

Edinburgh Research Explorer

Abstracting Noisy Robot Programs
Citation for published version:
Hoffman, T & Belle, V 2023, Abstracting Noisy Robot Programs. in Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, pp. 534–542, The 22nd International Conference on
Autonomous Agents and Multiagent Systems, 2023, London, United Kingdom, 29/05/23.
https://doi.org/10.5555/3545946.3598681

Digital Object Identifier (DOI):
10.5555/3545946.3598681

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Jun. 2023

https://doi.org/10.5555/3545946.3598681
https://doi.org/10.5555/3545946.3598681
https://www.research.ed.ac.uk/en/publications/5d369527-bd80-422f-97a2-a0659f7e86ab

Abstracting Noisy Robot Programs

Till Hofmann
RWTH Aachen University

Aachen, Germany
hofmann@kbsg.rwth-aachen.de

Vaishak Belle
University of Edinburgh

Edinburgh, United Kingdom
vaishak@ed.ac.uk

ABSTRACT

Abstraction is a commonly used process to represent some
low-level system by a more coarse specification with the
goal to omit unnecessary details while preserving important
aspects. While recent work on abstraction in the situation cal-
culus has focused on non-probabilistic domains, we describe
an approach to abstraction of probabilistic and dynamic
systems. Based on a variant of the situation calculus with
probabilistic belief, we define a notion of bisimulation that
allows to abstract a detailed probabilistic basic action theory
with noisy actuators and sensors by a possibly non-stochastic
basic action theory. By doing so, we obtain abstract Golog
programs that omit unnecessary details and which can be
translated to detailed programs for execution. This simplifies
the implementation of noisy robot programs, opens up the
possibility of using non-stochastic reasoning methods (e.g.,
planning) on probabilistic problems, and provides domain
descriptions that are more easily interpretable.

KEYWORDS

Logic; Robot Programs; Noise; Abstraction

ACM Reference Format:
Till Hofmann and Vaishak Belle. 2023. Abstracting Noisy Ro-
bot Programs. In Proc. of the 22nd International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
9 pages.

1 INTRODUCTION

Abstraction — the “process of mapping a representation of a
problem onto a new representation” [18] — is a ubiquitous
concept both in human behavior and in computing systems,
e.g., a simple activity such as buying milk involves dozens
of actions that a human conveniently abstracts into a single
task, and machine instructions (which itself are abstractions
of physical processes) are abstracted by higher programming
languages. It has also seen widespread usage in several ar-
eas of artificial intelligence research [31], in particular in
task planning. Abstraction typically involves suppressing ir-
relevant information and therefore allows reasoning about
complex problems that would otherwise be infeasible. In the
context of intelligent agents, abstraction typically serves three
purposes [6]: (1) it provides a way to structure knowledge,
(2) it allows reasoning about larger problems by abstracting

Proc. of the 22nd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2023), A. Ricci, W. Yeoh, N. Ag-
mon, B. An (eds.), May 29 – June 2, 2023, London, United Kingdom.
© 2023 International Foundation for Autonomous Agents and Multia-
gent Systems (www.ifaamas.org). All rights reserved.

the problem domain, resulting in a smaller search space, (3) it
may provide more meaningful explanations and is therefore
critical for explainable AI. The need for abstraction becomes
particularly apparent when dealing with robotic systems: as a
robot acts in a dynamic environment with imperfect sensors
and actuators, its actions are inherently noisy. As an example,
a robot may intend to move but may get stuck with some
probability. However, when programming such a robot, it is
desirable to ignore those probabilistic aspects and instead
work with a high-level and non-stochastic system, where the
move action always succeeds, for all of the reasons above:
Correctly designing a probabilistic domain is challenging,
reasoning on such a domain is hard, and understanding how
such a system operates is difficult. This becomes even more
important when considering a robot that may get a hardware
upgrade: while the low-level behavior changes (e.g., a new
sensor has a different noise profile), the high-level behavior
should not be affected. By using abstraction, we only need
to update the low-level model and may keep the high-level
program as is.

In this paper, we present an abstraction framework for
robot programs with probabilistic belief: Starting with the
logic DS [7], a modal variant of the situation calculus with
probabilistic belief, we describe a transition semantics for
noisy Golog programs in Section 3. Based on this logic, we
propose a notion of abstraction of noisy programs, building
on top of abstraction of probabilistic static models [6] and
non-stochastic dynamic models [2]. We do so by defining
a notion of bisimulation of probabilistic dynamic systems
in Section 4 and we show that the notions of sound and
complete abstraction carry over. We also demonstrate how
this abstraction framework can be used to define a high-level
domain, where noisy actions are abstracted away and thus, no
probabilistic reasoning is necessary. We conclude in Section 5.

2 RELATED WORK

Reasoning about actions. The situation calculus [27, 29] is
a logical formalism for reasoning about dynamical domains
based on first-order logic. In the situation calculus, world
states are represened explicitly as first-order terms called
situations, where fluents describe (possibly changing) proper-
ties of the world and actions are axiomatized in basic action
theorys (BATs). Golog [16, 24] is a programming language
based on the situation calculus that allows to control the
high-level behavior of robots. ES [22] is a modal variant and
epistemic extension of the situation calculus, where situa-
tions are part of the semantics but do not appear as terms
in the language. ESG extends ES with a transition seman-
tics for Golog programs, which has been used for program

verification [11]. The situation calculus, ES, and ESG are all
deterministic and non-stochastic, i.e., the execution of an
action always results in a unique successor state. De Giacomo
and Lespérance [15] extend the situation calculus with non-
deterministic actions, where the environment chooses one
of several possible outcomes of an action. Bacchus et al. [1]
extend the classical situation calculus with degrees of belief
and noisy actions. In a similar fashion, DS [7] extends ES
with degrees of belief and probabilistic actions, where the
environment again may choose an outcome (possibly from
an unbounded domain) with some pre-defined probability,
allowing probabilistic representations of robot actions, in
particular noisy sensors and actuators. More recently, reason-
ing about actions in DS has been shown to be amenable to
regression [26] and progression [25] analogous to regression
and progression in ES and the classical situation calculus [29].

Abstraction. Giunchiglia and Walsh [18] define abstraction
generally as a mapping between a ground and an abstract for-
mal system, such that the abstract representation preserves
desirable properties while omitting unnecessary details to
make it simpler to handle. Abstraction has been widely used
in several fields of AI [31]. Hierarchical task network (HTN)
planning systems such as SHOP2 [28] decompose tasks into
subtasks to accomplish some overall objective, which has
also been used in the situation calculus [17]. Macro planners
such as MacroFF [9] combine action sequences into macro
operators to improve planner performance, e.g., by collecting
action traces from plan executions on robots [20], or by learn-
ing them from training problems [10]. Similarly, Saribatur
and Eiter [32] use abstraction in Answer Set Programming
to reduce the search space, improving solver performance.
Cui et al. [13] leverage abstraction for generalized planning,
i.e., for finding general solutions for a set of similar planning
problems. Abstraction has also been used to analyze causal
models [4, 30]. Of particular interest for this work is the
notion of constructive abstraction [5], where the refinement
mapping partitions the low-level variables such that each
cell has a unique corresponding high-level variable. Holtzen
et al. [21] describe an abstraction framework for probabilistic
programs and also describe an algorithm to generate abstrac-
tions. REBA [33] is a framework for robot planning that
uses abstract and determistic ASP programs to determine
a course of action, which are then translated to POMDPs
for execution. Banihashemi et al. [2] describe a general ab-
straction framework based on the situation calculus, where
a refinement mapping maps a high-level BAT to a low-level
BAT and which is capable of online execution with sensing
actions [3]. The framework has been used to effectively synthe-
size plan process controllers in a smart factory scenario [14].
In contrast to this work, they assume non-probabilistic and
deterministic actions. On the other hand, Belle [6] defines ab-
straction in a probabilistic but static propositional language
and describes a search algorithm to derive such abstractions.
In this paper, we build on the two approaches to obtain ab-
straction in a probabilistic and dynamic first-order language
with an unbounded domain.

