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Abstract The 4D-Var method for filtering partially

observed nonlinear chaotic dynamical systems consists

of finding the maximum a-posteriori (MAP) estima-

tor of the initial condition of the system given obser-

vations over a time window, and propagating it for-

ward to the current time via the model dynamics. This

method forms the basis of most currently operational

weather forecasting systems. In practice the optimiza-

tion becomes infeasible if the time window is too long

due to the non-convexity of the cost function, the effect

of model errors, and the limited precision of the ODE

solvers. Hence the window has to be kept sufficiently

short, and the observations in the previous windows

can be taken into account via a Gaussian background

(prior) distribution. The choice of the background co-

variance matrix is an important question that has re-

ceived much attention in the literature. In this paper,

we define the background covariances in a principled

manner, based on observations in the previous b assim-
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ilation windows, for a parameter b ≥ 1. The method is

at most b times more computationally expensive than

using fixed background covariances, requires little tun-

ing, and greatly improves the accuracy of 4D-Var. As a

concrete example, we focus on the shallow-water equa-

tions. The proposed method is compared against state-

of-the-art approaches in data assimilation and is shown

to perform favourably on simulated data. We also illus-

trate our approach on data from the recent tsunami of

2011 in Fukushima, Japan.

Keywords Filtering · Smoothing · Data Assimilation ·
Gauss-Newton Method · Shallow-Water Equations.

1 Introduction

Filtering, or data assimilation, is a field of core impor-

tance in a wide variety of real applications, such as nu-

merical weather forecasting, climate modelling and fi-

nance; see e.g. Asch, Bocquet, and Nodet (2016); Blayo,

Bocquet, Cosme, and Cugliandolo (2014); Crisan (2017);

Lahoz, Khattatov, and Menard (2010); Law, Stuart,

and Zygalakis (2015) for an introduction. Informally,

one is interested in carrying out inference about an un-

observed signal process conditionally upon noisy obser-

vations. The type of unobserved process considered in

this paper is that of a nonlinear chaotic dynamical sys-

tem, with unknown initial condition. As an application

in this paper we consider the case where the unobserved

dynamics correspond to the discretised version of the

shallow-water equations; see e.g. Salmon (2015). These

latter equations are of great practical importance, gen-

erating realistic approximations of real world phenom-

ena, useful in tsunami and flood modelling (see e.g.

Bates, Horritt, and Fewtrell (2010); Pelinovsky (2006)).
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For systems of this type, the filtering problem is no-

toriously challenging. Firstly, the filter is seldom avail-

able in analytic form due to the non-linearity. Secondly,

even if the given system were solvable, the associated

dimension of the object to be filtered is very high (of or-

der of 108 or greater) thus posing great computational

challenges.

One of the most successful methods capable of han-

dling such high dimensional datasets is the so-called

4D-Var algorithm Le Dimet and Talagrand (1986); Ta-

lagrand and Courtier (1987): it consists of optimizing a

loss-functional so that under Gaussian noise it is equiv-

alent to finding the maximum a-posteriori (MAP) es-

timator of the initial condition. Since its introduction,

a lot of further developments in the 4D-Var method-

ology have appeared in the literature; for an overview

of some recent advances, we refer the reader to Ban-

nister (2016); Lorenc (2014); Navon (2009); Park and

Xu (2009, 2013, 2017). The main focus of this article

is to consider principled improvements of the 4D-Var

algorithm.

An important practical issue of the 4D-Var method

is that, due to chaotic nature of the systems encoun-

tered in weather prediction, the negative log-likelihood

(cost function) can become highly non-convex if the as-

similation window is too long. The reason for this is

that for deterministic dynamical systems, as the assim-

ilation window grows, the smoothing distribution gets

more and more concentrated on the stable manifold of

the initial position, which is a complicated lower dimen-

sional set (see Pires, Vautard, and Talagrand (1996),

Paulin, Jasra, Crisan, and Beskos (2018a) for more de-

tails). On one hand, this means that it becomes very

difficult to find the MAP estimator. On the other hand,

due to the highly non-Gaussian nature of the posterior

in this setting, the MAP might be far away from the

posterior mean, and have a large mean square error.

Moreover, for longer windows, the precision of the tan-

gent linear model/adjoint solvers might decrease. Due

to these facts, the performance of 4D-Var deteriorates

for many models when the observation window becomes

too long (see Kalnay, Li, Miyoshi, Yang, and Ballabrera-

Poy (2007)).

