

Edinburgh Research Explorer

Isla: Integrating full-scale ISA semantics and axiomatic
concurrency models (extended version)

Citation for published version:
Armstrong, A, Campbell, B, Simner, B, Pulte, C & Sewell, P 2023, 'Isla: Integrating full-scale ISA semantics
and axiomatic concurrency models (extended version)', Formal Methods in System Design.
https://doi.org/10.1007/s10703-023-00409-y

Digital Object Identifier (DOI):
10.1007/s10703-023-00409-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Formal Methods in System Design

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Jun. 2023

https://doi.org/10.1007/s10703-023-00409-y
https://doi.org/10.1007/s10703-023-00409-y
https://www.research.ed.ac.uk/en/publications/dd2f393d-b9e3-4c8e-953b-5c0e3c75e06a

Springer Nature 2021 LATEX template

Isla: Integrating full-scale ISA semantics
and axiomatic concurrency models

(extended version)

Alasdair Armstrong1*, Brian Campbell2, Ben
Simner1, Christopher Pulte1 and Peter Sewell1

1*Department of Computer Science, University of Cambridge,
Cambridge, UK.

2School of Informatics, University of Edinburgh, Edinburgh, UK.

*Corresponding author(s). E-mail(s):
alasdair.armstrong@cl.cam.ac.uk;

Contributing authors: brian.campbell@ed.ac.uk;
ben.simner@cl.cam.ac.uk; christopher.pulte@cl.cam.ac.uk;

peter.sewell@cl.cam.ac.uk;

Abstract
Architecture specifications such as Armv8-A and RISC-V are the
ultimate foundation for software verification and the correctness
criteria for hardware verification. They should define the allowed
sequential and relaxed-memory concurrency behaviour of programs,
but hitherto there has been no integration of full-scale instruction-
set architecture (ISA) semantics with axiomatic concurrency mod-
els, either in mathematics or in tools. These ISA semantics can
be surprisingly large and intricate, e.g. 100k+ lines for Armv8-A.
In this paper we present a tool, Isla, for computing the allowed behaviours
of concurrent litmus tests with respect to full-scale ISA definitions,
in the Sail language, and arbitrary axiomatic relaxed-memory concur-
rency models, in the Cat language. It is based on a generic symbolic
engine for Sail ISA specifications. We equip the tool with a web
interface to make it widely accessible, and illustrate and evaluate it
for Armv8-A and RISC-V. The symbolic execution engine is valuable
also for other verification tasks: it has been used in automated ISA
test generation for the Arm Morello prototype architecture, extending

1

Springer Nature 2021 LATEX template

2 Integrating full-scale ISA semantics and axiomatic concurrency models

Armv8-A with CHERI capabilities, and for Iris program-logic reasoning
about binary code above the Armv8-A and RISC-V ISA specifications.
By using full-scale and authoritative ISA semantics, Isla lets one evalu-
ate litmus tests using arbitrary user instructions with high confidence.
Moreover, because these ISA specifications give detailed and validated
definitions of the sequential aspects of systems functionality, as used by
hypervisors and operating systems, e.g. instruction fetch, exceptions, and
address translation, our tool provides a basis for developing concurrency
semantics for these. We demonstrate this for the Armv8-A instruction-
fetch and virtual-memory models and examples of Simner et al.

Keywords: Instruction Set Architecture, Axiomatic Concurrency, Symbolic
Execution

1 Introduction
A processor architecture specification should define, for any initial machine
state, the set of all architecturally allowed observable executions — thus spec-
ifying the basic assumptions for programming and for software verification,
and the correctness criterion for hardware verification.

Traditionally, industry architecture specifications have been large prose
documents, sometimes with pseudocode descriptions of instruction behaviour.
These prose specifications have often been combined with “golden” model sim-
ulators often written in C or C++. These specifications can be very large and
complex—manuals for Arm and Intel number in the thousands of pages.

Architecture specifications have two main parts: a description of sequen-
tial instruction behavior, and a memory model defining the relaxed-memory
concurrent aspects of those instructions. Both of these aspects have been exten-
sively studied in previous work. In those work, we focus primarily on two
architectures: Armv8-A and RISC-V (with a particular focus on Armv8-A),
although our approach could in principle be applied to any architecture such
as x86, POWER, or others.

For Armv8-A and RISC-V, there exist full-scale sequential models in
Sail [1, 2], a domain-specific language for instruction-set architecture (ISA)
specification, that are complete enough to boot real-world operating systems
such as Linux. For Armv8-A this model is automatically derived from the
authoritative Arm-internal specification [3], while for RISC-V it has been
hand-written, and adopted by RISC-V International.

On the concurrency side, relaxed-memory semantics can be specified in
two main styles: either as abstract-microarchitectural operational models,
characterising observable behaviour with explicit out-of-order execution and
buffering, or as axiomatic models, expressed as a predicate over complete
candidate executions represented as graphs of memory events. For Armv8-
A and RISC-V “user” concurrency, both exist [4, 5, 6, 7, 8], along with a

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 3

“Promising Arm/RISC-V” variant [9]. For Armv8-A they have been proved
equivalent [4, 10]; the authoritative vendor definition is the axiomatic one.

However, while an architecture should define the set of allowed exe-
cutions for arbitrary programs, hitherto there has been no integration of
full-scale ISA definitions with axiomatic concurrency models, either in math-
ematics or in tools (for operational models, this has only been done for
RISC-V in RMEM [11]; other operational models have used small ISA frag-
ments). Research and industry practice for relaxed memory semantics rely
on making the semantics executable as a test oracle: not just a paper def-
inition (in prose or mathematics), but tool-supported definitions that for
small litmus test examples can compute the set of all allowed executions,
that can then be compared against experimental data. Many tools have
been developed for operational and axiomatic architectural concurrency mod-
els [12, 13, 14, 15, 16, 17, 18, 11, 19, 20, 21, 7, 22, 23, 24, 25], with axiomatic
tools notably including the Herd tool of Alglave and Maranget [20, 21, 7]
that can evaluate litmus tests w.r.t. axiomatic memory models specified in a
relational-algebra style in the Cat language [26]. However, all of these previ-
ous tools for axiomatic models have (at best) used hard-coded ISA semantics
that cover only small fragments of the complete architecture. For example,
Zhang et al. [12] use an SMT solver-based approach for SoC verification, with
a user-specified memory model (TSO or SC), however the “instruction level
abstractions” they use are much more abstract than the ISA semantics we
consider.

One particular challenge for the problem of integrating full-scale ISA spec-
ifications into an axiomatic concurrency setting is that the axiomatic models
work as predicate over complete executions, and therefore cannot drive the
ISA specification in a step-by-step manner, which is the approach taken for
the RISC-V model in RMEM.

In this article we describe a tool, Isla, that integrates full-scale ISA speci-
fications, in Sail, with arbitrary axiomatic models, in a Cat-derived language.
We first build a generic symbolic execution library for Sail specifications. We
use this to construct a tool for symbolically running binary litmus tests for
any Sail ISA under any (non-recursive) axiomatic memory model, using an
SMT solver. We equip it with a web interface to make it widely accessible,
and illustrate and evaluate all this for Armv8-A and RISC-V. The symbolic
execution engine is valuable also for other verification tasks: it has been used
in automated ISA test generation for the Arm Morello prototype architecture,
extending Armv8-A with CHERI capabilities [27], and for Iris program-logic
reasoning about binary code above the Armv8-A and RISC-V ISA specifica-
tions with the Islaris tool [28]. Isla is available at https://isla-axiomatic.cl.cam.
ac.uk for the online web interface and https://github.com/rems-project/isla
for the source code and documentation.

Our approach has several key advantages, which all follow from the fact that
mainstream industry ISAs are surprisingly large and intricate. The Armv8-
A ISA specification is around 100k lines. It defines the sequential behaviour

https://isla-axiomatic.cl.cam.ac.uk
https://isla-axiomatic.cl.cam.ac.uk
https://github.com/rems-project/isla

Springer Nature 2021 LATEX template

4 Integrating full-scale ISA semantics and axiomatic concurrency models

of the full instruction set in all its detail, including e.g. instruction decod-
ing, behaviour at each exception level, register banking, floating-point, vector
instructions, system registers, exceptions, address translation, virtualisation,
security extensions, and a host of optional architectural features.