3 THE LOGIC DSG
We start by introducing the logic DSG, which we will then
use to define abstraction over noisy programs in Section 4.
DSG extends DS [7] with a transition semantics for Golog,
analogous to how ESG [12] extends ES [22]. In the same way as
DS, the logic uses a countably infinite set of rigid designators
R, which allows to define quantification substitutionally. Sim-
ilar to DS, ES, and ESG, it uses a possible-worlds semantics,
where a world defines the state of the world not only initially
but after any sequence of actions. It uses the modal operator
[·] to refer to the state after executing some program, e.g.,
[δ]α states that α is true after every possible execution of
the program δ. Additionally, it uses the modal operator B
to describe the agent’s belief, e.g., B(Loc(2) : 0.5) states the
the agent believes with degree 0.5 to be in location 2.

3.1 Syntax

Definition 1 (Symbols of DSG). The symbols of the
language are from the following vocabulary:

(1) infinitely many variables x, y, . . . , u, v, . . . , a, a1, . . .;
(2) rigid function symbols of every arity, e.g., near, goto(x, y);
(3) fluent predicates of every arity, such as At(l); we as-

sume that this list contains the following distinguished
predicates:
• Poss to denote the executability of an action;
• oi to denote that two actions are indistinguishable from
the agent’s viewpoint; and

• l that takes an action as its first argument and the
action’s likelihood as its second argument;

(4) connectives and other symbols: =, ∧, ¬, ∀, □, [·], B.

Definition 2 (Terms of DSG). The set of terms of DSG
is the least set such that (1) every variable is a term, (2) if
t1, . . . , tk are terms and f is a k-ary function symbol, then
f(t1, . . . , tk) is a term.

As in DS, R denotes the set of all ground rigid terms. We
assume that they contain the rational numbers, i.e., Q ⊆ R.

Definition 3 (Formulas). The formulas of DSG are the
least set such that

(1) if t1, . . . , tk are terms and P is a k-ary predicate symbol,
then P (t1, . . . , tk) is a formula,

(2) if t1 and t2 are terms, then (t1 = t2) is a formula,
(3) if α and β are formulas, x is a variable, δ is a program

(defined below),1 and r ∈ Q, then α∧β, ¬α, ∀x. α, □α,
[δ]α, and B(α : r) are formulas.

We read □α as “α holds after executing any sequence of
actions”, [δ]α as “α holds after the execution of program δ”
and B(α : r) as “α is believed with probability r”.2 We also

1Note that although the definitions of formulas (Definition 3) and
programs (Definition 4) mutually depend on each other, they are still
well-defined: programs only allow static situation formulas and static
situation formulas may not refer to programs.
2The original version of the logic also has an only-knowing modal
operator O, which captures the idea that something and only that
thing is known. For the sake of simplicity, we ignore this operator in
our presentation.

write Kα for B(α : 1), to be read as “α is known”.3 We use
True as abbreviation for ∀x (x = x) to denote truth. For a
formula α, we write αx

r for the formula resulting from α by
substituting every occurrence of x with r. For a finite set
of formulas Σ = {α1, . . . , αn}, we may just write Σ for the
conjunction α1 ∧ . . . ∧ αn, e.g., KΣ for K(α1 ∧ · · · ∧ αn). A
predicate symbol with terms from R as arguments is called a
atomic formula, and we denote the set of atomic formulas with
P. Furthermore, a formula is called bounded if it contains no
□ operator, static if it contains no [·] or □ operators, objective
if it contains no B or K, and fluent if it is static and does
not mention Poss, B, or K.

We define the syntax of programs used by the operator [δ]:

Definition 4 (Programs).

δ ::= t | α? | δ1; δ2 | δ1|δ2 | πx. δ | δ∗

where t is a ground rigid term and α is a static formula.
A program consists of actions t, tests α?, sequences δ1; δ2,
nondeterministic branching δ1|δ2, nondeterministic choice of
argument πx. δ, and nondeterministic iteration δ∗.

Note that we do not allow interleaved concurrency δ1∥δ2
known from ConGolog [16].4 We also use nil as abbreviation
forTrue?, the empty program that always succeeds. Similarly
to formulas, δxr denotes the program resulting from δ by
substituting every x with r. Furthermore, we define:

if ϕ then δ1 else δ2 fi := (ϕ?; δ1) | (¬ϕ?; δ2)
if ϕ1 then δ1 elif ϕ2 then δ2 fi := (ϕ1?; δ1) | (¬ϕ1 ∧ ϕ2?; δ2)

whileϕdo δ done := (ϕ?; δ)∗;¬ϕ?

3.2 Semantics

As described above, the operator B describes the degree
of belief. In order to capture noisy actions and sensors, we
need to talk about the likelihood of possible outcomes as
well as the fact that when a noisy action is executed, the
intended outcome may not be the same as the desired out-
come. The latter is captured using the notion of observational
indistinguishability. Both likelihood of possible outcomes and
observational indistinguishability are built into the worlds
using distinguished symbols and then modelled using basic
action theories, as described in Section 3.3.

Similar to DS, the semantics of DSG is given in terms of
possible worlds, where a world defines the truth of each fluent
both initially and after any sequence of actions:

Definition 5 (Trace). A trace z = ⟨a1, . . . , an⟩ is a
finite sequence of R. We denote the set of traces as Z and
the empty trace with ⟨⟩.

A world defines the truth of each ground atom from P not
only initially but after any sequence of actions:

3We use “knowledge” and “belief” interchangeably, but do not require
that knowledge be true in the real world (i.e., weak S5).
4The reason will become apparent later on. Intuitively, if we allow
interleaved concurrency, then the low-level program could pause the
execution of a high-level action and continue with a different high-
level action, possibly leading to different effects. This significantly
complicates the formal treatment relating the probabilities of high-
level worlds to their low-level counterparts.

Definition 6 (World). A world is mapping w : P×Z →
{0, 1}. The set of all worlds is denoted as W.

We require that every world w ∈ W defines a unary predi-
cate Poss, a binary predicate l that behaves like a function
(i.e., there is exactly one q ∈ Q such that w[l(a, q), z] = 1 for
any a, z), as well as an equivalence relation oi ⊆ R×R, which
define the possibility, the likelihood, and the observational
indistinguishability of actions.