The observations in the previous window are taken

into account via the background (prior) distribution,

which is a Gaussian whose mean is the estimate of

the current position based on the previous windows,

and has a certain covariance matrix. The choice of this

background covariance matrix is an important and dif-

ficult problem that has attracted much research. Fisher

(2003) states that in operational weather forecasting

systems up to 85% of the information in the smoothing

distribution comes from the background (prior) distri-

bution. The main contribution of this paper is an im-

provement of the 4D-Var methodology by a principled

definition of this matrix in a flow-dependent way. This

is based on the observations in the previous b assimila-

tion windows (for a parameter b ≥ 1). Via simulations

on the shallow-water model, we show that our method

compares favourably in precision with the state-of-the-

art Hybrid 4D-Var method (see Lorenc, Bowler, Clay-

ton, Pring, and Fairbairn (2015)).

The structure of the paper is as follows. In the rest

of this section, we briefly review the literature on 4D-

Var background covariances. In Section 2 the modelling

framework for the shallow-water equations is described

in detail. In Section 3 we introduce our 4D-Var method

with flow-dependent background covariance. In particu-

lar, Section 1.1 compares our method with other choices

of flow-dependent background covariances in the liter-

ature. In Section 4 we present some simulation results

and compare the performance of our method with Hy-

brid 4D-Var. Finally, in Section 5 we state some con-

clusions for this paper.

1.1 Comparison with the literature

There exist mathematically rigorous techniques to ob-

tain the filter with precision and use the mean of the

posterior distribution as the estimate, based upon se-

quential Monte Carlo methods (e.g. Del Moral, Doucet,

and Jasra (2006); Rebeschini, Van Handel et al. (2015))

which can provably work in high-dimensional systems

Beskos, Crisan, and Jasra (2014). While these approx-

imate the posterior means and hence are optimal in

mean square error, and are possibly considerably more

accurate than optimization based methods, nonetheless

such methodology can be practically overly expensive.

As a result, one may have to resort to less accurate

but more computationally efficient methodologies (see

Law et al. (2015) for a review). There are some rel-

atively recent applications of particle filtering meth-

ods to high dimensional data assimilation problems, see

e.g. van Leeuwen (2009, 2010). While these algorithms

seem to be promising for certain highly non-linear prob-

lems, their theoretical understanding is limited at the

moment due to the bias they introduce via various ap-

proximations.

Despite the difficulty of solving the non-linear fil-

tering problem exactly, due to the practical interest in

weather prediction, several techniques have been de-

vised and implemented operationally in weather fore-

casting centers worldwide. These techniques are based

on optimization methods, hence they scale well to high

dimensions and are able to process massive datasets.
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Although initially such methods were lacking in math-

ematical foundation, the books Bengtsson, Ghil, and

Källén (1981) and Kalnay (2003) are among the first to

open up the field of data assimilation to mathematics.

Among the earlier works devoted to the efforts of bring-

ing together data assimilation and mathematics, we

also mention Ghil, Cohn, Tavantzis, Bube, and Isaacson

(1981) and Ghil and Malanotte-Rizzoli (1991), where

a comparison between the Kalman filter (sequential-

estimation) and variational methods is presented.

The performance of 4D-Var methods depends very

strongly on the choice of background covariances. One

of the first principled ways of choosing 4D-Var back-

ground covariances was introduced by Parrish and Der-

ber (1992). They have proposed the so-called NMC

method for choosing climatological prior error covari-

ances based on a comparison of 24 and 48 hour fore-

cast differences. This method was refined in Derber

and Bouttier (1999). Fisher (2003) proposed the use of

wavelets for forming background covariances; these re-

tain the computational advantages of spectral methods,

while also allow for spatial inhomogeneity. The back-

ground covariances are made flow-dependent via a suit-

able modification of the NMC approach. Lorenc (2003)

reviews some of the practical aspects of modelling 4D-

Var error covariances, while Fisher, Leutbecher, and

Kelly (2005) makes a comparison between 4D-Var for

long assimilation windows and the Extended Kalman

Filter. As we have noted previously, long windows are

not always applicable due to the presence of model er-

rors and the non-convexity of the likelihood.

