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A B S T R A C T

This paper presents an application of general Tau theory to the modeling and analysis of articulatory
trajectories in speech. We evaluated the model using electromagnetic articulometry data from 12 native
speakers of English reading a common text, where trajectories of the following sensors were fitted: lower
and upper lips, jaw, and three tongue sensors. Additionally, we analyzed trajectories of the lip aperture
signal. Our experiments show that the general Tau theory model gives a better fit than existing (i) methods
based on critically damped oscillators, and (ii) a method based on sequential target approximation. These
findings support the hypothesis of Tau-guided movements of articulators during speech production. In the
second part of the paper, our Tau theory analysis shows that articulatory movements follow similar velocity
profile distributions across speakers. In particular, the value of the shape parameter 𝜅 of the Tau theory
equation is identically distributed across speakers, following a unimodal distribution. The statistical mode
of the distribution corresponds to the value of 𝜅 that generates a symmetric velocity profile. The analysis of
the statistical distribution of 𝜅 values also reveals that its variance decreases when greater articulatory effort
is required, such that produced articulatory effort remains close to that predicted by the theoretical minimal
cost function based on forces acting on the moving articulator. This provides new evidence that articulatory
effort is optimized during speech production.
1. Introduction

The production of speech involves movements of articulators used
to shape the geometry of the vocal tract. The temporal evolution of this
geometry allows context-appropriate acoustic features of speech to be
produced in order to convey information. How these movements are
planned and executed by the speaker is still a subject of debate.

Models of speech articulatory planning usually contain a dynam-
ical component aiming at computing and/or predicting articulatory
trajectories generated by the speaker using generative models. The
interest of such models are threefold, as they can be used for (i)
generating articulatory data for articulatory speech synthesizers, (ii)
analyzing articulatory movements in real speech using a small number
of parameters, and (iii) assessing the validity of existing theories of
speech production.

Many attempts have been made in the past to model the articulatory
trajectories of speech. Statistical models provide a robust and efficient
way to predict articulatory movements (Ling et al., 2010; Ribeiro
et al., 2022), as they are based on observation and statistical learning.
They are very useful for generating trajectories for articulatory speech
synthesizers, but cannot be used effectively to analyze observed trajec-
tories using a few parameters. For that purpose, articulatory trajectories

∗ Corresponding author.
E-mail address: benjamin.elie@ed.ac.uk (B. Elie).

are often analyzed via analytic and parametric models. Existing mod-
els of these types use either interpolation functions (Henke, 1966;
Keating, 1990; Blackburn and Young, 2000; Okadome and Honda,
2001) or asymptotic approximations (Saltzman and Munhall, 1989;
Kröger et al., 1995; Xu, 2004; Šimko and Cummins, 2010; Birkholz
et al., 2010; Sorensen and Gafos, 2016). Asymptotic approximations
are dominant for modeling articulatory trajectories of speech using
parametric models and are at the core of the most common articulatory
models of speech production. For instance, the Task Dynamics model
(hereafter TD) (Saltzman, 1986; Saltzman and Munhall, 1989; Šimko
and Cummins, 2010; Sorensen and Gafos, 2016) considers articulators
as critically damped oscillators moving towards an asymptotic target
without overshoot. In TD, articulator movements are achieved by a
second-order dynamical system. This model is used in combination with
Articulatory Phonology (hereafter AP) (Browman and Goldstein, 1986)
to form AP/TD (Browman and Goldstein, 1995), one dominant model
of speech production. Another asymptotic approach has been proposed
by Birkholz et al. (2010), in which articulatory commands are modeled
as a cascade of 𝑁 first-order linear systems, with 𝑁 > 2. All of these
asymptotic approximation methods have been successfully applied to
explain articulatory patterns (as for AP/TD, for instance), to model
vailable online 15 May 2023
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and fit observed articulatory trajectories (Kröger et al., 1995; Birkholz
et al., 2010; Birkholz and Hoole, 2012), and to generate trajectories
for articulatory synthesizers (Birkholz, 2007; Prom-on et al., 2013; Xu
et al., 2019; Alexander et al., 2019).

A potential limitation of asymptotic models is the implied temporal
coordination mechanism. Because these models are asymptotic, i.e. the
target is never reached, they usually assume that the temporal coordi-
nation of speech articulators occurs at the onset of articulatory gestures,
which is in line with AP-based models (Browman and Goldstein, 1986).
However, as discussed in Turk and Shattuck-Hufnagel (2020a), there is
evidence that bodily movements are often coordinated to reach a target
at a specific time point, i.e. the temporal coordination often happens at
he goal-related movement offset, resulting in lower timing variability
f movement endpoints. This has been shown, for instance, in type-
riting (Gentner et al., 1980) and for periodic tapping (Spencer and
elaznik, 2003). Perkell and Matthies (1992) observed lower variability
f maximum protrusion in spoken /iCu/ sequences, as compared to the
iming of a point after the movement onset. These findings suggest that
odels of articulatory planning should include explicit representations

f movement endpoints, so that they can be timed with precision.
Recently, Turk and Shattuck-Hufnagel (2020a,b) have proposed to

dapt general Tau theory of movement (Lee, 1998) to speech to tackle
his issue. Lee’s general Tau theory has been developed from previous
ork by Gibson (1966) and Bernstein (1966), and has been supported
y various experiments on different kinds of bodily movements (Lee
nd Reddish, 1981; Lee et al., 1983; Craig and Lee, 1999; Schögler
t al., 2008; Rodger et al., 2013). The basic assumption of the theory is
hat purposeful movements aim at closing gaps, e.g. a distance gap or
n angle gap. The gap-closure function is defined such that the target
s reached at the right time, i.e. for a distance gap, the gap is closed
t the movement endpoint. Another interest for trajectory modeling
s that Tau-guided movements exhibit single-peaked velocity profiles
hose symmetry can be changed by adjusting a unique parameter, the
au-coupling parameter 𝜅.

Considering these features, general Tau theory is thus a good can-
idate to explain the production of articulatory trajectories in speech.
his paper aims at evaluating its relevance for speech, both for the
eneration and analysis of articulatory trajectories. In order to do
o, the paper compares the fit of the Tau theory equation to real
rticulatory trajectories, extracted from electromagnetic articulometry
EMA) data, with the fit of other methods based on asymptotic target
pproximations, namely two types of Critically Damped Oscillator mod-
ls (Kröger et al., 1995; Sorensen and Gafos, 2016), and the Sequential
arget Approximation (Birkholz et al., 2010) model. The comparison

s carried over the trajectories of all sensor signals from a dataset
rom the DoubleTalk corpus (Scobbie et al., 2013; Geng et al., 2013),
orresponding to EMA recordings of 12 native speakers of English
eading an English text (Scobbie et al., 2013; Geng et al., 2013). This
xtensive comparison will show the model which is able to reproduce
rticulatory movement most accurately across speakers, and across
aried prosodic contexts of spoken English.

This paper also presents a statistical investigation of the Tau equa-
ion parameters that provide the best fit to observed movement trajec-
ories in the reading task part of the DoubleTalk corpus. This investiga-
ion of the readings of the same text by 12 different speakers will allow
s to see if any speaker differences exist. In addition, they will allow
s to see if the most commonly-used values of the shape parameter
re those which are implicated in Tau-guided movements that are least
ffortful out of the set of possible Tau-guided movements.

The organization of the paper is as follows. The existing models
f articulatory trajectories with which ours is compared are detailed
n Section 2. General Tau theory is introduced in Section 3. Section 3
lso provides analytical developments of general Tau theory that relate
he mathematical properties of Tau-guided movements to known char-
cteristics of velocity profiles of speech movements. The subsequent
25

ections report experiments which introduce the application of Tau
theory to speech. The aim of Section 4 is to assess the fit of the
general Tau theory equations to real speech articulatory data, and
consequently, their relevance for articulatory analysis and modeling.
Section 5 provides an example of articulatory analysis using Tau theory.
The aim of the experiment presented in Section 5 is to show that
general Tau theory can be used to analyze speech movements: our find-
ings highlight general tendencies related to velocity profiles. Finally,
Section 6 provides an attempt to explain our observations from the
preliminary analysis in Section 5, using general Tau theory as a basis.
It investigates the relationship between the characteristics of observed
articulatory movements and articulatory effort.