We call a pair (w, z) ∈ W×Z a state, we denote the set of
all states with S, and we use S, Si, . . . ⊆ S to denote sets of
states. Given a state (w, z), the predicate l(a, q) states that
the action likelihood of action a in state (w, z) is q. We can
inductively apply l to compute the likelihood of a sequence:

Definition 7 (Action Sequence Likelihood). The

action sequence likelihood l∗ : W × Z → Q≥0 is defined
inductively:

• l∗(w, ⟨⟩) = 1 for every w ∈ W,
• l∗(w, z · r) = l∗(w, z)× q where w[l(r, q), z] = 1.

Next, to deal with partially observable states, we define:
Definition 8 (Observational indistinguishability).

(1) Given a world w ∈ W, we define ∼w⊂ Z×Z inductively:
• ⟨⟩ ∼w z′ iff z′ = ⟨⟩
• z · r ∼w z′ iff z′ = z∗ · r∗, z ∼w z∗, w[oi(r, r∗), z] = 1

(2) We say w is observationally indistinguishable (oi) from
w′, written w ≈oi w′ iff for all a, a′ ∈ R, z ∈ Z:
w[oi(a, a′), z] = w′[oi(a, a′), z].

(3) For w,w′ ∈ W, z, z′ ∈ Z, we say (w, z) is oi from (w′, z′),
written (w, z) ≈oi (w

′, z′), iff w ≈oi w
′ and z ∼w z′.

Intuitively, z ∼w z′ means that the agent cannot distin-
guish whether it executed z or z′. For states, (w, z) ≈oi

(w′, z′) is to be understood as “if the agent believes to be in
state (w, z), it may also be in state (w′, z′)”, i.e., it cannot
distinguish the worlds w,w′ and traces z, z′. As ≈oi is an
equivalence relation, the set of its equivalence classes on a set
of states S induces a partition, which we denote with S/ ≈oi.

We extend the executability of an action to traces:

Definition 9 (Executable trace). For a trace z, we
define exec(z) inductively:

• for z = ⟨⟩, exec(z) := True
• for z = a · z′, exec(z) := Poss(a) ∧ [a]exec(z′)

As in BHL and DS, it is possible to permit the agent to
entertain any set of initial distributions. As an example, the
initial theory could say that B(p : 0.5)∨B(p : 0.6), which says
that the agent is not sure about the distribution of p. In this
case, there would be at least two distributions in the epistemic
state e. As another example, if we say B(p ∨ q : 1), then this
says that the disjunction is believed with probability 1, but it
does not specify the probability of p or q, resulting in infinitely
many distributions that are compatible with this constraint.
Thus, not committing to a single distribution results in higher
expressivity in the representation of uncertainty.

Definition 10 (Compatible States). Given an epis-
temic state e, a world w, a trace z, and a formula α, we

define the states Se,w,z
α compatible to (e, w, z) wrt to α:

Se,w,z
α = {(w′, z′) | (w′, z′) ≈oi (w, z), e, w′ |= exec(z′)∧[z′]α}

We write Sα for Se,w,z
α if e, w, z are clear from the context.

To define the semantics of belief, we first define epistemic
states, which assign probabilities to worlds:

Definition 11 (Epistemic state). A distribution is a

mapping W → R≥0. An epistemic state is any set of distri-
butions.

This notion of distribution is not directly a probability
distribution. To obtain probability distributions, we define:

Definition 12 (Normalization).
For any distribution d and any set V = {(w1, z1) , (w2, z2) , . . .},
we define:

(1) Bnd(d,V, r) iff there is no k such that∑k
i=1 d(wi)× l∗(wi, zi) > r.

(2) Eq(d,V, r) iff Bnd(d,V, r) and there is no r′ < r such
that Bnd(d,V, r′) holds.

(3) For any U ⊆ V: Norm(d,U ,V, r) iff ∃b ̸= 0 such that
Eq(d,U , b× r) and Eq(d,V, b).

Intuitively, given Norm(d,V, r), r can be seen as the nor-
malization of the weights of worlds in V in relation to the set
of all worlds W as accorded by d. The conditions Bnd and Eq
are auxiliary conditions to define Norm, where Bnd(d,V, r)
states that the weight of worlds in V is bounded by b and
Eq(d,V, r) expresses that the weight of worlds in V is equal to
b. Belle et al. [8] have shown that although the set of worlds
W is in general uncountable, this leads to a well-defined
summation over the weights of worlds.

To simplify notation, we also write Norm(d,U ,V) = r for
Norm(d,U ,V, r). Furthermore, we write Norm(d1,U1,V1) =
Norm(d2,U2,V2) if there is an r such thatNorm(d1,U1,V1, r)
and Norm(d2,U2,V2, r). Finally, we write

Norm(d,U1,V) +Norm(d,U2,V) = r

if Norm(d,U1,V, r1), Norm(d,U2,V, r2), and r = r1 + r2.
We continue with the program transition semantics, which

defines the traces resulting from executing some program.
The transition semantics is defined in terms of configurations
⟨z, δ⟩, where z is a trace describing the actions executed so far
and δ is the remaining program. In some places, the transition
semantics refers to the truth of formulas (see Definition 15
below).5

Definition 13 (Program Transition Semantics). The

transition relation
e,w−→ among configurations, given an epis-

temic state e and a world w, is the least set satisfying

(1) ⟨z, a⟩ e,w−→ ⟨z · a,nil⟩ if w, z |= Poss(a)

(2) ⟨z, δ1; δ2⟩
e,w−→ ⟨z · a, γ; δ2⟩, if ⟨z, δ1⟩

e,w−→ ⟨z · a, γ⟩,
(3) ⟨z, δ1; δ2⟩

e,w−→ ⟨z · a, δ′⟩ if

⟨z, δ1⟩ ∈ Fe,w and ⟨z, δ2⟩
e,w−→ ⟨z · a, δ′⟩

5As above, although they depend on each other, the semantics is
well-defined, as the transition semantics only refers to static formulas
which may not contain programs.

(4) ⟨z, δ1|δ2⟩
e,w−→ ⟨z · a, δ′⟩ if

⟨z, δ1⟩
e,w−→ ⟨z · a, δ′⟩ or ⟨z, δ2⟩

e,w−→ ⟨z · a, δ′⟩
(5) ⟨z, πx. δ⟩ e,w−→ ⟨z · a, δ′⟩, if

⟨z, δxr ⟩
e,w−→ ⟨z · a, δ′⟩ for some r ∈ R

(6) ⟨z, δ∗⟩ e,w−→ ⟨z · a, γ; δ∗⟩ if ⟨z, δ⟩ e,w−→ ⟨z · a, γ⟩
The set of final configurations Fe,w is the smallest set s.t.

(1) ⟨z, α?⟩ ∈ Fe,w if e, w, z |= α,
(2) ⟨z, δ1; δ2⟩ ∈ Fe,w if ⟨z, δ1⟩ ∈ Fe,w and ⟨z, δ2⟩ ∈ Fe,w

(3) ⟨z, δ1|δ2⟩ ∈ Fe,w if ⟨z, δ1⟩ ∈ Fe,w, or ⟨z, δ2⟩ ∈ Fe,w

(4) ⟨z, πx. δ⟩ ∈ Fe,w if ⟨z, δxr ⟩ ∈ Fe,w for some r ∈ R
(5) ⟨z, δ∗⟩ ∈ Fe,w

We also write
e,w−→

∗
for the transitive closure of

e,w−→.
Following the transition semantics for a given program δ,

we obtain a set of program traces:
Definition 14 (Program Traces).

