
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bias correcting climate model simulations using unpaired image-
to-image translation networks

Citation for published version:
Fulton, J, Clarke, BJ & Hegerl, G 2023, 'Bias correcting climate model simulations using unpaired image-to-
image translation networks', Artificial Intelligence for the Earth Systems. https://doi.org/10.1175/AIES-D-22-
0031.1

Digital Object Identifier (DOI):
10.1175/AIES-D-22-0031.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Artificial Intelligence for the Earth Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Jun. 2023

https://doi.org/10.1175/AIES-D-22-0031.1
https://doi.org/10.1175/AIES-D-22-0031.1
https://doi.org/10.1175/AIES-D-22-0031.1
https://www.research.ed.ac.uk/en/publications/10a10b35-5a1e-4d1a-a01d-ffa72ef5eefa


Bias correcting climate model simulations using unpaired image-to-image translation
networks

D. James Fulton, a Ben J. Clarke,b Gabriele C. Hegerl, a
a School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

b School of Geography and the Environment, University of Oxford, Oxford, United Kingdom

ABSTRACT: We assess the suitability of unpaired image-to-image translation networks for bias correcting data simulated by global
atmospheric circulation models. We use the UNIT neural network architecture to map between data from the HadGEM3-A-N216 model
and ERA5 reanalysis data in a geographical area centred on the South Asian monsoon, which has well-documented serious biases in this
model. The UNIT network corrects cross-variable correlations and spatial structures but creates bias corrections with less extreme values
than the target distribution. By combining the UNIT neural network with the classical technique of quantile mapping, we can produce bias
corrections that are better than either alone. The UNIT+QM scheme is shown to correct cross-variable correlations, spatial patterns, and all
marginal distributions of single variables. The careful correction of such joint distributions is of high importance for compound extremes
research.

1. Introduction

A large portion of research into the physical earth system
is reliant on the use of general circulation models (GCMs).
GCMs are used for weather prediction and for climate stud-
ies on timescales of days to years, although their seamless
use for both is still rare. They have been central to in-
forming policymakers through the International Panel on
Climate Change (IPCC 2013).
The IPCC report relies on a multiplicity of different

GCMs, developed by research centres spread across the
world. The latest Climate Model Intercomparison Project
(CMIP6) (Eyring et al. 2016) includes output from tens of
GCMs. These differ in how the earth system is discretised,
in their approximations for and inclusion of sub-gridscale
processes, and even down to integration schemes, all of
which introduce uncertainty that is reflected in the spread
of results across models. The climate is highly chaotic,
and so these differences can lead to detectable differences
in the GCM outputs (Wang et al. 2014; Maher et al. 2018).
GCM outputs are used to assess the risks associated

with different weather events, such as droughts, heatwaves,
floods, and wildfire risk. To quantify these risks, re-
searchers must decide which GCMs are fit for purpose.
Persistent biases in climate models exist (Eyring et al.
2021) and need to be addressed by either selecting the best
models or by correcting biases. The choice of models can
have a quantitative and qualitative difference on estimated
climate risks (e.g. Kirchmeier-Young et al. (2017); Herger
et al. (2018)). A GCM which has a low bias compared to
observations in one variable and one geographical location
may have a large bias in another (Ridder et al. 2021). This
makes compound risks (Leonard et al. 2014), such as si-
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multaneous heatwaves and drought, even harder to assess
as they involve multiple variables andmay involve multiple
geographical areas. Simultaneous crop failure in multiple
regions of high agricultural output (Gaupp et al. 2020) is a
risk of recent study. Particularly persistent biases exist in
climate model simulated rainfall patterns, with many mod-
els exhibiting a double Inter Tropical Convergence zone
(ITCZ) and misplaced monsoons (Wang et al. 2020; Tian
and Dong 2020).
GCMs are improving, but in the interim, we must use

their outputs effectively to understand our current climate
and the potential effects of global warming. Therefore
we must devise methods to optimally correct biases in the
output of GCMs (Bellprat et al. 2019).
Recently, modern artificial neural network architectures

have been developed which can be used for bias correc-
tion and statistical downscaling (Moghim and Bras 2017;
Steininger et al. 2020; Le et al. 2020; Han et al. 2021;Wang
et al. 2021), and which offer some theoretical advantages
over classical techniques. In this paper, we will focus on
unpaired image-to-image translation networks to perform
bias correction between a GCM and observations.
These neural networks use layers of convolutional filters

which are applied across multiple climate variables simul-
taneously. This gives these architectures the capacity to
‘see’ and therefore correct both spatial and cross-variable
relations simultaneously. This is an advantage over cur-
rent methods. These networks are presented in more detail
later.
The simplest classical method of bias correction is to ad-

just the climatological mean, yet such a method may leave
extremes still biased (e.g. Hanlon et al. (2015)). Another
very commonly used method is quantile mapping (QM)
(Cannon et al. 2015). This is a simple method where a
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single value of a variable 𝑥𝐺𝐶𝑀 obtained from the GCM
at a spatial location and time of year denoted by coordi-
nate \, is converted into a percentile using the estimated
cumulative distribution function F𝐺𝐶𝑀 . Then an equiv-
alent observation value 𝑥𝑜𝑏𝑠 is obtained using the inverse
cumulative distribution function F −1

𝑜𝑏𝑠
.

𝑥𝑜𝑏𝑠 = F −1
𝑜𝑏𝑠 (F𝐺𝐶𝑀 (𝑥𝐺𝐶𝑀 ;\);\) (1)

This approach doesn’t capture conditional relationships.
The QM predicted value of 𝑥𝑜𝑏𝑠 doesn’t use the values of
𝑥𝐺𝐶𝑀 in neighbouring locations in space. This means, for
example, if some weather event in a GCM has a different
characteristic shape than in observations, then QM cannot
reshape it coherently. This could be the size and shape of
cyclones or the position of storms along the polar front.
Further, QM doesn’t use the values of other variables at

the same spatial location. So relationships between vari-
ables are severed and may become physically unrealistic.
For example, if a pixel is translated from a dry day in
the GCM to a wet day in equivalent observations, the re-
lationships between surface temperature and precipitation
(Trenberth and Shea 2005) may not be preserved.
These are limitations that modern neural network archi-

tectures could be ideally suited to improve upon. Both of
these features would be required to accurately correct for
the presence and strength of teleconnections (Yuan et al.
2018; Stan et al. 2017). A specific example is shown
in Maraun et al. (2017), where extreme precipitation in
Piura, Peru only occurs during El Niño events in observa-
tions. These extreme rainfall events did not occur in the
GCM outputs, so when QM was applied to the GCM data
the extreme rainfall events no longer co-occurred with El
Niño. El Niño events are primarily characterised by warm
sea surface temperatures in the equatorial Pacific (Timmer-
mann et al. 2018), and so conditional bias correction which
takes spatial and cross-variable information is required.
Previous work has attempted to solve these issues with

classical techniques, but incompletely. In Levy et al.
(2013), the authors propose optimally stretching simu-
lated precipitation fields to match precipitation patterns
in observations. They found that when precipitation fea-
tures were stretched onto the correct places, human at-
tributable change in precipitation could be more easily de-
tected, while misplaced features lead to poor fingerprints
of the expected climate change. However, this technique
uses monthly average precipitation and does not allow the
use of daily data, which is important for studying extreme
risks. It also can’t easily be extended to multiple variables.
In Cannon (2018), the authors propose a way to generalise
QM to N-dimensions. This allows the user to transform
multiple variables in multiple spatial locations using daily
data. However, as they note, their method cannot be ex-
tended to many spatial points in many variables before it

becomes computationally limited and becomes prone to
overfitting.
We note that this problem of bias correcting GCM out-

puts is more generally the problem of mapping between
two empirical distributions of multi-channel images with-
out having any one-to-one corresponding pairs. This is
precisely the problem description of unpaired image-to-
image translation (Liu and Tuzel 2016).
Some previous work has used applied similar neural

network architectures to this problem. François et al.
(2021) apply an architecture based on CycleGAN (Zhu
et al. 2017) to bias correct temperature and precipitation
data in a region over Paris, but only for the winter season.
Pan et al. (2021) develop a similar network architecture to
bias correct precipitation data over the contiguous United
States. They use the dynamical variables (sea level pres-
sure, geopotential height, and specific humidity at 500 hPa)
to aid the translations but do not bias correct these variables
themselves.
In this paper, we extend on and complement these previ-

ous studies. We first introduce a different image translation
method which has not been applied in the climate domain.
We apply this method to bias correct simulations from a
GCM of the South Asian Monsoon across five variables,
using a GCM which has substantial biases in the spatial
pattern of the monsoon, and using reanalysis data as a tar-
get for the correction. This is a larger geographical region
and uses more variables than previous studies, and this
region has a known and very significant physical bias in
the GCM. We evaluate the method’s use by comparing its
performance to quantile mapping and explore using these
two techniques in conjunction to better represent the mon-
soon and other extreme events in the region. We analyse
the translation results focusing on relationships between
different variables as well as spatial relationships.