2. Trajectory models of speech articulators

In order to assess the relevance of applying general Tau theory
to speech, this paper compares it with existing models. We chose to
compare general Tau theory to Critically Damped Oscillator models
(hereafter CDO) (Saltzman and Munhall, 1989; Kröger et al., 1995;
Sorensen and Gafos, 2016) and the Sequential Target Approximation
Model (hereafter STAM) (Birkholz et al., 2010). All of these are target
approximation models. The choice of CDO is motivated by its wide
use in speech production models, i.e. models based on Task Dynam-
ics (Saltzman, 1986; Saltzman and Munhall, 1989; Kröger et al., 1995;
Browman and Goldstein, 1995; Šimko and Cummins, 2010; Sorensen
and Gafos, 2016; Sorensen et al., 2019), which makes it a dominant
approach. The choice of STAM is motivated by the fact that it has
been proved to be more accurate than CDO for fitting and generating
articulatory trajectories of speech (Birkholz and Hoole, 2012; Birkholz
et al., 2017), and is therefore a good candidate for being a relevant
baseline. This section presents CDO-based models and STAM.

2.1. Critically damped oscillators

In Task-Dynamics based paradigms, the movements of speech ar-
ticulators are modeled as those of oscillators for which the damping
coefficient is set so that oscillators are critically damped. This is done
to prevent overshoot and oscillation. The movement of such oscillators
are driven by the classic second-order equation of motion

𝑚�̈� + 𝑏�̇� + 𝑘𝑥 = 0, (1)

where 𝑥 is the distance between the position of the articulator and the
asymptotic target (i.e. the gap), 𝑚 and 𝑘 are the mass and the stiffness of
the articulator, respectively, and 𝑏 = 2

√

𝑘𝑚 is the damping coefficient.
This model has the advantage of requiring a small set of parameters.

Indeed, as the mass 𝑚 is usually set to 1 and 𝑏 is set according to 𝑘
and 𝑚, the model only requires the knowledge of stiffness 𝑘 and the
target position, denoted 𝑥𝑇 in this paper. However, the main drawback
is the difficulty to obtain an accurate fit to movement trajectories
due to a velocity profile that diverges from those observed in real
articulatory movements, that is where the velocity peak is too early. In
order to address this issue, some critically damped oscillation models
include a gradual activation function to shape the velocity profile
accordingly (Kröger et al., 1995; Byrd and Saltzman, 1998, 2003). With
a gradual activation function 𝑎(𝑡), assuming 𝑚 = 1, Eq. (1) becomes

�̈� + 𝑎(𝑡) [𝑏�̇� + 𝑘𝑥] = 0. (2)

Note that by setting 𝑎(𝑡) as a step function, one gets Eq. (1). In this
paper, we will adopt the activation function proposed by Kröger et al.
(1995), defined as

𝑎(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

0, 𝑡 < 𝑡0
sin

[

2𝜋(𝑡−𝑡0)
4(𝑡1−𝑡0)

]

, 𝑡0 ≤ 𝑡 < 𝑡1
1, 𝑡1 ≤ 𝑡 < 𝑡2

sin
[

2𝜋(𝑡−𝑇 )
4(𝑡2−𝑇 )

]

, 𝑡2 ≤ 𝑡 < 𝑇

(3)
⎩
0, 𝑡 ≥ 𝑇 ,
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Fig. 1. An example of movements of critically damped oscillators with a step activation function (solid line –), a gradual activation function (dashed line - -), and a nonlinear
restoring force (dash-dotted line -⋅-). The top left panel shows the trajectories, the top right shows the velocity profiles, and the bottom plot shows the activation functions. Note
that the nonlinear force model uses a step activation function.
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where 𝑡0 and 𝑇 denote the onset and the offset of the movement,
respectively, and 𝑡1 and 𝑡2 are two time points defining the rise and
fall intervals of the gradual function.

More recently, Sorensen and Gafos (2016) proposed to add a non-
linear restoring force to Eq. (1), as follows:

�̈� + 𝑏�̇� + 𝑘𝑥 − 𝑑𝑥3 = 0, (4)

where 𝑑 ∈ [0, 𝑘[. According to the authors in Sorensen and Gafos
(2016), this nonlinear version of CDO is able to reproduce the observed
symmetrical velocity profile feature of speech articulatory movements.

Fig. 1 shows an example of movements and velocity profiles of
critically damped oscillators with a step activation function (here-
after S-CDO), a gradual activation function (hereafter G-CDO), and
a nonlinear restoring force (hereafter NL-S-CDO). It illustrates the
modification of the velocity profile by applying the gradual activation
function and the nonlinear restoring force. In this example, with a
nonlinear restoring force, the proportional time to peak velocity, which
corresponds to the time ratio between the peak velocity instant and
the movement duration (a measure of velocity profile (a)symmetry) is
around 0.45, which is closer to those observed in practice (close to 0.5,
corresponding to a symmetric velocity profile) (Ostry et al., 1987; Byrd
and Saltzman, 1998; Perkell and Zandipour, 2002).

Although the introduction of a gradual activation function or a non-
linear restoring force improves the fit to real movements, these methods
suffer the drawback of adding more degrees of freedom for characteriz-
ing articulatory trajectories. This makes analysis of speech using these
models more complex, and also slows down the optimization process
that must be used to fit observed articulatory trajectories.

2.2. The sequential target approximation model

Birkholz et al. (2010) proposed to model the trajectories as a
cascade of 𝑁 identical first-order linear systems, each of these having
the following transfer function 𝐻(𝑠):

𝐻(𝑠) = 1
(1 + 𝑠𝜏)𝑁

, (5)

where 𝑠 is the complex frequency and 𝜏 is the time constant of the linear
system.
26
In the time-domain, the system is then characterized by the follow-
ing differential equation for 𝑥(𝑡):

𝑁
0

)

𝜏𝑁𝑥(𝑁) +
(

𝑁
1

)

𝜏𝑁−1𝑥(𝑁−1) +⋯ +
(

𝑁
𝑁

)

𝑥(0) = 𝑥𝑇 (𝑡), (6)

here
(𝑛
𝑘

)

is the binomial coefficient, 𝑥(𝑖) is the 𝑖th derivative of 𝑥(𝑡), and
𝑇 (𝑡) is the target function. The model allows 𝑥𝑇 (𝑡) to be any function
f time, but in practice, the target for each command is either fixed
o a constant value (Birkholz et al., 2010), or to a linearly changing
alue (Xu, 2004; Birkholz and Hoole, 2012).

In the original paper Birkholz et al. (2010), the authors proposed to
et the order of the system (i.e. the number of first-order linear systems)
o 𝑁 = 10. In a more recent study, 𝑁 has been reduced down to 6
irst-order linear systems (Birkholz and Hoole, 2012), as the authors
onsider it to be a good trade-off between a system that accurately
its the trajectories and one that does not induce unreasonable delays
etween the input command and the output trajectory. One feature of
his method is that it conserves the system state from one command
o the next, up to the 𝑁th derivative. This has the advantage of
reventing potential discontinuities in low-order derivatives that can
ccur for trajectories generated by models based on second-order linear
ystems (i.e. critically damped oscillators). However, this leads to a
elay between the activation of the command and the moment from
hich the system moves towards the target.

Fig. 2 shows an example of an articulatory sequence modeled using
TAM, for different time constants.

. General Tau theory

This section introduces general Tau theory and its application to
peech. General Tau theory has been applied to several kinds of move-
ents, including plummeting gannets (Lee and Reddish, 1981), hitting
falling ball (Lee et al., 1983), suckling in babies (Craig and Lee, 1999),
nd musical performances (Schögler et al., 2008; Rodger et al., 2013).
ts plausible application to speech articulation was suggested in Turk
nd Shattuck-Hufnagel (2020a,b). The current paper develops these
deas further via (i) a comparison of Tau theory with other models of
peech trajectory formation, and (ii) a demonstration of speech analysis
sing this theory.
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Fig. 2. An example of movements modeled using STAM with different time constants, namely 𝜏 = 0.01 (solid line –) and 𝜏 = 0.02 (dashed line - -). The left panel shows the
trajectories and the right panel shows the velocity profiles.
Fig. 3. Gap functions and velocity profiles of Tau-guided movements for various values of 𝜅. The left plot displays Tau-guided movements for different values of 𝜅. The right plot
displays their corresponding velocity profiles.
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3.1. Presentation