Given an epistemic state e, a world w, and a trace z, the set
∥δ∥ze,w of traces of program δ is defined as the following set:

∥δ∥ze,w =

{z′ ∈ Z | ⟨z, δ⟩ e,w−→
∗ 〈

z · z′, δ′
〉

and
〈
z · z′, δ′

〉
∈ Fe,w}

Compared to ESG, this transition semantics also refers to
the epistemic state e, as test formulas can also mention belief
operators. Additionally, in contrast to ESG, it only allows a
transition for an atomic action if the action is possible in the
current state. Also, while ESG allows infinite traces, we only
allow finite traces, as we focus on terminating programs.

Finally, we can define the semantics for DSG formulas:

Definition 15 (Truth of Formulas). Given an epis-
temic state e, a world w, and a formula α, we define for
every z ∈ Z:

(1) e, w, z |= F (t1, . . . , tk) iff w[F (t1, . . . , tk), z] = 1
(2) e, w, z |= B(α : r) iff ∀d ∈ e : Norm(d, Sα, STrue, r)
(3) e, w, z |= (t1 = t2) iff t1 and t2 are identical
(4) e, w, z |= α ∧ β iff e, w, z |= α and e, w, z |= β
(5) e, w, z |= ¬α iff e, w, z ̸|= α
(6) e, w, z |= ∀x. α iff e, w, z |= αx

r for all r ∈ R.
(7) e, w, z |= □α iff e, w, z · z′ |= α for all z′ ∈ Z
(8) e, w, z |= [δ]α iff e, w, z · z′ |= α for all z′ ∈ ∥δ∥ze,w.

Note in particular that Item 2 states that the degree of
belief in a formula is obtained by looking at the normalized
weight of the possible worlds that satisfy the formula.

We write e, w |= α for e, w, ⟨⟩ |= α. Also, if α is objective,
we write w, z |= α for e, w, z |= α and w |= α for w, ⟨⟩ |= α.
Additionally, for a set of sentences Σ, we write e, w, z |= Σ
if e, w, z |= ϕ for all ϕ ∈ Σ, and Σ |= α if e, w |= Σ entails
e, w |= α for every model (e, w).

3.3 Basic Action Theories

A basic action theory (BAT) defines the effects of all actions
of the domain, as well as the initial state:

Definition 16 (Basic Action Theory). Given a finite
set of predicates F including oi and l, a set Σ of sentences

only mentioning fluent predicates in F is called a basic action
theory (BAT) over F iff Σ = Σ0 ∪ Σpre ∪ Σpost and

(1) Σ0 is any set of fluent sentences,
(2) Σpre consists of a single sentence of the form □Poss(a) ≡

π, where π is a fluent formula with free variable a,6

(3) Σpost is a set of successor state axioms (SSAs) of the
form □Poss(a) ⊃ ([a]F (x⃗) ≡ γF), one for each fluent
predicate F ∈ F and where γF is a fluent formula with
free variables among a and x⃗.

Given a BAT Σ, we say that a program δ is a program
over Σ if it only mentions fluents and actions from Σ.

Note that the SSAs slightly differ from ES and ESG, where
they have the form □[a]F (x⃗) ≡ γF . In contrast to ES and
ESG, the SSAs in DSG only define the effects of an action
if the action is currently possible and otherwise do not say
anything about the action’s effects. This is necessary be-
cause we include Poss(a) in the transition semantics (Defini-
tion 13). To understand why, consider the following example:
if w, z |= ¬Poss(a), then by Definition 15.8, w, z |= [a]¬F ()
is vacuously true for any fluent F because there is no trace
z′ ∈ ∥a∥ze,w, contradicting to a SSA □[a]F () ≡ γF . Restrict-

ing the SSA to possible actions avoids this issue.7

3.3.1 A Noisy BAT. We present a BAT for a simple robotics
scenario with noisy actions, inspired from [1, 7]. In this
scenario, a robot moves towards a wall and it is equipped
with a sonar sensor that can measure the distance to the wall.
A BAT Σmove defining this scenario may look as follows:

• A move action is possible if the robot moves one step to
the back or to the front. A sonar action is always possible:

□Poss(a) ≡ ∃x, y (a = move(x, y) ∧ (x = 1 ∨ x = −1))

∨ ∃z (a = sonar(z))

• After doing action a, the robot is at position x if a is a
move action that moves the robot to location x, if a is a
sonar action that measures distance x, or if a is neither of
the two actions and the robot was at location x before

□Poss(a) ⊃
(
[a]Loc(x) ≡

∃y, z, (a = move(y, z) ∧ Loc(l) ∧ x = l + z)

∨ a = sonar(x)

∨ ¬∃y, z (a = move(y, z) ∨ a = sonar(y)) ∧ Loc(x)
)

• For the sonar action, the likelihood that the robot mea-
sures the correct distance is 0.8, the likelihood that it
measures a distance with an error of ±1 is 0.1. Further-
more, for the move action, the likelihood that the robot

6We assume that free variables are universally quantified from the
outside, □ has lower syntactic precedence than the logical connec-
tives, and [·] has the highest priority, so that □Poss(a) ≡ π stands
for ∀a.□ (Poss(a) ≡ γ) and □Poss(a) ⊃ ([a]F (x⃗) ≡ γF) stands for
∀a, x⃗.□ (Poss(a) ⊃ ([a]F (x⃗) ≡ γF)).
7Claßen [11] proposes a different solution by allowing an action transi-
tion even if the action is impossible and then augmenting the program
by guarding each action with a test Poss(a)?. We prefer the presented
solution because the transition semantics only allows actions that are
actually possible without augmenting the program.

moves the intended distance x is 0.6, the likelihood that
the actual movement y is off by ±1 is 0.2:

□l(a, u) ≡
∃z (a = sonar(z) ∧ Loc(x) ∧ u = Θ(x, z, .8, .1))

∨ ∃x, y (a = move(x, y) ∧ u = Θ(x, y, .6, .2))

∨ ¬∃x, y, z (a = move(x, y) ∨ a = sonar(z)) ∧ u = .0

where Θ(u, v, c, d) =

c if u = v

d if |u− v| = 1

0 otherwise

.

• The robot cannot detect the distance that it has actually
moved, i.e., any actions move(x, y) and move(x, z) are o.i.:

□oi(a, a′) ≡ a = a′∨
∃x, y, z

(
a = move(x, y) ∧ a′ = move(x, z)

)
• Initially, it is 3 units away from the wall: Loc(x) ≡ x = 3

Based on this BAT, we define a program that first moves
the robot close to the wall and then back:8

sonar();

while¬K∃x (Loc(x) ∧ x ≤ 2) domove(−1); sonar()done ;

while¬K∃x (Loc(x) ∧ x > 5) domove(1); sonar()done

The robot first measures its distance to the wall and then
moves closer until it knows that its distance to the wall is
less than two units. Afterwards, it moves away until it knows
that is more than five units away from the wall. As the
robot’s move action is noisy, each move is followed by sonar
to measure how far it is away from the wall. One possible
execution trace of this program may look as follows:

zl = ⟨sonar(3),move(−1, 0), sonar(3),move(−1,−1),

sonar(2),move(−1,−1), sonar(1),move(1, 1),

sonar(3),move(1, 1), sonar(2),move(1, 1),

sonar(4),move(1, 1), sonar(6)⟩

(1)

First, the robot (correctly) senses that it is three units away
from the wall and starts moving. However, the first move does
not have the desired effect: the robot intended to move by
one unit but actually did not move (indicated by the second
argument being 0). After the second move, the robot is at
Loc(2), as it started at Loc(3) and moved successfully once.
However, as its sensor is noisy and it measured sonar(2), it
believes that it could also be at Loc(3). For safe measure, it
executes another move and then senses sonar(1), after which
it knows for sure that it is at most two units away from the
wall. In the second part, the robot moves back until it knows
that it is further than five units away from the wall. As this
simple example shows, the trace zl is already quite hard to
understand. While it is clear from the BAT what each action
does, the robot’s intent is not immediately obvious and the
trace is cluttered with noise.