Simple litmus tests developed to investigate user concurrency have histor-
ically used only very few instructions and involved very little of this detail,
and hand-written ISA models have sufficed, but even a ‘simple’ ADD instruction
can, in reality, involve surprisingly much of the specification. If one wants to
examine arbitrary compiler-generated code one needs many more instructions;
and to develop systems concurrency semantics, e.g. covering the concurrency
behaviour of instruction fetch, exceptions, or address translation, one might
need any of the specification—and it would be exceedingly laborious and
error-prone to reproduce it by hand in a hard-coded semantics.

By handling the full authoritative Armv8-A ISA, we automatically support
litmus tests that use arbitrary instructions, and we enable research on systems
concurrency, with high confidence that the instruction semantics follow the
vendor specification. We demonstrate this by applying our tool to the model
and examples for self-modifying code by Simner et al. [29], and extending
our tool to support tests and models involving address translation and virtual
memory by Simner et al. [30].

Our integration of these full Sail ISA specifications with axiomatic con-
currency has identified several places where the ISA specifications needed
modification to correctly give the intended behaviour in a concurrent set-
ting, e.g. to remove or enforce additional ordering. Because this is based on
authoritative Arm and RISC-V ISA specifications, the work should enable
relaxed-memory behaviour to be included in the standard test-edit-debug cycle
used in the development of such large and critical specifications.

This is an extended version of our CAV 2021 tool paper [31]. It con-
tains additional background information on axiomatic concurrency and relaxed
memory that was not included in the conference version, as well as detailing the
upgrades to our tool since [31], primarily for systems litmus tests supporting
address translation and virtual memory [30].

This article is structured as follows: In Section 2 we introduce more formally
the concept of an axiomatic memory model, with the full version of the Armv8
axiomatic model that we use in this paper included as Appendix A. In Section 3
we describe the operation of our Isla tool for evaluating the behaviour of these
memory models using symbolic execution of the Sail ISA models. Here we also
describe how we generate the syntactic dependency information—crucial for
linking the sequential specification with the concurrency model, but not well
specified in either. In Section 4 we use instruction fetch and virtual memory
as motivating examples, demonstrating how our tool supports us in building
axiomatic concurrency models for these and other systems features. Section 5
contains a comparison of our tool with Herd, and some additional results from
evaluating our tool on a large corpus of litmus tests.

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 5

2 Axiomatic memory models
Consider the small Arm program in Figure 1. Thread 0 writes the value 1 to
addresses x and y, in that order, while thread 1 loads y followed by x. In a
sequentially consistent world, it would be impossible for thread 1 to observe
y = 1 followed by x = 0, yet this can be observed on actual hardware with
relaxed memory. Small programs of this kind that explore some aspect of the
relaxed memory behaviour are called litmus tests. Note that the Arm assembly
in Figure 1, as well as subsequent assembly snippets in this paper, use the
standard Arm convention that x0 and w0 refer to the same register, where w0

refers to the lower 32-bits of the register, and x0 refers to the full 64-bit width.
The graph in Figure 1 shows this non-sequentially consistent allowed exe-

cution (where x = #x600000 and y = #x600010). The various labelled edges
indicate relations between the initial state, and the load/store events. The
unlabelled edges represent the program order in each thread. There are four
relations of note in this graph:

• The program order (po), relating same-thread events in the order of the
execution’s control-flow unfolding.

• The reads-from (rf) relation, relating write events to the read events that
read from them. Note that in the graph we don’t draw these edges from the
initial state.

• The coherence order (co) relation, a total order on memory writes corre-
sponding to the sequence they propagate to memory

• The derived from-reads relation (fr = rf−1; co), relating reads to same-
address writes that are coherence-after the write they read from.

Note the cycle involving the reads-from (rf) relation, from-reads (fr) relation,
and the program order. This kind of cycle would not be permitted under
sequential consistency.

An axiomatic memory model is a predicate over such graphs. The Cat lan-
guage [26] allows one to define such predicates using relations over the events
in these graphs, and constraints over those relations, e.g. that specific relations
are irreflexive, acyclic, or empty (or the negation of any of these). Relations are
defined in a point-free relation-algebraic style, in terms of standard relational
operators such as composition, intersection, and union.

3 Implementation
Axiomatic relaxed-memory concurrency models, being expressed as logical
constraints over candidate execution graphs, lend themselves to SMT solver-
based tool implementations. For the instruction-semantics part of such a tool,
the most direct approach would be to translate the ISA semantics (for the
instructions that occur in a litmus test) directly into SMT and combine that
with the axiomatic-model constraints, roughly along the lines of Alglave et
al. [32]. That approach was followed by Simner et al. [29], which compiled
Sail directly into SMT to test an axiomatic model for instruction-fetch tests,

Springer Nature 2021 LATEX template

6 Integrating full-scale ISA semantics and axiomatic concurrency models

Thread 0:
Initial state: x3 = y, x1 = x

mov w0, #1

str w0, [x1]

mov w2, #1

str w2, [x3]

Thread 1:
Initial state: x3 = x, x1 = y

ldr w0, [x1]

ldr w2, [x3]

T h r e a d # 0 T h r e a d # 1

In i t ia l S ta te

s t r w0, [x1]
W #x600000 (4) : 1

 co

s t r w2, [x3]
W #x600010 (4) : 1

 co
ldr w0, [x1]
R # x 6 0 0 0 1 0 (4) : # x 1 3 2

 rf

ldr w2, [x3]
R # x 6 0 0 0 0 0 (4) : # x 0 3 2

 fr

Fig. 1 Message passing (MP) test for Armv8

but using a small handwritten Arm fragment, rather than the full Sail model
derived from the Arm-internal model. The problem with this direct approach
is one of scale: as one covers more of the Arm semantics, the resulting SMT
problem simply becomes too large to be practicable. For example, for a load
instruction, the virtual address must be translated into a physical address,
which is a complex process with a great deal of configurability—there may be
zero, one, or two stages of address translation, the page size may vary, the
number of levels used in the page table may differ, etc. This approach also
required the top-level fetch-execute-decode loop to be handled specially, as one
cannot translate such an unbounded loop directly into SMT, which imposes
significant constraints on the shape of allowable tests.

In contrast, here we build and use a generic symbolic evaluation for Sail
definitions using the Z3 SMT solver, which lets us compute the possible sym-
bolic thread-local traces of each instruction, and hence of each thread (treating
memory values as unknowns, left to the concurrency model constraints). It
also lets us use the same fetch-decode-execute loop that is used for emulation
and co-simulation (which embodies various architecture-specific subtleties).

3.1 Symbolic execution for Sail
Sail is attractive for symbolic execution for several reasons. First, it is an inten-
tionally simple language, lacking many of the features found in general-purpose
languages. Second, it has to support very few programs, just the specifica-
tions of major ISAs, so (unlike tools for conventional programming languages)

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 7

we can tune the execution to them. Third, almost all of the loops in these
programs are bounded. Our starting point is the translation of Sail to C, for
emulation [1]. This goes via a simple goto-language intermediate representation
which is already well-suited for this task.

3.2 Per-thread traces
For each litmus test thread this symbolic execution will produce a number
of per-thread traces, each of which is a sequence of memory events (memory
reads and writes, fences, register accesses, and so on) with the symbolic values
of these events potentially being constrained by some SMT formula for the
overall execution. Consider the Armv8-A instruction add x4, x3, #1. For this
instruction, our symbolic evaluator generates (after some simplification of the
generated SMT formula) an execution equivalent to just:

(declare-const input (_ BitVec 64))

(read-reg |R3| nil input)

(define-const output (bvadd input #x0000000000000001))

(write-reg |R4| nil output)

where the SMTLIB formula is defined by the declare-const and define-const

statements, with read-reg and write-reg effects indicating which variables in
the SMT formula correspond to the values read and written to registers (which
are otherwise just treated as global variables) by the instruction. For more
complex instructions, there are additional effects for memory accesses, cache
maintenance events, barriers, and so on, as one would expect.