More recently, there have been several methods pro-

posing the use of ensembles combined with localization

methods for modelling the covariances, see e.g. Zupan-

ski (2005); Auligné, Ménétrier, Lorenc, and Buehner

(2016); Bannister (2016, 2008a,b); Bonavita, Hólm, Isak-

sen, and Fisher (2016); Bousserez, Henze, Perkins, Bow-

man, Lee, Liu, Deng, and Jones (2015); Buehner (2005);

Clayton, Lorenc, and Barker (2013); Hamill, Whitaker,

Kleist, Fiorino, and Benjamin (2011); Kuhl, Rosmond,

Bishop, McLay, and Baker (2013); Wang, Parrish, Kleist,

and Whitaker (2013). Currently most operational NWP

centers use the Hybrid 4D-Var method, which is based

on a linear combination of a fixed background covari-

ance matrix (the climatological background error co-

variance) and an ensemble based background covari-

ance (see Lorenc et al. (2015), Fairbairn, Pring, Lorenc,

and Roulstone (2014)).

Localization eliminates spurious correlations betwe-

en elements of the covariance matrix that are far away

from each other and hence they have little correlation.

This means that these long range correlations are set

to zero, which allows the sparse storage of the covari-

ance matrix and efficient computations of the matrix-

vector products. Bishop et al 2011 proposes an efficient

implementation of localization by introducing some fur-

ther approximations, using the product structure of the

grid, and doing part of the calculations on lower reso-

lution grid points. Such efficient implementations have

allowed localized ENKF based background covariance

modelling to provide the state-of-the-art performance

in data assimilation, and they form the core of most

operational NWP systems at the moment.

Over longer time periods, given sufficient data avail-

able, most of the variables become correlated, and im-

posing a localized structure over them leads to some

loss of information vs the benefit of computational ef-

ficiency. Our method does not impose such a structure

as it writes the precision matrix in a factorized form.

Moreover, the localization structure is assumed to be

fixed in time, so even with a considerable amount of

tuning for a certain time period of data it is not guar-

anteed that the same localization structure will be op-

timal in the future. Our method does not make such a

constant localization assumption and hence it is able to

adapt to different correlation structures automatically.

We use an implicit factorised form of the Hessian

and the background precision matrix described in Sec-

tions 3.2–3.3, thus we only need to store the positions of

the system started from the 4D-Var estimate of the pre-

vious b windows at the observation times. This allows

us to compute the effect of these matrices on a vector

efficiently, without needing to store all the elements of

the background precision matrix, which would require

too much memory.

Although in this paper we have assumed that the
model is perfect, there have been efforts to account for

model error in the literature, see Trémolet (2006). The

effect of nonlinearities in the dynamics and the observa-

tions can be in some cases so strong that the Gaussian

approximations are no longer reasonable, see Miller,

Ghil, and Gauthiez (1994); Bocquet, Pires, and Wu

(2010); Gejadze, Copeland, Le Dimet, and Shutyaev

(2011) for some examples and suggestions for overcom-

ing these problems.

2 Notations and Model

2.1 Notations

In this paper, we will be generally using the unified no-

tations for data assimilation introduced in Ide, Courtier,

Ghil, and Lorenc (1997). In this section we briefly re-

view the required notations for the 4D-Var data assim-

ilation method.
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The state vector at time t will be denoted by x(t),

and it is assumed that it has dimension n. The evolution

of the system from time s to time t will be governed by

the equation

x(t) = M(t, s)[x(s)], (2.1)

whereM(t, s) is the model evolution operator from time

s to time t. In practice, this finite dimensional model

is usually obtained by discretisation of the full partial

differential equations governing the flow of the system.

Observations are made at times (ti)i≥0, and they

are of the form

y◦i = Hi[x(ti)] + εi, (2.2)

where Hi is the observation operator, and εi is the ran-

dom noise. We will denote the dimension y◦i by n◦i ,

and assume that (εi)i≥0 are independent normally dis-

tributed random vectors with mean 0 and covariance

matrix (Ri)i≥0. The Jacobian matrix (i.e. linearization)

of the operator M(t, s) at position x(s) will be denoted

by M(t, s), and the Jacobian of Hi at x(ti) will be de-

noted by Hi. The inverse and transpose of a matrix will

be denoted by (·)−1 and (·)T , respectively.