8The unary move(x) can be understood as abbreviation move(x) :=
πymove(x, y), where nature nondeterministically picks the distance y
that the robot really moved (similarly for sonar()).

3.3.2 An Abstract BAT. We present a second, more abstract
BAT for the same scenario without noisy actions:

• Initially, the robot is in the middle: At(l) ≡ l = mid
• The robot may goto the locations near and far :9

□Poss(a) ≡ a = goto(near) ∨ a = goto(far)

• After doing action a, the robot is at location l if a is goto(l)
or if a is no goto action and the robot has been at l before:

□Poss(a) ⊃(
[a]At(l) ≡ a = goto(l) ∨ ¬∃x (a = goto(x)) ∧At(l)

)
• The action likelihood axiom states that no action is noisy:

□l(a, u) ≡ (a = goto(near) ∨ a = goto(far)) ∧ u = 1.0

∨ ¬∃x (a = goto(x)) ∧ u = 0.0

• The agent can distinguish all actions: □oi(a, a′) ≡ a = a′

In the following, we will connect the low-level BAT Σmove

with the high-level BAT Σgoto by using abstraction.

4 ABSTRACTION

In this section, we define the abstraction of a low-level BAT
Σl with a high-level BAT Σh. This will allow us to construct
abstract Golog programs over the high-level BAT, which
are equivalent and can be translated to some program over
the low-level BAT. For the sake of simplicity10, we assume in
the following that an epistemic state e is always a singleton,
i.e., eh = {dh} and el = {dl}. To translate the high-level
BAT Σh into the low-level BAT Σl, we map Σh to Σl by
mapping each high-level fluent to a low-level formula, and
every high-level action to a low-level program:

Definition 17 (Refinement Mapping). Given two basic
action theories Σl over Fl and Σh over Fh. The function m
is a refinement mapping from Σh to Σl iff:

(1) For every action a(x⃗) mentioned in Σh, m(a(x⃗)) =
δa(x⃗), where δa(x⃗) is a Golog program over the low-
level theory Σl with free variables among x⃗.

(2) For every fluent predicate F ∈ Fh, m(F (x⃗)) = ϕF (x⃗),
where ϕF (x⃗) is a static formula over Fl with free vari-
ables among x⃗.

For a formula α over Fh, we also writem(α) for the formula
obtained by applying m to each fluent predicate and action
mentioned in α. For a trace z = ⟨a1, a2, . . .⟩ of actions from
Σh, we also write m(z) for ⟨m(a1),m(a2), . . .⟩. For a program
δ over Σh, the program m(δ) is the same program as δ with
each primitive action a replaced by m(a) and each formula
α replaced by m(α).

Continuing our example, we define a refinement that maps
Σgoto to Σmove by mapping each high-level fluent to a low-level
formula and each high-level action to a low-level program:

9For the sake of brevity, we do not allow the robot to go to mid.
10The technical results do not hinge on this, but allowing arbitrary
epistemic states would make the main results and proofs more tedious.
For the general case, we need to set up for every distribution on the
high level a corresponding distribution on the low level and establish
a bisimulation for each of those pairs.

Sl

(w1
l , z

1
l)
0.5

(w2
l , z

2
l)
0.2

S1
l

(w1
l , z

5
l)
0.5

(w1
l , z

3
l)
1.2

(w2
l , z

5
l)
0.4≈oi

S
w1

l
,z1

l

True

(w3
l , z

3
l)
0.1

(w3
l , z

4
l)
0.4

S2
l

(w3
l , z

5
l)
0.9

(w4
l , z

5
l)
0.6≈oi

S
w3

l
,z3

l

True

(w1
h, z

1
h)
1

(w2
h, z

2
h)
3

S
w1

h
,z1

h

True

≈oi∼e

Figure 1: An example for epistemic isomorphism.

• The high-level fluent At(l) is mapped to a low-level formula
by translating the distance to near , mid , and far :

At(l) 7→ l = near ∧ ∃x (Loc(x) ∧ x ≤ 2)

∨l = mid ∧ ∃x (Loc(x) ∧ x > 2 ∧ x ≤ 5)

∨l = far ∧ ∃x (Loc(x) ∧ x > 5)

• The action goto is mapped to a program that guarantees
that the robot reaches the right position:

goto(x) 7→ sonar();

if x = near then

while¬K∃x (Loc(x) ∧ x ≤ 2) domove(−1); sonar()done

elif x = far then

while¬K∃x (Loc(x) ∧ x > 5) domove(1); sonar()done fi

To show that a high-level BAT indeed abstracts a low-level
BAT, we first define a notion of isomorphism, intuitively
stating that two states satisfy the same fluents:

Definition 18 (Objective Isomorphism).
We say (wh, zh) is objectively m-isomorphic to (wl, zl), writ-
ten (wh, zh) ∼m (wl, zl) iff for every atomic formula α men-
tioned in Σh:

wh, zh |= α iff wl, zl |= m(α)

Additionally, because we need to relate degrees of belief,
we need to connect the two BATs in terms of epistemic states.
To do so, we define epistemic isomorphism as follows:

Definition 19 (Epistemic Isomorphism).
For every (wh, zh) ∈ S and Sl ⊆ S, we say that (dh, wh, zh) is
epistemically m-isomorphic to (dl, Sl), written (dl, wh, zh) ∼e

(dl, Sl) iff for the partition P = Sl/ ≈oi, for each Si
l ∈ P and(

wi
l , z

i
l

)
∈ Si

l :

Norm(dh, {(wh, zh)}, Seh,wh,zh
True) = Norm(dl, S

i
l , S

el,w
i
l ,z

i
l

True)

The intuition of epistemic isomorphism is illustrated in Fig-
ure 1: As the high-level state

(
w1

h, z
1
h

)
is more abstract than

the low-level states Sl, multiple low-level states (highlighted
in orange) may be isomorphic to the same high-level state.
Hence, each high-level state is mapped to a set of low-level
states. To be epistemically isomorphic, they must entail the
same beliefs, so the corresponding normalized weights must
be equal. However, we do not require the low-level states Sl to
be oi. Indeed, since we have a high-level action corresponding

to many low-level actions, low-level states are typically not

oi. Thus, we partition Sl according to ≈oi, obtaining S
w1

l ,z
1
l

True

and S
w3

l ,z
3
l

True , and we require the Norm over (wh, zh) to be the
same as the Norm over each member of the partition.