To give a sense for the complexity of the full Armv8-A ISA specification, we
will show the Sail code from which this execution is derived. Instructions that
touch memory are much more complex than this, e.g. with address translation
potentially involving multiple page-table walks and many access checks. All
that is also supported by our tool, and the additional features we have to
support page tables and address translation are detailed in Section 4.2.

The main execute function for the add (and the related subtract) instruc-
tion reads the source register values, calls an auxiliary AddWithCarry function
to compute the mathematical result, including new NZCV flag values, and writes
the target register value and (if the opcode requires it) those flag values. It
handles subtraction by negating operand2 and setting carry_in before doing
an addition.

function addsub_immediate(d, datasize, imm, n, setflags, sub_op) = {

result : bits(’datasize) = undefined : bits(’datasize);

let operand1 : bits(’datasize) = if n == 31 then SP() else X(n);

operand2 : bits(’datasize) = imm;

nzcv : bits(4) = undefined : bits(4);

carry_in : bits(1) = undefined : bits(1);

if sub_op then {

operand2 = ~(operand2);

carry_in = 0b1

Springer Nature 2021 LATEX template

8 Integrating full-scale ISA semantics and axiomatic concurrency models

} else {

carry_in = 0b0

};

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then {

(PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv

};

if d == 31 & ~(setflags) then { SP() = result }

else { X(d) = result }

}

What look like register accesses in the above, e.g. SP() and X(n), are actually
indirected via register getter and setter functions, to handle the fact that
in Armv8-A the stack pointer register SP is banked : there is a different SP

register for each exception level. These functions therefore have to do another
register read, not obvious from the opcode, of the register that holds the current
exception level.

function aset_SP(value) = {

assert(’width == 32 | ’width == 64);

if PSTATE.SP == 0b0 then {

SP_EL0 = ZeroExtend(value)

} else {

match PSTATE.EL {

0b00 => SP_EL0 = ZeroExtend(value),

0b01 => SP_EL1 = ZeroExtend(value),

0b10 => SP_EL2 = ZeroExtend(value),

0b11 => SP_EL3 = ZeroExtend(value)

}

}

}

val aget_X : forall ’width ’n, 0 <= ’n <= 31 & ’width in {8, 16, 32, 64}).

(implicit(’width), int(’n)) -> bits(’width) effect {rreg}

function aget_X(width, n) =

if n != 31 then slice(_R[n], 0, width) else Zeros(width)

Finally we come to the actual (pure) arithmetic and computation of flag values,
which is done over mathematical integers. This function computes both the
signed and unsigned sum, which is used to determine if the carry and overflow
flags need to be set. Note that our listing of the generated SMT problem earlier
in this section did not include any mention of these flags, only interacting with
the x3 and x4 registers. This is because a separate Armv8 instruction adc (add
with carry) is used when the flags are required.

val AddWithCarry : forall (’N : Int), ’N >= 0.

(bits(’N), bits(’N), bits(1)) -> (bits(’N), bits(4))

function AddWithCarry (x, y, carry_in) = {

let ’unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

let ’signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 9

let result : bits(’N) = __GetSlice_int(’N, unsigned_sum, 0);

let n : bits(1) = [result[’N - 1]];

let z : bits(1) = if IsZero(result) then 0b1 else 0b0;

let c : bits(1) = if UInt(result)==unsigned_sum then 0b0 else 0b1;

let v : bits(1) = if SInt(result)==signed_sum then 0b0 else 0b1;

return((result, ((n @ z) @ c) @ v))

}

3.3 Checking a litmus test
Fig. 2 shows the overall process of checking a litmus test. Tests can be sup-
plied either in the .litmus format of previous axiomatic and operational
tools [33, 21, 11], reusing the parser from [21], or as a TOML file (a stan-
dard configuration file format, with libraries available for most languages). We
first assemble the test with a conventional assembler into an ELF binary and
load it into the representation of memory that will be used, before initialising
the model with the program counter set to the entry point for each thread,
then we symbolically execute the instructions in each thread separately, using
the Sail semantics for each instruction, plus the same fetch-execute-decode
loop in Sail we would use for emulation, to produce sets of per-thread traces
as above. Treating litmus tests essentially as binaries, rather than the more-
or-less ad hoc fragments of assembly abstract syntax used by earlier tools,
accommodates the fact that the Armv8-A model does not define an abstract
syntax, and reduces the gap between what the tool evaluates and what is run
in experimental testing.

We then generate a candidate execution which is an SMT problem for
every combination of the traces of each thread. This problem consists of the
per-thread SMT formulae concatenated together (renaming variables as nec-
essary to avoid name-clashes), combined with the axiomatic memory model
(described in more detail below).

Finally, we need to generate some ‘glue’ SMT that connects the per-thread
semantics with the memory model. For every effect in the per-thread SMT
semantics we generate an enumeration of events, e.g. for an execution with two
reads and two writes:

(declare-datatypes ((Event 0)) (((R1) (R2) (W1) (W2) (IW))))

The event IW is a special write event that represents the initial state. We gener-
ate relations such as value-of that relate events to their values as determined
by the effects in the per-thread semantics, so if the second read event R2 read
the value #xABCD, (value-of R2 #xABCD) would be true. We generate syntactic
dependency relations for address, data, and control dependencies, discussed in
detail in Section 3.4. Finally, each litmus test provides an assertion on the final
state which specifies values expected in registers and memory after all threads
have executed.

For the memory models, we define a straightforward translation from a
subset of the Cat language which forbids recursion. The memory models we

Springer Nature 2021 LATEX template

10 Integrating full-scale ISA semantics and axiomatic concurrency models

Thread 0, Trace 1

Thread 1, Trace 0

Glue SMT

Axiomatic model SMT

Final state assertion
1:x0 = 1 & 1:x2 = 0

(check-sat)

SMT problem

Initial state: x3 = y, x1 = x

mov w0, #1

str w0, [x1]

mov w2, #1

str w2, [x3]

52800020

b9000020

52800022

b9000062

assemble

Thread # 0

Initial state: x3 = x, x1 = y

ldr w0, [x1]

ldr w2, [x3]

b9400020

b9400062

assemble

Thread # 1

...

...

Generate traces

T h r e a d # 0 T h r e a d # 1

In i t ia l S ta te

s t r w0, [x1]
W #x600000 (4) : 1

 co

s t r w2, [x3]
W #x600010 (4) : 1

 co
ldr w0, [x1]
R # x 6 0 0 0 1 0 (4) : # x 1 3 2

 rf

ldr w2, [x3]
R # x 6 0 0 0 0 0 (4) : # x 0 3 2

 fr

Parse model and generate graph (if satisfiable)

Litmus test MP.litmus

Fig. 2 Overview of process for checking the allowed executions of a litmus test

consider are all multi-copy-atomic, and all recursion in their definitions can
trivially be replaced with (reflexive)-transitive closure. Herd’s let rec construct
computes the least solution to a set of equations [26], which is tricky to rep-
resent in SMT, so we do not support it. We believe even relations such as
Power’s (mutually recursive) preserved program order are nevertheless repre-
sentable as SMT, so this limitation is mostly in our translation from Cat—we
would likely want to use a different syntax to represent these relations for Isla.

A satisfiable solution to the overall SMT problem described above thus
represents an execution permitted by the architecture. Parsing the model gen-
erated by the SMT solver allows us to generate a graph of the execution by
instantiating each relation in the model with the various events. If all gen-
erated SMT problems are unsatisfiable for every combination of per-thread
traces then there are no permitted executions for the final assertion specified
by the test. If desired we can repeatedly ask the SMT solver for additional
distinct models until we have exhaustively explored all permitted executions.

3.4 Syntactic dependency analysis
Axiomatic memory models for relaxed hardware architectures rely heavily on
notions of address, data, and control dependencies between instructions. For
example, consider the following assembly:

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 11

ldr w0, [x1] // load 32 bits from address in x1 into x0

cbnz w0, LC01 // compare and branch if non-zero to LC01

LC01:

mov w2, #1 // load 1 into x2

str w2, [x3] // store 32 bit-value in x2 to the address in x3

Here there is a control dependency between the load (ldr) and the store (str),
as the value read by the load is used to determine whether the branch instruc-
tion cbnz that precedes the store is taken or not. This control dependency
exists regardless of whether the branch is taken or not—its existence is purely
determined by the syntactic structure of the above code.