The 4D-Var method for assimilating the observa-

tions in the time interval [t0, tk−1] consists of minimiz-

ing the cost functional

J [x(t0)] =
1

2
[x(t0)− xb(t0)]TB−10 [x(t0)− xb(t0)]

+
1

2

k−1∑
i=0

[yi − y◦i ]TR−1i [yi − y◦i ], (2.3)

where yi := Hi(x(ti)), and B0 denotes the background

covariance matrix, and xb(t0) denotes the background

mean. Minimizing this functional is equivalent to max-

imizing the likelihood of the smoothing distribution for

x(t0) given y◦0:k−1 := {y◦0 , . . . ,y◦k−1} and normally dis-

tributed prior with mean xb(t0) and covariance B0.

Note that the cost function (2.3) corresponds to the so-

called strong constraint 4D-Var (i.e. no noise is allowed

in the dynamics), there are also weak constraint alterna-

tives that account for possible model errors by allowing

noise in the dynamics (see e.g. Trémolet (2006)).

2.2 The Model

We consider the shallow-water equations, e.g. as de-

scribed in (Salmon, 2015, pg. 105-106), but with added

diffusion and bottom friction terms, i.e.

∂u

∂t
=

(
−∂u
∂y

+ f

)
v − ∂

∂x

(
1

2
u2 + gh

)
+ ν∇2u− cbu;

(2.4)

∂v

∂t
= −

(
∂v

∂x
+ f

)
u− ∂

∂y

(
1

2
v2 + gh

)
+ ν∇2v − cbv;

(2.5)

∂h

∂t
= − ∂

∂x
((h+ h)u)− ∂

∂y
((h+ h)v). (2.6)

Here, u and v are the velocity fields in the x and y di-

rections respectively, and h the field for the height of

the wave. Also, h is the depth of the ocean, g the grav-

ity constant, f the Coriolis parameter, cb the bottom

friction coefficient and ν the viscosity coefficient. Pa-

rameters h, f , cb and ν are assumed to be constant in

time but in general depend on the location. The total

height of the water column is the sum h+ h.

For square grids, under periodic boundary condi-

tions, the equations are discretised as

dui,j
dt

= fi,jvi,j −
g

2∆
(hi+1,j − hi−1,j)

− cbui,j +
ν

∆2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)

− 1

2∆
[(ui,j+1 − ui,j−1) vi,j + (ui+1,j − ui−1,j)ui,j ] ,

(2.7)

dvi,j
dt

= −fi,jui,j −
g

2∆
(hi,j+1 − hi,j−1)

− cbvi,j +
ν

∆2
(vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j)

− 1

2∆
[(vi+1,j − vi−1,j)ui,j + (vi,j+1 − vi,j−1) vi,j ] ,

(2.8)

dhi,j
dt

=

− 1

2∆

(
hi,j + hi,j

)
(ui+1,j − ui−1,j + vi,j+1 − vi,j−1)

− 1

2∆
ui,j

(
hi+1,j + hi+1,j − hi−1,j − hi−1,j

)
− 1

2∆
vi,j

(
hi,j+1 + hi,j+1 − hi,j−1 − hi,j−1

)
, (2.9)

where 1 ≤ i, j ≤ d, for a typically large d ∈ Z+, with

the indices understood modulo d (hence the domain is a

torus), and some space-step ∆ > 0. Summing up (2.9)

over 1 ≤ i, j ≤ d, one can see that the discretisation

preserves the total mass htot :=
∑
i,j(hi,j + hi,j). If

we assume that the viscosity and bottom friction are
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negligible, i.e. ν = cb = 0, then the total energy

Etot :=
1

2
·∑

i,j

(
(hi,j + hi,j)u

2
i,j + (hi,j + hi,j)v

2
i,j + g(h2i,j − h

2
i,j)
)

is also preserved. When the coefficients cb and ν are not

zero, the bottom friction term always decreases the to-

tal energy (the sum of the kinetic and potential energy),

while the diffusion term tends to smooth the velocity

profile. We denote the solution of equations (2.7)-(2.9)

at time t ≥ 0 as

x(t) :=(
(ui,j(t))1≤i,j≤d , (vi,j(t))1≤i,j≤d , (hi,j(t))1≤i,j≤d

)
.