Having established objective and epistemic isomorphisms,
we can now define a suitable notion of bisimulation:

Definition 20 (Bisimulation).
A relation B ⊆ S × S is an m-bisimulation between (eh, wh)
and (el, wl) if ((wh, zh) , (wl, zl)) ∈ B implies that

(1) (wh, zh) ∼m (wl, zl),
(2) (dh, wh, zh) ∼e (dl, {(w′

l, z
′
l) | ((wh, zh) , (w

′
l, z

′
l)) ∈ B}),

(3) wh |= exec(zh) and wl |= exec(zl),
(4) for every high-level action a, if wh, zh |= Poss(a), then

there is z′l ∈ ∥m(a)∥zlel,wl s.t. ((wh, zh ·a), (wl, zl ·z′l)) ∈ B,
(5) for every high-level action a, if there is z′l ∈ ∥m(a)∥zlel,wl ,

then wh, zh |= Poss(a) and ((wh, zh · a), (wl, zl · z′l)) ∈ B,
(6) for every (w′

h, z
′
h) ≈oi (wh, zh) with dh(w

′
h) > 0 and

eh, w
′
h |= exec(z′h), there is (w′

l, z
′
l) ≈oi (wl, zl) such that

((w′
h, z

′
h) , (w

′
l, z

′
l)) ∈ B,

(7) for every (w′
l, z

′
l) ≈oi (wl, zl) with dl(w

′
l) > 0 and

el, w
′
l |= exec(z′l), there is (w′

h, z
′
h) ≈oi (wh, zh) such

that ((w′
h, z

′
h) , (w

′
l, z

′
l)) ∈ B.

We call a bisimulation B definite if ((wh, zh) , (wl, zl)) ∈ B
and ((w′

h, z
′
h) , (wl, zl)) ∈ B implies (wh, zh) = (w′

h, z
′
h).

We say that (eh, wh) is bisimilar to (el, wl) relative to re-
finement mapping m, written (eh, wh) ∼m (el, wl), if and
only if there exists a definite m-bisimulation relation B be-
tween (eh, wh) and (el, wl) such that ((wh, ⟨⟩) , (wl, ⟨⟩)) ∈ B.

The general idea of bisimulation is that two states are
bisimilar if they have the same local properties (i.e., they are
isomorphic) and each reachable state from the first state has a
corresponding reachable state from the second state (and vice
versa) such that the two successors are again bisimilar. Here,
properties 1, 2, and 3 refer to static properties of (wh, zh)
and (wl, zl). While property 1 directly establishes objective
isomorphism of (wh, zh) and (wl, zl), property 2 establishes
epistemic isomorphism between (wh, zh) and all states (w′

l, z
′
l)

that occur in B. As usual in bisimulations, we also require
that if we follow a high-level transition of the system, there
is a corresponding low-level transition (and vice versa). Here,
such a transition may be an action that is executed (properties
4 and 5), or it may be an epistemic transition from the current
state to another oi state (properties 6 and 7).

Our notion of bisimulation is similar to bisimulation for
abstracting non-stochastic and objective basic action theo-
ries [2]. In comparison, the notion of objective isomorphism
(property 1) and reachable states via actions (properties 4
and 5) are analogous, while epistemic isomorphism (property
2) and reachable states via observational indistinguishability
(properties 6 and 7) have no corresponding counterparts.

Given a corresponding m-bisimulation, we want to show
that (eh, wh) is a model of a formula α iff (el, wl) is a model
of the mapped formula m(α). To do so, we first show that
this is true for static formulas, not considering programs. In
the second step, we will show that the high-level and low-level

models induce the same program traces, which will then allow
us to extend the statement to bounded formulas, which may
refer to programs. We start with static formulas:11

Theorem 1. Let (eh, wh) ∼m (el, wl) with definite m-
bisimulation B. For every static formula α and traces zh, zl
with ((wh, zh) , (wl, zl)) ∈ B:

eh, wh, zh |= α iff el, wl, zl |= m(α)

Using Theorem 1, we show that if (eh, wh) is bisimilar to
(el, wl), then they induce the same traces of a program δ:

Lemma 1. Let (eh, wh) ∼m (el, wl) with m-bisimulation
B, ((wh, zh) , (wl, zl)) ∈ B, and δ be an arbitrary program.

(1) If z′l ∈ ∥m(δ)∥zlel,wl
is a low-level trace, then there is a

high-level trace z′h ∈ ∥δ∥zheh,wh
such that z′h = ⟨a1, . . . , an⟩,

z′l = ⟨m(a1), . . . ,m(an)⟩, and (zh · z′h, zl · z′l) ∈ B.
(2) If z′h = ⟨a1, . . . , an⟩ ∈ ∥δ∥zheh,wh

is a high-level trace,

then there is a low-level trace z′l ∈ ∥m(δ)∥zlel,wl
such that

z′l = ⟨m(a1), . . . ,m(an)⟩ and (zh · z′h, zl · z′l) ∈ B.

Note that Lemma 1 would not hold if δ contained inter-
leaved concurrency. Intuitively, this is because for a high-level
program such as a1

h∥a2
h, the only valid high-level traces would

be
〈
a1
h, a

2
h

〉
and

〈
a2
h, a

1
h

〉
, i.e., one action is completely exe-

cuted before the other action is started. On the other hand,
with m(a1

h) = a1
l ; a

2
l and m(a2

h) = a3
l ; a

4
l , we may obtain in-

terleaved traces such as
〈
a1
l , a

3
l , a

2
l , a

4
l

〉
, which does not have

a corresponding high-level trace.12

With Lemma 1, we extend Theorem 1 to bounded formulas:

Theorem 2. Let (eh, wh) ∼m (el, wl). For all bounded
formulas α and traces zh, zl with (zh, zl) ∈ B:

eh, wh, zh |= α iff el, wl, zl |= m(α)

It directly follows that the high- and low-level models
entail the same formulas after executing some program δ:

Corollary 1. Let (eh, wh) ∼m (el, wl). Then for any
high-level Golog program δ and static high-level formula β:

el, wl |= [m(δ)]m(β) iff eh, wh |= [δ]β

4.1 Sound and Complete Abstraction

In the previous section, we described properties of abstrac-
tion with respect to particular models (eh, wh) and (el, wl).
However, we are usually more interested in the relationship
between a high-level BAT Σh and a low-level BAT Σl:

13

Definition 21 (Sound Abstraction). We say that Σh

is a sound abstraction of Σl relative to refinement mapping m

11All proofs can be found in the extended technical report [19].
12While a limited form of concurrency could be permitted by only
allowing interleaved execution of high-level actions (i.e., each m(a)
must be completely executed before switching to a different branch of
execution), we omit this for the sake of simplicity.
13Notice that we require the real world to have the same physical laws
as that believed by the agent, which is fairly standard. We do not
require the agent knows everything about the real world, nor that the
agent beliefs are also true in the real world.

B(Loc(3) : 1)

B(Loc(3) : 0.2)
B(Loc(4) : 0.8)

B(Loc(3) : 1)

. . .

sonar(2)

B
(
Loc(3) : 2

3

)

B
(
Loc(4) : 1

3

)

. . .

sonar(3)

B
(
Loc(3) : 1

33

)

B
(
Loc(4) : 32

33

)

B
(
Loc(3) : 1

165

)

B
(
Loc(4) : 36

165

)

B
(
Loc(5) : 128

165

)

. . .

sonar(. . .)

