomer in the CLs, at both the anode and cathode. 

Water in PEMFCs acts as the lubricant which makes the fuel cell system run smoothly at a 

relatively low ionic resistance. Water can be fed into the PEMFC system through the gas inlet 

or/and generated by the oxygen reduction reaction (ORR) at the cathode. Water exists as water 
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vapor in the gas mixture, which is absorbed by the Nafion membrane/ionomer as the 

dissolved water. During fuel cell operation, protons migrate through the membrane and are 

associated with a drag of water molecules from the anode to the cathode, which is the electro-

osmotic drag (EOD). Together with the electrochemical water production, the water content of 

the membrane/ionomer becomes saturated, which then leads to liquid water formation through 

membrane/ionomer desorption when the water content exceeds the equilibrium value. The other 

reason for water formation is attributed to vapor condensation when the partial pressure of 

vapor exceeds the equilibrium vapor pressure at a given temperature. Due to the generated 

gradient of water concentration between the anode and cathode, a certain amount of water could 

diffuse back from the cathode to the anode, which is in the opposite direction against the EOD. 

In addition, the pressure difference between the anode and cathode could drive water transport 

through the membrane, which is called hydraulic permeation. The water transport that occurred 

in a PEMFC is schematically shown in Figure 3.2. 

 

FIGURE 3.2  Water transport mechanism inside a proton-exchange-membrane fuel cell.  

 

Maintaining a subtle equilibrium between membrane dehydration and liquid water flooding is 

the key issue to achieving maximum performance and durability for PEMFCs [7]. On one hand, 

water is required to guarantee the good proton conductivity of the proton exchange membrane 

and ionomer of CLs [8]. Dehydrated membrane/ionomer hinders the access of protons to the 

active sites within the CL, resulting in an increase in activation polarisation [9]. On the other 

hand, excess water blocks the flow channel and the void space within the porous electrodes and 

then increases the mass transport resistance, leading to a ‘flooding’ problem. The thickness of 

the membrane, the water content of the membrane, the humidity of the reactant gases, and the 

reaction rate in CL determine the concentration gradient of water between the anode and 

cathode. Furthermore, membrane water content and reactant gas humidity are dependent on the 

gas inlet humidification and the temperature and pressure in the gas channels [10]. Besides, 

back diffusion prevails over electro-osmotic drag at lower current density; and electro-osmotic 
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drag prevails over back diffusion while higher current density is achieved, thus the anode 

(including the membrane) tends to dry out, even the cathode is well hydrated at high current 

density [11]. 

2.2 PEMFC modeling approaches 

Numerical modeling of PEMFCs is important for a better understanding of the transport 

processes owing to the experimental drawbacks, such as the difficulty of performing the 

different experimental measurements simultaneously, unrealistic operating conditions, and the 

high cost of materials and testing instruments. Over the last decades, numerous models and 

studies have been conducted to describe water management and investigate liquid water 

transport in PEMFCs [12-18]. Depending on different descriptions of water formation and 

transport, the models can be mainly categorized into four groups: dynamic models, lumped 

models, flooding models, and models associated with the effect of geometrical configuration.  

In the early 1990s, some simple models have been developed. These models were all simplified 

models which all applied the assumption that the reactant and charge only transport along one 

direction. The numerical models developed by Springer et al. [19, 20] and Bernardi and 

Verbrugge [21, 22] are usually considered pioneering modeling works for PEMFCs. These 

models are essentially one-dimensional (1D) models considering the membrane, CL, and gas 

diffusion layer (GDL) based on solving the conservation equations by assuming homogeneous 

materials and using effective transport properties. After that, Nguyen and White [23] and Fuller 

and Newman [24] developed pseudo-two-dimensional (2D) models by further considering the 

flow channels, which considered the effect of water humidity inlet and temperature 

distributions, providing more detailed water and thermal management capability. However, the 

models developed in that period were too simple to simulate the very complex PEMFC systems 

although they laid the foundation for fuel cell modeling. 

More numerical models were developed in the late 1990s. For instance, Yi and Nguyen [25, 26] 

and Gurau et al. [2] developed 2D models to explore more detailed transport phenomena in 

PEMFCs. These models illustrated the utility of multi-dimensional models in the understanding 

of the internal conditions of fuel cells, such as the reactant and water distribution. Gloaguen 

and Durand [27], Bultel et al. [28-30], and Marr and Li [31] developed the agglomerate models. 

These models applied simplified CL structures by assuming that the large agglomerates were 

formed by ionomer and platinum/carbon particles on the level of a micrometer. Compared to 

the models developed earlier, more detailed mass and charge transport phenomena were 

analyzed more accurately because these models extended the 1D or pseudo-2D to the detailed 

2D models. It is important to note that all the models developed were based on the single-phase 

assumption, which treated the water as vapor, including the water formed in the cathode CL, 
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and supplied it along with the humidified gas inlet. The water condensation within the porous 

electrodes and the flow channels was not considered. Although there was not sufficient 

evidence to confirm that water could be condensed in CLs and GDLs while the PEMFC system 

operated in normal conditions, however, condensed water in the flow channels has been 

observed by some instruments such as high-resolution cameras [32, 33]. Generally, an ideal 

single-phase assumption is applied when reactant gases are oxidised or reduced at the surface 

of a solid catalyst (Pt-Ru and other binary or ternary alloy). In reality, the condensed water 

could change the single-phase flow problem to a two-phase flow problem. 

In the 2000s, multi-dimensional models have been developed by many researchers to solve a 

complete set of conservation equations (such as continuity and Navier-Stokes) coupled with 

electrochemical reactions (for example the ORR kinetics at the cathode). Computational fluid 

dynamics (CFD) code and commercial software (such as ANSYS Fluent, and COMSOL 

Multiphysics) based on finite volume methods (FEM) were adopted to develop the fuel cell 

models, and more complicated geometry and transport phenomena were investigated [34-44]. 

