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Abstract. The Cerebras Wafer Scale Engine (WSE) is an accelerator
that combines hundreds of thousands of AI-cores onto a single chip.
Whilst this technology has been designed for machine learning work-
loads, the significant amount of available raw compute means that it is
also a very interesting potential target for accelerating traditional HPC
computational codes. Many of these algorithms are stencil-based, where
update operations involve contributions from neighbouring elements, and
in this paper we explore the suitability of this technology for such codes
from the perspective of an early adopter of the technology, compared
to CPUs and GPUs. Using TensorFlow as the interface, we explore the
performance and demonstrate that, whilst there is still work to be done
around exposing the programming interface to users, performance of the
WSE is impressive as it out performs four V100 GPUs by two and a half
times and two Intel Xeon Platinum CPUs by around 114 times in our
experiments. There is significant potential therefore for this technology
to play an important role in accelerating HPC codes on future exascale
supercomputers.

1 Introduction

Scientists and engineers are forever demanding the ability to model larger sys-
tems at reduced time to solution. This ambition is driving the HPC community
towards exascale, and given the popularity of accelerators in current generation
supercomputers it is safe to assume that they will form a major component of
future exascale machines. Whilst GPUs have become dominant in HPC, an im-
portant question is the role that other more novel technologies might also play
in increasing the capabilities of scientific simulation software. One such technol-
ogy is Cerebras’ Wafer Scale Engine (WSE) which is an accelerator containing
hundreds of thousands of relatively simple, AI, cores. Whilst the major target
for Cerebras to this point has been accelerating machine learning workloads,
as the cores are optimised for processing sparse tensor operations this means
they are capable of executing general purpose workloads, and furthermore com-
bined with massive on-chip memory bandwidth and interconnect performance.
Put simply, the WSE has significant potential for accelerating traditional HPC
computational kernels in addition to machine learning models.
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There are currently a handful of Cerebras machines which are publicly avail-
able, making testing and exploration of the architecture difficult. Furthermore,
the software stack is optimised for machine learning workloads, and whilst Cere-
bras are making impressive progress in this regard, for instance the recent an-
nouncement of their SDK [5], at the time of writing machine interaction is com-
monly driven via high level machine learning tools. It is currently a very exciting
time for the WSE, with Cerebras making numerous advances in both their soft-
ware and future hardware offering. Consequently, whilst the technology is still
in a relatively early state, at this stage understanding its overall suitability for
HPC workloads compared with other hardware is worthwhile, especially as the
Cerebras offering is set to mature and grow in coming years.

In this paper we explore the suitability of the Cerebras WSE for accelerating
stencil-based computational algorithms. Section 2 introduces the background to
this work by describing the WSE in more detail and how one interacts with the
machine, along with other related work on the WSE. In Section 3 we explore how
one must currently program the architecture for computational workloads and
then, by running on a Cerebras CS-1, in Section 4 use a stencil-based benchmark
to compare the performance properties of the WSE against four V100 GPUs and
two 18-core Intel Xeon Platinum CPUs, before concluding in Section 5.

2 Background and related work

The Cerebras WSE has been used by various organisations, including large global
corporations, for accelerating machine learning. Already there have been numer-
ous notable successes from running AI models on the WSE including new drug
discovery [2], advancing treatments for fighting cancer [3], and helping to tackle
the COVID-19 pandemic [6]. The benefits of accelerating machine learning work-
loads has been well proven, however there are far fewer studies concerned with
using the WSE to run more traditional computational tasks.

One such study was undertaken in [4] where the authors ported the BiCGSTAB
solver, a Krylov Subspace method for solving systems of linear equations, and
also a simple CFD benchmark onto the Cerebras CS-1. Whilst their raw results
were impressive, the authors used Cerebras’ low level interface for this work,
programming each individual core separately and manually configuring the on-
chip network. This required a very deep understanding of the architecture, and
furthermore as the work was undertaken in part by Cerebras employees they
had access to this proprietary tooling which is not publicly available to users.