In general, existing ISA descriptions do not cover this aspect of the archi-
tecture well, as they are principally developed only to describe the sequential
behaviour. Previous tools have either hand-coded dependency information,
which is acceptable for cut-down ISA models but too laborious and error-prone
at the scale of the ISA models we use, or used a heavyweight taint-tracking
interpreter [2]. Our approach avoids both of these. It is similar to the latter,
computing dependencies from the ISA specification, but building the footprint
analysis atop our symbolic execution library requires only around 500 LoC.

To express dependencies, we need to associate each event in our candi-
date executions with the concrete assembly opcode/instruction that generated
them, such as stlxr w0, x1, [sp] or ldaxr x2, [sp]. To do this we use a Sail
function __instr_announce(opcode), called in each architecture’s fetch-decode-
execute loop just after fetching an instruction; this adds a special effect to the
candidate execution recording the instruction opcode. We also have another
special effect that delimits each fetch-decode-execute cycle, so each effect such
as read-mem and write-mem that would give rise to an event can be associated
with an opcode, as well as its place in the total order defining the sequence of
instructions that were executed by each thread. This lets us define a function
instr : E → I which maps each event to the instruction that executed it.

In addition for each pair of events e1 and e2 in the same thread we have a
function

between : E × E → [I]

such that between(e1, e2) returns the sequence of instructions that were exe-
cuted between the instructions that executed e1 and e2. Note that due to
loops and self-modifying code this isn’t always just the sequence of instructions
between the two instructions executing e1 and e2 in the litmus test file.

For each instruction we also need to know its footprint : data about the
instruction including which input registers it reads, which output registers
it writes, whether it is a branch instruction, and so on. It also contains
taint information—we need to know which registers writes may contain data
‘tainted’ by a memory read performed by a load, or which input registers ‘taint’
data written to memory. The Sail ISA specifications do not explicitly describe
this footprint, so we are forced to derive it from the specification.

Springer Nature 2021 LATEX template

12 Integrating full-scale ISA semantics and axiomatic concurrency models

To do this we symbolically evaluate each opcode independently in a suitably
unconstrained environment so as to capture all its possible behaviours. This
can be computationally expensive due to the number of possible behaviours
some instructions have, so we build a footprint cache to avoid re-computing this
where possible. It turns out to be hard to distinguish ordinary branches from
instructions that can cause an exception to occur, so we add a special branch
address announce effect, created by a Sail function __branch_address_announce

that we add to branch instructions in the Sail specifications. This also enables
the taint tracking for branch addresses we need for control dependencies. The
taint tracking is achieved simply by looking at what sub-expressions in the gen-
erated SMT problem contain variables that also appear in the various effects
in each trace. For example, if we see the following trace:

(declare-const v0 (_ BitVec 64))

(read-reg |R3| nil v0)

(define-const v1 (bvadd v0 #x0000000000000004))

(declare-const v3 (_ BitVec 64))

(read-mem v3 |Read_plain| v1 8)

We know that the register R3 is affecting the address of a subsequent memory
read, as its value plus four is the address (v1) of the subsequent read-mem event.

From this analysis we generate four sets:

• The set of registers Ri affected by data read from memory
• The set of registers Wi affecting data written to memory
• The set of registers Ai affecting the address of memory accesses
• The set of registers Bi affecting the address of any branch instruction

Note that while we refer to registers here, in practice we apply this same
method with slightly finer granularity by using smaller subfields of registers
represented as structs in the Sail specification, e.g. PSTATE.N and PSTATE.C

rather than the entire PSTATE register in Arm.
In addition we define for each instruction i a relation Fi over registers which

captures the possible register to register data-flow through each instruction.
There are several choices for how we can compute Fi—firstly, we can simply
say that r1Fir2 if the instruction i reads register r1 before writing r2 in any
trace of i. Second (and the method we currently use), is to be even more coarse-
grained and say that Fi relates all registers read by i to all registers written
by i. In practice what we want is a method that is predictable and simple so
that Fi is obvious from the Sail source. It should also be mostly agnostic to
the sequencing of Sail procedures within the ISA specification, as in the case of
Armv8 we translate Sail from Arm’s ASL which wasn’t written with this kind
of dependency analysis in mind, and we don’t want to radically resequence the
code and risk introducing bugs in the sequential behavior.

Using Fi, for any pair of events e1 and e2 such that

between(e1, e2) = i0, . . . , in

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 13

we can the define a function

flow(e1, e2) = Fi0 ; . . . ; Fin .

Now the address, data, and control dependency relations can be defined over
any pair of memory events e1 and e2 as

• addr(e1, e2) iff [Rinstr(e1)]; flow(e1, e2); [Ainstr(e2)] is non-empty
• data(e1, e2) iff [Rinstr(e1)]; flow(e1, e2); [Winstr(e2)] is non-empty
• ctrl(e1, e2) iff there exists an i such that

[Rinstr(e1)]; flow(e1, e2); [Bi]

is non-empty and i is executed before instr(e2)

Note that the addr, data, and ctrl dependency relations we generate
must be exact. If we under-approximate, we will allow executions that should
be forbidden, and if we over-approximate we will forbid executions that should
be allowed.

In some rare cases applying the above technique to the current Armv8
ISA specification does not result in the correct architecturally required depen-
dencies due to Fi over-approximating the register relationships, and our
dependency analysis will therefore identify a dependency where there should
not be one. To solve this we add some special Sail functions that give the
specification author fine-grained control of the dependency calculation. For
example, in Arm indirect branches we must ignore any dependency between
the target register Xn and the link register X30, even if it would otherwise
appear to exist in our footprint calculation.

This is done by including a function in the Sail definition of indirect
branches that tells the footprint analysis to ignore any relation it finds
between the two registers, as shown:

if branch_type == BranchType_INDCALL then {

ignore_dependency_edge(n, 30);

X(30) = PC() + 4

};

This inserts an annotation into the footprint execution trace which can be
used by the footprint analysis when computing Fi for the instruction—for all
other purposes it is a no-op.

So far we have identified only two places in the Arm model where we
need this more fine-grained control, in the aforementioned indirect branch
instructions, and to ensure that there are no data-dependencies through the
status register result of a store exclusive (strex) instruction.

In an ideal world this information should properly become part of the
architecture specification, as mistakes in the dependency calculations could be
a source of soundness bugs. The lack of support for this information in existing

Springer Nature 2021 LATEX template

14 Integrating full-scale ISA semantics and axiomatic concurrency models

ISA specifications can partly be explained by the lack of tooling to properly
explore the integration of ISA specifications with concurrency, something we
hope a tool such as ours can address. In practice we imagine this would take
the form of a

footprint : bits(32) -> Footprint

function, along side existing decode and execute functions, where Footprint

would be a data-type containing the various relations Ri, Wi, Ai, Bi, and Fi

we have described previously.

3.5 Optimisations
Our symbolic execution always creates a new parallel task when we hit a
non-deterministic branch in the Sail intermediate representation, and we do
not merge these tasks at join points. This simplifies the symbolic execution
engine significantly, and is a good strategy for litmus tests, as typically each
litmus test will specify all its architectural state up-front (in terms of system
registers). This means the amount of control-flow non-determinism for each
thread is usually minimal. However, the Sail code of certain instructions can
still cause unnecessary branching. To avoid this we have a static rewrite on our
Sail intermediate representation that can take a function with if statements
and rewrite it into a ‘linear’ form, e.g. as below:

var x = 2;

if undefined {

x = x + 1

} else {

x = x + 2

};

return x

⇒
let x0 = 2;

let b = undefined;

let x1 = x0 + 1;

let x2 = x0 + 2;

let x3 = ite(b, x1, x2);

return x3

This works by translating the body of the function into single static assignment
(SSA) form, then replacing the ϕ-functions with if-then-else (ite) functions that
translate into the SMT ite expression. This results in a more complex SMT
expression, but less branching in the symbolic execution, so it is a trade-off, but
often worthwhile. Since we are working with a limited set of known programs
(our ISA specifications), the fact that we have to decide up front whether to
apply this optimisation to any given function is not an issue, as it might be for
a symbolic execution tool designed to work with any user-supplied program.