2. A prime use for unpaired image-to-image translation
networks

These architectures, such as UNIT (Liu et al. 2017),
CycleGAN (Zhu et al. 2017), and AlignFlow (Grover et al.
2020) are neural networks that incorporate the architecture
of generative adversarial networks (GANs) (Goodfellow
et al. 2014). The aim of these techniques is to translate
between images {x𝑖}𝑁𝑖=1 in domainXand {y 𝑗 }

𝑀
𝑗=1 in domain

Y, without requiring corresponding pairs {x𝑖 ,y𝑖}.
These networks were initially used to translate between

images of summer and winter driving scenes, and between
simulated city driving scenes and real city driving scenes
(Liu et al. 2017; Zhu et al. 2017). Further, in Hao et al.
(2021), they use these networks to make video game im-
ages look more photorealistic. In Shrivastava et al. (2017),
the authors train a related refiner model to create more
realistic-looking images of eyes from simulated 3D mod-
els. These are all examples of statistically bias correcting
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spatial fields with multiple variables, as we aim to do with
GCMs.
In order tomap betweenGCMoutputs and observations,

the ability to translate without pairs is absolutely neces-
sary. Imagine an idealised GCM which captures all of the
physics of the earth system almost perfectly. However, due
to discretisation, it accumulates errors when integrating
a climate state forwards in time. If it was initiated with
the exact observed climate state 𝜓𝐺𝐶𝑀 (0) = 𝜓𝑜𝑏𝑠 (0) we
should expect that after approximately two weeks (Lorenz
1969; Zhang et al. 2019) the simulation will have diverged
from the observations due to chaos. Therefore image pairs
from the simulation and observations collected beyond two
weeks have no relation to each other. If the GCM is not
perfect and hence has a bias, then the initial state matched
to observations 𝜓𝐺𝐶𝑀 (0) = 𝜓𝑜𝑏𝑠 (0) may be one which
the GCM does not visit often, and the simulation will drift
towards its own preferred states. This means we cannot
use the image pairs collected during the first two weeks to
bias correct the rest of the GCM simulation, i.e. cannot
use pairs {𝜓𝐺𝐶𝑀 (𝑡𝑖),𝜓𝑜𝑏𝑠 (𝑡𝑖)}𝑡𝑖<2 weeks. This would be
predicting outside the limits of our training data.
This lack of corresponding pairs makes bias correc-

tion distinctly different than perfect prognosis and sta-
tistical downscaling (Maraun et al. 2010), so we cannot
use the machine learning techniques employed therein. In
these settings, predictions are made for short lead times
and so gathering corresponding pairs of GCM predictions
and observations is possible. Although the application
of deep learning to these tasks and statistical nowcasting
(Steininger et al. 2020; Vaughan et al. 2022; Ravuri et al.
2021; Sønderby et al. 2020) has been developing recently,
it would not be valid to simply use this learned mapping
for times after around two weeks.
We note that Wang and Tian (2022) attempt to bias cor-

rect temperatures from GCMs by assuming synchronised
pairs between observations and simulations over long time
frames. However, they admit this to be a limitation of
their proposed method and that the dynamics of the GCM
may be distorted. They also do not thoroughly test their
assumption.

a. A brief overview of unpaired image-to-image transla-
tions networks

The UNIT network is composed of multiple subcom-
ponents. A more precise breakdown and diagram of the
components in terms of layers is available in appendix A2,
and also in the original paper (Liu et al. 2017). The main
backbone of the network is composed of two variational
autoencoders (VAEs) (Kingma and Welling 2013). The
encoder 𝐸𝑋 is a convolutional neural network that maps
images from domain 𝑋 to a region in latent space 𝑍 , i.e.
𝑝(z|x) = 𝐸𝑋 (x). There is a similar encoder 𝐸𝑌 that maps
images in domain 𝑌 into a latent space which, if trained

correctly, should be the same as 𝑍 . The main purpose of
this network is to learn this shared latent space of the two
image domains, and learn functions to map into and out of
it to the two domains. Decoders 𝐺𝑋 and 𝐺𝑌 map vectors
from the shared latent space 𝑍 to images in the domains
𝑋 and 𝑌 respectively, i.e. x̂ = 𝐺𝑋 (z). After training is
completed, the composition function 𝐼𝑋 (x) = 𝐺𝑋 (𝐸𝑋 (x))
should approximate the identify function (due to the VAE
bottleneck, some information will be lost in the mapping
and so the identity function cannot be exact). Also after
training, the mapping 𝐹𝑋→𝑌 (x) =𝐺𝑌 (𝐸𝑋 (x)) maps an im-
age from domain 𝑋 into its predicted equivalent image in
domain𝑌 . Similar statements are true for functions 𝐼𝑌 and
𝐹𝑌→𝑋.
In training this network weminimise the value of a com-

pound loss function with multiple components. The loss
components 𝐿𝑟𝑒𝑐𝑜𝑛

𝑋
and 𝐿𝑟𝑒𝑐𝑜𝑛

𝑌
are the expected recon-

struction losses associated with autoencoders (AEs) and
VAEs. 𝐿

𝑐𝑦𝑐𝑙𝑒

𝑋
and 𝐿𝑐𝑦𝑐𝑙𝑒

𝑌
are the cyclic reconstruction

losses associated with translating from one domain to the
other domain and back again. These losses are defined

𝐿𝑟𝑒𝑐𝑜𝑛𝑋 = Ex∼𝑋 [|𝐺𝑋 (𝐸𝑋 (x)) −x|]
𝐿𝑟𝑒𝑐𝑜𝑛𝑌 = Ey∼𝑌 [|𝐺𝑌 (𝐸𝑌 (y)) −y|]

𝐿
𝑐𝑦𝑐𝑙𝑒

𝑋
= Ex∼𝑋 [|𝐹𝑌→𝑋 (𝐹𝑋→𝑌 (x)) −x|]

𝐿
𝑐𝑦𝑐𝑙𝑒

𝑌
= Ey∼𝑌 [|𝐹𝑋→𝑌 (𝐹𝑌→𝑋 (y)) −y|] .

(2)

Here, Ex∼𝑋 [𝑙] means the mean of the component 𝑙 for
data samples x sampled from 𝑋 . Practically, this is esti-
mated as the average of 𝑙 over samples in a training batch.
These losses encourage the latent space representation to
encode as much information as possible about the images.
They also ensure that the encoding is consistent across do-
mains and that translating an input from one domain to the
other and then back again reconstructs the same input. We
use the L1-norm for these losses as it has been shown to
support sharper translations (Zhu et al. 2017) in similar
networks. We modify the L1 loss to weight the different
channels with respect to each other (see appendix A3).
The following loss components are also used:

𝐿𝐾𝐿𝑋 = Ex∼𝑋 [𝐾𝐿 (𝐸𝑋 (x))]
𝐿𝐾𝐿𝑌 = Ey∼𝑌 [𝐾𝐿 (𝐸𝑌 (y))]

𝐿
𝐾𝐿−𝑐𝑦𝑐
𝑋

= Ex∼𝑋 [𝐾𝐿 (𝐸𝑌 (𝐹𝑋→𝑌 (x)))]
𝐿
𝐾𝐿−𝑐𝑦𝑐
𝑌

= Ey∼𝑌 [𝐾𝐿 (𝐸𝑋 (𝐹𝑌→𝑋 (y)))] .