In the area of three-dimensional (3D) geometry, the models developed by Dutta et al. [34, 35], 

Zhou and Liu [36], Berning et al. [37], Mazumder and Cole [38], Lee et al.[40], Um and Wang 

[41], and Wang and Wang [42] were mainly considered a single flow channel with the major 

components of reactant gases. Large-scale simulations considering multi-channel or small 

stacks give a more accurate and more specific analysis of the distribution of reactant gases (H2 

and O2), water vapor, and pressures. [45-48]. The main impediment to the widespread use of 

these multi-dimensional models is the requirement for computer hardware.  

A reasonable simplification of the complex multi-dimensional models is considered the 

practical way of modeling the complicated transportation and reaction inside of the PEMFCs 

with the relatively low computational requirement. To simplify models and reduce computation 

time for conservation equations, liquid water formation can be neglected by assuming liquid 

water as supersaturated water vapor [23-25]. The real two-phase flow models, which give more 

accurate predictions than the single-phase assumptions, have also been developed [39, 49-55]. 

These two-phase flow models solved the mass, momentum, and species transport conservation 

equations for the gas mixture, with an extra conservation equation for liquid water transport. 

However, the accurate and detailed water transport behavior cannot be studied in these models 

because the interface tracking between liquid water and gas is not permitted. As a result, the 

volume of fluid (VOF) model, based on liquid water dynamics to investigate water flow in a 

single serpentine flow channel, was developed [56]. The real 3D model is difficult to simulate 

a single cell with a large size due to the expensive computations. Therefore, many researchers 

simplified the sub-models of CLs and developed a “3D+1D” model to improve the 

computational efficiency by approximately one order of magnitude. This model can be 
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employed to help develop the large-size flow fields of PEMFCs. For example, Xie et al. [57] 

developed a “3D+1D” PEMFC model to implement large-scale simulation with enhanced 

calculation efficiency, in which bipolar plates, gas channels, and gas diffusion layers were 

treated as 3D computational domain and micro-porous layers, CLs, and membrane are treated 

as 1D domain. The computation time was reduced by 20 folds for large-scale PEMFCs with 

345 cm2 active area. In their later work [58], the accuracy of the developed “3D+1D” PEMFC 

model was comprehensively validated in terms of overall cell performance and local 

distributions of current density and temperature under different operating conditions. This 

approach provided some guidance for researchers and engineers in the field of PEMFC design 

by facilitating the application of 3D modeling and simulation to large-scale PEMFCs. 

In short, a large number of numerical models were developed around the world and the models 

were chronologically developed from simple to complex, from general to specific. Despite the 

great changes in the equation forms in the models, all the processes are described based on 

some basic laws, e.g., the laws of conservation of energy and momentum. Developing a 

comprehensive and comparatively simple model for the PEMFCs under practical load 

conditions by reasonably simplifying the complex multi-dimensional models is the priority of 

most modeling work. The main difference between the models developed in different periods 

is presented in Table 3.1. 

 

Table 3.1 Chronological development of PEMFC modeling work. 

Models 
Period of 

development 

Dimensions of 

reactant, products 

and charge 

transportation 

Accuracy of 

modeling process 

compared to practical 

fuel cell 

Complexity of 

the models and 

computer 

hardware 

requirement 

1D and pseudo 

2D 
Early 1990s One dimensional Crude 

Simple and 

low 

2D Later 1990s Two dimensional Medium Medium 

3D and multi-

dimensional 
After 2000s 

Three 

dimensional 
Precise 

Complex and 

high 

 

2.3 Modeling of water transport through the membrane 

The modeling of water transport in the membrane can be classified into three types: diffusive, 

chemical potential, and hydraulic models. The diffusive model can be explained with dilute 

solution theory by considering the membrane as a solvent, while water and proton as solutes. 
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This theory assumes that the interaction between different solute species can be neglected, and 

only the interaction between solute (water and proton) and solvent (membrane) is considered. 

Then the flux of solute species in the solvent can be described by using the Nernst-Planck 

equation. The Nernst-Planck equation is a conservation of mass describing the flux of ions 

under the influence of both an ionic concentration gradient and an electric field. The general 

form of the Nernst-Planck equation is: 

i i i
i i i i

B

dc D z e
D c c c

dt k


 
     

 
u                                (3-1) 

where t (s) is time, Di (m2 s-1) is the diffusivity of the solute species i, ci (mol m-3) is the 

concentration of the solute species i, u (m s-1) is the velocity of the fluid, zi (C) is the valence 

of ionic specie, kB (J K-1) is the Boltzmann constant, and   (V) is potential. 

For water transport, i i i BD z ec k  becomes zero because water is in zero valence. For proton 

transport, ii cD   becomes zero by assuming a constant concentration of proton through the 

membrane. Furthermore, icu  becomes zero for both the water and proton transport because the 

membrane does not move. Therefore, the Nernst-Planck equation for proton transport is 

simplified to Ohm’s law. By further considering the effect of electro-osmotic drag, the water 

transport is simplified to [59]:  

F

i
ncDJ dragwMw                                             (3-2) 

where MD  (m2 s-1) is the diffusivity of water through the membrane, wc  (mol m-3) is water 

concentration, dragn  is electro-osmotic drag coefficient through the membrane, F (C mol-1) is 

Faraday’s constant, and i (A m-2) is the current density. 