General Tau theory states that voluntary movements aim at closing
a gap between the current state of an effector and its target state.
One interesting feature of the theory is that, for a given movement
of duration 𝑇 and amplitude 𝐴, the timecourse of the movement is
ontrolled via a single quantity, denoted by 𝜏𝑋 (𝑡), which is defined
s the gap function 𝑋(𝑡), divided by the gap-closing velocity �̇�(𝑡) (the
erivative of the gap function 𝑋(𝑡) with respect to time). Coordination
f movements that aim at closing several gaps (e.g. 𝑋(𝑡) and 𝑌 (𝑡)) is
nsured by Tau-coupling, namely the 𝜏s of the gap 𝑋(𝑡) and 𝑌 (𝑡) are
ept at a constant ratio 𝜅𝑋,𝑌 , such that 𝜏𝑋 (𝑡) = 𝜅𝑋,𝑌 𝜏𝑌 (𝑡). This ensures
hat gaps are closed simultaneously, regardless of the initial size of the
aps. In that case, 𝜏𝑌 (𝑡) is the Tau-guide of 𝜏𝑋 (𝑡). When the planned
ovement involves only one gap to close, namely in the absence of

n extrinsic guide, the movement is guided by an intrinsic Tau-guide,
enoted 𝜏𝐺(𝑡), such that 𝜏𝑋 (𝑡) = 𝜅𝑋,𝐺𝜏𝐺(𝑡). The Tau-guide function 𝜏𝐺(𝑡)
s derived from Newton’s law of motion as follows:

𝐺(𝑡) =
1
2

(

𝑡 − 𝑇 2

𝑡

)

, (7)

here 𝑇 is the duration of the gap closure and 𝑡 runs from 0 to 𝑇 .
onsequently, Tau-guided movements are governed by the following
ifferential equation

𝑋 (𝑡) =
𝑋(𝑡)
�̇�(𝑡)

= 𝜅𝑋,𝐺𝜏𝐺(𝑡) =
𝜅𝑋,𝐺

2

(

𝑡 − 𝑇 2

𝑡

)

. (8)

One can see that the Tau-guide 𝜏𝐺 ensures that the gap closes and
reaches its target at the movement endpoint, namely when 𝑋(𝑇 ) = 0.

ne other interesting feature, as shown by Eq. (8), is that, given an
nitial gap 𝑋0 and gap-closure duration 𝑇 , the gap-closing function
epends on only one variable, namely the Tau-coupling parameter
𝑋,𝐺. Modifying the value of 𝜅𝑋,𝐺 will shape the velocity profile,
s shown in Fig. 3, which displays Tau-guided movements and their
orresponding velocity profiles for various values of 𝜅𝑋,𝐺. For the sake
27

f simplicity, 𝜅𝑋,𝐺 is simply denoted 𝜅 in the rest of the paper.
.2. Velocity profiles of Tau-guided movements

Like other practiced, voluntary movements, speech movements are
haracterized by smooth, single-peaked velocity profiles, which are
ften symmetric (Munhall et al., 1985; Ostry et al., 1987). These studies
lso observed that the ratio between the peak velocity, denoted 𝑉max
nd the average velocity is relatively constant, hence the following
elationship:
𝑉max𝑇
𝑋0

= 𝑐, (9)

with 𝑐 a constant, 𝑋0 is the amplitude of movement and 𝑇 is the
ovement duration. Therefore, implementing a model of articulatory

rajectory formation able to reproduce profiles with similar character-
stics is essential for the relevance of the application of Tau theory
o speech. This section analyzes the theoretical relationships between
he parameters of Tau-guided movements and the characteristics of the
esulting velocity profiles.

For that purpose, we consider a Tau-guided movement initiated at
= 0 and ending at 𝑡 = 𝑇 , starting at an initial gap 𝑋(0) = 𝑋0, and
aving a shape parameter 𝜅. A common descriptor of velocity profiles
s the proportional time-to-peak velocity 𝑡𝑝𝑝𝑣. It is defined as the time 𝑡𝑝
t which the peak velocity occurs divided by the movement duration,
amely 𝑡𝑝𝑝𝑣 = 𝑡𝑝

𝑇 .
First, let us solve the differential equation (8) to get the gap function

𝑋(𝑡). This yields

(𝑡) = 𝑋0

(

1 − 𝑡2

𝑇 2

)
1
𝜅
. (10)

The velocity and acceleration of the gap closure can then be derived
from the gap function:

�̇�(𝑡) = −
2𝑋0𝑡
𝜅𝑇 2

(

1 − 𝑡2

𝑇 2

)
1
𝜅 −1

, (11)

̈ (𝑡) =
4𝑋0𝑡2

(

1 − 𝑡2

𝑇 2

)
1
𝜅 −2

(

1
𝜅 − 1

)

−
2𝑋0

(

1 − 𝑡2

𝑇 2

)
1
𝜅 −1

. (12)

𝜅𝑇 4 𝜅𝑇 2
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Fig. 4. Parameters of velocity profiles of Tau-guided movements as a function of 𝜅. The top panel shows the proportional time-to-peak velocity. The bottom panel shows the
parameter 𝑐 = 𝑉max𝑇

𝑋0
.

Assuming 0 < 𝜅 < 1, the velocity function in Eq. (11) reaches a
ocal extremum when the acceleration function �̈�(𝑡) = 0, namely for
p = 𝑇

√

𝜅
2−𝜅 . Consequently, the time-to-peak velocity is given by

𝑡𝑝𝑝𝑣 =
𝑡𝑝
𝑇

=
√

𝜅
2 − 𝜅

. (13)

This equation shows that the time to peak velocity of Tau-guided
ovements depends only on the shape parameter 𝜅. The function

𝑝𝑝𝑣(𝜅) is plotted in Fig. 4: it is monotonically increasing for 0 < 𝜅 < 1,
ith a value of 0.5 reached for 𝜅 = 0.4. This means that Tau-guided
ovements having a 𝜅-value lower than 0.4 exhibit an accelerating
hase shorter than the decelerating phase, while movements with 𝜅
arger than 0.4 exhibit a longer accelerating phase. It also shows that
or any 0 < 𝑡𝑝𝑝𝑣 ≤ 1, there is a corresponding Tau-guided movement
ith 0 < 𝜅 ≤ 1.

The value of the peak velocity is obtained by substituting 𝑡p into
q. (11):

max = |�̇�(𝑡𝑝)| =
2𝑋0

𝑇
√

𝜅(2 − 𝜅)

(

1 − 𝜅
2 − 𝜅

)
1
𝜅 −1 . (14)

For Tau-guided movements of duration 𝑇 and shape parameter 𝜅,
eak velocity has a linear relationship with movement amplitude 𝑋0, as
bserved in previous studies (Ostry and Munhall, 1985; Munhall et al.,
985; Ostry et al., 1987). Additionally, one can show that parameter 𝑐,
efined in Ostry and Munhall (1985), Munhall et al. (1985) and Ostry
t al. (1987) as the ratio between the peak velocity 𝑉max and the average
elocity (𝑋0

𝑇 ) is a constant. Indeed, reorganizing Eq. (14) to fit Eq. (9)
ields

= 2
√

𝜅(2 − 𝜅)

(

1 − 𝜅
2 − 𝜅

)
1
𝜅 −1 , (15)

which is a constant for all movements with a given 𝜅.
Fig. 4 shows the relationship between 𝑐 and 𝜅 for 0 < 𝜅 ≤ 1. The

parameter 𝑐 varies rapidly for small 𝜅 (≤ 0.2), and then varies slowly
for 𝜅 > 0.2. It basically stays above 𝑐 = 1.5, which is the minimum
reached for 𝜅 = 0.64, and below 𝑐 = 2. These values correspond to
typical values observed in speech (cf. Munhall et al., 1985; Ostry et al.,
1987 for instance).

These mathematical developments show that Tau-guided move-
ments have a 1-to-1 relationship between the 𝜅 parameter and the
skewness of the velocity profile (defined as the proportional time-
to-peak velocity). In addition, we show that Tau-guided movements
28
with a given 𝜅 have a constant 𝑐, consistent with findings in previous
studies (Munhall et al., 1985; Ostry et al., 1987).

4. Experiments

This section presents experiments which evaluate the application
of general Tau theory to articulatory movements in speech. We first
fit Tau-guided gap functions to observed trajectories. In order to com-
pare our model with existing models, the fitting errors of the Tau-
guided functions are then compared with those obtained by fitting the
CDO-based and STAM models to the same trajectories.

4.1. Data

Data used in these experiments come from a reading task in the
DoubleTalk corpus (Scobbie et al., 2013; Geng et al., 2013). The corpus
consists of synchronous EMA and audio recordings for each of 6 mixed-
dialect pairs, resulting in a total of 12 native speakers of English. Five
speakers have a Southern English accent (labeled SE), 5 have a Scottish
accent (labeled SC), one has a Northern English accent (labeled NE),
and one has a General American accent (labeled GA). We modified
the labeling pattern of speakers from the DoubleTalk corpus to include
information about accent, as shown in Table 1. The corpus includes
several speech tasks, including spontaneous monologue, spontaneous
conversation, repetition from memory, shadowing, and read speech.
The experiments detailed in this paper were conducted solely on the
read speech part of the corpus. The read speech task required speakers
to read Comma Gets a Cure (Honorof et al., 2000), designed to showcase
phonemes of English that exhibit significant phonetic variation across
dialects. This story was adapted for Scottish English by Scobbie et al.
(2013).