We can also apply this optimisation partially when required. For example,
if the control flow graph contains nodes with side effects (such as accessing
memory), then we must preserve the fact that some executions of the function
may execute that node and have an observable side effect in the trace, whereas
others will not. Here we can collapse the pure parts of the control flow graph
as described above, leaving only control flow needed to handle the side effects.
Provided there are no (externally visible) side effects this optimisation can
merge any number of nested control flow structures into a single path.

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 15

Fig. 3 Web interface for the tool

An example of this would be the EncodeLDFSC function in the Sail Arm
specification. This function takes several integer and enumeration arguments
that describe a certain kind of fault that can occur during address translation,
encoding this information into a bitvector that is returned (to subsequently
be stored in a system register). Due to the amount of switching this function
does on its various inputs to decide upon the correct bitvector encoding, this
function has 33 paths through its control flow graph that the symbolic execu-
tion would need to explore. If we apply our partial linearisation optimisation
however, we end up with just three. These correspond to the three behaviours
the function may have: either it encodes the fault as a bitvector, the combina-
tion of arguments was invalid and an assertion fails, or it calls the Unreachable

function indicating something that should never occur in the model.

3.6 Web interface
Figure 3 shows the web interface we have developed for our tool, based on the
web interface for the C memory model tool Cerberus-BMC by Lau et al. [34].
This can either be run locally, or via a website, https://isla-axiomatic.cl.cam.
ac.uk.

4 System litmus tests
As mentioned previously, one advantage of our tool is that because it supports
full ISA specifications written in Sail, it enables easy experimentation with
tests and models outside the scope of previous tools. In particular we are

https://isla-axiomatic.cl.cam.ac.uk
https://isla-axiomatic.cl.cam.ac.uk

Springer Nature 2021 LATEX template

16 Integrating full-scale ISA semantics and axiomatic concurrency models

interested in systems features such as instruction fetch and data/instruction
cache maintenance, and address translation. We call these systems features as
they are primarily used by systems software such as operating systems and
hypervisors.

Having tool support for these systems features is important for three main
reasons:

1. It facilitates the development of axiomatic models by providing an auto-
matic way to determine model behaviour on new litmus test programs as
they are created.

2. It allows us to test that the more complex models involving systems features
reduce to standard user-mode memory models when run on a large corpus
of existing litmus tests.

3. It allows systems programmers to understand if the concurrency ordering
required by their code is guaranteed to be preserved by the hardware

In this section we will give an overview of how our tool supports axiomatic
concurrency modelling for such system features using instruction fetch and
virtual memory as examples.

4.1 Instruction fetch and cache maintenance
Simner et al. developed semantics for Arm instruction fetch and instruction/-
data cache maintenance [29]. Consider the litmus test in Figure 4 [29, §3.3], a
simple test involving self-modifying code. In order to run this test and the oth-
ers in [29] our tool required only minimal changes: we had to add support for
data-cache and instruction-cache maintenance events and relations for them in
our Cat to SMT translation. Additionally we needed to generalise how we gen-
erated the rf (reads-from) relation to generate both the regular rf relation and
the new irf (instruction-reads-from) relation. Because our tool already runs
tests using a fetch-execute-decode loop, all the instruction fetch events were
already available—we in fact filter them out when running user-mode tests.

In Figure 4, the initial state register x1 contains the address of the label f,
and register w0 contains the opcode for the branch instruction b l1. Without
the highlighted cache-maintenance and barrier instructions on lines 2–6, the
write of that opcode to f performed by the store on line 1 may or may not be
observed before the instruction fetch for f, so at the end of the test the register
w2 can contain either 1 or 2, depending on whether we branched to l1 or l0.

The highlighted instructions on lines 2–6 are a sequence of data-cache (dc)
and instruction-cache (ic) maintenance instructions with requisite data and
instruction barriers that must occur to guarantee that the write is observed by
the instruction fetch, as documented by the Armv8-A architecture reference
manual [5] and captured by the axiomatic model of Simner et al. [29]. The
execution graph on the right of Figure 4 shows this execution. This graph
shows the fetch program order (fpo) relating all the instruction fetch events,
while the instruction fetch analogues of reads-from (irf) and from-reads (ifr)
as discussed in Appendix A are also shown.

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 17

1 str w0, [x1]

2 dc cvau, x1

3 dsb ish

4 ic ivau, x1

5 dsb ish

6 isb

7 bl f

8 mov w2, w10

9 b Lout

10 f: b l0

11 l1: mov w10, #2

12 ret

13 l0: mov w10, #1

14 ret

15 Lout:

In i t ia l S ta te

a2 : s t r w0, [x1] : W 0x400024 = 0x14000001

 co

h : b 400030 < l0> : IF 0x400024 = 0x14000003

 irf

l : b 400038 <Lou t> : IF 0x400020 = 0x14000006

i : mov w10 , #0x1 / / #1 : IF 0x400030 = 0x5280002a

j : re t : IF 0x400034 = 0xd65f03c0

k: mov w2, w10: IF 0x40001c = 0x2a0a03e2

a1: IF 0x400000
 iio

b1 : IF 0x400004

c2: dsb i shc1: IF 0x400008
 iio

d1 : IF 0x40000c d2: i c ivau , x1 : page=0x400024
 iio

e1 : IF 0x400010

b2 : dc cvau , x1 : page=0x400024
 iio

e2 : dsb i sh
 iio

f1 : IF 0x400014 f2: isb
 iio

g : b l 400024 <f> : IF 0x400018 = 0x94000003

 ifr

Fig. 4 Self-modifying code litmus test SM+cachesync-isb

When generating traces for a thread we normally do not assume anything
about what other threads may be doing, but for self-modifying code this would
clearly be problematic for performance, as it would imply that any other thread
could modify any of this thread’s instructions arbitrarily. We therefore require
the user to mark the memory locations that contain instructions that can be
modified and provide in advance all the possible values they might take.

4.2 Virtual memory and address translation
In this section we describe how Isla has been extended to support virtual
memory litmus tests that interact with address translation and page tables.
Semantics for virtual memory and address translation are important when
considering the correctness of operating systems and hypervisors, as virtual
memory is the primary mechanism by which process separation in operat-
ing systems (or guest separation in a hypervisor) is achieved. Describing a
full model for address translation is beyond the scope of this paper, and we
refer the reader to Simner et al. [30] which contains an extensive discussion
of various models, and numerous tests demonstrating the envelope of allowed
architectural behaviour.

Unlike instruction fetch, which required only minimal changes to our tool,
supporting virtual memory is more of a challenge. To give an idea of the scope
of the problem, we give a brief overview of how virtual memory and address
translation works in a modern processor.

Springer Nature 2021 LATEX template

18 Integrating full-scale ISA semantics and axiomatic concurrency models

Figure 5 shows how a virtual address is translated into a physical address in
Arm (and very similarly in most modern processor architectures). The virtual
address is made up of indices into a series of translation tables, each containing
a reference to the base address of next table in the sequence. The final table
contains entries that point to concrete 4KB pages of memory. The address of
the page and the final 12 bits of the virtual address which act as the offset in
the page constitute the physical address. The base address of the first table
is pointed to by a translation table base register (TTBR). These tables and
the translation table base register are set up and managed by the operating
system or hypervisor.

In practice the size and number of tables and the size of the page can
vary depending on how the memory management unit (MMU) is configured.
There are also various translation table base registers, which for example, may
be used based on the exception level of the processor. Additionally Arm and
other architectures support two stage translation, where the virtual address is
first translated into an intermediate physical address and then into a physical
address, repeating the process in Figure 5 twice. This two stage translation
process is used to implement virtualisation.

As one might imagine, it would be very expensive for a processor to actu-
ally perform each memory access to the translation tables every time a virtual
address must be converted into a physical address, therefore the MMU has a
cache of recent translations called the translation lookaside buffer (TLB). In
addition to managing the translation tables, systems software such as oper-
ating systems and hypervisors must manually maintain this cache using TLB
invalidate (TLBI) operations.

TTBR

level 1 table level 2 table level 3 table

table

table

page

bits 11-0bits 23-12bits 47-36 bits 35-24 page offset

4KB page

Virtual address

Fig. 5 Address translation process

Figure 6 shows an example of a very simple virtual memory litmus test,
where we ask whether loads with different virtual addresses that map to the
same physical address are allowed to be re-ordered if they read from different
writes (the store in thread 0, and the initial state).