The diffusive model is the most successful model for water transport through membrane since 

its initial application [19, 20]. By further considering the interaction between different solute 

species, the chemical potential model is developed. The proton and water transport through the 

membrane, therefore, can be explained by concentrated solution theory as [60, 61]: 

H

Mdrag

M
F

n
i 


                                         (3-3) 

F

i
nJ dragwww                                               (3-4)  



9 

 

where 
M  (Ω-1) is the membrane conductivity, 

H  (J mol-1) and w  (J mol-1) are the 

chemical potential of proton and water, respectively, and w  is the water transport coefficient 

through the membrane. 

Comparison of Eq. (3-2) and Eq. (3-4) shows that the concentration (c) is replaced by chemical 

potential ( ), the diffusion coefficient (D) is replaced by transport coefficient (α), and one 

more term is added in Eq. (3-3) to account for the multi-component interaction. The biggest 

obstacle to the widespread use of the chemical potential model is the difficulty in obtaining the 

transport parameters. As a result, the chemical potential model is rarely used in comparison 

with the diffusive model. 

In the diffusive and chemical potential models, the convective transport caused by the pressure 

gradient across the membrane is not considered. However, convective transport could happen 

when water enlarges the pores of the membrane. To fill the gap, the hydraulic model is 

developed [21, 22]. Consequently, water flux due to pressure gradient and EDO can be 

calculated by the Nernst-Planck equation. Generally, the hydraulic model neglects the diffusive 

transport, and the water flux can be represented by the following equation: 

F

i
np

k
cJ dragw

w

p

ww 


                                        (3-5) 

where pk  (m2) and w  (Pa s) are the permeability and dynamic viscosity of water in the 

membrane. Due to the effect of EDO, the anode side of the membrane is often prone to dry out. 

Therefore, the fully hydrated membrane assumption remains questionable. In fact, water 

convective transport is only considerable while the pressure gradient exists between the anode 

and cathode. If the inlet gas pressure of the anode is as same as that of the cathode, the water 

convective transport could be neglected because diffusive transport and EDO have a more 

significant influence on the water transport. 

2.4 Modeling of water transport through porous electrodes 

Depending on the assumption of the morphology of the porous electrodes, models of the water 

transport through the porous electrodes can be categorized into ‘homogenous’ and ‘non-

homogenous’ models. In the homogenous model, the porous electrodes are assumed to be 

constructed by homogeneous materials, while the non-homogenous model applies the real or 

simplified microstructure of the porous electrodes. When the porous electrodes are assumed as 

homogeneous, the entire computational domain shares the same properties, such as 

conductivity, permeability, and porosity. The overall effect of the micro-structure is usually 

reflected by the effective coefficient. Thus, the geometry generation and the model solving 
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process are greatly simplified and result in easier model development and lower requirement of 

the computer hardware. The disadvantage of this assumption is the lack of precision about the 

detailed process within the porous electrodes, such as nucleation water. The modeling works 

before the 2000s usually adopt the homogeneous assumption [2, 15, 16, 19-30]. The GDL is 

typically made up of three-dimensional random carbon fiber and its real structure is highly 

anomalous [62-64]. To accurately simulate the electrochemical reactions and transport 

processes that occurred in a real or simplified GDL, e.g. liquid water formation and transport, 

numerous models have been developed, including the volume of fluid (VOF) model [10, 41, 

42, 55, 65-67] and Lattice Boltzmann (LB) model [68-71]. The details of the VOF approach 

could be found in Chapters 2 and 13. 

2.5 Catalyst layer modeling 

The CLs are the core of a PEMFC, in which electrochemical reactions occurred. The CLs are 

prepared by spraying the catalyst particle (such as Pt-Ru alloy) contained ink onto the carbon 

paper. The difference between the CL and other layers is that the catalyst particle is surrounded 

by the carbon fiber in the catalyst layers and results in much smaller pores than that of the GDLs. 

Therefore, the VOF model is hard to be applied to the microstructure of the CLs [62]. The 

general process of the electrochemical reaction includes two steps, diffusion, and reaction. First 

of all, the reactants must transport through the porous media and ionomer films and reach the 

surface of the catalyst particles. Then the reactants are absorbed on the surface of the catalyst 

particle where products are generated via chemical reactions. Finally, the products generated 

on the surface of the catalyst particle must move away. The modeling approaches applied on 

the catalyst layer, depending on the degree of complexity, can be categorized into three groups. 

In the simplest approach, the CLs are treated as reactive boundaries between the GDL and 

membrane [37, 72]. For example, Jeng et al. [72] developed a simple 2D across-the-channel 

model to study the mass transport of the reactant gases through the GDLs. The effectiveness of 

the GDLs was evaluated under different current densities and an optimal thickness of the 

cathode GDL was suggested. Berning et al. [37] developed a 3D, non-isothermal model to 

investigate the temperature distribution in the MEA. However, the catalyst layers were treated 

as 1D boundaries in this model. It is important to notice that this kind of approach often 

overestimates the current density due to the ignorance of the mass transport resistance in the 

catalyst layer. The second approach assumes the CL as a thin film fully flooded with liquid 

water [31] or the existence of a flooded interface between the GDL and CL [73]. The ‘thin-

film-fully-flooded’ approach is adopted in the model developed by Marr and Li [31], in which 

the void space within the cathode CL was fully occupied by liquid water. The ‘flooded-interface’ 

approach is adopted in the analytical model developed by Das et al. [73]. These approaches led 

to reasonable simulation results of the cell at higher current densities. However, it 
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underestimates the cell performance at lower current densities due to an increase in mass 

transport resistance within the CL. The most accurate approach to CL modeling is the 

agglomerate model, in which the CL is assumed as a porous 2D or 3D domain filled with Pt/C 

catalyst particles agglomerate surrounded by thin ionomer films [74-78]. The void spaces 

within the agglomerates (intra-agglomerate space) and between the agglomerates (inter-

agglomerate space) are defined as the primary and secondary pores, respectively. Both the 

primary and secondary pores can be filled with ionomer, liquid water, and reactants. The 

agglomerate models can be further subcategorized into three sub-groups namely slab, 

cylindrical, and spherical agglomerate models [63]. 