(3)

The loss components 𝐿𝐾𝐿
𝑋
and 𝐿𝐾𝐿

𝑌
are the Kull-

back–Leibler (KL) divergences associated with the sam-
ples from domains 𝑋 and 𝑌 encoded into the shared latent
space 𝑍 . These are standard loss components used to train
VAEs (Kingma and Welling 2013). The function 𝐾𝐿 (z)
computes the KL divergence between a multivariate Gaus-
sian distribution with mean z and another with mean 0,
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both with variance of 1. 𝐿𝐾𝐿−𝑐𝑦𝑐
𝑋

and 𝐿𝐾𝐿−𝑐𝑦𝑐
𝑌

are asso-
ciated with the KL divergence of samples translated to the
opposite domain and then encoded back into the shared
latent space.
These KL divergence losses encourage the images to

have a Gaussian distribution when encoded into the shared
latent space. During training, a random perturbation is
added in the latent space encoding during training so that
z = 𝐸𝑋 (x) ↦→ 𝐸𝑋 (x) + [ where [ is a random vector sam-
pled from a multivariate Gaussian distribution with unit
diagonal variance. This so-called reparameterisation trick
is required to train VAEs (Kingma and Welling 2013) and
ensures that the learned latent space 𝑍 is smooth - i.e. that
images that are similar in domain 𝑋 will be translated to a
similar region in domain 𝑍 .
To train the translation network, we also train two ad-

versarial discriminator networks. Such discriminator net-
works have been used in recent work on short-termweather
forecasting (Ravuri et al. 2021). A discriminator 𝐷𝑋 is
trained to predict the probability that an image comes from
the domain 𝑋 or whether it was created by the condi-
tional generator 𝐹𝑌→𝑋. Similarly, 𝐷𝑌 is trained to predict
whether images in domain 𝑌 are real. These discriminator
networks are trained simultaneously with the translation
network. The following loss components are used to train
the translation network functions 𝐹𝑌→𝑋 and 𝐹𝑋→𝑌 :

𝐿𝐺𝐴𝑁𝑋 = Ex∼𝑋 [|1−𝐷𝑌 (𝐹𝑋→𝑌 (x)) |2]
𝐿𝐺𝐴𝑁𝑌 = Ey∼𝑌 [|1−𝐷𝑋 (𝐹𝑌→𝑋 (y)) |2] .

(4)

These loss components encourage the translations of
the fields to look realistic in each domain. Any obvious
imperfections or distortion of the distribution of images
{𝐹𝑌→𝑋 (y)}y∼𝑌 should be penalised by the discriminator
(Goodfellow et al. 2014) via 𝐿𝐺𝐴𝑁

𝑋
. The discriminator

𝐷𝑋 is itself trained to minimise the loss function

𝐿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑋 = Ey∼𝑌 [|𝐷𝑋 (𝐹𝑌→𝑋 (y)) |2]
+Ex∼𝑋 [|1−𝐷𝑋 (x) |2] (5)

and the loss for 𝐷𝑌 is similar. This is the same loss
function as is used in least-square GANs (Mao et al. 2017)
and has been shown to be more stable in training than
traditional GANs.
The full loss function for the translation network is

𝐿 = _𝑟𝑒𝑐 (𝐿𝑟𝑒𝑐𝑜𝑛𝑋 + 𝐿𝑟𝑒𝑐𝑜𝑛𝑌 ) +_𝑐𝑦𝑐 (𝐿𝑐𝑦𝑐𝑙𝑒𝑋
+ 𝐿𝑐𝑦𝑐𝑙𝑒

𝑌
)

+_𝐾𝐿−𝑟𝑒𝑐 (𝐿𝐾𝐿𝑋 + 𝐿𝐾𝐿𝑌 ) +_𝐾𝐿−𝑐𝑦𝑐 (𝐿𝐾𝐿−𝑐𝑦𝑐𝑋
+ 𝐿𝐾𝐿−𝑐𝑦𝑐

𝑌
)

+_𝐺𝐴𝑁 (𝐿𝐺𝐴𝑁𝑋 + 𝐿𝐺𝐴𝑁𝑌 ) (6)

where the scalars _𝑟𝑒𝑐, _𝑐𝑦𝑐, _𝐾𝐿−𝑟𝑒𝑐, _𝐾𝐿−𝑐𝑦𝑐, and
_𝐺𝐴𝑁 were set to the values used in the original work

introducing UNIT. More details about these losses and the
UNIT hyperparameters are presented in appendix A3.

b. What do bias corrected simulations represent?

It is important to consider what the translated se-
quence 𝐹𝐺𝐶𝑀→𝑜𝑏𝑠 (𝜓𝐺𝐶𝑀 (𝑡)) represents, and we refer
to Ehret et al. (2012) for a more thorough discussion.
𝜓𝐺𝐶𝑀 (𝑡) and thus 𝐹𝐺𝐶𝑀→𝑜𝑏𝑠 (𝜓𝐺𝐶𝑀 (𝑡)) is driven dy-
namically by the time evolution operator of the GCM,
but each image 𝐹𝐺𝐶𝑀→𝑜𝑏𝑠 (𝜓𝐺𝐶𝑀 (𝑡)) is mapped in-
dividually to look like it came from the observations.
If we set 𝜓𝐺𝐶𝑀 (0) = 𝐹𝑜𝑏𝑠→𝐺𝐶𝑀 (𝜓𝑜𝑏𝑠 (0)) and evolve
each of these states forward in time with their own
time evolution operator, then we would still expect that
𝐹𝐺𝐶𝑀→𝑜𝑏𝑠 (𝜓𝐺𝐶𝑀 (𝑡)) ≠ 𝜓𝑜𝑏𝑠 (𝑡). Although each image
from 𝐹𝐺𝐶𝑀→𝑜𝑏𝑠 (𝜓𝐺𝐶𝑀 (𝑡)) should be realistic compared
to observations, the entire sequence needn’t be. An exam-
ple of this inconsistency could come when bias correcting
wind velocities and precipitation. The wind velocities may
be debiased such that it should change the velocity of a
precipitation system, but in consecutive frames the precip-
itation pattern may not reflect this.
So when using GCM output, we must assume that the

GCM has realistic time dynamics, which would not be
drastically affected by our moderate bias correction. This
also emphasises that bias correction is no cure for a poorly
performing GCM and that capturing the physics of the
climate system is key.

3. Bias correcting the South Asian Monsoon

We use GCM data from the Climate of the 20th Cen-
tury Plus (C20C+) Project (Folland et al. 2014), par-
ticularly from the HadGEM3-A-N216 GCM (Ciavarella
et al. 2018), run under a historical recreation scenario
(All-Hist/est1). In this dataset, the ocean tempera-
tures are prescribed to their observational estimates and
emissions are set to the historical record. Therefore only
the atmosphere component of the model is run.
We attempt to bias correct the HadGEM3 historical

recreation data with respect to the ERA5 reanalysis data
(Hersbach et al. 2020). Both of these datasets are daily
data fields. We choose this over monthly data as extreme
events like heatwaves and floods occur on the timescale of
days to weeks.
We limit the geographical extent to the area bounded

by 8°S-30°N 44°E-121°E. This region was chosen to cap-
ture the South Asian monsoon. Many GCMs, including
HadGEM3, have a large bias in simulating the South Asian
monsoon (Bollasina and Ming 2013; Ashfaq et al. 2017),
which is usually placed too far south over the Indian Ocean
and leaves the landmass drier than reality (shown in figure
1). This bias remains when the model is run with pre-
scribed sea surface temperatures. We chose this region as
a hard case to solve for bias correction. We consider the
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daily 2-metremean,minimum, andmaximum temperature;
accumulated precipitation; and mean 500hPa geopotential
height at all grid locations. The first 4 of these variables
are important for climate impact studies and are of primary
interest. The geopotential height is a dynamical variable
which can aid the accuracy of bias correction of the other
variables (Pan et al. 2021), although we allow the network
to correct this variable also.
Before bias correction, we conservatively regrid (Jones