In this work we focus on stencil-based algorithms because of their suitability
for mapping to the WSE architecture and TensorFlow programming interface
(see Section 3). When calculating the value of a grid cell stencils represent a fixed
pattern of contributions from neighbouring elements. Most commonly operating
in iterations, at each iteration the value held in each grid cell will be updated
based upon some weighted contribution of values held in neighbouring cells. This
form of algorithm is widespread in scientific computing and hence represents the
underlying computational pattern in use by a large number of HPC codes.
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2.1 Cerebras Wafer Scale Engine

The Cerebras Wafer Scale Engine (WSE) is a MIMD accelerator and on the
CS-1, the hardware used for this work, there are approximately 350000 process-
ing cores running concurrently and able to executing different instructions on
different data elements. The WSE provides more flexibility than a GPU, for
instance, where on that accelerator groups of cores must operate in lock-step
within a warp. At the physical level the WSE is composed of a wafer containing
84 dies, with each die comprising 4539 individual tiles. Each tile holds a single
processing element, which is a computational core, a router, and 48KB of SRAM
memory. In total there is approximately 18GB of SRAM memory on the CS-1
but this is distributed on a processing element by processing element basis. Each
computational core supports operations on 16-bit integers, and both 16-bit and
32-bit floating point numbers, with the IEEE floating point standard supported
for both floating point bit sizes and additionally Cerebras’s own CB16. Each
core provides 4-way SIMD for 16-bit floating point addition, multiplication, and
fused multiply accumulate (FMAC) operations, 2-way SIMD for mixed preci-
sion (16-bit multiplications and 32-bit additions), and one operation per cycle is
possible for 32-bit arithmetic.

The WSE is designed to accelerate computation involved in model training
and inference, with numerous support functions undertaken by the host machine.
The host is connected to the WSE via twelve 100 GbE network connections,
and undertakes activities include model compilation, input data preprocessing,
streaming input and output model data, and managing the overall model train-
ing. The Cerebras machine used for this work is a CS-1 hosted by EPCC and
connected to a host Superdome Flex Server (containing twenty four Intel Xeon
Platinum 8260 CPUs, with each CPU containing 24 physical cores and a total
of 17TB RAM).

2.2 Programming the Wafer Scale Engine

In [4] the authors programmed their kernels for the CS-1 using a bespoke low
level interface, however this is proprietary and not exposed to users. Cerebras
have recently announced the availability of their SDK [5] for general purpose
programming of the WSE and whilst this is a very important step in widening
the workloads that can be executed on the architecture, it requires an investment
of time for programmers to gain the expertise in order to be able to write optimal
code for the WSE using it. Consequently in this work we use the TensorFlow API,
which abstracts the tricky and low level details of decomposing the workload
into tasks, mapping these to cores, and determining the appropriate routing
strategy. Hence whilst our objective is to focus on stencil-based, rather than
machine learning, codes, by encoding our algorithm via TensorFlow it enables us
to undertake performance explorations for this workload, to understand whether
it is worthwhile investing the time in using the Cerebras SDK, and also means
that such algorithms can be ported to the WSE more quickly to undertake such
evaluations.
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The WSE supports a subset of TensorFlow functionality, and in this work
we use two major building blocks to encode stencil-based algorithms. The first
building block are dense layers, which are fully-connected meaning that every
value provided as an input to the layer will have a connection to every output
value of the layer. As such the operation performed by a dense layer is a matrix-
matrix multiplication with a batch of input tensors and weight matrix resulting
in, for every output value, each input value multiplied by a specific weight and
intermediate values added together to form the result.

The second TensorFlow construct used in this work are convolution layers,
where a kernel slides across the input tensor and performs a convolution product
to calculate results. For each element of the output, the kernel weight values will
be multiplied with a subset of the input values. In the 2D case, the filter can be
thought of as sliding from left to right and up to down, and whilst TensorFlow
includes convolution layers that operate in one, two, and three dimensions, at
the time of writing the Cerebras software stack only supports the 2D convolution
layer. In this Conv2D layer the data-structure is comprised of four dimensions
which are the batch size, number of channels (the depth of the input tensor,
for instance red, green, blue for an image), rows, and columns. Whilst the WSE
provides single and half precision in hardware, the Cerebras software stack only
supports mixed precision (single and half) at the TensorFlow API level.