EMA data were collected using two synchronized Carstens AG500
electromagnetic articulometers at an acquisition rate of 200 Hz. Data
consists of 3D positions and rotations of 12 sensors attached to the
vermilion borders of the upper and lower lips, intra-orally, and on the
head. Sensors attached on fixed parts of the head were used to correct
for head movement, i.e. to remove low frequency head movements
from the articulator sensor movements. Synchronized speech audio
data was collected by means of Articulate Instruments Ltd. hardware.
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Table 1
Modifications of the speaker labeling pattern from the DoubleTalk corpus.

In DoubleTalk In this paper

R0020_cs5 1CS5NE
R0020_cs6 1CS6GA
R0033_cs5 2CS5SC
R0033_cs6 2CS6SE
R0034_cs5 3CS5SC
R0034_cs6 3CS6SE
R0035_cs5 4CS5SC
R0035_cs6 4CS6SE
R0036_cs5 5CS5SC
R0036_cs6 5CS6SE
R0039_cs5 6CS5SC
R0039_cs6 6CS6SE

4.2. Dealing with 2D movements: dimensionality reduction

In these experiments, we analyzed the trajectories of sensors at-
tached to the lower and the upper lips, on the lower jaw, and on 3
points arranged midsagittally on the tongue. The tongue tip sensor was
attached less than or equal to 1 cm from the tip. The tongue back sensor
was attached as far back as was feasible, and the tongue mid sensor
was approximately equidistant between the tongue tip and tongue back
sensor. The tongue sensors were separated from each other by 1–
2 cm. Additionally, in order to investigate the movement of task-related
variables, we computed lip aperture, defined as the euclidean distance
between the lower and the upper lips at every time sample. In order to
align with the naming convention of existing articulatory models, the
tongue back and tongue mid sensors will be labeled as Tongue Dorsum
(TD) and Tongue body (TB) for the rest of the paper. We disregarded
he 𝑥 (lateral) dimension of the data, and used only the signals in the
agittal plane, namely in the 𝑦 (sagittal) axis and in the 𝑧 (vertical)
xis. Since all of the investigated models of articulatory trajectories
enerate 1D signals, analysis using these models requires a reduction
f dimensions to transform 3D or 2D position signals into a 1D signal.
irkholz et al. (2010) proposed to consider the analyzed 1D trajectory
s the projection of 2D trajectories onto the first principal component,
xtracted from PCA. One alternative way of generating a 1D signal
s to use parametric static articulatory models, namely models that
efine the geometry of the vocal tract using a few parameters, and then
pplying trajectory models to these parameters. For instance, CDO-
ased trajectory models are applied to the CASY articulatory model
n TADA (Nam et al., 2004). Similarly, Šimko and Cummins (2010)
roposed to use CDO-based models to generate the timecourse of the
arameters of a simplified articulatory model. However, this alternative
s less adapted for articulatory analysis as it requires the estimation of
rticulator parameters from the observation of their position (Toutios
t al., 2011). Both methods add uncertainty about the real articulator
osition, due to the fact that the first principal component does not
xplain 100% of the variance for the PCA method, and due to limits on
he precision of the articulatory model and to limits on the robustness of
he inversion method for the method using an intermediate articulatory
odel. We chose to analyze the trajectories defined as the projection

f articulator position data onto the first principal component extracted
rom Principal Component Analysis. PCA was applied to position data
f each individual speaker and each individual sensor. Note that this
as not applied to lip aperture, since it is already a 1D signal by
efinition. A 4-order 1D Gaussian filter was then applied to signals to
mooth the trajectories. The aim of the filtering was to remove small
luctuations in the position signal that would perturb the articulatory
egmentation as detailed in Section 4.3. For our data, using a Gaussian
iltering of order 4 has been found to be a good trade-off between a
ood rejection of the fluctuations, and reasonable filtering that prevents
verfitting and unrealistically long movements.
29
Table 2
Distribution of inter-pause intervals across speakers and sensors. TD, TB, and TT denote
tongue dorsum, tongue body and tongue tip, respectively. LL and UL denote lower and
upper lip, respectively, and LA denotes lip aperture.

Speakers TD TB TT Jaw LL UL LA All

1cs5NE 53 53 53 53 53 53 53 371
1cs6GA 24 24 24 24 24 0 0 120
2cs5SC 31 31 31 31 31 31 31 217
2cs6SE 42 42 31 42 42 42 42 283
3cs5SC 39 39 39 39 39 39 39 273
3cs6SE 36 36 34 36 36 36 36 250
4cs5SC 27 27 27 27 27 26 26 187
4cs6SE 50 50 50 50 50 44 44 338
5cs5SC 41 40 40 41 41 41 41 285
5cs6SE 36 40 40 40 40 40 40 276
6cs5SC 18 18 15 18 18 18 18 123
6cs6SE 47 47 47 47 47 23 23 281

All 444 447 431 448 448 393 393 3004

Table 3
Distribution of articulatory segments across speakers and sensors. TD, TB, and TT
denote tongue dorsum, tongue body and tongue tip, respectively. LL and UL denote
lower and upper lip, respectively, and LA denotes lip aperture.

Speakers TD TB TT Jaw LL UL LA All

1cs5NE 1183 1217 1384 1243 1332 1255 1296 8910
1cs6GA 723 726 732 711 769 0 0 3661
2cs5SC 1145 1140 1246 1252 1247 1050 1220 8300
2cs6SE 1419 1425 824 1329 1466 1243 1475 9181
3cs5SC 1034 1085 1171 1094 1223 1205 1204 8016
3cs6SE 1122 1149 1198 1163 1254 1227 1197 8310
4cs5SC 990 1004 1182 1050 1143 794 946 7109
4cs6SE 1124 1146 1302 1344 1387 918 1124 8345
5cs5SC 1149 1014 1120 1031 1230 1045 1249 7838
5cs6SE 1063 1181 1318 1195 1306 1162 1354 8579
6cs5SC 1029 1050 737 1086 1061 917 1057 6937
6cs6SE 1071 1108 1248 1081 1181 467 569 6725

All 13 052 13 245 13 462 13 579 14 599 11 283 12 691 91 911

4.3. Articulatory segmentation

The EMA signals were segmented at two levels. First, they were
segmented into inter-pause intervals. Each inter-pause interval segment
is then a sequence of articulatory movements between two pauses.
Pauses at the onset and offset of inter-pause interval segments are
included for the purpose of fitting only (as explained in Section 4.4).
Due to experimental factors, e.g. sensor tracking difficulties, some
inter-pause intervals were discarded from the analysis because they
contained only noise. Finally, this resulted in a total of 3004 EMA inter-
pause intervals to analyze. The second step consisted of segmenting
inter-pause interval segments into articulatory movement units. For
that purpose, we used a zero-crossing method. We defined movement
units as time segments between two successive local extrema of the
position signal. Local extrema correspond to zero-crossings of the time
derivative of position, i.e. the velocity signal. Fig. 5 shows an example
of segmentation using velocity zero-crossings.

The distribution of analyzed inter-pause intervals across speakers
and sensor type is detailed in Table 2, while Table 3 details the distribu-
tion of analyzed articulatory segments across speakers and sensor types.
Note that the signal from the upper lip sensor (UL) on speaker 1cs6GA
was not valid due to a broken sensor, hence no inter-pause intervals
have been analyzed on the upper lip for this speaker. The same applies
for the lip aperture for this speaker, as it is derived from both the lower
lip (LL) and upper lip (UL) signals.