1999) the ERA5 data onto the coarser grid of the
HadGEM3 data, which has resolution of 0.56°latitude and
0.83°longitude. This gave a region of size 68× 92 grid-
points. We also limit the two datasets to the time period
in which they overlap; this is 1979 to 2013 inclusive, giv-
ing us 35 complete years and approximately 13000 daily
fields. We split this data into train and test sets, using
the odd-numbered years for training each method and the
even-numbered years to test on. This rather extreme split
of using nearly 50% of the data test was required to perform
adequate analysis of the spatial and cross-variable statistics
of the results. All figures to follow were based on the test
set, which was not used in training or choosing parameters
for any method.
We applied quantile mapping (equation (1)) to both

datasets by fitting a 100-point empirical cumulative dis-
tribution function to each gridpoint for each month of the
year and for each variable. This equates to ∼ 75 million
points estimated from the data in order to perform the bias
correction with quantile mapping. For comparison, the
UNIT translation network had ∼ 38 million parameters.
The form of QM we use is generally applied in situations
where the data is stationary, i.e. where there is no distri-
bution shift due to global warming. The neural network
approach we choose similarly assumes stationarity. Since
we limit our datasets to only a 35 year period and split
alternative years into train and test data, we do not ex-
pect this assumption to have a significant impact on the
results we show. Especially as we are considering daily
variability rather than monthly averages, so changes in the
mean are relatively small compared to variability. The ex-
tensions that are added to quantile mapping to allow it to
approximately debias data that is not stationary (Cannon
et al. 2015) could be applied to the UNIT neural network
approach with little modification.
In the following section, we compare these translations

and the original datasets. In particular, we study in detail
how they address the large biases in simulations of the
South Asian monsoon. To test this more broadly, we also
consider their performance in correcting a variety of other
extreme events of societal relevance to the region.

4. Results

Early in our experimentationwith theUNIT network, we
noticed that it was biased against producing extreme values

in its translations. This limitationmaybe due to the fact that
UNIT inherits features of its architecture from GANs, and
GANs are known to reduce the distribution at its boundaries
(Dionelis et al. 2020; Bau et al. 2019; Arora and Zhang
2017). Notably, Ravuri et al. (2021) found that using a
conditional GAN for precipitation nowcasting also reduced
extreme values in precipitation fields. UNIT also inherits
features VAEs, which blur the image reconstructions (Snell
et al. 2017) and thus reduce the extreme values. The VAE
blurring is a result of the VAE architecture. These extreme
values are important for climate research, so we propose
to improve the UNIT network performance by following
it up with QM. In the combined UNIT+QM method, we
take the trained UNIT network and use it to translate the
entire HadGEM3 dataset; then we train QM between this
dataset and the ERA5 dataset. The same trained UNIT
instance is used in both the UNIT and the UNIT+QM
results presented.

a. South Asian Monsoon

Figure 1 shows the means and biases of precipitation
in the peak monsoon months (June-September) in ERA5,
HadGEM3, and the UNIT-corrected data. This figure
shows the key bias present in HadGEM3’s simulated mon-
soon. It also shows the effects of the reduction in extremes
generated by UNIT, where the average precipitation is re-
duced everywhere. The results for QM and UNIT+QM are
not shown. By the definition of QM, their biases under this
plot would be near-zero (non-zero only due to sampling er-
ror between train and test data), and their means would be
the same as the ERA5 field. We confirmed this by plotting.
Figure 2 shows three non-consecutive days from the

HadGEM3 validation data and their bias corrections us-
ing the three different methods. These examples show
that UNIT can coherently bias correct the structure of the
fields and shows the consequences of QM’s lacking in this
ability. In example day 1, it removes the precipitation in
HadGEM3 which is characteristic of the HadGEM3 mon-
soon bias. It also removes the associated minor depression
in geopotential height. QM maintains the spatial structure
of the fields but simply adjusts the intensity; hence the QM
field is left with a muted form of the HadGEM3 monsoon
precipitation. In the QM data, the spatial structure is still
intact, and the field produced is unrealistic. In example
day 2, UNIT removes the monsoon precipitation feature
and a stronger geopotential height anomaly. In this case,
the dynamical conditions simulated by the GCM are truly
biased and do not happen in the observations. In this case,
it makes sense to bias correct the dynamical feature of
geopotential height as well as the precipitation. This is an
advantage over previous studies which assume the dynam-
ical features are correct and use them without scrutiny to
aid bias correcting other variables. Example day 3 shows
a case where UNIT adds a precipitation system over the
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Fig. 1. Mean precipitation (mm/day) during peak monsoon months (June-September) for each dataset and their bias with respect to ERA5.

Bay of Bengal, showing the UNIT network can add mete-
orological features as well as remove them.
In figure 3, we show the distribution of daily accumu-

lated precipitation from a single gridpoint. This gridpoint
is located on the southern tip of India. The datasets of
the three bias correction techniques of UNIT, UNIT+QM,
and QM are created by taking this HadGEM3 data and
debiasing it with each method.
This figure shows the typical behaviour of these bias

correction methods. There is a significant bias between
the ERA5 and HadGEM3 datasets, with HadGEM3 show-
ing much more light drizzle (Takahashi et al. 2021) with
precipitation values below 0.1 mm/day. Since this is a
marginal distribution, QM is expected to perform well. If
the datasets were infinitely large, then by definition, QM
would perform perfectly here (Maraun et al. 2017). The
same is true of the combined UNIT+QM method. The
UNIT translation performs reasonablywell on themarginal
distribution, although it reduces the occurrence of both
high and low extremes and shifts more of the distribution
towards ERA5’s central peak. Note that QM is explicitly
designed to match these one-dimensional distributions at
each gridpoint, whilst UNITmatches the distributions only
as an emergent feature of optimising its loss function.
Figure 4 shows the joint distribution between temper-

ature and precipitation at the same grid location at the
southern tip of India (we also sampled several others and
found similar qualitative results). This plot shows that al-
though UNIT underdisperses the data, it can capture the
shape of the joint distribution well. We see that quantile
mapping does not correct the joint distribution between
precipitation and temperature well. UNIT+QM performs
the best of the three techniques and captures both the joint
distribution and the dispersion of the data. The UNIT step
in UNIT+QM corrects the correlation structure, whilst the
QM part corrects the marginal distributions.

In order to quantitatively assess the similarities of these
joint distributions, we use Jensen–Shannon (JS) diver-
gence. This is a common statistical measure of how dif-
ferent two distributions are; a lower value is better. We
estimate this empirically by binning the 2D (temperature
and precipitation at a gridpoint) data into bins {b𝑖} and
counting the frequency in each bin. The JS divergence is
computed

𝐷𝐽𝑆 (𝑃 | |𝑄) =
1
2
(𝐷𝐾𝐿 (𝑃 | |𝑀) +𝐷𝐾𝐿 (𝑄 | |𝑀)) (7)

where 𝑃 and 𝑄 are the two distributions in question,
and 𝑀 = (𝑃+𝑄)/2 is their mean. 𝐷𝐾𝐿 (𝑃1 | |𝑃2) computes
the KL divergence between distributions 𝑃1 and 𝑃2, and is
estimated empirically via

𝐷𝐾𝐿 (𝑃1 | |𝑃2) =
∑︁
b𝑖

𝑃1 (b𝑖) log
(
𝑃1 (b𝑖)
𝑃2 (b𝑖)

)
. (8)

We compute the JS divergence between each of the dis-
tributions in figure 4 and the ERA5 distribution. We form
a 2D histogram by splitting the data into 20 bins of equal
width in both the temperature and precipitation1/4 dimen-
sions. We calculate JS divergences of 0.189, 0.053, 0.020,
and 0.025 for the HadGEM3, UNIT, UNIT+QM ,and QM
distributions with respect to the ERA5 dataset. The re-
sults were comparatively similar for a range of reasonable
choices of the number of bins - see appendix A4. These JS
divergence values are all significantly distinct from each
other - see appendix A5.
Continuing this analysis, figure 5 shows maps of the

JS divergence of precipitation and temperature at all grid-
points. UNIT performed poorly due to how it underdis-
perses the data, whilst UNIT+QM performed the best.
UNIT+QM appears to adjust for the correlations in the
data whilst also maintaining the dispersion.
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Fig. 2. Three samples of daily fields from the HadGEM3 data and their bias corrections with three different methods. The fields shown for
each day are the accumulated precipitation (plotted with power-law colour intensity), 500hPa geopotential height, and 2-metre temperature. The
geopotential height and temperature are shown as anomalies and have had their monthly means subtracted. Each row of the figure shares the
colourbar plotted at its end.