B(Loc(5) : 1)

sonar(6)

move(1)

sonar(4)

B(Loc(4) : 1)

. . .

sonar(5)

move(1)

B(At(mid) : 1)

B(At(far) : 1)

goto(far)

Figure 2: Bisimulation for the running example,
where sets of states are summarized by the belief
that they entail.

if and only if for each model (el, wl) |= KΣl ∧Σl, there exists
a model (eh, wh) |= KΣh ∧Σh such that (eh, wh) ∼m (el, wl).

Conclusions by Σh are consistent with Σl:

Theorem 3. Let Σh be a sound abstraction of Σl relative
to mapping m. Then, for every bounded formula α, if KΣh ∧
Σh |= α, then KΣl ∧ Σl |= m(α).

While a sound abstraction ensures that any entailment of
the high-level BAT Σh is consistent with the low-level BAT
Σl, the Σh may have less information than Σl, e.g., Σh may
consider it possible that some program δ is executable, while
Σl knows that it is not. This leads to a second notion of
abstraction:

Definition 22 (Complete Abstraction). We say that
Σh is a complete abstraction of Σl relative to refinement
mappingm if and only if for each model (eh, wh) |= KΣh∧Σh,
there exists a model (el, wl) |= KΣl∧Σl such that (eh, wh) ∼m

(el, wl).

Indeed, if we have a complete abstraction, then Σh must
entail everything that Σl entails:

Theorem 4. Let Σh be a complete abstraction of Σl rel-
ative to mapping m. Then, for every bounded formula α, if
KΣl ∧ Σl |= m(α), then KΣh ∧ Σh |= α.

The strongest notion is the combination of both:
Definition 23 (Sound and Complete Abstraction).

We say that Σh is a sound and complete abstraction of Σl

relative to refinement mapping m if Σh is both a sound and
a complete abstraction of Σl wrt m.

Theorem 5. Let Σh be a sound and complete abstraction
of Σl relative to refinement mapping m. Then, for every
bounded formula α, KΣh ∧ Σh |= α iff KΣl ∧ Σl |= m(α).

Coming back to our example, we can show that Σgoto is
indeed a sound and complete abstraction of Σmove . Figure 2
shows an exemplary bisimulation for the running example.
The single transition for goto of the high-level BAT is shown
on the left. The agent knows that it is initially in the middle

and after doing goto(far), it is far away from the wall. Some
corresponding transitions of the low-level BAT are shown
on the right: Initially, the agent knows that it is at Loc(3),
which is a bisimilar state to the initial high-level state (blue).
Eventually, it reaches a state where it knows that it is at
Loc(5), which is again a bisimilar state to the corresponding
high-level state (orange). With Theorem 5, it follows that
both BATs entail the same (mapped) formulas. Therefore,
we can use Σgoto for reasoning and planning, e.g., we may
write a high-level Golog program in terms of Σgoto and then
use a classical Golog interpreter to find a ground action
sequence that realizes the program. To continue the example,
we may write a very simple abstract program δh that first
moves to the wall if necessary and then moves back:

if ¬At(near) then goto(near) end if ; goto(far)

If the robot is initially not near the wall (as in our example),
the following sequence is a realization of the program:

⟨goto(near), goto(far)⟩
This high-level trace is much simpler than the trace of the
low-level program shown in Equation 1. At the same time,
as Σgoto is a sound and complete abstraction of Σmove , this
sequence may be translated to Σmove by applying the refine-
ment mapping m and the translated program then takes care
of noisy sensors and actuators.

5 CONCLUSION

In this paper, we have presented a framework for abstraction
of probabilistic dynamic domains. More specifically, in a
first step, we have defined a transition semantics for Golog
programs with noisy actions based on DS, a variant of the
situation calculus with probabilistic belief. We have then
defined a suitable notion of bisimulation in the logic that
allows the abstraction of noisy robot programs in terms of
a refinement mapping from a high-level to a low-level basic
action theory. This abstraction method allows to obtain a
significantly simpler high-level domain, which can be used
for reasoning or high-level programming without the need
to deal with stochastic actions. Furthermore, the resulting
programs and traces are much easier to understand, because
they do not contain noisy actions and are often much shorter.

While abstractions need to be manually constructed, future
work may explore abstraction generation algorithms based
on [6, 21]. A further extension might be to provide conditions
under which we can modify the low-level program, e.g., with
new sensors with different error profiles, without modifying
the high-level program.

Interestingly, as the logics DS and ES are fully compatible
for non-probabilistic formulas not mentioning noisy actions
[7] and abstraction allows to get rid of probabilistic formulas
and noisy actions, we may construct ES programs that are
sound and complete abstractions of DS programs. This is a
step towards cognitive robotics as envisioned by Reiter [23],
where the classical non-probabilistic situation calculus ma-
chinery may prove entirely sufficient to define the behavior
and termination of real-world robots.

ACKNOWLEDGMENTS

Till was partly supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – 2236/1
and the EU ICT-48 2020 project TAILOR (No. 952215).
Part of this work was created during a research visit of Till
at the University of Edinburgh, which was funded by the
German Academic Exchange Service (DAAD). Vaishak was
partly supported by a Royal Society University Research
Fellowship, UK, and partly supported by a grant from the
UKRI Strategic Priorities Fund, UK to the UKRI Research
Node on Trustworthy Autonomous Systems Governance and
Regulation (EP/V026607/1, 2020–2024).

REFERENCES
[1] Fahiem Bacchus, Joseph Y. Halpern, and Hector J. Levesque. 1999.

Reasoning about Noisy Sensors and Effectors in the Situation
Calculus. Artificial Intelligence 111, 1 (July 1999), 171–208.
https://doi.org/10.1016/S0004-3702(99)00031-4

[2] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance.
2017. Abstraction in Situation Calculus Action Theories. In
Proceedings of the 31st Conference on Artificial Intelligence
(AAAI). AAAI Press, 1048–1055.

[3] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance.
2018. Abstraction of Agents Executing Online and Their Abili-
ties in the Situation Calculus. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
1699–1706. https://doi.org/10.24963/ijcai.2018/235

[4] Bita Banihashemi, Shakil Mahmud Khan, and Mikhail Soutchan-
ski. 2022. From Actions to Programs as Abstract Actual Causes.
In Proceedings of the 36th AAAI Conference on Artificial Intel-
ligence (AAAI). AAAI Press, 5470–5478.

[5] Sander Beckers and Joseph Y. Halpern. 2019. Abstracting Causal
Models. In Proceedings of the 33rd AAAI Conference on Ar-
tificial Intelligence (AAAI). AAAI Press, 2678–2685. https:
//doi.org/10.1609/aaai.v33i01.33012678

[6] Vaishak Belle. 2020. Abstracting Probabilistic Models: Relations,
Constraints and Beyond. Knowledge-Based Systems 199 (July
2020), 105976. https://doi.org/10.1016/j.knosys.2020.105976

[7] Vaishak Belle and Gerhard Lakemeyer. 2017. Reasoning about
Probabilities in Unbounded First-Order Dynamical Domains. In
Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence (IJCAI). AAAI Press, 828–836.