4.4. Curve fitting

The comparison of studied models of articulatory trajectories is
made using curve fitting. This section details the different methods for

curve fitting to observed articulatory trajectories.
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Fig. 5. Velocity Zero-Crossing segmentation. The top plot displays the filtered position signal and the found local extrema. The bottom plot displays the velocity and the estimated
zero-crossing. The positions of the zero-velocity are marked by red crosses. Vertical dashed lines show the boundaries of individual segments.
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All methods use an optimization algorithm which minimizes a
defined cost function, i.e. a fitting error function. In order to allow
air comparison between methods, we used the same cost function and
he same optimization algorithm as proposed in Birkholz et al. (2010)
or all of them. The optimization procedure uses the Nelder–Mead
implex method (Nelder and Mead, 1965) to find the global minimum
f a scalar objective function. This objective function represents the
issimilarities between the observed trajectory and the reproduced
rajectory generated by the model. It is computed for each sequence
of 𝑀 movement units (segmented following the method described in

Section 4.3) inside the analyzed inter-pause interval. The cost function
𝐶 is defined as

𝐶(𝜃) =

√

[
∑

𝑛 𝑤𝑛(𝑠𝑛 − �̃�𝑛(𝜃))2
]

∕
∑

𝑛 𝑤𝑛

𝑠max − 𝑠min
, (16)

here 𝜃 ∈ R𝑙𝑀 is the vector containing the 𝑙 parameters to optimize for
he 𝑀 movement units, 𝑠𝑛 is the observed sequence of movement units
at the inter-pause level) at sample 𝑛, �̃�𝑛(𝜃) is the modeled trajectory of
he inter-pause interval at sample 𝑛 for the vector of parameters 𝜃, 𝑠max
nd 𝑠min are the maximum and minimum of the observed inter-pause
ignal 𝑠, respectively, and

𝑛 = 1 + 𝑎
𝑣2𝑛
𝑣2max

, (17)

is a weight signal used to account for change in velocity. Here, 𝑣𝑛 is
he velocity profile at sample 𝑛, 𝑣max is the peak velocity, and 𝑎 = 5
s a factor used to specify the relative importance of position versus
elocity in the fitting process. This objective function is very similar to
he one used in Birkholz et al. (2010). We chose to use the same cost
unction as a baseline method for all tested models in our paper to allow
air comparisons. Since this paper intends to compare fits for different
peakers, signals, and phonetic contexts, we slightly modified the cost
unction to include a normalization. The cost function is normalized
y the range of signal values within the inter-pause interval, namely
max − 𝑠min.

This optimization procedure requires an initial estimate, which
trongly influences the final solution. Indeed, different initial estimates
ill give different solutions. Consequently, as suggested in the original
aper (Birkholz et al., 2010), we ran a set of 100 optimization proce-
ures for each sequence, with different random initial estimates, and
e adopted the solution that provides the best fit as the solution to
eep. Note that, as detailed in Section 4.4.3, the Tau-fitting method
oes not require multiple optimization processes, as the solution does
ot depend on the initial estimate.
30

o

.4.1. Fitting with the sequential target approximation model
The fitting method using STAM is roughly the same as the one used

n the original paper (Birkholz et al., 2010), including the changes
etailed in Birkholz and Hoole (2012). The parameters to optimize are
he onset time, the initial target, the time constant, and the slope of
he target function of each command. The size of 𝜃 is then 4𝑀 (4
arameters to optimize for each movement unit).

The initial estimate parameters were set as follows. The initial
argets for ascending movements were set to the maximum of the move-
ent unit plus a random value between 0 and 1 cm (or the minimum
inus a random value between 0 and 1 cm for descending trajectories).
he initial onset times were set to a random value between 50 and
00 ms before the onset of the movement unit, to account for the delay
nduced by the cascade of first-order linear systems. The initial constant
imes were set to a random value between 0.01 and 0.02. Finally each
nitial slope for the target function was set to a random value between

and 50, multiplied by −1 for descending movements. Each random
alue was drawn from a uniform distribution.

.4.2. Fitting with critically damped oscillators
Fitting with CDO-based techniques was done similarly to fitting

ith STAM. The optimization algorithm was also the Nelder–Mead
implex method (Nelder and Mead, 1965), and the objective function
as similar to the one in Eq. (16). The differences were in the choice of

he parameters to optimize. NL-S-CDO needs to optimize the target, the
tiffness value, and the nonlinear constant value 𝑑; as a result the size
f 𝜃 is 3𝑀 , while G-CDO also needs to optimize the activation function
arameters, namely the values of 𝑡1 and 𝑡2 of Eq. (3), relative to the
ovement duration 𝑇 , in addition to the target and the stiffness value.
onsequently, the size of 𝜃 is 4𝑀 .

Similarly to STAM, a set of 100 optimization procedures with ran-
om initial estimates were run to obtain the best fit. Initial targets were
et the same way as in the STAM fitting procedure. Initial stiffness
alues were taken as random numbers between 0 and 1000, and initial
1 and 𝑡2 were set to random numbers such that 0 < 𝑡1 < 𝑡2 < 𝑇 .

.4.3. Fitting with general Tau theory
One advantage of curve fitting with the general Tau theory equation

ver STAM and CDO is that there is only one parameter to optimize,
amely the Tau-coupling value 𝜅. This is because the other parameters
n the equation are directly observable from the EMA trajectories. The
bjective function of Eq. (16) can then be reduced to a one-dimensional
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Fig. 6. Example of fits obtained with the different methods, namely Tau, STAM, NL-S-CDO, and G-CDO, from left to right. The fitted curve is a small section of an actual jaw
osition signal extracted from the analyzed corpus. The top plot shows the result of the fit and the bottom plot shows the absolute difference, in mm, between the fit and the
MA trajectory.
Table 4
Degrees of freedom (DOF), 𝐹−statistic and the corresponding 𝑝−value between parentheses for the 3 repeated-measures 3-way ANOVAs.
Paired-Test DOF Tau vs. STAM Tau vs. NL-S-CDO Tau vs. G-CDO

Sensors 6 51 (p = 1.1 × 10−61) 9.3 (p = 3.4 × 10−10) 17 (p = 5.6 × 10−20)
Speakers 11 30 (p = 2 × 10−61) 24 (p = 1.9 × 10−48) 33 (p = 3.8 × 10−68)
Methods 1 6.7e+03 (p = 0) 1.1e+04 (p = 0) 1e+04 (p = 0)
Sensors ∗ Speakers 64 1.5 (p = 0.0085) 2.8 (p = 1.9 × 10−12) 1.9 (p = 1.3 × 10−05)
Sensors ∗ Methods 6 63 (p = 2.2 × 10−76) 15 (p = 6.4 × 10−17) 23 (p = 7.3 × 10−27)
Speakers ∗ Methods 11 27 (p = 3.9 × 10−56) 21 (p = 1.8 × 10−43) 32 (p = 6.4 × 10−67)
Sensors ∗ Speakers ∗ Methods 64 0.96 (p = 0.57) 1.4 (p = 0.026) 1 (p = 0.37)
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function, applied to each movement unit, with 𝜃 = 𝜅. In addition,
(𝜅) is shown to admit only one minimum, which implies that the
ptimization algorithm always converges towards the same solution.
herefore, the solution does not depend on the initial estimate, hence
here is no need to run several optimization processes. This feature
ignificantly reduces the optimization burden, and the solution provides
global minimum of the objective function.

.4.4. Example of fit
Fig. 6 shows example fits obtained with the different methods. The

itted curve is a small section of an actual jaw position signal extracted
rom the analyzed corpus. In this example, the Tau theory equation
rovides the best fit (𝐶 = 0.017), followed by NL-S-CDO (𝐶 = 0.031),
-CDO (𝐶 = 0.043), and STAM (𝐶 = 0.054). Tau Theory generates a
ood fit for all parts of the trajectory. Trajectories generated by other
ethods exhibit regions where fits clearly diverge from the observed

rajectory. These regions correspond to parts of movement where the
rajectory changes its direction, i.e. when the velocity is low. This is
ertainly due to the choice of the cost function 𝐶 of Eq. (16), which
ives less penalty in these regions. Note that, as explained previously
n this section, this cost function has been adapted from Birkholz et al.
2010) to achieve the best fit possible with STAM, as suggested by the
uthors.

.5. Results

Fits have been performed using the 4 models (Tau, STAM, NL-S-
DO, and G-CDO) on all inter-pause intervals and for every sensor.
his section presents the results of the fitting errors when using these
odels.
31

a

.5.1. Statistical analysis
We conducted 3 repeated-measures 3-way ANOVAs to assess the

ffect of the independent variables methods, speakers and sensors on
he error fit. These analyses allow us to assess the following compar-
sons: (1) Tau vs. STAM, (2) Tau vs. S-CDO, and (3) Tau vs. G-CDO.
he analyzed independent variables were speakers, sensors, and meth-
ds. Table 4 reports the 𝐹−statistic and the corresponding 𝑝− value
etween parentheses. All main effects and interactions were significant,
xcept for the Speaker*Sensor*Method interaction for all analyses. One
ossible explanation for why the fits change for different sensors and
peakers with STAM and CDO could be that these methods show highly
ariable behavior, even for the same sensor used by the same speaker.

.5.2. Impact of the PCA on fitting error
As discussed in Section 4.2, using PCA for dimensionality reduction

dds uncertainty as the first principal component does not explain
00% of the variance. This is because articulatory sensors do not move
long a straight axis, and the deviation of movement from the principal
omponent depends on sensors and speakers.