In order to assess the spatial structures of the data and
translations, we start locally, looking at the joint distribu-
tion of precipitation at two neighbouring gridpoints. We

choose the same familiar gridpoint on the southern tip of
India and the cell directly eastwards of it. Again, in figure
6, we see that UNIT+QM performs the best, improving the
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Fig. 3. Distributions of daily accumulated precipitation from a single
gridpoint located at the southern tip of India (centred at 8.6°N 77.9°E).
Five distributions for the same location are plotted from the five different
data sources. The normalised histogram is on an x-scale of the fourth
root of precipitation so that the differences in the distributions can be
seen. It is also clipped at an upper value of 75 mm/day.

Fig. 4. Joint distributions of daily accumulated precipitation and
daily mean temperature from a single gridpoint located at the southern
tip of India (centred at 8.6°N 77.9°E) for the five different datasets. Each
point is from a single day, and the contours show the joint density as
estimated by kernel density estimation. The x-scale in all subplots is
the 4th root of precipitation. This was chosen so that the differences in
the distributions can be seen. It is also clipped at an upper value of 75
mm/day.

structure of the joint distribution and also the dispersion of
the data. UNIT reduces the dispersion, and QM does not
adequately correct the correlation structure.

We wish to assess whether the daily fields produced by
eachmethod of bias correction are realistic andwhether the
spatial structures observed are biased. In order to do so, we
use the mean structural similarity index measure (SSIM)
(Wang et al. 2004), which is a metric designed to measure
how structurally similar two images are. SSIM takes into
account the difference in mean values, the contrast in the
image between high and low values, and the structure in
the image - i.e. whether high and low values are in the
same locations. As is common, we use the mean SSIM,
and these comparisons aremade for each gridpoint using an
11×11 pixel Gaussian sliding window. Then the average is
taken over the image. A larger value shows a closer match
between images, with a maximum possible similarity of 1.
In order to assesswhether the datasets produce fields that

are spatially realistic, we propose running the following
computation:
Take one daily field of a single variable from a dataset

𝜒 ∈ {HadGEM3, UNIT, UNIT+QM, QM} and find the
daily field from the ERA5 test dataset which is most sim-
ilar using SSIM. This is a similar matching algorithm to
flow-analogues as developed in Yiou et al. (2007). Store
this optimal value of SSIM. Repeat for all days in dataset
𝜒.
Then we plot the distribution of these best-match SSIM

values. Figure 7 shows the distributions calculated by
matching on geopotential height, mean daily temperature,
and the fourth root of precipitation. We chose to use the
fourth root of precipitation as the rawmarginal distribution
has a very long tail, and we wish to avoid extreme values
dominating the comparison. Instead, we are trying to focus
on the overall spatial structure. In the figure, the further
the distribution is to the right the more similar the fields
in the dataset were to the ERA5 fields. In the figure,
we also include the results of comparing fields from the
ERA5 train dataset to the test dataset to set a baseline
and aid interoperability. The results in this figure tell us
that the UNIT translations produced fields that were closer
to ERA5 fields than the other translation methods, with
UNIT+QM having the next most similar fields.
There are some limitations to this matching method

which should be noted and can explain why UNIT outper-
forms UNIT+QM here. The UNIT translations are under-
dispersed, as we have seen in previous figures. This means
each UNIT field lies more towards the centre of the ERA5
distribution. Fields from any dataset 𝜒 which lie towards
the centre of the ERA5 distribution are more likely to find
an ERA5 field that matches them closely than fields from 𝜒
which are towards the tails of the ERA5 distribution. This
is simply because there are more ERA5 fields to choose
from in dense regions. The best-match SSIM between a
field x and the ERA5 data is positively associated with the
density of the ERA5 data 𝑝ERA (x) around the location x.
This explains whyUNIT performs best in this analysis. We
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Fig. 5. A map showing estimated of JS divergence (equation (7)) of the HadGEM3, UNIT, UNIT+QM and QM datasets with respect to the
ERA5 dataset. The JS divergence is calculated at each gridpoint between the 2-dimensional precipitation and temperature distributions using 20
bins in each dimension.

Fig. 6. Joint distributions of daily accumulated precipitation at a
gridpoint located at the southern tip of India (centred at 8.6°N 77.9°E)
and its neighbouring cell directly eastwards (centred at 78.8°E) for the
five different datasets. Each point is from a single day, and the contours
show the joint density as estimated by kernel density estimation. The
x and y-scale in all subplots is the 4th root of precipitation. This was
chosen so that the differences in the distributions can be seen. It is also
clipped at an upper value of 75 mm/day.

note that UNIT+QM performed second best and the dis-
tribution of UNIT+QM is not underdispersed like UNIT.
In appendix A9, we perform extra analysis which confirms

Fig. 7. Distributions of the SSIM between each dataset field and its
most similar ERA5 field. Repeated for the mean 2 metre temperature,
mean 500hPa geopotential height and the fourth root of daily precipita-
tion.

that UNIT’s exaggerated performance in this analysis is
likely due to underdispersion.
We repeated the computation above using mean abso-

lute difference and mean square difference as alternative
metrics to SSIM and achieved qualitatively similar results.
Furthermore, we examine if the characteristics of these

methods hold when we spatially aggregate the data. We
aggregate to a few river basins in this region, using data
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Fig. 8. Joint distributions of themean daily accumulated precipitation
and daily mean temperature aggregated over the Mahanadi river basin
for the five different datasets. Each point is from a single day, and the
contours show the joint density as estimated by kernel density estimation.
The x-axis has power law scaling. This was chosen so that the differences
in the distributions can be seen. It is also clipped at an upper value of
75 mm/day.

from the World Bank data catalogue (The World Bank
2019) to define the basin boundaries. We aggregate to the
portion of these basins that lie within the spatial extent of
our data, and therefore two of the basins are clipped (see
appendix A6 for plotted basin masks).
Figure 8 shows the joint distribution between the spatial

mean precipitation and temperature in the Mahanadi river
basin. This basin was chosen as there is a big difference
between the HadGEM3 and ERA5 joint distributions, and
therefore the bias correction method has a lot to correct.
Debiasing this distribution involves correcting spatial cor-
relations (since it is a spatial aggregate) and cross-variable
correlations simultaneously. Once again we can see that
UNIT+QM performs well, correcting the cross-variable
correlations and the dispersion.
Finally, in figure 9, we plot the joint distribution be-

tween the spatial mean of precipitation in the Ganges-
Brahmaputra and Indus basins. These are two important
basins, both impacted by the South Asian monsoon and
geographically separated. This kind of long-range bias
correction could be important for assessing the risks of
multiple breadbasket failure. None of the methods per-
formed particularly well in this analysis.

Fig. 9. Joint distributions of mean daily accumulated precipitation
across the Ganges-Brahmaputra and the Indus basin for the five different
datasets. Each point is from a single day, and the contours show the
joint density as estimated by kernel density estimation. The x-axis and
y-axis have power law scaling. This was chosen so that the differences
in the distributions can be seen. It is also clipped at an upper value of
75 mm/day.

b. Other Extremes

In the second part of the results section, we study the per-
formance of these bias correction techniques for other ex-
treme events of societal relevance in the South Asia region.
In particular, we study whether the combined UNIT+QM
improves the representation of physical extremes. We con-
sider three cases, testing the cross-correlation of different
variables and spatial areas.
First, we analyse the relationship between temperature

and pressure on the hottest day of each year over a region
in central India (8°-28°N 72°-85°E). We select the day
with the highest average maximum daily temperature over
this region in each year. South Asia experiences some
of the most extreme humid heat on the planet (Raymond
et al. 2020), and combined with high population density
and vulnerability to such hazards, this poses a severe threat
to human health (Im et al. 2017). Furthermore, even in
spite of the cooling influence of anthropogenic aerosols
over the region, recent events such as the heatwave of
2015 have been amplified by climate change (Wehner et al.
2016). Thus, the understanding of such events is becoming
increasingly pertinent.
Figure 10 shows the joint distributions between daily

maximum temperature and 500hPa geopotential height at
all gridpoints across all annual hottest days. In this case,
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Model Hot days Wet periods Two basins SPI
(fig. 10) (fig. 11) (fig. 12)

HadGEM3 0.1383 0.2531 0.1417
UNIT 0.0712 0.1856 0.1100

UNIT+QM 0.0442 0.0310 0.0811
QM 0.0462 0.0511 0.0844

Table 1. JS divergence values for eachmodel relative to ERA5 across
three joint distributions of extreme events: temperature and pressure on
the hottest days of the year over central India (figure 10); temperature and
precipitation over the wettest continuous 30 days of each year over the
Ganges-Brahmaputra basin (figure 11); the Standardised Precipitation
Index in the Ganges-Brahmaputra and Indus river basins (figure 12).
These JS divergence values are all significantly distinct from each other
- see appendix A5

Fig. 10. Joint distributions of the daily maximum temperature and
500 hPa geopotential height at each gridpoint over central India, bounded
by 8°-28°N 72°-85°E, on the hottest day of each year (defined by the
spatially averaged daily maximum temperature) for the five different
datasets. Each point is from a single day and gridpoint, and the contours
show the joint density as estimated by kernel density estimation.