3 TensorFlow for encoding stencil-based algorithms on
the Wafer Scale Engine

In this work our objective has been to implement a stencil-based benchmark and
for this we selected the Jacobi iterative method for solving Laplace’s equation for
diffusion in multiple dimensions. Whilst this is a fairly simplistic solver compared
to the BiCGSTAB method explored on the CS-1 in [4], the limitation of having to
encode the algorithm via TensorFlow imposes some limitations. Furthermore, the
underlying computational pattern is similar and represents an important class
of algorithms and solvers. Consequently insights obtained from this benchmark
on the WSE are highly relevant and interesting to the wider HPC community.
Other benchmarks, such as the Open Earth Compiler benchmark suite [1], were
considered however they were not readily representable in TensorFlow in a form
that would build with the Cerebras software stack.

The first approach we explored used a dense layer to undertake the Jacobi
stencil computation. A sketch of this algorithm is illustrated in Algorithm 1,
where x is the input tensor containing data being operated upon, and stencil is
a matrix representing the stencil operation. The input tensor is first flattened
and then, along with stencil, passed to the Dense TensorFlow layer which will
undertake the calculation. This operation is repeated iterations times.

N is the total size of the input tensor per step, x, which is of size equal
to X in one dimension, X ∗ Y in two dimensions, and X ∗ Y ∗ Z in three di-
mensions. TensorFlow drives the dense layer with inputs over many steps, and
the overarching problem size being operated upon is N ∗ numberofsteps. The
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Algorithm 1: Stencil Calculation with Dense Layer

1 function model-function (x, stencil, iterations,N);
Input : x - the input tensor for the stencil calculations

stencil - matrix used by Dense layer to perform stencil calculation
iterations - the number of times the calculation will be performed
N - total number of elements per step

Output: result of performing stencil calculation on input tensor
2 values = Flatten(x);
3 for i← 0 to iterations do
4 values = Dense(N, kernelInitializer = stencil)(values);
5 end
6 return values

problem is therefore decomposed into tiles each of size N , and overlapping is un-
dertaken to ensure boundary neighbours from one tile are available to another.
This decomposition of the problem into steps, each of size N , is required to fit
the hardware’s memory and compute limits.

There are several advantages to programming the WSE using dense layers
such as the ability to readily handle any number of input dimensions because
the input is flattened regardless. Furthermore, because we explicitly define the
stencil calculation then special cases, such as non-zero boundary conditions, can
be handled without the need for conditional statements or other operations. For
instance in this example the stencil matrix value can be set to 1 in order to
maintain boundary conditions throughout the calculation.

However, the major disadvantage of this approach is that the dense layer is of
size N2 (where N is the total size of the input tensor per step). Depending upon
the equation being solved this can involve a significant amount of redundant
storage and computation. Figure 1 provides an illustration for solving Laplace’s
equation for diffusion in 2D with X = Y = 3. This is first flattened into a
vector of size N = X ∗ Y = 9 and then a matrix-vector product undertaken to
calculate the results. In this example all cells on the boundaries, which is every
element apart the middle value, 5, remains unchanged which corresponds to 1
in the stencil matrix as it is a boundary condition. The 0.25 values in the stencil
matrix average neighbouring values, with every other element a zero and not
contributing to the result. However these zeros must still be stored in the matrix
and computations undertaken with them on them regardless.

Another approach, as introduced in Section 2.2, is to use a convolution layer
where the stencil is represented as a much smaller data window that slides across
the input values. A sketch of the code for driving the convolution layer approach
is illustrated in Algorithm 2 where, in contrast to the dense layer of Algorithm 1,
input values are not flattened because the convolution layer is dimensioned. Fur-
thermore, there are two additional arguments, dataFormat and padding provided
to this layer at line 3. The former determines the ordering of the dimensions in
the input and output tensors, and the CS-1 only supports channelsFirst. The
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Fig. 1. Illustration of dense layer operations for solving Laplace’s equation for diffusion
in 2D with X = Y = 3

second option ensures that the output is the same shape as the input by under-
taking additional padding if required, where same results in padding with zeros
evenly to the left/right or up/down of the input.