In order to assess the effect of the explained variance on the fitting
rror, we computed Pearson correlation coefficients for each sensor and
ethod. Results are shown in Fig. 7. Correlation coefficients show a
eak linear correlation between the fitting error and explained vari-
nce (|𝑟| ≤ 0.34). For STAM and CDO based methods, the correlation
oefficient is negative, meaning that the fitting error tends to slightly
ecrease when the explained variance increases. Surprisingly, Tau the-
ry exhibits an inverse relationship, as correlation coefficients are
ostly positive: the fitting error tends to increase with the explained

ariance. However, the correlation coefficient for Tau is very weak
|𝑟| ≤ 0.11). This observation suggests that the explained variance has
very marginal impact on the trajectory fitting using Tau.
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Fig. 7. Fitting error as a function of the explained variance for each articulatory sensor and each method. (‘o’ = Tau, ‘□’ = STAM, ‘▿’ = NL-S-CDO, and ‘▵’ = G-CDO). Lines
represent the linear regression applied to the fitting vs. explained variance (Tau is represented by a solid line, STAM by a dashed line, NL-S-CDO by a dotted line, and G-CDO by
a dash-dotted line). 𝑟 denotes the Pearson correlation coefficient.
4.5.3. Presentation of results
Fig. 8 shows the distribution of fit errors for the 4 methods among

speakers and sensors. The error is the minimum of the cost function in
Eq. (16), expressed in %, returned by the optimization process.

Results show that the fit error is lowest for the Tau theory equation,
followed by STAM and NL-S-CDO, which perform slightly better than
G-CDO. When grouping all signals (all speakers and all sensors), the
median fit error for Tau is 2.38%, 7.49% for STAM, and 7.48% and
9.64% for NL-S-CDO and G-CDO, respectively. This pattern is roughly
the same across speakers and sensors. The median fitting error for Tau
theory lies between 1.70% (lower lip sensor of speaker 3cs5SC) and
3.17% (lip aperture of speaker 6cs5SC). Curiously, fits on sensor signals
from speaker 6cs5SC are almost always the least accurate. For instance,
the errors with STAM are larger than 13% for each of the sensors, but
only between 5.5% and 10% for other speakers, except for a few cases.
These large median errors generally occur when the error variance is
large, as is observed for some speakers and sensors. For two speakers
(2cs5SC and 6cs5SC), errors using STAM show a much larger variance
for lip and jaw sensors than for other sensors and speakers. One can
also note a larger variance of STAM-fit errors for speaker 4cs5SC for
the tongue-tip sensor. Since such a larger variance for these sensors and
speakers is not clearly visible for other methods, this is probably due to
the variability of the solution returned by the STAM optimization, as it
requires more parameters to optimize. There is no qualitative difference
in pattern among sensors. One can note, however, that the tongue tip,
the jaw, and the lower lip sensors have larger fitting errors than other
sensors for STAM and CDO-based methods, but this does not apply for
Tau-fitting, and it is probably due to the aforementioned large variance
observed for some speakers.

It is interesting to note that there are no qualitative differences
across sensor types, despite being attached to very different articula-
tors. Indeed, the upper lip is an end effector which does not depend
on the movements of other analyzed sensor types, while some have
position signals which are strongly inter-correlated between each other
(e.g. tongue sensors). In the current experiments, speech articulation
has been treated as a sequence of discrete, non-overlapping trajectories.
However, it has been hypothesized in AP/TD that single articulators
may sometimes be simultaneously governed by the activation of mul-
tiple abstract gestures. This is postulated to be the case for example,
for /g/-vowel sequences, in which the tongue body gesture for the
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consonant partially overlaps with the tongue body gesture for the
vowel. The activation functions in the current CDO analyses have not
been optimized in a way that takes this type of partial overlap into
account, and it is possible that better CDO fits could be achieved with
a better model of coarticulation. However, the fact that Tau theory
outperformed CDO models for articulators such as the lower lip, upper
lip, tongue tip, and also the lip aperture signal, that are not often
simultaneously governed by partially overlapping gestures, suggests
that our finding of superior Tau theory performance is not exclusively
due to our assumptions about independent, non-partially overlapping
movements.

In addition, in our experiments, we have treated the movements of
each sensor as being independent of movements of the other sensors,
even though we know that the movement of the jaw will affect the
movement of the tongue and lower lip, and each tongue sensor will
be affected by the movements of the other tongue sensors. That is,
for Tau theory, we have assumed that each sensor is Tau-guided in-
dependently, which is most certainly not the case. However, in spite
of this assumption, we see good fits to the Tau theory equation for
all sensors, and do not see a better fit for the upper lip sensor which
is arguably most independent of other sensors. We therefore see no
evidence that the interdependence of movement paths has affected
the timecourse of movement, which appears to be Tau-guided for all
sensors and speakers.

These results show that modeling articulatory trajectories with gen-
eral Tau theory gives the most accurate representation of actual trajec-
tories, as it provides the best fit, in comparison with other methods.
Unlike other methods which require running many optimization pro-
cedures to approximate the global minimum of the cost function, Tau
theory always provides the global minimum. This gives more confi-
dence in the returned solution when analyzing articulatory trajectories.
This also probably reduces the variance of fitting errors, as our results
show that the latter is lower when fitting with Tau theory than for other
methods. These observations suggest that Tau theory can be applied to
model movements of any articulator, and also to task variables such as
lip aperture, which gives a fit accuracy similar to fits on the positions
of speech articulators. Our results also show that it applies similarly for
each of the 12 analyzed speakers.

5. Speech analysis using general Tau theory

The previous section has provided support for the relevance of ap-

plying general Tau theory to speech, and more specifically for analyzing
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Fig. 8. Fitting errors obtained for the different methods for each speaker and each sensor. The error is the obtained minimum of the cost function in Eq. (16), expressed in %.
peech movement trajectories. Indeed, Tau theory provides a unique so-
ution which fits the analyzed trajectories better than baseline methods.
his seems to apply for any sensor or speaker. It also uses a reduced
umber of parameters to model and characterize a trajectory: initial
nd final position, onset and offset times, and 𝜅, a shape parameter.
n this section, we present a demonstration of speech analysis using
eneral Tau theory: we provide a statistical analysis of the estimated
-values produced by speakers in the Comma Gets a Cure reading task,
nder the assumption that their movements were Tau-guided.

.1. Data and analysis

Data used for the analysis study were the same as those used in
revious section. The shape parameter 𝜅 was estimated by fitting Tau-
uided trajectories on observed trajectories. For the statistical analysis,
e introduce a rejection criterion to discard shape parameters esti-
ated from fits that are considered as non satisfying, namely fits for
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hich 𝜅 ≤ 0 or 𝜅 ≥ 1. This is the case for 2.15% of the analyzed data.
5.2. Distribution of 𝜅

Fig. 9 shows the individual statistical distributions of estimated 𝜅 for
all speakers and sensors. All distributions are of similar shape, namely
a slightly right-skewed unimodal distribution. Skewness, defined as the
third statistical moment, is always positive, ranging from 0.29 (upper
lip sensor of speaker 3cs5SC) to 0.82 (jaw sensor of speaker 4cs6SE).
The excess kurtosis, defined as the fourth statistical moment, ranges
from −0.43 (upper lip sensor of speaker 6cs5SC) to 1.6 (jaw sensor
of speaker 4cs6SE). Most of the distributions (≃83%) are leptokurtic,
namely with a positive excess kurtosis, suggesting a slight tendency for
𝜅-values to exhibit a sharp distribution centered around its mode.

Modes and standard deviations of 𝜅 are displayed in Table 5. Distri-
bution modes have been estimated using a Kernel density estimation.
All distributions have very similar modes, ranging from 0.376 (tongue
tip sensor of speaker 1cs6GA) to 0.439 (jaw sensor of speaker 6csSE),
with most of the values (≃90%) being between 0.38 and 0.42. They
also have similar standard deviations, ranging from 0.13 (jaw sensor of

4cs6SE) to 0.20 (upper lip sensor of speaker 6cs5SC).



Speech Communication 151 (2023) 24–38B. Elie et al.
Fig. 9. Individual statistical distribution of estimated 𝜅 for all speakers (columns) and sensors (rows). The 𝑥-axes represent the 𝜅 values and the 𝑦-axes represent the normalized
distribution (the peak is at 1).
Table 5
Modes and standard deviation (in parentheses) of 𝜅 estimated for each speaker and sensor.