To give a more accurate simulation of the diffusion-reaction process that occurred in the 

catalyst layer, agglomerate models are usually preferred. In the agglomerate models, the 

catalyst particles, ionomer, and void space are assumed to be homogeneously mixed to form 

the micrometer agglomerates. In the spherical agglomerate model, the diameter of the 

agglomerate can be less than 10 m [64]. The agglomerate models are usually adopted to 

describe the relatively sluggish ORR of the cathode CL of PEMFCs. 

3. Numerical optimization of PEMFCs 

Numerical optimization has been an active research area since the 1960s. It has been used in 

many applications. The common principle of numerical optimization is to efficiently search for 

an optimal design in a coupled mathematical algorithm with the aid of a computational analysis 

tool. Only a few designs need to be evaluated using the optimization algorithm, the 

computational time is therefore reduced. Optimal design helps researchers to create a new 

design or improve an existing one. To account for the inter-relationship between various 

parameters and optimize several objectives simultaneously in a fuel cell design, multi-objective 

optimization is always used. A mathematical formulation of such a problem is given by: 

Maximize or minimize            
T

nJJJJ ],......,,,[ 321J(x)   

W.R.T                                      kx    for k = 1, 2, 3, …… , n 

Subject to:                                0(x)ih    for   i = 1, 2, 3, …… , p                            (3-6) 

                                                 0(x)ig    for   i = 1, 2, 3, …… , q                             

                                                  UL xxx   
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where J(x) is the vector of objectives. In fuel cell design, the objective can be cost, performance, 

durability and others, which is represented by Ji individually. xk is known as the design variables, 

which are related to the objective vector, J(x). xL and xU are the lower and upper bounds of the 

design variable xk. hi(x) and gi(x) are the design constraints.  

The design of fuel cells is a challenging endeavor because the multitude of physical and 

chemical phenomena need to be optimized simultaneously to achieve the best performance. 

Normally, it requires the evaluation of a set of possible designs. Due to the fact that the number 

of possible designs increases sharply as the number of design variables increases. For example, 

the number of possibilities is 105 for a design with ten variables and five possibilities per 

variable. It is impossible to evaluate all possible designs. As a result, some design variables 

have to be constrained as constants to reduce the number of possible designs. This is the so-

called sub-optimal design. The sub-optimal designs in fuel cell optimization mainly focus on 

the following aspects: electrode design, flow field design, fuel cell stack, and operating 

condition optimization. Similarly, the optimization has to mainly concentrate on limited 

important objectives, while ignoring other design objectives.  

Numerical optimization could provide insight into fuel cell design including cost reduction, 

performance improvement, and efficiency increment. As a relatively new research area, 

numerical optimization of needed fuel cells has attracted growing interest. 

3.1 Elecrode optimization 

During PEMFC’s operation, the electrochemical reaction and reactant mass transport are fully 

coupled and the overall rate is determined by the slowest process. The detailed mass transfer in 

porous electrodes is discussed in Chapter 13. While higher catalyst loading increases reaction 

activity and reduces activation overpotentials [79], it also reduces reactant transport and liquid-

water capacity inside the catalyst layer. It was shown in Ref. [79] that the catalyst loading of 

0.3 mg cm-2 or higher has limited or no change in activation overpotential. Thus, the functional 

components of the porous electrode must be optimized to achieve maximum cell performance. 

Holdcroft’s group is considered the pioneer in the optimization of the fuel cell electrode using 

a numerical optimization approach [80, 81]. The CL composition was optimized to achieve the 

maximum current density at the cell voltage of 0.6 V. The design variables were ionomer 

volume fraction, Pt-loading, and CL thickness. The optimal distributions of Nafion ionomer 

and platinum were obtained. The optimization results indicated that the optimal ionomer 

loading was around 30 wt.% [80], and the electrode performance was improved by placing 

more ionomer and platinum near the membrane [81]. Das et al. [73] developed a single-

objective analytical approach using the exact solution of activation overpotential for cathode 

CL’s optimization. The CL composition (ionomer and platinum loadings) and thickness were 

optimized to achieve maximum power density at a given cell voltage for both air and oxygen. 
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It was found that Pt-loading of about 0.2 mg cm-2 can provide optimum performance at 0.8 V, 

which is in line with the conclusion of Song et al. [80] at 0.6 V. The optimum CL thickness 

with a Pt-loading of 0.2 mg cm-2 was found to be between 9 and 11 microns at the cell voltage 

of 0.8 V. However, the optimum CL thicknesses vary between 9 and 16 microns depending 

upon Pt-loadings. 

Conversely, Secanell et al. optimized both Pt-loading and the performance of a complete MEA 

[82] based on the previously developed optimization framework [83]. The design variables 

included Pt-loading, ionomer loading, GDL porosity, and platinum mass ratio. Figure 3.3 shows 

the optimization of Pt-loading and CL thickness (for various Pt-loadings) at the cell voltage of 

0.8 V of Ref. [73] and the polarisation curves of the base-case design and optimal design at the 

cell voltage of 0.676 V and 0.476 V of Ref. [83]. Figure 3.3 shows that the cell performance 

was improved using the parameters obtained from the optimal design. The optimization results 

showed that Pt-loading had to be controlled within the range of 0.1 to 0.5 mg cm-2, as higher 

loading resulted in a waste of platinum rather than an increase in current density.  