Algorithm 2: Stencil Calculation with Convolution Layer

1 function model-function (x, stencil, iterations, stencilShape);
Input : x - the input tensor for the stencil calculations

stencil - filter for the Conv2D layer performing stencil calculation
iterations - the number of times the calculation will be performed
stencilShape - the shape of the stencil

Output: result of performing stencil calculation on input tensor
2 for i← 0 to iterations do
3 x = Conv2D(1, stencil, kernelInitializer = stencilInit, dataFormat =′

channelsF irst′, padding =′ same′)(x);

4 end
5 return x

The major benefit of the convolution layer is that, because the defined filter
slides across the input, it decouples the size of the stencil matrix from the input
tensor size. The convolution layer stencil for the same Laplace’s equation for
diffusion in 2D is illustrated in Figure 2, where irrespective of the input tensor
size, N , nine values are required for the 2D case. Consequently, whilst there
are some zeros still present, representing wasted storage and computation, their
number is very significantly reduced in comparison to the dense layer approach.

However there are two disadvantages with using convolution layers as sketched
in Algorithm 2, firstly stencil-based algorithms with non-zero boundary con-
ditions are not possible because padding adds extra zero elements. To enable
boundary condition values other than zero, the padding of the convolution layer
must be changed to mode valid, with the algorithm then manually defining the
padding of the input. The most convenient approach to do this would be to
use the tensorflow.pad operation, which pads the outer edge with zeros, and
boundary conditions could then be added around this padded input, driven by a
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Fig. 2. Illustration of convolution layer kernel for 2D Laplace’s equation for diffusion

concatenate layer. However, at the time of writing, both the pad operation and
concatenate layer are not supported by the Cerebras software stack.

Instead a mask must be created that will zero out the edges that were up-
dated by the convolution layer and then subsequently add the boundary con-
ditions back in. The mask is a tensor of the same shape and size, N , as the
input tensor and contains 1 in the internal values and 0 on the outer, boundary
condition, locations. Multiplying the mask by the output zeros out the boundary
conditions and then a further, boundary conditions tensor which holds zeros for
inner elements and the boundary conditions themselves, is added to the masked
intermediate result. Whilst this approach is not ideal, as it results in additional
runtime overhead, it is required because the Cerebras software stack does not yet
fully support the entire TensorFlow API which would enable better alternatives.

Fig. 3. Illustration of 3D convolution approach with the input in 3D but output in 2D

The other challenge with using the convolution layer is that only Conv2D is
currently supported by the Cerebras software stack, meaning that other convo-
lution layers such as Conv3D are not currently available for increased problem
dimensions. Due to the ubiquity in HPC of PDEs in three dimensions, this
omission would be a major limitation. To address this we increase the number
of channels in the 2D convolution layer. Figure 3 illustrates the approach, where
the number of channels in the convolution layer can be considered the depth of
the stencil in the third dimension. Because the depth corresponds to the stencil
size in the third dimension, as the filter slides across the input tensor in two di-
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mensions each channel will undertake calculations on separate third dimension
slices. However, as illustrated in Figure 3 this only results in a 2D output layer.
To expand the number of output dimensions then the number of filter channels
needs to be further increased by the number of input channels as illustrated by
Figure 4. This supports the handling of three dimensions, within the limitations
imposed by the Cerebras software stack, but does imposes additional storage
and computation overhead.

Fig. 4. Illustration of 3D convolution approach with the input and output in 3D

4 Results

In this section we conduct runs of our benchmark, a Jacobi method for solving
Laplace’s equation for diffusion in multiple dimensions, on the CS-1 which uses
the latest version, 1.0.1, of Cerebras software. Performance is compared against
four Nvidia Telsa V100-SXM2-16GB GPUs (CUDA toolkit version 10.1.243 and
the CUDA library cuDNN version 7.6.5), and two 18-core Intel Xeon E5-2695
(Broadwell) CPUs. We use TensorFlow version 2.2.0 on the CS-1 and 2.3.0 on
the GPUs and CPUs. Reported results are averaged over three runs.