The unknown and random initial condition is denoted

by x(0). One can show by standard methods (see Mur-

ray and Miller (2013)) that the solution of (2.7)-(2.9)

exists up to some time Tsol(x(0)) > 0. In order to rep-

resent the components of x(t), we introduce a vector

index notation. The set I := {u, v, h} × {1, . . . , d} ×
{1, . . . , d} denotes the possible indices, with the first

component referring to one of u, v, h, the second com-

ponent to coordinate i, and the third to j. A vector

index in I will usually be denoted as m or n, e.g. if

m = (u, 1, 2), then xm(t) := u1,2(t).

We assume that the n := 3d2 dimensional system is

observed at time points (tl)l≥0, with observations de-

scribed as in Section 2.1. The aim of smoothing and fil-

tering is to approximately reconstruct x(t0) and x(tk)

based on observations y◦0:k−1. We note that data as-

similation for the shallow-water equations have been

widely studied in the literature, see Bengtsson et al.

(1981), Egbert, Bennett, and Foreman (1994) for the

linearised form and Lyard, Lefevre, Letellier, and Fran-

cis (2006), Courtier and Talagrand (1990), Ghil and

Malanotte-Rizzoli (1991) for the full non-linear form of

the equations.

3 4D-Var with Flow-Dependent Covariance

3.1 Method Overview

Assume that observations y◦0:k−1 are made at time po-

ints tl = t0 + lh for l = 0, . . . , k − 1, and let T := kh.

The 4D-Var method for assimilating the observations

in the time interval [t0, tk−1] consists of minimizing

the cost functional (2.3). Under the independent Gaus-

sian observation error assumption, −J [x(t0)] is the log-

likelihood of the smoothing distribution, ignoring the

normalising constant. The minimizer of J is the MAP

estimator, and is denoted by x̂0 (if multiple such min-

imizers exist, then we choose any of them). A careful

choice of the background distribution is essential, es-

pecially in the case when the total number of obser-

vations in the assimilation window is smaller than the

dimension of the dynamical system, where without the

prior distribution, the likelihood would be singular (see

Dashti and Stuart (2016) for a principled method of

choosing priors).

To obtain the MAP estimator, we make use of New-

ton’s method. Starting from some appropriate initial

position x0 ∈ Rn, the method proceeds via the itera-

tions

xl+1 = xl −
(
∂2J

∂x2
l

)−1
∂J

∂xl
, l ≥ 0, (3.1)

where ∂J
∂xl

and ∂2J
∂x2

l
denote the gradient and Hessian of

J at xl, respectively. Due to the high dimensionality of

the systems in weather forecasting, typically iterative

methods such as the preconditioned conjugate gradient

(PCG) are used for evaluating (3.1). The iterations are

continued until the step size ‖xl+1 − xl‖ falls below a

threshold δmin > 0. The final position is denoted by

x̂∗, and this is the numerical estimate for x̂0 - with

its push-forward M(tk, t0)[x̂∗] then being the numerical

estimate for M(tk, t0)[x̂0].

To apply the iterations (3.1), one needs to compute

the gradient and the Hessian of J (or, more precisely,

the application of the latter to a vector, which is all

that is required for iterative methods such as PCG). An

efficient method for doing this is given in the next sec-

tion. In practice, one cannot apply the above optimiza-

tion procedure for arbitrarily large k due to the non-

convexity of the smoothing distribution for big enough

k (due of the nonlinearity of the system). Therefore, we

need to partition the observations into blocks of size k

for some reasonably small k, and apply the procedure

on them separately. The observations in the previous

blocks can be taken into account by appropriately up-

dating the prior distribution. The details of this pro-

cedure are explained in Section 3.3. Finally, in Section

1.1 we compare our method with other choices of flow-

dependent background covariances in the literature.
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3.2 Gradient and Hessian Calculation

We can rewrite the gradient and Hessian of the cost

function J at a point x(t0) ∈ Rn as

∂J

∂x(t0)
= B−10 [x(t0)− xb(t0)]

−
k−1∑
l=0

M(tl, t0)THT
l R
−1
l (yl − y◦l ), (3.2)

∂2J

∂x(t0)2
= B−10 +

k−1∑
l=0

M(tl, t0)THT
l R
−1
l HlM(tl, t0)

−
k−1∑
l=0

(
∂2M(tl, t0)

∂x2
0

)T
HT
l R
−1
l (yl − y◦l )−

k−1∑
l=0

(
M(tl, t0)T

)2( ∂2Hl

∂x(tl)2

)T
R−1l (yl − y◦l ). (3.3)

These can be obtained either directly, or by viewing

J as a free quadratic function with (2.1) and (2.2) as

constraints.