 

FIGURE 3.3  Optimization of Pt-loading and catalyst layer thickness at the cell voltage of 0.8 V (parts 

(a) and (b)) and polarisation curves of the base-case design and optimal design at the cell voltage of 0.676 

V and 0.476 V (parts (c) and (d)). Data for parts (a) and (b) are taken from Ref. [73] and parts (c) and 

(d) are taken from Ref. [83]  
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For PEMFCs operated at various loads, the required activities and mass transport rates are 

different because the reactant and product are nonuniformly distributed inside the membrane 

electrode assembly. Thus, a rational design for a membrane electrode assembly (MEA) with a 

spatial distribution of functional components helps reduce the usage of precious components, 

improve cell performance, and achieve uniform distributions of current density and heat. Thus, 

the graded design of the functional components in the GDL, MPL, CL, and membrane along 

both the through-plane and in-plane directions within the MEA were reviewed to reduce the 

cost and improve the performance and durability of proton exchange membrane fuel cells [84]. 

The simulation with a linear porosity gradient in the cathode GDL suggested remarkable 

improvement of the limiting current density and oxygen usage with an optimal linear porosity 

gradient with a porosity of 70% near the channel and 30% near the CL for the parallel and z-

serpentine channel designs [85]. The results for the parallel channel are shown in Figure 3.4. It 

was found that the current density increases from 1.41 to 1.66 A cm-2 when the abovementioned 

graded porosity distribution was applied. The same trends are also observed for parallel and 

interdigitated channel designs. Weng et al. [86] designed a hydrophobicity-graded MPL and 

experimentally studied the cell performance under a variety of humidification conditions. Three 

MPLs with various PTFE contents, 20, 25, and 30 wt% in the MPLs from the CL/MPL interface 

to the MPL/GDL interface, were sandwiched between the CL and GDL. Thanks to the relatively 

low PTFE loading inside the inner layer of the as-prepared MPL, product water from the oxygen 

reduction reaction was retained within the CL under low humidity conditions, e.g., 5%. In 

contrast, the hydrophobicity-graded MPL efficiently discharged liquid water from the porous 

electrodes at high relative humidity, e.g., 50%, leading to improved cell performance, as shown 

in Figure 3.5. Srinivasarao et al. [87] developed a 2D and two-phase model to optimize Pt-

loading, ionomer loading, the weight fraction of platinum on carbon, and CL thickness of a 

novel design with multiple CLs. They suggested that to achieve the same cell performance as 

that obtained from a single CL design, the overall loading of platinum should be reduced when 

a multilayer CL is applied. Moreover, the optimal Pt-loading of the CL close to the GDL was 

higher than that of the CL close to the membrane, as shown in Figure 3.6, in which CL1 

represents the MPL-CL interface and CL4 corresponds to the CL-membrane interface. In the 

base case design, the Pt-loading was fixed at 0.25 mg cm-2 and uniformly distributed in different 

sublayers. At high cell voltages, the optimal platinum distribution almost does not change. At 

decreasing cell voltage, which corresponds to an increase in current density, the optimal Pt-

loading decreases from the CL-membrane interface toward the MPL-CL interface. At 0.4 V, 

the optimal Pt-loading within the CL-membrane interface decreases to 0.15 mg cm-2. This trend 

was confirmed by the work of Xing et al. [88].  
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For a function-graded PEM, a gradient density of sulfonic acid groups along the membrane 

thickness direction is typically used as the definition [89]. In most previous studies, such 

partially fluorinated sulfonic acid membranes (part-FSAs) were prepared using irradiation 

methods, e.g., a low-energy electron beam (EB) [90, 91]. The mechanism of improving the cell 

performance is the control of the membrane water uptake. Sato et al. [89] fabricated an FN 

(hybrid membrane) by mixing s-FEP (sulfonated radiation grafted membrane) powder with a 

Nafion dispersion and compared the water uptake, ion exchange capacity (IEC) and cell 

performance achieved by using FN, s-FEP and Nafion®112 as the membrane, respectively. The 

IEC and water uptake of the FN were improved compared to those of the Nafion®112 and s-

FEP, resulting in the highest cell performance among the tested membranes, as shown in Figure 

3.7. The design of GDL perforation also enhances the gas supply and water removal, which is 

discussed in Chapter 13. 

 

 

FIGURE 3.4  Predicted cell performance for a porosity-graded cathode GDL with parallel channel 

design. Data are taken from Ref. [85]. 
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FIGURE 3.5  The cell performance of the commercial MPL (34BC) and GMPL under various relative 

humidity conditions: the GMPL consists of 34BA (10 wt% PTFE) and three sublayers with various PTFE 

loadings from 20 to 30 wt%. Credit: Reprinted from Weng et al., International Journal of Hydrogen 

Energy, 36 (21), 13708–13714, 2011, with permission from Elsevier. 

 

 

 

FIGURE 3.6  Optimum distribution of platinum loading in a multilayer CL at various cell voltages: CL1 

is the sublayer close to the GDL, and CL4 is the sublayer close to the membrane. Credit: Reprinted from 

Xing et al., Energy, 177 (15), 445–464, 2019, with permission from Elsevier. 
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FIGURE 3.7  Cell performances of MEAs based on FN (mixture of the radiation-grafted membrane with 

Nafion ionomer), s-FEP (sulfonated radiation-grafted membrane) and Nafion® 112. Solid lines are for 

cell voltage, while dashed lines represent corresponding power densities. Data are taken from Ref. [89]. 