To compare performance between the hardware we use the metric of delivered
performance in FLOPS. This is defined in Equation 1, where stencilFLOP is
the total number of floating point operations involved in applying the stencil
for each output element. From the perspective of the computational algorithm
this is the number of FLOPS delivered and includes the unnecessary floating
point operations highlighted in Section 3 which do not contribute to the final
result. However there are additional internal operations being undertaken by
the TensorFlow framework which are not readily discernible and these are not
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included in this metric. Consequently delivered performance can be thought of
as a metric which is useful to compare the relative performance of hardware
technologies, rather than able to provide an indication of absolute performance.

delivered performance = (problemSize∗stencilFLOP ∗ iterations)/time (1)

As described in Section 3, the problem size is a product of N and the number
of steps, where N is the size of the input tensor, for instance X∗Y in the 2D case.
We set the batch size to be one, and the number of model iterations represents
the number of solver iterations being undertaken, where an iteration operates
on the data resulting from a previous iteration.

Technology
Dense layer delivered

performance (GFLOPS)
Convolution layer delivered
performance (GFLOPS)

Two CPUs (single precision) 10.75 26.75
Two CPUs (mixed precision) 0.63 3.88
Four GPUs (single precision) 27.93 985.12
Four GPUs (mixed precision) 32.28 1255.74

CS-1 (mixed precision) 224.43 3054.89
Table 1. Delivered performance for 2D Jacobi with a problem size of 2048 million ele-
ments (X = Y = 64) using dense (over 7 iterations) and convolution (3500 iterations)
layers across hardware and different numeric precision configurations

Table 1 reports the delivered performance in GFLOPS across the CPUs,
GPUs, and Cerebras CS-1. On the CPUs and GPUs we include results for single
and mixed precision (the later is a combination of 32-bit and 16-bit operations),
whereas the Cerebras software stack only supports mixed precision for Ten-
sorFlow. For each of these configurations we include results for the dense and
convolution layer approaches, with the dense layer running in training mode
and convolution layer in predict mode. It is important to stress that the num-
bers reported here are delivered performance, for instance the GPU is capable of
far higher raw FLOPS and the CS-1 was demonstrated to reach 0.86 PFLOPS
in [4], however representing this benchmark in TensorFlow induces additional
overhead and-so whilst this does not give a measure of the raw performance it
does enable us to compare relative performance between the technologies.

It can be seen from the relative performance comparison in Table 1 that the
Cerebras CS-1 delivers around 2.5 times the performance of four V100 GPUs and
around 114 times the performance of two 18-core Intel Xeon Platinum CPUs for
this benchmark. Predict mode, used for the convolution layer, is beneficial as
the weights are already provided by the user and-so additional training work is
not required. However not all TensorFlow operations support predict mode on
the WSE and the dense layer experiments can be run in train mode only.

Whilst our delivered performance metric includes all stencil operations from
the perspective of the algorithm, not all of these calculations are useful because
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not all contribute to the final result. For Laplace’s equation for diffusion there are
7 useful calculations undertaken per input element, comprising four multiplica-
tions and three additions. However in the dense layer all input values contribute
to each output element’s calculation, resulting in (N ∗2)−1 operations for every
output element. In the 2D case, with X = Y = 64 and therefore N = 4096,
there are 8191 operations for each output element and 33550336 total calcula-
tions for the entire input tensor, per step, per iteration. The convolution layer by
contrast undertakes 17 operations per output element, resulting in 69632 total
operations for the 2D case where X = Y = 64. Whilst, as described in Section
3, there are N ∗ 2 additional operations for applying the mask with non-zero
boundary conditions after an iteration, this is still considerably less overhead
than the dense layer. The dense layer approach has a further limitation which is
that a separate dense layer, of size N2, must be created for each iteration. This
limits the number of iterations with the dense layer to 7 on the CS-1, whereas
the convolution approach can run at thousands of iterations.