[8] Vaishak Belle, Gerhard Lakemeyer, and Hector J. Levesque. 2016.
A First-Order Logic of Probability and Only Knowing in Un-
bounded Domains. In Proceedings of the 30th Conference on
Artificial Intelligence (AAAI 2016). AAAI Press, 893–899.

[9] Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan
Schaeffer. 2005. Macro-FF: Improving AI Planning with Automati-
cally Learned Macro-Operators. Journal of Artificial Intelligence
Research 24 (2005), 581–621. https://doi.org/10.1613/jair.1696

[10] Lukáš Chrpa, Mauro Vallati, and Thomas Leo McCluskey. 2014.
MUM: A Technique for Maximising the Utility of Macro-operators
by Constrained Generation and Use. In Proceedings of the 24th
International Conference on Automated Planning and Schedul-
ing (ICAPS). AAAI Press.

[11] Jens Claßen. 2013. Planning and Verification in the Agent
Language Golog. Ph.D. Dissertation. RWTH Aachen University.

[12] Jens Claßen and Gerhard Lakemeyer. 2008. A Logic for Non-
Terminating Golog Programs. In Proceedings of the 11th Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR). AAAI Press, 589–599.

[13] Zhenhe Cui, Yongmei Liu, and Kailun Luo. 2021. A Uniform
Abstraction Framework for Generalized Planning. In Proceed-
ings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI). AAAI Press, 1837–1844.

[14] Giuseppe De Giacomo, Paolo Felli, Brian Logan, Fabio Patrizi,
and Sebastian Sardiña. 2022. Situation Calculus for Controller
Synthesis in Manufacturing Systems with First-Order State Rep-
resentation. Artificial Intelligence 302 (Jan. 2022), 103598.

https://doi.org/10.1016/j.artint.2021.103598
[15] Giuseppe De Giacomo and Yves Lespérance. 2021. The Non-

deterministic Situation Calculus. In Proceedings of the Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), Vol. 18. AAAI Press, 216–226.
https://doi.org/10.24963/kr.2021/21

[16] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque.
2000. ConGolog, a Concurrent Programming Language Based
on the Situation Calculus. Artificial Intelligence 121 (2000),
109–169.

[17] Alfredo Gabaldon. 2002. Programming Hierarchical Task Net-
works in the Situation Calculus. In AIPS Workshop on Online
Planning and Scheduling. 18.

[18] Fausto Giunchiglia and Toby Walsh. 1992. A Theory of Ab-
straction. Artificial Intelligence 57, 2 (Oct. 1992), 323–389.
https://doi.org/10.1016/0004-3702(92)90021-O

[19] Till Hofmann and Vaishak Belle. 2023. Abstracting Noisy Robot
Programs. https://doi.org/10.48550/ARXIV.2204.03536

[20] Till Hofmann, Tim Niemueller, and Gerhard Lakemeyer. 2017.
Initial Results on Generating Macro Actions from a Plan Database
for Planning on Autonomous Mobile Robots. In Proceedings of
the 27th International Conference on Automated Planning and
Scheduling (ICAPS), Vol. 27. AAAI Press, 498–503.

[21] Steven Holtzen, Guy van den Broeck, and Todd Millstein. 2018.
Sound Abstraction and Decomposition of Probabilistic Programs.
In Proceedings of the 35th International Conference on Machine
Learning (PMLR), Vol. 80. ML Research Press, 1999–2008.

[22] Gerhard Lakemeyer and Hector J. Levesque. 2011. A Semantic
Characterization of a Useful Fragment of the Situation Calculus
with Knowledge. Artificial Intelligence 175, 1 (Jan. 2011), 142–
164. https://doi.org/10.1016/j.artint.2010.04.005

[23] Hector J. Levesque and Gerhard Lakemeyer. 2008. Cognitive Ro-
botics. In Foundations of Artificial Intelligence. Vol. 3. Elsevier,
869–886. https://doi.org/10.1016/S1574-6526(07)03023-4

[24] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen
Lin, and Richard B. Scherl. 1997. GOLOG: A Logic Programming
Language for Dynamic Domains. Journal of Logic Programming
31, 1-3 (1997), 59–83. https://doi.org/10.1016/S0743-1066(96)
00121-5

[25] Daxin Liu and Qihui Feng. 2021. On the Progression of Belief.
In Proceedings of the 18th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), Vol. 18.
AAAI Press, 465–474. https://doi.org/10.24963/kr.2021/44

[26] Daxin Liu and Gerhard Lakemeyer. 2021. Reasoning about Beliefs
and Meta-Beliefs by Regression in an Expressive Probabilistic
Action Logic. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence (IJCAI), Vol. 2. AAAI
Press, 1951–1958. https://doi.org/10.24963/ijcai.2021/269

[27] John McCarthy. 1963. Situations, Actions, and Causal Laws.
Technical Report. Stanford University. 11 pages.

[28] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William
Murdock, Dan Wu, and Fusun Yaman. 2003. SHOP2 : An HTN
Planning System. Journal of Artificial Intelligence Research 20
(2003), 379–404.

[29] Raymond Reiter. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press.

[30] Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers,
Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, and
Bernhard Schölkopf. 2017. Causal Consistency of Structural Equa-
tion Models. In Proceedings of the 33rd Annual Conference on
Uncertainty in Artificial Intelligence (UAI). AUAI.

[31] Lorenza Saitta and Jean-Daniel Zucker. 2013. Abstraction in
Artificial Intelligence. In Abstraction in Artificial Intelligence
and Complex Systems. Springer, 49–63. https://doi.org/10.1007/
978-1-4614-7052-6 3

[32] Zeynep G. Saribatur and Thomas Eiter. 2021. Omission-Based
Abstraction for Answer Set Programs. Theory and Practice
of Logic Programming 21, 2 (March 2021), 145–195. https:
//doi.org/10.1017/S1471068420000095

[33] Mohan Sridharan, Michael Gelfond, Shiqi Zhang, and Jeremy
Wyatt. 2019. REBA: A Refinement-Based Architecture for
Knowledge Representation and Reasoning in Robotics. Jour-
nal of Artificial Intelligence Research 65 (June 2019), 87–180.
https://doi.org/10.1613/jair.1.11524

https://doi.org/10.1016/S0004-3702(99)00031-4
https://doi.org/10.24963/ijcai.2018/235
https://doi.org/10.1609/aaai.v33i01.33012678
https://doi.org/10.1609/aaai.v33i01.33012678
https://doi.org/10.1016/j.knosys.2020.105976
https://doi.org/10.1613/jair.1696
https://doi.org/10.1016/j.artint.2021.103598
https://doi.org/10.24963/kr.2021/21
https://doi.org/10.1016/0004-3702(92)90021-O
https://doi.org/10.48550/ARXIV.2204.03536
https://doi.org/10.1016/j.artint.2010.04.005
https://doi.org/10.1016/S1574-6526(07)03023-4
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.24963/kr.2021/44
https://doi.org/10.24963/ijcai.2021/269
https://doi.org/10.1007/978-1-4614-7052-6_3
https://doi.org/10.1007/978-1-4614-7052-6_3
https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1613/jair.1.11524

	Abstract
	1 Introduction
	2 Related Work
	3 The Logic DSG
	3.1 Syntax
	3.2 Semantics
	3.3 Basic Action Theories

	4 Abstraction
	4.1 Sound and Complete Abstraction

	5 Conclusion
	Acknowledgments
	References