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 19

Page table setup:

virtual x y;

physical pa1;

x |→ pa1;

y |→ pa1;

*pa1 = 0;

Initial state:

0:x1 = x
0:x0 = #b1

1:PSTATE.EL = #b00

1:PSTATE.SP = #b0

1:x1 = x
1:x3 = y

Thread 0:

str x0, [x1]

Thread 1:

ldr x0, [x1]

ldr x2, [x3]

Execution graph:

T h r e a d 0 T h r e a d 1

In i t ia l S ta te

a : s t r x0 , [x1] : W pa1 = #x1

 co

b : ldr x2 , [x3] : R pa1 = #x0

 rf a : ld r x0 , [x1] : R pa1 = #x1
 rf

 fr

Fig. 6 CoRR0.alias+po virtual memory test

While the Arm (and RISC-V) ISA specifications contain code defining
translation table walks, there is a problem we quickly encounter when try-
ing to write litmus tests that interact with these features—we require a way
to specify the initial configuration of the page tables in memory. In addition,
the symbolic execution needs to be able to modify and walk over the table
structure shown in Figure 5.

The simplest possible solution might be to represent the initial page table
state as a large binary blob loaded into memory before running each test. How-
ever we would still need a way of generating that blob, and all of its information
would need to be encoded in the SMT solver, which would be impractical as
the tables are many kilobytes in size. Instead, we have implemented a small
language for describing page table configurations, as can be seen in Figure 6.
Here we declare two virtual addresses x and y and a physical address pa, such
that both x and y are mapped to pa using the maps to operator, |→. Finally
we say that the memory location pa starts the test as 0.

For most tests, we need more than a single concrete state for the page
tables—tmagine Figure 5, except the arrows could point to different tables
determined by some SMT formula. To support this our page table setup lan-
guage describes a symbolic set of states the page tables could be in. For
example:

Springer Nature 2021 LATEX template

20 Integrating full-scale ISA semantics and axiomatic concurrency models

virtual x;

physical pa pa2;

x |→ pa;

x ?→ invalid;

x ?→ pa2

The ?→ operator can be read as maybe maps to, and indicates that the trans-
lation in the above example could either return an invalid entry, pa, or pa2.
The single use of the |→ operator is important, as it provides the mapping
that exists in the initial state, while any subsequent read could see any of the
allowed values for the entry.

For more complex tests, we allow explicitly declaring tables, and creating
mappings at specific levels, and with specific permissions. The s1table com-
mand creates a (stage 1) level 1 page table. Level 2 and 3 child tables are
created implicitly as needed. For example in Figure 7 we create an identity
mapping in hyp_pgtable at line 12 with code permissions, which is used for
exception vectors. Nesting the s1table commands as seen on line 13 means
that the addresses used for hyp_pgtable_new are mapped in hyp_pgtable, allow-
ing code to read and write the tables themselves. For simpler tests we have a
default set of tables, but here this is disabled using the option on the first line.

1 option default_tables = false;

2 physical pa1;

3
4 s1table hyp_pgtable_new 0x280000 {

5 x |→ invalid at level 3;

6 x ?→ pa1 at level 3;

7 }

8
9 s1table hyp_pgtable 0x200000 {

10 x |→ invalid at level 2;

11 x ?→ table(0x283000) at level 2;

12 identity 0x1000 with code;

13 s1table hyp_pgtable_new;

14 }

15
16 *pa1 = 1;

Fig. 7 Page table setup for a hypervisor test

In Isla, memory locations that are part of the page tables are initialised
based on the provided description only when they are accessed, so only the
parts of the page tables that are actually used are included in the candidate
execution. To support this we have implemented generic machinery to support
multiple memory regions in Isla, where each region can have a different pro-
grammable semantics, such as page table memory for virtual memory tests, or

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 21

code memory for the ifetch tests. During symbolic execution Isla takes care to
check that any single memory access is unambiguously within a single region.

4.2.1 Break before make

In Armv8 when modifying an existing mapping in the translation tables from
a valid entry to another valid entry, the programmer must (in most cases)
first break the mapping before writing the new entry. This break is done by
first writing an invalid entry, using a dsb and a tlbi to broadcast the write
to all other threads and invalidate cached entries in any TLB. Only after this
can the new mapping be created. This programming idiom is referred to as
break-before-make (BBM).

Note however, that each of the writes in this BBM sequence may happen at
different levels in the translation tables. Consider the translation in Figure 5—
we might invalidate it by writing an invalid entry to the level 1 table, before
making it valid again by writing new entries at level 1 and 2. Detecting pairs
of page table writes that violate this BBM property is not expressible in the
Cat language as it requires encoding properties regarding the structure of the
page tables. However, Isla allows us to express such a property as a predicate
directly implemented in the SMTLIB language used by the solver. In [30] we
write a predicate that can detect such BBM violations. This means we can
determine allowable executions in two steps in the following way:

• Thread semantics + address translation memory model is satisfiable
• Thread semantics + address translation memory model + BBM predicate

is unsatisfiable

If the BBM predicate is satisfiable when combined with the thread semantics
and address translation, then the SMT solver can provide a model indicating
exactly which pair of writes violated the BBM property.

5 Results and comparisons
We evaluate our tool for correctness and performance with respect to Herd
using previous corpora of tests.

We select 3798 litmus tests for both Armv8-A and RISC-V to compare
between our tool and Herd—these tests include a representative set of features
such as barriers and atomics, while exercising all of the basic litmus test shapes.
All tests were run on a 2.6GHz Intel Xeon Gold 6240 CPU with 36 physical
cores and 400GB of RAM. The tests are split into rough categories based on
the contents of the tests. We ran 36 concurrent instances of both our tool
and Herd across each set of tests, running Herd with the -speedcheck fast

flag which causes it to stop enumerating executions when it resolves the final
assertion in each test, which is the closest behaviour to how our tool behaves
by default.

Springer Nature 2021 LATEX template

22 Integrating full-scale ISA semantics and axiomatic concurrency models

To assess correctness, we use a set of golden references for these above tests,
for all of which the previous operational RMEM [11] and axiomatic Herd mod-
els and tools agree, and which have been extensively validated against hardware
implementations. We confirm that our tool produces the same expected results
as those tools for all the litmus tests, demonstrating the same set of possible
behaviours for each test (when Isla is run in exhaustive mode).

To assess performance, Table 1 gives the total real execution time for each
batch of tests.

Table 1 Isla and Herd performance across a set of litmus tests

Test set Number of tests Isla Herd
Armv8-A basic 2-thread 1377 49.0s 11.0s
Armv8-A basic 3-thread 161 11.7s 1.2s
Armv8-A exclusives 23 20.2s 1.5s
Armv8-A DMB/LD 70 7.4s 0.7s
Armv8-A PPO 2020 209.3s 16.2s
RISC-V basic 2-thread 36 0.7s 0.2s
RISC-V AMOs 111 2.0s 0.7s

To assess performance, the Table 1 gives the total real execution time for
each batch of tests. In general Herd is faster for nearly all tests, but this is
not surprising given the amount of detail in the full-scale instruction semantics
that we are using, particularly for Armv8-A. Our goal is not to be faster,
but to support those full-scale ISA semantics while remaining fast enough for
practical purposes. We achieve this: most tests take only a second or so to
run, which is perfectly usable interactively. For example, given the Armv8-
A basic 3-thread tests, for a single sequential run of the tests (not running
any other tests in parallel), the shortest took 872ms to run, while the longest
took 1231ms. The above batch times are similarly perfectly usable for (e.g.)
regression testing while editing a model.

As for how the performance scales, the largest factor is the number of events
in each candidate execution. As the number of events grows the performance
becomes increasingly dominated by the SMT solver checking whether the final
candidate execution is allowed, with the symbolic execution of each thread
generating those candidates becoming negligible. As might be expected, the
performance of the SMT solver can be quite unpredictable so it is hard to
discern any particular patterns beyond the number of events.