Focusing on the convolution layer approach as it is more flexible and delivers
much better performance convolution layer approach as it is more flexible and
delivers much better performance we changed the size and shape of the input
tensor from X = Y = 64 that was used previously. Increasing the size and
shape of the input tensor will result in a larger amount of input processed per
step, consequently scaling the pipeline on the hardware to handle this and thus
increasing the amount of fabric used on the WSE. Therefore it is interesting
to see what difference this makes to performance, and Figure 5 illustrates the
delivered performance in GFLOPS for four different problem size configurations
where we modify the size and shape of the input tensor and the number of
steps appropriately. It can be seen that this configuration change has an impact
on performance at smaller problem sizes, where performance favours a larger
input tensor processed per step and fewer steps. However as the problem size is
increased the difference becomes smaller until, at 2048 million elements there is
no significant difference between the configurations. The 32x64 and 64x64 shapes
utilised 27% of the CS-1 fabric, whereas the 128x64 used 45% and 128x128 67%,
beyond this size the Cerebras compiler was unable to find a suitable placement.

We then ran the 3D Jacobi benchmark with non-zero boundary conditions
and an input tensor shape of X = 64, Y = 64, Z = 10, which is the largest
supported shape on the CS-1, with non-zero boundary conditions over 3500 iter-
ations and 12 workers. Figure 6 reports the speed up obtained against a baseline
of two 24-core Intel Xeon Platinum CPUs executing the benchmark in single
precision (which as per Table 1 is the best performing CPU configuration). We
include results for four V100 GPUs at mixed precision, which is the highest
performing GPU configuration, and the CS-1. It can be seen that the CS-1 sig-
nificantly out-performs the CPUs and GPUs at all problem sizes, which broadly
agrees with results reported for the 2D case in Table 1. It can be seen that speed
up against the CPU is lower at smaller problem sizes for both the GPUs and
Cerebras CS-1, although this is more pronounced for the CS-1, demonstrating
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Fig. 5. Delivered performance for 2D Jacobi on the Cerebras CS-1 with 3500 iterations
and 12 workers, with convolution layers. This experiment explores the performance
impact for different problem sizes as the input tensor size and shape is varied

that these accelerator technologies favour working on larger problem sizes and
being fed with data to keep the fabric busy in the case of the CS-1.

5 Conclusions

The Cerebras Wafer Scale Engine (WSE) is an exciting technology which has
already delivered significant advantages for machine learning. This makes it not
only an important accelerator for AI, but also interesting for traditional com-
putational HPC applications. In this paper we have explored the suitability of
accelerating stencil-based computational algorithms on the WSE using Tensor-
Flow via a benchmark which implements the Jacobi method for solving Laplace’s
equation for diffusion in multiple dimensions. This represents an important class
of algorithm common place in HPC and-so insights gained are interesting for
high performance workloads more widely.

We ran performance experiments on a Cerebras CS-1, and because the exact
operations being undertaken by the TensorFlow API are somewhat of a black-
box, the delivered performance metric was used which measures the performance
delivered by the hardware from the perspective of the computational algorithm.
This provides a relative, rather than absolute, measure of performance and en-
abled us to compare different hardware technologies. We found that, for this
benchmark, the CS-1 delivered around two and a half times the performance
of four V100 GPUs and 114 times the performance of two 18-core Intel Xeon
Platinum (Broadwell) CPUs.

Throughout this work we have found that the Cerebras CS-1 delivers very
impressive performance, and whilst undoubtedly using TensorFlow to represent
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Fig. 6. Speed up relative to running single precision on two CPUs for 3D Jacobi. Using
convolution layers, X=64, Y=64, Z=10, 3500 iterations, and 12 workers

stencil-based computational algorithms is sub-optimal, this has provided us with
the ability to undertake a relative performance comparison against other archi-
tectures and understand some of the behaviours of the WSE in more detail. The
user experience in programming the WSE has been, in the main, pleasant and
it is our belief that, given the performance results presented in this paper, it is
very much worth the effort for HPC software developers to gain expertise with
the Cerebras SDK [5].
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