UNIT+QM appears to perform the best, though with only
17 annually hottest days to analyse, so this could be quite
sensitive to noise.
Results of the JS divergence for all of the various extreme

distributions are presented in table 1. In this first case,
UNIT+QM performs best, though not significantly better
than QM.
Second, we analyse the relationship between tempera-

ture and precipitation over the Ganges-Brahmaputra river
basin during the wettest continuous 30-day period of each
year. Flooding, driven partly by rainfall excesses or

Fig. 11. Joint distributions of the daily maximum temperature
and accumulated precipitation at each gridpoint over the Ganges-
Brahmaputra river basin over thewettest 30-day period each year, defined
by the spatially-averaged accumulated precipitation, for the five different
datasets. Each point is from a single gridpoint, and the contours show
the joint density as estimated by kernel density estimation.

deficits, has severe impacts on the region. Between 2000-
2020, floods caused over USD 100 billion in damages and
the deaths of more than 49000 people - almost half of the
global flood mortality in the period - according to disaster
database EM-DAT (Guha-Sapir et al. 2014). While this is
largely driven by the behaviour of the monsoon, impact-
ful rainfall extremes also occur outside of this season and
are also influenced by anthropogenic climate change (Rimi
et al. 2019). When widespread flooding occurs, simulta-
neous extreme heat may result in compounded impacts,
such as through disrupted water supplies and water- and
insect-borne disease (Levy et al. 2016; Moors et al. 2013).
Figure 11 shows the joint distributions between the 30-

day averages of daily maximum temperature and precip-
itation, for the wettest 30-day period of each year, at all
gridpoints in the Ganges-Brahmaputra basin and for all
years.
Across the basin there are two temperature regimes due

to the change in altitude from low-lying Bangladesh and
northeast India to the Tibetan Plateau. Over the low-lying
warmer region, HadGEM3 shows severe discrepancies in
rainfall, likely owing to its poor monsoon representation
and its tendency to drizzle. While UNIT underdisperses
the translated data, both QM and UNIT+QM performwell.
The results of JS divergence (table 1) show that combining
the two techniques captures the reanalysis data most ef-
fectively, with UNIT+QM significantly outperforming the
other methods.
Third, we analyse the relationship between precipita-

tion in the Indus and Ganges-Brahmaputra river basins,
following on from earlier analysis (figure 9), to measure
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not only spatial but also temporal variation between the
basins. Combined, these rivers are of crucial importance
to agriculture and thus food security in the region. Accu-
rately simulating the possibility of co-occurring flooding
or flash drought in the two is therefore pivotal. To measure
excesses and deficits in rainfall over time, we use the Stan-
dardised Precipitation Index, which is commonly used to
monitor drought and flood hazards (Chandrasekara et al.
2021; Aadhar and Mishra 2017; Tirivarombo et al. 2018).
This index is defined by

𝑆𝑃𝐼𝑇 =
𝑃𝑇 −𝑃∗
𝜎𝑃𝑇

, (9)

where 𝑃𝑇 is the mean precipitation over a time period
length T. 𝑃∗ is the mean value of all 𝑃𝑇 across the dataset,
and 𝜎𝑃𝑇 is its standard deviation. 30 days is used as the
baseline time period to represent medium-term extremes
in precipitation, relevant for both flooding and subseasonal
flash drought (Christian et al. 2021; Mishra et al. 2021).
Figure 12 shows the joint distributions between co-

occurring SPI values in each river basin for each model
and bias correction system. We note that the data points
in this plot originate from a 30 day rolling time win-
dow instead of selecting independent 30 day periods. To
turn our rolling window data into independent samples
would mean selecting 1/30th of the time indices, i.e. in-
dices {30𝑖 + 𝑠}𝑖∈[0,1,2,3,...] where 𝑠 is the starting index
0 < 𝑠 < 29. However, we are only interested in estimating
the joint density, and all starting indices 𝑠 are equally valid.
So we decide not to filter to independent periods in the
density plot and effectively marginalise over 𝑠 when per-
forming kernel density estimation in the figure. However,
we note that the datapoints are oversampled, so we must
avoid overinterpreting point clusters. An independently-
sampled version of this plot is presented in the appendix
(figure A8) and shows the same overall structure in each
case.
HadGEM3 underestimates the co-occurrence of very

wet events where the Ganges-Brahmaputra SPI >1 and
Indus SPI >2. All translations perform reasonably well
at correcting for these edge cases, but again UNIT+QM
performs best. This is evident from the JS divergence
values and visually; while UNIT underdisperses the data,
using UNIT+QM provides an accurate correction for more
extreme events.

5. Conclusion

In this study, we examined the appropriateness of un-
paired image-to-image translation networks to bias correct
climate data. We found that the UNIT neural network
architecture was not sufficient by itself for bias correct-
ing data. This was because it reduced the dispersion of the
data and therefore led to less extreme values than expected.
We showed that the bias correction produced by UNIT did

Fig. 12. Joint distributions of the Standardised Precipitation Index
at each gridpoint over the Ganges-Brahmaputra and Indus river basins
using a 30-day time window for the five different datasets. Each point
is from a single gridpoint, and the contours show the joint density as
estimated by kernel density estimation.

have desirable properties, such as coherently bias correct-
ing cross-variables correlations and spatial structures. We
proposed to combine the UNIT translation with quantile
mapping, a more traditional bias correcting technique - a
combination which is similar to previous work (François
et al. 2021). We found that applying these techniques in se-
quence made up for shortcomings in each. UNIT was able
to bias correct the spatial and cross-variable correlations,
whilst QM corrected UNIT’s tendency to underdisperse
the data.
When applied to bias correct the daily minimum, mean,

and maximum temperature, the precipitation, and geopo-
tential height, we found that UNIT+QM was able to si-
multaneously correct all variables. This is an advantage of
previous work where the dynamical feature of geopotential
height is assumed to be correct and unbiased and thus is
used as a key part of regularising the bias correction (Pan
et al. 2021). In our method, we leave it to the discriminator
network to ensure that the temperatures and precipitation
are consistent with each other and the dynamical variable.
This allows the network to bias correct the dynamical vari-
able where it is appropriate.
Designing bias correction methods such as UNIT+QM,

which can bias correct many variable joint distributions, is
crucial to study and make risk assessments of compound
extreme events. Such cross-variable corrections are also
important when the output of GCMs are used as boundary
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conditions of regional climate models (White and Toumi
2013). We have shown that incorporating modern ma-
chine learning methods alongside classical techniques can
provide us with more powerful tools for bias correction.
Further work on this topic may be needed in several as-

pects. First, to consider the performance of this approach
compared to newer developments in statistical bias correc-
tion such as multivariate quantile mapping (Cannon 2018),
alongside computational demands, as well as how the ap-
proaches could be further combined to address the issues
inherent in both. Second, to consider bias correction of
non-stationary data. We note that this is also an ongoing
challenge for classical techniques. Many of the extensions
to classical techniques used for non-stationary data, such
as detrending either additively or multiplicatively (Cannon
et al. 2015), could also be used with UNIT+QM.
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APPENDIX A