We also evaluate our tool with respect to that of Simner et al. [29], for
the instruction-fetch tests in Section 6 of their paper, which are currently
not supported by Herd. Isla returns the expected results for all these tests,
including the two tests (FOW and SM.F+ic) that were unsupported by the
tool in that paper. In terms of performance, we note that the tool in [29] took
30 minutes to run just 90 of the 1377 basic 2-thread tests above, which is
awkwardly slow for using in practice, whereas when limiting Isla to 8 cores
(to more closely match the experimental setup in that paper) Isla tool will

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 23

execute all 1377 in under 3 minutes. As we described in Section 3, this tool
works by converting all the Sail source for the instructions directly into SMT,
which was not practical even for the significantly cut down ISA model in [29].

We were additionally able to provide further validation that the Simner et
al. model in Appendix A behaves as the standard Armv8-A model for non-
self-modifying tests by showing that it behaves identically for all 3798 of the
non-self-modifying tests above. The evaluation of Isla on a collection of virtual
memory tests and models is described in [30].

6 Conclusion and future work
In this article we have described our tool Isla for integrating full-scale ISA
semantics in Sail and axiomatic concurrency models. We have shown that this
integration allows us to explore systems features of architectures that have not
been supported by prior tools.

There are several aspects that we plan to continue in future work: First,
we aim to continue exploring interesting features of the Armv8-A (and upcom-
ing Armv9-A) architecture. This includes features such as exceptions, as well
as aspects of virtual memory and address translation that we have not yet
considered.

Second, we have found that often we need information in our axiomatic
models that is not easily expressible in the purely relational style of Cat. Ongo-
ing work has involved extending our variant of the Cat language to support
reasoning about arbitrary datatypes included by the Sail model in the events
generated during symbolic execution. For example, in our virtual memory
axiomatic model we have a primitive relation same-asid for TLB invalidates
that share address space identifiers. We intend for such relations to be user
defineable purely within the memory model language without a need to add
new primitives, in this case by using an address space identifier that is attached
to the TLB invalidates by the Sail model.

Finally, we have found that as we add and combine additional system
features, the number of events appearing in the candidate execution graphs
grows significantly, sometimes up to hundreds of events. Adding optimisations
that improve performance for these large execution graphs is something we
intend to work on in the future.

Declarations
Funding. This work was partially supported by the UK Government Indus-
trial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant
105694), in part by European Research Council (ERC) Advanced Grant
“ELVER” under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement no. 789108), EPSRC programme grant
EP/K008528/1 REMS, an Arm iCASE award, Arm, and Google. Approved
for public release; distribution is unlimited. This work was supported by the

Springer Nature 2021 LATEX template

24 Integrating full-scale ISA semantics and axiomatic concurrency models

Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8650-18-C-7809 (“CIFV”).
The views, opinions, and/or findings contained in this report are those of the
authors and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

Data availability. The datasets generated during and/or analysed during
the current study are available from the corresponding author on reasonable
request.

A The Armv8-A axiomatic concurrency model
We recall the Armv8-A axiomatic concurrency model in the version we use
here, which combines the official Arm specification for user concurrency (from
the Armv8-A manual Issue B.a for Armv8.2-A, Arm DDI 0487B.a [5, 35]) with
the additions for instruction fetch semantics by Simner et al [29]. Figure 8
gives the full definition with a few minor presentational changes.

The model is expressed in terms of predicates on candidate executions,
which are complete hypothetical executions of the input program, abstracted
in terms of memory events and relations over them. The usual fundamental
relations are program order (po), reads-from (rf), coherence (co), and from-
reads (fr), as described in Section 2.

The Cat concrete syntax for relational algebra uses [X] for the identity
on a set X, ; for composition, ~ for complement, ^-1 for relational inverse, |
and & for union and intersection, and * for product. Additionally, we use ^+

and ^* for the transitive closure and reflexive-transitive closure respectively.
By convention relations are suffixed e or i to indicate if they are restricted to
their inter-thread (external) or intra-thread (internal) parts.

The model has four axioms. The internal axiom is a standard per-location-
SC/coherence axiom. Roughly, this states that for each location the reads and
writes to that location appear in some sequentially consistent order between
all the threads. This forbids undesirable executions where threads would be
able to read data written in the future and other such behaviour.

Second, the atomic axiom specifies the atomicity guarantees given by
load/store exclusive pairs and atomic memory operations.

Third, the external axiom is the “main” axiom. It essentially requires
that the ordering induced by the interaction across threads, captured by the
obs (“observed by”) relation, is compatible with the thread-internal ordering
fob|dob|aob|bob|cob. Here:

• fob is instruction-fetch related ordering,
• dob is ordering resulting from data and control dependencies,
• aob is ordering around exclusive instructions and atomic memory operations,
• bob is barrier ordering, and
• cob is ordering due to cache maintenance operations (such as DC and IC

instruction).

Springer Nature 2021 LATEX template

Integrating full-scale ISA semantics and axiomatic concurrency models 25

Finally, the fourth axiom (15), related to instruction fetching, is explained
below, alongside the other additions for instruction fetch and cache mainte-
nance semantics where this model differs from [5]:

• The candidate execution has the following data:

– events for instruction fetches (IF) as well as instruction and data cache
maintenance operations (IC and DC);

– the CU bit, indicating constrained unpredictable executions; and
– the relations irf, relating a write with instruction fetches that read from

it; wco, extending the co coherence relation to include cache maintenance
operations; fpo, the program order relation between instruction fetch
events; fe, relating instruction fetches with any event originating from
the execution of the fetched instruction; and scl, relating same-cache-line
events.

• obs includes the extended coherence order wco (2), and orders any instruction
fetch to be after the write it read from (3) and before any from-reads-related
write that is sufficiently synchronised (4 and 1);

• fob orders fetches in fetch-program-order, (5), fetches before the instruc-
tion’s execute event (6), and instruction fetches after program-order earlier
ISBs (7);

• [ISB]; po; [R] (8) in dob is subsumed by the orderings in fob, so is
commented out here.

• bob contains ordering created by dsb_ish (9 and 10) and ordering of DC

instructions with respect to dmb_sy barriers (11);
• the model defines cff, the could-fetch-from relation, that for a given instruc-

tion fetch captures the writes the fetch could have read from, including the
one it did read from (14); and

• asserts that certain executions have constrained unpredictable
behaviour (15): if this set contains more than one write and if one of these
is the write of an instruction that is considered to be not concurrently
modifiable:

cff_bad cff = ∃i ∈ IF. |{w|(w, i) ∈ cff}| > 1 ∧
∃w.(w, i) ∈ cff ∧ ¬concurrently-modifiable (val w).

Springer Nature 2021 LATEX template

26 Integrating full-scale ISA semantics and axiomatic concurrency models

let iseq = [W]; (wco&scl); [DC]; (wco&scl); [IC] (*1*)

(* Observed-by *)
let obs = rfe

| fr
| wco (*2*)
| irf (*3*)
| ifr; iseq (*4*)

(* Fetch-ordered-before *)
let fob = [IF]; fpo; [IF] (*5*)

| [IF]; fe (*6*)
| [ISB]; fe^-1; fpo (*7*)

(* Dependency-ordered-before *)
let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]

(* | [ISB]; po; [R] *) (*8*)
| addr; po; [W]
| (addr | data); rfi

(* Atomic-ordered-before *)
let aob = rmw

| [range(rmw)]; rfi; [A|Q]

(* Barrier-ordered-before *)
let bob = [R W]; po; [dmb_sy]

| [dmb_sy]; po; [R|W]
| [L]; po; [A]
| [R]; po; [dmb_ld]
| [dmb_ld]; po; [R|W]
| [A|Q]; po; [R|W]
| [W]; po; [dmb_st]
| [dmb_st]; po; [W]
| [R|W]; po; [L]
| [R|W|F|DC|IC]; po; [dsb_ish] (*9*)
| [dsb_ish]; po; [R|W|F|DC|IC] (*10*)
| [dmb_sy]; po; [DC] (*11*)

(* Cache-op-ordered-before *)
let cob = [R|W]; (po&scl); [DC] (*12*)

| [DC]; (po&scl); [DC] (*13*)

(* Ordered-before *)
let ob = (obs|fob|dob|aob|bob|cob)^+

(* Internal visibility requirement (internal axiom) *)
acyclic (po-loc|fr|co|rf) as internal

(* External visibility requirement (external axiom) *)
irreflexive ob as external

(* atomic axiom *)
empty rmw & (fre; coe) as atomic

(* Constrained unpredictable *)
let cff = ([W];loc;[IF]) \ ob^-1 \ (co;iseq;ob) (*14*)
assert (cff_bad cff) = CU (*15*)

Fig. 8 Arm-v8 Axiomatic model, as extended by Simner et al. [29]

Springer Nature 2021 LATEX template

REFERENCES 27

References
[1] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,
Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-
naswami, and Peter Sewell. ISA semantics for ARMv8-A, RISC-V, and
CHERI-MIPS. volume 3, pages 71:1–71:31, 2019.