 

3.2 Flow fields optimization 

The early efforts in the flow field design and optimization were published in 2004 [92]. The 

unique optimization objective was to maximize the current density at a cell voltage of 0.7 V 

with an interdigitated flow field. The design parameters included cathode pressure inlet, 

cathode GDL thickness, the width ratio of the gas channel and the current collector. However, 

all design variables reached the bounds of the optimal design. It was shown that the channel 

width ratio and the porosities of GDLs and CLs can be optimized using a gradient-based 

optimization algorithm (simplified conjugate gradient method)[93]. The optimal channel width 

ratio of 0.54, GDL porosity of 0.6, and CL porosity of 0.3 were obtained in the optimization 

results. 

To maintain sufficient reactant supply, excellent water removal, and low pressure drop, various 

novel flow field designs, in addition to traditional parallel, interdigitate, and serpentine design, 

have been proposed and studied [94-101]. For instance, a porous-blocked baffled flow channel 

was designed [94], in which porous blocks were installed between GDL and baffles. A two-

phase, non-isothermal model was developed to investigate the mass transport mechanisms and 

optimize the porosities of the blocks at different locations along the channel for improved cell 

performance and reduced pumping power. In their later work [95], the baffled channel with 

three different leeward lengths along the flow field channels was designed and the pumping 

power, net power, and power density were experimentally studied. A most recent modeling 

work on the combination of baffles and a secondary porous layer includes the complete 

formulation of the Forchheimer inertial effect [96]. The porous and baffled flow field improved 

the cell performance by minimizing mass transport losses, and enhancing water removal from 

the GDL. The metal-foam and honeycomb flow fields were also employed to facilitate the water 
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management and reactant transport within the porous electrode and to achieve higher 

uniformities of reactant and current distributions than the traditional parallel straight flow field 

[97, 98]. To improve the water removal and cell performance, a series of sub-inlet at the parallel 

cathode flow channels was introduced [99, 102], and was found that a suitable location of the 

sub-inlet along the channel and a reasonable amount of dry air fed from the sub-inlet could 

benefit water removal and cell performance with a small pressure along the channel. Novel 

confrontational design of flow fields is only important when considerable liquid water was 

generated at medium and high current densities, as different configurations of flow fields have 

very limited influence on the cell performance at low current densities [103-105].  

In the past, different shapes of flow fields named by alphabet letters, such as S-shaped [100], 

M-like [101], and Z-shaped [106] flow fields have been applied to promote the overall 

performance of fuel cells through the enhancement of mass transport and water removal. As 

shown in Figure 3.8, a novel flow field was designed recently by deploying auxiliary channels 

inside the partially hollow ribs and drilling a series of arrayed holes on the auxiliary channels 

[107]. This novel design rationally utilizes the ribs of the current collector and improves the 

volumetric efficiency of the parallel channels, leading to improved cell performance and 

homogeneity of current distribution. It showed that an optimization of the flow field geometry, 

i.e., the hole size, the area ratio of arrayed holes and auxiliary channels, nonuniform distribution 

of arrayed holes, could further improve the cell performance and current uniformity at an 

extremely lower pressure-drop. Commercialized flow fields, such as the 3D fine-mesh design 

used in Toyota Mirai [108, 109] and the wave-like flow fields implemented in Honda Clarity 

[110] are promising solutions regarding the liquid water removal from the cell at high current 

density. In addition, bio-inspired flow fields, such as tree-shaped [111] and lung-shaped [112] 

flow fields are commendable attempts to redistribute the reactant gas and improve the forced 

convection. The mass transfer in the novel flow fields is discussed in detail in Chapter 13. 

 

FIGURE 3.8  A novel flow field design with auxiliary channels and arrayed holes. Credit: Reprinted 

from Wang et al., AIChE Journal, 68 (2), e17461, 2022, with permission from John Wiley and Sons. 
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The modification of channel geometry and installation of obstacles in the channel is to increase 

the gas velocity near the outlet region and change the laminar gas flow to a turbulent pattern, 

with the aim of enhancing the mass transport through the porous electrodes. However, these 

tapered channels and baffle channels suffer from technical difficulties in the manufacture and 

significant pressure drop. In addition, the precious control of the pressure difference between 

adjacent channels is a great challenge in these configurations. Thus, a promising solution is to 

modify the simple parallel field to create a reasonable pressure difference between the adjacent 

parallel channels, for better water drainage, more efficient utilization of the rib area, and more 

uniform current distribution. An easily machined novel flow field with a controllable pressure 

gradient across adjacent channels was manufactured and numerically studied by a 2D two-

phase flow model. The effect of channel-rib width ratio, GDL thickness, and pressure gradient 

on the profiles of oxygen concentration and water saturation within the electrode were 

investigated [113]. 

3.3 Fuel cell stack optimization 

Fuel cell stack optimization has received little attention compared with flow field design, 

electrode design, and operating condition optimization. In the fuel cell stack, the clamping load 

applied to a PEMFC stack is considered the most important effect on fuel cell performance due 

to the influence on electron transfer, mass, and thermal transport [114]. The modeling results 

showed that an optimal compression deformation exists when the contact resistance was 

considered [115]. Mohamed and Jenkins [116] optimized the number of cells in series based on 

a simplified zero-dimensional, isothermal fuel cell stack model, in which the optimization 

objective was to maximize the power output. Zhou et al. [117] developed a cold start model for 

PEMFCs aimed at optimizing the start-up methods. As a novel method, variable heating and 

load control (VHLC) was proposed. 

A notable feature of vehicular PEMFCs is that the fuel cell stack must undergo frequent start-

up and shut-down (SU/SD) processes, which is considered one of the main mechanisms of fuel 

cell durability degradation [118]. Before the start of PEMFC stacks, the anode flow channel is 

filled with air. When hydrogen enters the anode, a process of replacing air with hydrogen is 

required, leading to the formation of a hydrogen/air interface at the anode side. The formation 

of the hydrogen-air interface results in extremely high electrode potential in the cathode catalyst 

layer, which leads to the oxygen evolution reaction and carbon corrosion reaction. It is named 

the reverse current decay mechanism, which is widely accepted as the basis for the degradation 

of PEMFC stacks during SU/SD processes. Since reactant gases remain in the fuel cell stack 

after the SD process, the potential between the electrode and proton-exchange-membrane 
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generated in the SU process would cause considerable degradation of fuel cell stack 

components, e.g., carbon corrosion, leading to a significant reduction of PEMFC life. 