A1. Preprocessing the data

As is ubiquitous in trainingmachine learning (ML)mod-
els, we preprocessed the data before training the UNIT
network.
The daily mean temperature fields originally in Kelvin

were converted to Celsius and then divided by the mean of
the standard deviation of temperature across all latitudes
and longitudes. This maintained the physically-significant
value of 0°C whilst avoiding excessive gradients when up-
dating the model parameters. The daily maximum and
minimum temperatures were converted to degrees Celsius
above or below the daily mean temperature. This allowed
us to choose ReLU activation functions which enforced
𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑒𝑎𝑛 < 𝑇𝑚𝑎𝑥 . They were also divided by the spa-
tially mean standard deviation in temperature.
Precipitation values are extremely skewed and non-

Gaussian. This can be challenging for an ML model to
learn. In keeping with ML best practices, we transformed
the data so that the distribution became closer to Gaus-
sian. We found that taking the fourth root of the daily
accumulated precipitation appeared reasonably dispersed.
Then we divided the data by its standard deviation. We
note that the transforms used needn’t make the data exactly
Gaussian, merely less extremely distributed.
We simply standardised the 500hPa geopotential height

by subtracting the mean and dividing by the standard de-
viation. The means and standard deviations used were
not calculated point-wise, instead a single value was used
globally.

A2. UNIT network structure

Figure A1 shows a diagram of the UNIT architecture
used here. We use colour and shape to represent different
layers and sub-components of the network.
The encoders 𝐸 (x) are comprised of 7 convolutional

layers with convolutional downsampling to reduce the spa-
tial dimension. The decoders 𝐺 (z) are comprised of 9
convolutional layers with nearest neighbour upsampling to
increase spatial dimension. Nearest neighbour upsampling
was used over transpose convolutions to avoid checker-
board artefacts Odena et al. (2016) which are present in
the original UNIT network. Some of these layers are or-
ganised into residual skip connections (He et al. 2016),
which allow more routes for gradient backpropagation to
earlier layers.
We use amulti-scale discriminator in each domain. Isola

et al. (2017) found that suchmulti-scale discriminators pro-
duce images which have more realistic large-scale features
and sharper small-scale features. The multi-scale discrim-
inator is composed of 3 discriminator components which
asses the plausibility of the translations at separate spatial
scales. We use spatial scales which are 1×, 2×, and 4×
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coarser than the input image. Each discriminator compo-
nent had 6 convolutional layers. For the discriminators
coarser than the original image, the input image is coars-
ened by mean pooling.
Batch normalisation and leaky ReLU activation func-

tions were used throughout these components, as shown in
the diagram. The final layer of the decoder 𝐺 (z) used dif-
ferent activation functions for the different channels. The
mean temperature and geopotential height used none (i.e.
𝑥 ↦→ 𝑥); the precipitation, and maximum and minimum
temperatures (expressed as difference from mean tempera-
ture) used ReLU activation functions. Where padding was
used, it was replication padding. The number of filters
used in each layer is shown in the diagram.
The bottom panel of the diagram shows the overall struc-

ture of the UNIT network. It also shows the path of an
image x from domain 𝑋 through the network components
to generate its reconstruction (x̂𝑥), its translation to domain
𝑌 (ŷ𝑥), and its cyclic reconstruction (x̂𝑥𝑦). This panel also
shows where in the path the translation is passed into the
multi-scale discriminator.
This panel also shows the use of the land mask. Early in

the study we noticed that the UNIT network was produc-
ing unphysical translations at land-sea boundaries, such
as negative daily temperature ranges (this was noticed be-
fore we added some of the preprocessing and activation
constraints mentioned in A1). This occurred exclusively
on land-sea border pixels. To aid the network in translat-
ing these border regions effectively, the encoder 𝐸 (x) and
discriminator 𝐷 (x) networks were given the concatenated
weather fields and binary land-sea mask [x,mask] as in-
put. The decoder 𝐺 (z) was only trained to reconstruct
images x̂𝐺𝐶𝑀/𝑜𝑏𝑠 from the latent encoding z and ignored
the land-sea mask.

A3. Training and hyperparameters

The hyperparameters used in training this network were
taken from those used in the original UNIT network and
adjusted manually a little using only the results of the
training data. These were not highly optimised, so there
may be room for improvement.
We trained the network from scratch using a batch size

of 8 and the Adam optimiser (Kingma and Ba 2014) with
learning rate of 5× 10−4 for both the translation network
and the discriminators. In the Adam optimiser, we also
used weight decay, 𝛽1 and 𝛽2 values of 0.0001, 0.5, and
0.999. No explicit regularisation was used in training. The
only regularisation present in the network is the implicit
regularisation associated with the reparameterisation step
in the VAEs.
We trained the network for 208,000 iterations. As with

many adversarial networks, training is quite unstable, and

so the model was checkpointed regularly (every 2000 it-
erations) throughout training. We chose the 208,000 iter-
ation checkpoint manually although training continued to
570,000 iterations. We chose this checkpoint as the loss
was reasonably low and stable at this point. The network
took a few days to train on a single NVIDIA Tesla T4 GPU.
The loss coefficients used in equation (6) are shown in

table A1. These are similar to those used in the original
UNIT network.

Parameter Value Parameter Value
_𝑟𝑒𝑐 10 _𝐾𝐿−𝑟𝑒𝑐 0.005
_𝑐𝑦𝑐 10 _𝐾𝐿−𝑐𝑦𝑐 0.005
_𝐺𝐴𝑁 1

Table A1. The coefficients used in the UNIT loss function

As noted in the main text, we use a weighted L1-norm
loss function for the image reconstructions in equation (2).
This was motivated to emphasise the precipitation fields
in the translation as these have the most complex distribu-
tions. We weight the L1 loss calculated separately for each
channel such that

𝐿1 =

∑
𝑐𝑤𝑐𝐿1𝑐∑
𝑐𝑤𝑐

(A1)

where 𝐿1 is the total weighted L1 loss for a sample, 𝐿1𝑐
is the L1 loss for a channel 𝑐, and 𝑤𝑐 is the weight for that
channel. We set the weight of the precipitation channel to
5 and the weight of the other four channels to 1.

A4. Empirically calculated JS divergence

In this study, we have used an approximation of JS di-
vergence (equation (7) that can be used on binned data.
Figure A2 shows the sensitivity to the number of bins of

the spatial mean of the JS divergence between precipitation
and temperature calculated at each gridpoint (i.e. the mean
value across figure 5 for each dataset). This shows that our
results are qualitatively robust to the choice in the number
of bins in this estimation.

A5. Significance of JS divergence values

In themain text, we quote the values of the JS divergence
calculated between each of the distributions in figure 4. We
estimate the significance of these values via bootstrapping.
We randomly sample N fields with replacement from the

ERA5 dataset, which is also of length N. We sample from
each dataset 𝜒 ∈ {HadGEM3, UNIT, UNIT+QM, QM}
similarly (we also sample again independently from ERA5
for results in table A2). Then we calculate the JS diver-
gence between these bootstrapped samples. We repeat this
bootstrapping calculation 200 times. The 5th, 50th and
95th percentiles, as well as the values quoted in the main
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Fig. A1. Architecture of the UNIT network, configured as we use in this study.

text which did not use bootstrapping, are collated in table
A2.

We note that the JS value calculated using all the data
is consistently lower than even the 5% value using boot-
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Fig. A2. The spatial mean of the JS divergence between temperature
and precipitation at all gridpoints.

Bootstrapped percentile
Data source value 5% 50% 95%
HadGEM3 0.1890 0.1903 0.1975 0.2048
UNIT 0.0527 0.0564 0.0605 0.0649

UNIT+QM 0.0199 0.0255 0.0288 0.0316
QM 0.0247 0.0311 0.0342 0.0381

Table A2. The values of the JS divergence calculated between each
of the distributions in figure 4 as mentioned in the main text and their
bootstrapped intervals.

strapped samples. This is simply because the bootstrapped
samples are less diverse than the full dataset, and so it can
only be expected that the match between the distributions
will get worse. We consider one data source to be sig-
nificantly better than the other if the 50% bootstrapped JS
divergence of that dataset is lower than the 5% of the other
data source. This suggests that UNIT+QM is a significant
improvement on the other methods in this statistic.
TableA3 shows similarly calculated confidence intervals

calculated for the JS divergences presented in table 1.