Speakers TD TB TT Jaw LL UL LA All

1cs5NE 0.397 (0.16) 0.386 (0.15) 0.391 (0.15) 0.422 (0.15) 0.409 (0.15) 0.405 (0.18) 0.399 (0.15) 0.400 (0.16)
1cs6GA 0.403 (0.16) 0.391 (0.16) 0.376 (0.17) 0.413 (0.15) 0.370 (0.15) – – 0.381 (0.16)
2cs5SC 0.430 (0.16) 0.419 (0.15) 0.390 (0.15) 0.407 (0.16) 0.397 (0.14) 0.389 (0.18) 0.394 (0.15) 0.406 (0.15)
2cs6SE 0.417 (0.16) 0.395 (0.16) 0.399 (0.16) 0.401 (0.16) 0.390 (0.14) 0.386 (0.16) 0.408 (0.15) 0.396 (0.15)
3cs5SC 0.394 (0.16) 0.393 (0.16) 0.405 (0.17) 0.429 (0.16) 0.408 (0.15) 0.427 (0.18) 0.393 (0.15) 0.406 (0.16)
3cs6SE 0.414 (0.17) 0.406 (0.16) 0.396 (0.17) 0.403 (0.16) 0.408 (0.14) 0.403 (0.16) 0.403 (0.15) 0.405 (0.16)
4cs5SC 0.407 (0.15) 0.391 (0.16) 0.387 (0.15) 0.394 (0.17) 0.406 (0.15) 0.384 (0.18) 0.394 (0.15) 0.397 (0.16)
4cs6SE 0.385 (0.15) 0.407 (0.15) 0.400 (0.15) 0.404 (0.13) 0.403 (0.14) 0.386 (0.16) 0.403 (0.14) 0.405 (0.15)
5cs5SC 0.381 (0.15) 0.408 (0.15) 0.395 (0.15) 0.402 (0.15) 0.398 (0.14) 0.408 (0.18) 0.390 (0.15) 0.400 (0.15)
5cs6SE 0.395 (0.15) 0.395 (0.15) 0.403 (0.14) 0.404 (0.14) 0.384 (0.14) 0.409 (0.18) 0.393 (0.14) 0.395 (0.15)
6cs5SC 0.390 (0.15) 0.388 (0.16) 0.433 (0.16) 0.394 (0.16) 0.404 (0.16) 0.377 (0.20) 0.398 (0.16) 0.391 (0.16)
6cs6SE 0.431 (0.15) 0.398 (0.16) 0.378 (0.15) 0.439 (0.16) 0.412 (0.15) 0.384 (0.17) 0.406 (0.16) 0.407 (0.15)

All 0.405 (0.16) 0.397 (0.16) 0.389 (0.16) 0.406 (0.15) 0.410 (0.14) 0.405 (0.18) 0.396 (0.15) 0.401 (0.16)
These results show that the statistical distributions of 𝜅 are similar
across speakers and sensors for this reading task: they conform to a
slightly right-skewed closed-to-mesokurtic unimodal distribution. The
median values of the statistical characteristics of the distribution are
0.400 for the statistical mode (standard deviation is 0.012), 0.155
for the standard deviation (standard deviation is 0.011), 0.55 for
the skewness (standard deviation is 0.098), and 0.64 for the kurtosis
(standard deviation is 0.36). The shape of this common distribution
suggests that, under the hypothesis that articulatory trajectories are
Tau-guided, articulators aim at coupling to a Tau-guide, with a Tau-
coupling parameter 𝜅 of around 0.4. Still under this hypothesis, the
speaker would solely have to choose the target position and the time
of offset of the movement for a given articulation. The timecourse of
the articulator to reach the target position at the offset time is then
such that it follows the predefined Tau-guide, with a coupling constant
of 𝜅 ≃ 0.4. Noise may occur in the production of the articulatory
movement: the trajectory timecourse may not follow an ideal Tau-guide
in these cases. Interestingly, according to Eq. (13), Tau-guides with a 𝜅
value of 0.4 presents a symmetrical velocity profile, namely with a peak
velocity located exactly at half the duration of the movement. Further
tests of this hypothesis will be required to see if the distribution of 𝜅
values is similar for other types of speech, including other speech styles
or materials with other lexical content.

6. Articulatory effort of Tau-guided movements

The Tau-analysis in the previous section suggests that articulatory
movements conform to the Tau equation, and suggests that most move-
ments are coupled to a Tau-guide with a similar coupling constant
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𝜅. From these observations, we hypothesize that speakers most often
choose a default 𝜅 value, which corresponds to the statistical mode of
the 𝜅 distributions extracted from our experiments, namely 𝜅 ≃ 0.4.
This section is an attempt to find a possible explanation for why speak-
ers would plan Tau-guided articulations with this particular coupling
constant.

Our intuitive solution to this problem is that Tau-guided movements
planned with this particular 𝜅 value optimize an unknown performance
objective. Indeed, besides satisfying primarily task objectives, skilled
movements have been shown to satisfy energetic constraints, i.e. to sat-
isfy an ‘‘economy of effort’’ constraint (Hoyt and Taylor, 1981; Nelson,
1983). Following this idea, speech articulatory movements should also
be executed such that an effort-based cost function is optimized. This
has been exploited, for instance, by Lindblom in his Hyper and Hypo
continuum theory (also known as H&H theory) (Lindblom, 1990) and in
Emergent Phonology (Lindblom, 1999). Articulatory effort is one of the
constraints included in the cost function used in Embodied Task Dynam-
ics model of speech production by Šimko and Cummins (2010). This
section discusses the observed articulatory movements from the per-
spective of both general Tau theory and Optimal Control Theory (OCT).
Note that this is a preliminary study. We do not claim to fully investi-
gate the complex question of performance objectives applied to speech.
Instead, this section attempts to provide a possible interpretation of our
experimental observations about 𝜅 values from Section 5.2.

6.1. Performance objectives

Two dominant performance objectives are commonly used in OCT,
namely minimum jerk (Flash and Hogan, 1985; Hoff and Arbib, 1993;
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Sha et al., 2006), and minimum motor commands (Fagg et al., 2002;
O’Sullivan et al., 2009; Shadmehr et al., 2010). Theories based on min-
imum jerk assume that movements reflect a minimized cost function 𝐽
based on jerk (the derivative of acceleration):

𝐽jerk = ∫

𝑇

0
|𝑥(𝑡)|2𝑑𝑡, (18)

where 𝑥(𝑡) is the third derivative (jerk) of position with respect to time,
and 𝑇 is movement duration.

Theories based on minimum motor commands assume that motor
commands are penalized, instead of jerk, hence

𝐽command = ∫

𝑇

0
|𝑢(𝑡)|2𝑑𝑡, (19)

where 𝑢(𝑡) is the motor command signal. In this preliminary study,
we assume that the motor commands are defined as the resulting
forces acting on the articulator, as proposed in Nelson (1983). This
assumption is motivated by the fact that it has been successfully applied
in previous literature on OCT-based speech production (Šimko and
Cummins, 2010). Following Newton’s second law of motion, the force
acting on the articulator is 𝐹 (𝑡) = 𝑚�̈�(𝑡), where 𝑚 is the mass of the
articulator. We will consider an arbitrary mass 𝑚 = 1 for this study,
hence the following cost function

𝐽force = ∫

𝑇

0
|�̈�(𝑡)|2𝑑𝑡. (20)

6.2. Theoretical minimal effort

This section investigates the influence of 𝜅 values on the effort
required by Tau-guided movements and compares this with a theoret-
ical minimal effort. In Flash and Hogan (1985), the authors derived
the formula governing the linear 1D-movement which minimizes jerk,
namely the solution 𝑥(𝑡) of Eq. (18). Assuming that both the velocity
and acceleration are null at both the onset and offset of the movements
(𝑡 = 0, and 𝑡 = 𝑇 , respectively), that the onset position is 𝑥(0) = 𝑋0 and
the offset position is 𝑥(𝑇 ) = 0, one can find that the solution to Eq. (18)
is

𝑥minjerk (𝑡) = 𝑋0

[

1 − 10
( 𝑡
𝑇

)3
+ 15

( 𝑡
𝑇

)4
− 6

( 𝑡
𝑇

)5
]

(21)

However, as shown in Eq (12), the acceleration of Tau-guided move-
ments is not null at both end points. Consequently it is not appropriate
to compare Tau-guide movements with minimal jerk movements since
they do not have the same boundary conditions. However, following
the same method as in Flash and Hogan (1985), without the need to
impose boundary conditions for acceleration, one can find that the
solution to Eq. (20) is

𝑥minforce (𝑡) = 𝑋0

[

1 − 3
( 𝑡
𝑇

)2
+ 2

( 𝑡
𝑇

)3
]

(22)

It follows that the optimal acceleration is

�̈�minforce (𝑡) = 6
𝑋0

𝑇 2

( 2𝑡
𝑇

− 1
)

. (23)

Substituting Eq. (23) into Eq. (20) yields:

𝐽minforce = 12
𝑋2

0

𝑇 3
. (24)

For the purpose of comparing the effort required by Tau-guided
ovements with the theoretical minimal effort defined by Eq. (24), we

ntroduce the effort ratio 𝑅force, defined as

force = 𝐽force∕𝐽minforce , (25)

here 𝐽force and 𝐽minforce are defined as in Eqs. (20) and (24).
Fig. 10 displays the effort ratio 𝑅force as defined in Eq. (25). It shows

hat 𝑅force admits a minimum for 𝜅min = 0.454, where 𝑅force(0.454) =
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.034. Interestingly, the effort ratio in the region where most of the
mode of the statistical distribution of the 𝜅 estimated in our experi-
ments (i.e. 𝜅 ∈ [0.38, 0.42]) is relatively close to 1. It is 1.10 and 1.04
for 𝜅 = 0.38 and 𝜅 = 0.42, respectively. This observation gives support
to the hypothesis that, in addition to planning acoustic features for
conveying information appropriate for each context, speakers aim at
minimizing the articulatory effort required for their speech movements.
In this case, it seems that they minimize the force acting on the
articulators. Indeed, the modes of the probability density function of 𝜅
values in the analyzed data correspond to a 𝜅-value of the Tau-guided
movement for which the required effort is close to the minimal one.