To optimize the operation of fuel cell stacks and mitigate the degradation in SU/SD processes, 

two strategies, gas purge, and auxiliary load, are commonly applied [119, 120]. The gas purge 

normally uses inert gases, e.g., nitrogen, to purge reactant gases out of the stack, which could 

effectively reduce the residence time of reactant gases within the fuel cell stacks, achieving a 

relatively low potential between the CL and the proton-exchange-membrane [121]. Different 

gas purge strategies are sometimes combined, for example, using the anode reactant as the 

purge gas at the cathode, and vice versa. Oyarce et al. [122] compared four different gas purge 

strategies and found that the lifetime of PEMFCs was significantly improved. Although 

nitrogen purge is the most effective strategy, the availability of nitrogen limits the application 

of this strategy in practical PEMFCs. For the auxiliary load strategy, an extra load is applied on 

the fuel cell stack to consume the residual reactant gases in the porous electrodes. Thus, the 

potential difference between the CL and membrane is limited to a safe range to alleviate the 

degradation and improve the durability of the fuel cell stack. For example, the application of a 

higher dummy load could eliminate the high potential at the cathode more promptly during the 

SD process [123]. The results of  Yang et al. [124] showed that the auxiliary load can effectively 

shorten the duration time of the hydrogen/air interface during the SD process, thereby 

eliminating the generation of reverse current. However, the implementation of an auxiliary load 

may cause local gas starvation, which could be avoided by the air purge. As a result, the hybrid 

strategy, which combines auxiliary load and air purge, is considered a more effective way to 

mitigate fuel cell stack degradation [125]. 

3.4 Operating condition optimization 

The improved cell performance can be achieved with higher operating temperature, inlet 

pressure, and stoichiometric flow ratio due to lower activation and ohmic overpotentials [73, 

126-128]. Consequently, both an accurate fuel cell model and a complete fuel cell system model 

must be coupled in the optimization of operating conditions. Otherwise, the optimization 

algorithm would always choose the higher values of the operating parameters [129]. The early 

efforts in the optimization of the operating conditions can be found in 2000 [130]. The objective 

was to maximize the power density at a fixed current density. The design variables included 

operating temperature, pressures of anode and cathode, mole fractions of the gas inlet, 

stoichiometry, and relative humidity. Minimizing membrane hydration, maximizing 

temperature rise and cell voltage were the additional constraints. The optimization results 

indicated that the optimal operating conditions strongly depend on the current densities. Wu et 

al. [131] optimized the efficiency of the fuel cell system at low, medium, and high current 

densities. The design variables used were the operating temperature, pressure of cathode gas 
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inlet, stoichiometry, and relative humidity. The optimization results suggested that, for a 

realistic system, the optimal cathode stoichiometry was between 1.25 and 2, cathode pressure 

between 1.5 and 3 atm, and cathode relative humidity between 10% and 15%. Xing et al. [132] 

optimized the cathode relative humidity for different Nafion® ionomer content inside the 

cathode CL by a 2D, isothermal, two-phase flow model. The optimal ionomer content of 10% 

was found for fully humidified inlet gas at the cathode. The optimal relative humidity was 

between 73% to 85% when the ionomer volume fraction was in the range of 10% to 50%. The 

operating conditions were also supervised and optimized through a data-driven surrogate model 

[133]. 

3.5 Multi-variable optimization and data-driven surrogate modeling 

Since the optimal graded distributions of different components are simultaneously preceded in 

parallel, e.g., the design of both a graded GDL and a graded MPL [134], multi-variable 

optimization is an efficient method by which to optimize the cell performance by 

simultaneously optimizing a variety of variables. For example, Secanell et al. optimized both 

the Pt-loading and the performance of a complete MEA [82, 135]. The design variables 

included Pt-loading, ionomer loading, GDL porosity and hydrophilicity, and platinum-to-

carbon mass ratio. It was shown that the cell performance was significantly improved by using 

the parameters obtained from the optimal design. The optimization results suggested that the 

cell performance can be improved by increasing the ionomer content and reducing the catalyst 

loadings. In addition, the Pt-loading had to be controlled within the range of 0.1-0.5 mg cm-2, 

as higher loadings resulted in the waste of platinum rather than an increase in current density. 

A two-objective function multivariable optimization of the cathode composition of the PEMFC 

was carried out by Xing et al. [136]. Five design variables, including the Pt-loading, Pt/C ratio, 

ionomer volume fraction, CL thickness, and agglomerate size, were optimized through multiple 

surrogate models, and their sensitivities were analyzed by a Monte Carlo method-based 

approach. As a novel optimization strategy, maximizing the current density within a specific 

range of cell voltages was implemented for the prediction of the optimum values. In their later 

work, the interaction of graded Pt-loading and GDL porosity [137], Pt-loading and operating 

temperature [138], along the in-plane direction were numerically studied to reduce the usage of 

Pt-based catalyst and improve the cell performance and current homogeneity. 