A6. Basins used

Figure A3 shows the areas used for each basin used in
this study. The mask was created by checking whether the
centre of each gridpoint is contained within the boundaries
of the basin shape downloaded from the World Bank data
catalogue (The World Bank 2019).
As noted, two of these basins are clipped due to the

boundaries chosen (8°S-30°N 44°E-121°E). In this study,
we only use the results of aggregating these basins as a
demonstration of how each method of bias correction per-
forms when aggregated over a spatial area. Therefore clip-
ping these basins to the area in our domain does not affect
the contents of the work presented here.

A7. Plots repeated as copulas

In order to assess the joint distribution of the transla-
tions without the influence of the marginal distributions,

Bootstrapped percentile
Data source value 5% 50% 95%
Hot Days Temperature-Pressure (figure 10)

HadGEM3 0.1383 0.1396 0.1451 0.1520
UNIT 0.0712 0.0738 0.0776 0.0811

UNIT+QM 0.0442 0.0482 0.0510 0.0545
QM 0.0462 0.0501 0.0533 0.0569

Wet Periods Temperature-Precipitation (figure 11)
HadGEM3 0.2531 0.2523 0.2593 0.2670
UNIT 0.1856 0.1911 0.1971 0.2054

UNIT+QM 0.0310 0.0426 0.0462 0.0497
QM 0.0511 0.0628 0.0678 0.0734

SPI in two basins (figure 12)
HadGEM3 0.1417 0.1413 0.1468 0.1522
UNIT 0.1100 0.1132 0.1186 0.1240

UNIT+QM 0.0811 0.0848 0.0886 0.0931
QM 0.0844 0.0891 0.0936 0.0989

Table A3. Bootstrapped confidence intervals calculated using the
samemethod as those in table A2, but for JS divergence values presented
in table 1.

Fig. A3. Geographical extent of the key areas and basins used in this
study. The red line denotes the overall region used in this study. For the
basins which extend outside this red box, we have aggregated to only the
area of the basin which lies inside this region. The black bounding box
denotes the area bounded by 8°-28°N 72°-85°E, used to study extreme
heat events as in figure 10.

we recreate some of our figures from the main text after
transforming the data values into quantiles. This produces
an empirical estimate of the copula of the two-dimensional
datasets plotted. Figures A4, A5, A6, and A7 are copula
alternatives to figures 4, 6, 8, and 9 respectively.
The results of figures A4-A7 support what we observed

in the figures in the main text. The UNIT+QM method
performs the best across the four figures. The UNIT+QM
copula is more similar to the ERA5 copula than those of the
other methods in all the figures. QM does not adequately
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Fig. A4. Copula decomposition of figure 4 - Joint distributions
of daily accumulated precipitation and daily mean temperature from a
single gridpoint located at the southern tip of India (centred at 8.6°N
77.9°E) for the five different datasets. Each point is from a single day,
and the contours show the joint density as estimated by kernel density
estimation. The x and y-scales show the precipitation and temperature
as expressed as quantiles calculated with respect to each dataset.

correct the copula of the HadGEM3 data in any of the
figures.
When a dataset is transformed via regular QM, its cop-

ula is unaffected. Therefore, we might expect the copulas
of the HadGEM3 and QM datasets to be identical in each
of the figures. Similarly, we might expect the UNIT and
UNIT+QM data to have identical copulas. However, we
apply quantile mapping to each month separately. This
makes the QM we apply a conditional QM. This method
can therefore modify the copula, not just the marginal dis-
tributions when considered over the whole year.
In figures A6 and A7 there are no data points in the

gap between 0 and around 0.1-0.2 on the x-axis. This is
because around 10-20% of the basin average precipitation
for the Mahanadi and Indus basins there is exactly zero.
Hence these 10-20% of data points are assigned a quantile
of zero. The Ganges-Brahmaputra basin is large enough
that almost no days have exactly zero precipitation across
the basin, so no gap is observed in the y-axis in figure A7.

A8. Independently sampled SPI events

Figure A8 shows independently sampled values of SPI
from the Ganges-Brahmaputra and Indus river basins. The
overall structure of the distributions is very similar to figure

Fig. A5. Copula decomposition of figure 6 - Joint distributions of
daily accumulated precipitation at a gridpoint located at the southern
tip of India (centred at 8.6°N 77.9°E) and its neighbouring cell directly
eastwards (centred at 78.8°E) for the five different datasets. Each point
is from a single day, and the contours show the joint density as estimated
by kernel density estimation. The x and y-scales show the precipitation
at the two gridpoints as expressed as quantiles calculated with respect to
each dataset.

12, in which values are calculated from a rolling time
window.

A9. Alternative matching algorithm

We examine the opposite match algorithm to the one
used to produce figure 7. Instead of taking fields
from dataset 𝜒 ∈ {HadGEM3, UNIT, UNIT+QM, QM}
and finding the closest match in ERA5, we match the op-
posite way. We take each ERA5 field and find the closest
match in dataset 𝜒. The results of this are shown in figure
A9. This figure shows fairly similar results to figure 7,
with UNIT and UNIT+QM performing the best.
From the SSIM match distributions, we may be left

asking how often each individual sample is chosen as the
best match. If the translation is done well, we would expect
that many samples as chosen as the best match rather than
the same sample always being matched to. Figures A10
(based on matching precipitation1/4) and A11 (based on
matching temperature) show the results of this analysis.
We count how many times each sample is chosen as the
best match and then plot the frequencies (y-axis) of these
best match counts (x-axis). For example, in figure A10,
we can see that when we take HadGEM3 fields and select
the best match amongst the ERA5 data, around 1500 of
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Fig. A6. Copula decomposition of figure 8 - Joint distributions of
the mean daily accumulated precipitation and daily mean temperature
aggregated over the Mahanadi river basin for the five different datasets.
Each point is from a single day, and the contours show the joint density
as estimated by kernel density estimation. The x and y-scales show the
precipitation and temperature as expressed as quantiles calculated with
respect to each dataset.

the ERA5 fields were chosen as the best match exactly one
time. A little over 400 ERA5 fields were chosen as the best
match exactly twice, and so on. In the figures, the black
lines marked as ERA5→ERA5 are the results of matching
the training ERA5 data to the validation ERA5 data. Each
panel of these figures also shows the fraction of data which
was matched to at least once.
In figure A10, we see evidence of the underdispersion of

UNIT. When UNIT is matched to ERA, a few of the ERA5
fields are chosen many times, with one ERA5 field being
the best match to around 400 UNIT fields.
In the UNIT+QM panel, we see that the match frequen-

cies are similar to the ERA-to-ERA baseline regardless of
whether we match ERA5 to UNIT+QM or UNIT+QM to
ERA.
Figure A11 shows similar features to figure A10 but

with these features less pronounced. This may be because
temperature has a less complex spatial joint distribution
than precipitation.

Fig. A7. Copula decomposition of figure 9 - Joint distributions of
mean daily accumulated precipitation across the Ganges-Brahmaputra
and the Indus basin for the five different datasets. Each point is from
a single day, and the contours show the joint density as estimated by
kernel density estimation. The x and y-scales show the precipitation in
the two basins as expressed as quantiles calculated with respect to each
dataset.

Fig. A8. Joint distributions of the Standardised Precipitation Index
at each gridpoint over the Ganges-Brahmaputra and Indus river basins
using a 30-day time window for the five different datasets. Each point
is from a single gridpoint and a completely independent 30-day time
window.



19

Fig. A9. Distributions of the SSIM between each ERA5 field and its
best-matched dataset field. Repeated for the mean 2 metre temperature,
mean 500hPa geopotential height and the fourth root of daily precipita-
tion.

Fig.A10. Distribution of the number of times matched to fields were
chosen as the best match using SSIM to compare precipitation1/4. The
x-axis is the number of times a field was chosen as the best match (the
match count). The y-axis is the number of fields with this match count.
The figure shows the results of matching in both directions between
ERA5 and the bias correction methods. The black line is the result
of performing the same SSIM matching based on matching the ERA5
training set to the ERA5 test set and is included for comparison.

Fig. A11. The same as figure A10 but based on matching temperature.
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