6.3. Relationship between estimated 𝜅 and required effort

This section explores the possibility that speakers choose Tau-
guided movements that are the least effortful. In particular, we investi-
gate whether the effort of each movement unit impacts the distribution
of 𝜅. The statistical analysis of the 𝜅 distribution presented in Sec-
tion 5.2 did not consider the effort, i.e. the resulting forces acting on
the articulator, of each individual movement unit. Although Fig. 10
shows that the required effort of Tau-guide movements having a 𝜅 value
equal to the statistical modes of the observed 𝜅 distribution is close
to the minimal effort, the spread of the distribution shows that effort
optimization is not always implemented. Our expectation is that the
greater the effort, the more likely speakers will choose a 𝜅 value close
to 0.4, namely the effort ratio 𝑅force is close to 1.

Fig. 11 shows the estimated 𝜅 values as a function of the effort
required to make the observed movement by the articulator, both theo-
retically (namely the theoretical minimal effort required) and observed
(namely the observed effort). Effort has been normalized to allow
for comparisons. The normalization has been performed by dividing
the measured effort by the maximal effort, defined as the maximal
measured effort among all movement units. Fig. 11 also shows the
range of 𝜅 for which 𝑅force ∈ [1, 1.5]. It shows that the values of
𝜅 span a wide range for movements that require low effort, while
they tend to converge toward the optimal value for movements that
require greater effort. That is, 𝜅 exhibits a smaller variance as the
required effort increases. This is in agreement with our expectation
for a smaller variance of 𝜅 for movements which require more effort,
as well as convergence towards the optimal 𝜅 value. This observation
supports our hypothesis that, for a given target position and duration
of movement, the timecourse of articulatory movement is planned to
minimize the force acting on the articulator.

7. Conclusion and discussion

This paper has presented an attempt to apply general Tau the-
ory to speech, and more specifically to articulatory movements. This
theory has been successfully applied in the past to other bodily move-
ments (Lee and Reddish, 1981; Lee et al., 1983; Craig and Lee, 1999;
Schögler et al., 2008; Rodger et al., 2013), hence is a good candidate to
model the production of articulatory movements in speech. It proposes
that the timecourse of articulators is controlled so that it is proportional
to a guide function. This ensures that the position target is reached at
the desired time.

Using EMA data from the DoubleTalk corpus (Scobbie et al., 2013;
Geng et al., 2013), the paper has assessed the relevance of general
Tau theory for articulatory movements in speech. The assessment has
been done by comparing the accuracy of the Tau model to fit observed
trajectories (for single articulators as well as lip aperture), with the ac-
curacy of other widely-used parametric trajectory models. The models
used for comparisons are the Critically Damped Oscillator (CDO) mod-
els (Saltzman, 1986), either with gradual activation functions (Kröger
et al., 1995) or a non-linear restoring force (Sorensen and Gafos,
2016) (respectively G-CDO and NL-S-CDO), and the Sequential Target
Approximation Model (STAM) (Birkholz et al., 2010). Our experiments
show that the best fits are systematically obtained using general Tau
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Fig. 10. Effort ratio 𝑅force as a function of 𝜅. The 𝑦-axis scale is logarithmic. The 𝜅-value which correspond to local minima of the effort ratio is represented as a circle.
Fig. 11. The distribution of 𝜅 as a function of the effort required by the movement. The top plot shows the observed distribution as well as 𝑅force(𝜅) ∈ [11.5] as a colormap; the
bottom plot shows the variance of 𝜅 as the function of effort. The left plot shows the theoretical minimal effort required, normalized by the maximal effort. The right plot shows
the effort estimated from observed data, normalized by the maximal effort. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
theory, independently of the analyzed articulator and/or speaker. These
results suggest that general Tau theory may be a useful tool to analyze
and generate speech articulatory movements. In addition, general Tau
theory presents other practical and theoretical advantages when used
for articulatory analysis. They include (i) a unique parameter to op-
timize, namely the Tau-coupling parameter 𝜅, leading to a very fast
computation time, as onset and offset times and movement distances
can be directly estimated from observed data, and (ii) a unique solution
which does not depend on the initial estimate. General Tau theory
could also be used efficiently to generate articulatory trajectories for
articulatory synthesis. Indeed, similarly to trajectory analysis, general
Tau theory presents several advantages for generating trajectories. They
include (i) direct and straightforward control of the skewness of the
velocity profile by simply adjusting a unique parameter, 𝜅, for a given
amplitude and duration, as shown by Eqs. (13) to (15), and (ii) the
possibility to control the timecourse of movement to achieve a target
position on time, consistent with observations of less timing variability
at movement endpoints. However, although this paper has shown that
Tau-guided movements fit the projection of two-dimensional positions
onto the first principal component very precisely, one would still
need to implement a model to generate the actual two-dimensional
position signal. One possible approach would be to use an intermediate
articulatory model that describes the geometry of the vocal tract using
a few articulator parameters, as proposed in TADA (Nam et al., 2004),
in ETD (Šimko and Cummins, 2010), in VocalTractLab (Prom-on et al.,
2013; Xu et al., 2019), or using Task-Dynamics (Alexander et al., 2019).
This requires further investigation about how well general Tau theory
36
applies to the timecourse of such articulator parameters as inferred
from real speech.

The second part of the paper presented an analysis of articulatory
movements from the same DoubleTalk EMA corpus using general Tau
theory. This involved analyzing the distribution of the shape parameter
𝜅 which gave the best fit to analyzed movements. Our experiments
show that the statistical distributions of 𝜅 are very similar, for all the
speakers and all articulators. The typical distribution is a right-skewed
unimodal distribution, having a peak at 𝜅 = 0.4 (±0.01), a standard
deviation of 0.155, with an excess kurtosis around 0.55. Under the
hypothesis that articulatory movements are Tau-guided, these observa-
tions suggest that there is a coupling constant which is systematically
favored for planning speech articulations. This target coupling constant
is then the one which corresponds to the statistical mode of the 𝜅-
values extracted from our experiments, namely 𝜅 ≃ 0.4. This value
corresponds to Tau-guides which exhibit a perfectly symmetrical veloc-
ity profile, namely for which the time-to-peak velocity ratio is 0.5. This
preliminary study raises the question of the reason of this invariance of
statistical distribution. One possible explanation, which has not been
explored in this paper, would be that it is due to the unique type
of analyzed speech data, namely read speech. In the future, it would
be interesting to investigate the influence of the speech task on the
statistical distribution of 𝜅.

Finally, in the third part of the paper, we investigated our hypothe-
sis that if such a target 𝜅 value exists, it is because resulting trajectories
reflect the optimization of an objective function related to articulatory
effort. Interestingly, our preliminary study shows that the peak region
of the 𝜅-distribution is close to the value of 𝜅 for which Tau-guided
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movements minimize the forces acting on the articulator for a given
duration and amplitude of movement. In addition, our experiments also
show that the variance of the estimated 𝜅 is reduced when the required
effort increases. These results provide new evidence for a balance
in articulatory gesture production between articulatory accuracy and
minimal effort, as hypothesized in previous studies (Lindblom, 1990,
1999; Perkell and Zandipour, 2002; Šimko and Cummins, 2010).

At this stage, this paper simply proposes a new model for speech
processing and does not claim to answer numerous questions related
to speech articulatory planning. We would like this paper to constitute
a basis for further investigations on speech production planning and
control. It would be interesting to investigate several hypotheses that
can emerge from our experiments, and which are beyond the scope of
this paper. For instance, assuming the movements of the articulators
are Tau-guided, the extent to which the speaker can control the value
of the 𝜅 parameter is an important question. It is our hope that this
paper will stimulate other researchers to explore issues like these.
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