[2] Kathryn E. Gray, Gabriel Kerneis, Dominic Mulligan, Christopher Pulte,
Susmit Sarkar, and Peter Sewell. An integrated concurrency and core-
ISA architectural envelope definition, and test oracle, for IBM POWER
multiprocessors. In Proc. MICRO-48, the 48th Annual IEEE/ACM
International Symposium on Microarchitecture, December 2015.

[3] Alastair Reid. Trustworthy specifications of ARM v8-A and v8-M system
level architecture. In FMCAD 2016, pages 161–168, October 2016.

[4] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit
Sarkar, and Peter Sewell. Simplifying ARM Concurrency: Multicopy-
atomic Axiomatic and Operational Models for ARMv8. In POPL 2018:
Proceedings of the 45th ACM SIGPLAN Symposium on Principles of
Programming Languages, January 2018.

[5] Arm Ltd. ARM Architecture Reference Manual (ARMv8, for ARMv8-
A architecture profile), 2017. ARM DDI 0487B.a (ID033117), https://
developer.arm.com/documentation/ddi0487/b/?lang=en.

[6] The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Docu-
ment Version 20191214-draft. https://riscv.org/technical/specifications/,
July 2020. Accessed 2020-09-23. 238 pages.

[7] Arm Ltd. Memory model tool. https://developer.arm.com/architectures/
cpu-architecture/a-profile/memory-model-tool, 2020. Accessed 2021-01-
26.

[8] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali
Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. Modelling the
ARMv8 architecture, operationally: Concurrency and ISA. In Proceedings
of POPL: the 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2016.

[9] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan
Lee, and Chung-Kil Hur. Promising-ARM/RISC-V: A simpler and
faster operational concurrency model. In PLDI 2019: Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2019.

[10] Christopher Pulte. The Semantics of Multicopy Atomic ARMv8 and
RISC-V. Thesis, University of Cambridge, May 2018. https://www.
repository.cam.ac.uk/handle/1810/292229.

[11] Shaked Flur, Jon French, Kathryn Gray, Christopher Pulte, Susmit
Sarkar, and Peter Sewell. RMEM. www.cl.cam.ac.uk/~pes20/rmem/,
2020. Accessed 2021-01-28.

[12] Hongce Zhang, Caroline Trippel, Yatin A. Manerkar, Aarti Gupta, Mar-
garet Martonosi, and Sharad Malik. ILA-MCM: Integrating memory

https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://riscv.org/technical/specifications/
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/292229
www.cl.cam.ac.uk/~pes20/rmem/

Springer Nature 2021 LATEX template

28 REFERENCES

consistency models with instruction-level abstractions for heterogeneous
system-on-chip verification. In 2018 Formal Methods in Computer Aided
Design (FMCAD), pages 1–10, 2018.

[13] Seungjoon Park and David L. Dill. An executable specification and verifier
for relaxed memory order. IEEE Trans. Computers, 48(2):227–235, 1999.

[14] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind.
Analyzing the intel itanium memory ordering rules using logic program-
ming and SAT. In Daniel Geist and Enrico Tronci, editors, Correct
Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced
Research Working Conference, CHARME 2003, L’Aquila, Italy, Octo-
ber 21-24, 2003, Proceedings, volume 2860 of Lecture Notes in Computer
Science, pages 81–95. Springer, 2003.

[15] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind.
Nemos: A framework for axiomatic and executable specifications of mem-
ory consistency models. In 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004),Santa Fe, New Mexico, USA, 2004.

[16] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom
Ridge, Thomas Braibant, Magnus Myreen, and Jade Alglave. The seman-
tics of x86-CC multiprocessor machine code. In Proceedings of POPL
2009: the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, pages 379–391, January 2009.

[17] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-TSO. In Proceedings of TPHOLs 2009: Theorem Proving in
Higher Order Logics, LNCS 5674, pages 391–407, 2009.

[18] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. Understanding POWER multiprocessors. In Proceedings
of PLDI 2011: the 32nd ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 175–186, 2011.

[19] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade
Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and
Derek Williams. An axiomatic memory model for POWER multiproces-
sors. In Proceedings of the 24th International Conference on Computer
Aided Verification, pages 495–512, 2012.

[20] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats:
Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM
TOPLAS, 36(2):7:1–7:74, July 2014.

[21] Jade Alglave and Luc Maranget. The diy7 tool. http://diy.inria.fr/.
Accessed 2021-01-28.

[22] James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. In Albert Cohen and Martin T.
Vechev, editors, Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 467–481. ACM, 2017.

[23] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Con-
stantinides. Automatically comparing memory consistency models. In

http://diy.inria.fr/

Springer Nature 2021 LATEX template

REFERENCES 29

Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017, pages 190–204.
ACM, 2017.

[24] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and
Margaret Martonosi. Full-stack memory model verification with tricheck.
IEEE Micro, 38(3):58–68, 2018.

[25] Martonosi Research Group. Check research tools and papers. https:
//check.cs.princeton.edu/. Accessed 2021-01-28.

[26] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and seman-
tics of the weak consistency model specification language cat. CoRR,
abs/1608.07531, 2016.

[27] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong,
Lawrence Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and
Peter Sewell. Verified security for the Morello capability-enhanced proto-
type Arm architecture. In Proceedings of the 31st European Symposium
on Programming, April 2022.

[28] Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell,
Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell.
Islaris: verification of machine code against authoritative ISA semantics.
In Ranjit Jhala and Isil Dillig, editors, PLDI ’22: 43rd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation, San Diego, CA, USA, June 13 - 17, 2022, pages 825–840.
ACM, 2022.

[29] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean
Pichon-Pharabod, Luc Maranget, and Peter Sewell. ARMv8-A system
semantics: instruction fetch in relaxed architectures. In ESOP 2020: Pro-
ceedings of the 29th European Symposium on Programming, April 2020.
http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf.

[30] Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher
Pulte, Richard Grisenthwaite, and Peter Sewell. Relaxed virtual mem-
ory in Armv8-A. In Proceedings of the 31st European Symposium on
Programming, April 2022.

[31] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte,
and Peter Sewell. Isla: Integrating full-scale ISA semantics and axiomatic
concurrency models. In Alexandra Silva and K. Rustan M. Leino, editors,
Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of
LNCS, pages 303–316. Springer, 2021.

[32] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders
for efficient bounded model checking of concurrent software. In Computer
Aided Verification - 25th International Conference, CAV, pages 141–157,
2013.

[33] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
running tests against hardware. In Proceedings of TACAS 2011: the 17th

https://check.cs.princeton.edu/
https://check.cs.princeton.edu/
http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf

Springer Nature 2021 LATEX template

30 REFERENCES

international conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 41–44, Berlin, Heidelberg, 2011. Springer-
Verlag.

[34] Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-
Pharabod, and Peter Sewell. Cerberus-BMC: A Principled Reference
Semantics and Exploration Tool for Concurrent and Sequential C. In Isil
Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages
387–397. Springer International Publishing, 2019.

[35] Will Deacon. The ARMv8 Application Level Memory Model. https://
github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat, 2016.

https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

	Introduction
	Axiomatic memory models
	Implementation
	Symbolic execution for Sail
	Per-thread traces
	Checking a litmus test
	Syntactic dependency analysis
	Optimisations
	Web interface

	System litmus tests
	Instruction fetch and cache maintenance
	Virtual memory and address translation
	Break before make

	Results and comparisons
	Conclusion and future work
	The Armv8-A axiomatic concurrency model