An optimization problem involving D objectives and K constraints can be formulated as: 

minimize 
𝒙

𝑌(𝒙) = {𝑦1(𝒙), 𝑦2(𝒙), ⋯ , 𝑦𝐷(𝒙)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺(𝒙) = {𝑔1(𝒙), 𝑔2(𝒙), ⋯ , 𝑔𝐾(𝒙)}                               (3-7) 
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and 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛, )𝑇 ∈ ∏[𝑙𝑖, 𝑢𝑖]

𝑛

𝑖=1

 

where Y is the objectives and G is the constraints of the optimization design. 𝑛 is the number 

of design variables, and −∞ < 𝑙𝑖 < 𝑢𝑖 < +∞ for all 𝑖 = 1, 2, ⋯ , 𝑛 . ∏ [𝑙𝑖, 𝑢𝑖]𝑛
𝑖=1  means the 

range of the design variables, terms as the design space. The basic process of an optimization 

design is shown in Figure 3.9. 

 

 

FIGURE 3.9  A typical process of optimization design. 

 

The data-driven optimization design is started with the definition of the problem, including the 

design variables and their ranges, the objectives, and the constraints. According to the 

formulated design problem, the design of experiments (DoE) is employed to generate the initial 

samples in the design space, and the response of each sample is obtained by a corresponding 

run of simulation or experiment. Then, the unknown mapping relationship between the input 

variables and their output responses is approximated using the surrogate model, which plays an 

important role in the optimization design and has a significant impact on the optimization 

results. Therefore, the accuracies of the surrogate models are calculated to determine whether 

the model can be used for the following optimization design. If the model accuracy can not 

satisfy the optimization requirements, new samples will be obtained by sequential sampling 

algorithms to improve the surrogate model until the model accuracy or computational cost met 

the termination conditions. 

Although time and resources could be significantly reduced through the use of complex 

physical models, e. g., the multi-physics and multi-phase flow models, the computational and 

time costs are still unaffordable when solving partial differential equations (PDEs) over 

complex geometry, e. g. few days or weeks are required to solve a 3D steady-state small fuel 
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cell stack model discretized into less than 100 million nodes of grid[139-141]. In this regard, a 

feasible approach is to train the machine learning and AI model with a certain number of data 

obtained from the complex mechanistic physical models, which typically refer to data-driven 

surrogate modeling, as shown in Figure 3.10. Data-driven surrogate models have been applied 

to predict PEMFC performance in steady-state and dynamic conditions [133, 142], screen 

catalyst materials [143, 144], optimize electrode composition [145, 146], and assist the 

development of control strategies to maximize the cell performance and mitigate material 

degradation [147, 148]. 

 

 

FIGURE 3.10  An illustrative flowchart of PEMFC unit/stack design based on data-driven surrogate 

modeling. 

 

There are numerous published works optimizing the PEMFC's performance through the 

implementation of data-driven surrogate models. For example, Lan et al. [149] optimized the 

stoichiometric ratio and flow channel geometry for high-temperature proton exchange 

membrane (HT-PEM) fuel cells based on artificial neural networks (ANN) to reduce the high 

computational cost of experiments or simulations. A few samples with representative 

performance information of fuel cells were used for approximating the complex mapping 

relationship between different designs with the stoichiometric ratio and flow channel geometry. 

The flow channel geometry was optimized for maximum current density and maximum real 

power under a fixed operating cell voltage. Wang et al. [150] integrated a three-dimensional 

CFD fuel cell model with an AI-based data-driven surrogate model and an optimization 

framework to realize the multi-variable global optimization of CL composition for improving 

the maximum power density. Support vector machine (SVM) machine learning model was 

trained by the data obtained from the physical model then a genetic algorithm (GA) was 

employed to search the optimal values of voltage, Pt-loading, Pt percentage, IC ratio, volume 

fractions of ionomer, and pores. Ding et al. [151] built a data-driven surrogate model to 

optimize the catalyst loading and ionomer content to improve Pt utilization. In their work, eight 

machine learning algorithms were compared, and ANN achieved the best prediction accuracy. 

It is widely accepted that a comprehensive physical model, after experimental validation, lays 
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the foundation of a data-driven surrogate model because the data used for machine learning 

model training is the output of the physical model. Thus, the more processes that could be taken 

into account in a physical model, the higher reliability of the generated database for machine 

learning model training. 

4. Summary 

In this chapter, the chronological development of PEMFC modeling approaches is introduced, 

the models built at different times are compared, and key physicochemical and operating 

parameters are discussed. As an important process occurred during the operation of PEMFCs, 

particular attention is paid to the modeling approaches for water formation and transport 

through the membrane and the porous electrode. Different approaches to CL digitalization are 

also discussed and compared. In the past thirty years, a large number of numerical models have 

been developed, which were chronologically developed by adding complexities and details to 

existing simple models. These models were developed from single-physics to multi-physics, 

from 1D to 3D, from single-phase flow to two-phase flow, and from isothermal to non-

isothermal. The computational domain has also been significantly expanded from a single cell 

unit to multi-cell fuel-cell stacks consisting of a series of single cells. 

Numerical modeling is important to the diagnosis, design, optimization, and development of 

novel PEMFCs because the need for experimental resources and time is greatly reduced. 

Experimentally-validated sophisticated numerical models could be used to optimize the 

PEMFC’s electrodes, flow fields, fuel cell stack, and operating conditions. The endeavor of 

PEMFC optimization has been proven to be an effective way to achieve better water 

management, more uniform reactants distributions, reinforced mass transport, and prolonged 

fuel cell life. The latest development of data-driven surrogate modeling attracts increasing 

attention owing to reduced computational time which is offered by mechanistic multi-physics 

and multi-phase flow PEMFC models. A feasible approach is to train the machine learning and 

AI models with limited training data obtained from sophisticated mechanistic models. Then use 

the data-driven surrogate model to predict the cell performance instead of the mechanistic 

model. In recent years, AI-based data-driven surrogate modeling has been successfully 

implemented in PEMFC optimization, which can be a promising approach in the future. 
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