Let Mi := M(ti, ti−1), then M(tl, t0) = Ml · . . . ·
M1, so the sum in the gradient (3.2) can be rewritten

as

k−1∑
l=0

M(tl, t0)THT
l R
−1
l (yl − y◦l )

=

k−1∑
l=0

MT
1 · . . . ·MT

l H
T
l R
−1
l (yl − y◦l ) (3.4)

The above summation can be efficiently performed as

follows. We consider the sequence of vectors

gk−1 := HT
k−1R

−1
k−1

(
yk−1 − y◦k−1

)
;

gl := HT
l R
−1
l (yl − y◦l ) + MT

l+1gl+1, k − 1 > l ≥ 0.

The sum on the right side of (3.4) then equals g0. We

note that this method of computing the gradients forms

the basis of the adjoint method, introduced in Tala-

grand and Courtier (1987), see also Talagrand (1997).

In the case of the Hessian, in (3.3) there are also

second order Jacobian terms. If x(t0) is close to the

true initial position, then (yl − y◦l ) ≈ εl. Therefore

in the low-noise/high-frequency regime, given a suf-

ficiently precise initial estimator, these second order

terms can be neglected. Using such Hessian corresponds

to the so-called Gauss–Newton method, which has been

studied in the context of 4D-Var in Gratton, Lawless,

and Nichols (2007). Thus, we use the approximation

∂̂2J

∂x(t0)2
:= B−10 +

k−1∑
l=0

M(tl, t0)THT
l R
−1
l HlM(tl, t0)

(3.5)

A practical advantage of removing the second order

terms is that if the Hessian of the log-likelihood of the

prior, B0 is positive definite, then the resulting sum

is positive definite, so the direction of −
(

∂̂2J
∂x(t0)2

)−1
·

∂J
∂x(t0)

is always a direction of descent (which is not al-

ways true if the second order terms are included). Note

that via the so-called second-order adjoint equations, it

is possible to avoid this approximation, and compute

the action of the Hessian ∂2J
∂x(t0)2

on a vector in O(n)

time, see Le Dimet, Navon, and Daescu (2002). How-

ever this can be slightly more computationally expen-

sive, and in our simulations the Gauss-Newton approx-

imation (3.5) worked well.

For the first order terms in the Hessian, for any w ∈
Rn, we have

k−1∑
l=0

M(tl, t0)THT
l R
−1
l HlM(tl, t0)w

=

k−1∑
l=0

MT
1 MT

2 . . .MT
l H

T
l R
−1
l HlMlMl−1 . . .M1w.

(3.6)

We define

wl := Ml . . .M1w, l = 0, . . . , k − 1;

and consider the sequence of vectors

hk−1 = HT
k−1R

−1
k−1Hk−1wk−1;

hl = HT
l R
−1
l Hlwl + MT

l+1hl+1, k − 1 > l ≥ 0.

(3.7)

Then the sum on the right side of (3.6) equals h0. The

Hessian plays an important role in practical implemen-

tations of the 4D-Var method, and several methods

have been proposed for its calculation (see Courtier,

Thépaut, and Hollingsworth (1994); Le Dimet et al.

(2002); Lawless, Gratton, and Nichols (2005)). Due to

computational considerations, usually some approxima-

tions such as lower resolution models are used when

computing Hessian-vector products for Krylov subspace

iterative solvers in practice (this is the so-called incre-

mental 4D-Var method, see Courtier et al. (1994)). Note

that it is also possible to use inner and outer loops,

where in the inner loops both the Hessian-vector prod-

ucts and the gradient are run on lower resolution mod-

els, while in the outer loops we use the high resolution

model for the gradient, and lower resolution model for

the Hessian-vector products. Lawless et al. (2005) has

studied the theoretical properties of this approxima-

tion. In practice, the speedup from this method can be

substantial, but this approximation can introduce some
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instability, hence appropriate tuning is needed to ensure

good performance.

At the end of Section 3.3, we discuss how can the in-

cremental 4D-Var strategy be combined with the flow-

dependent background covariances proposed in this pa-

per.

3.3 4D-Var Filtering with Flow-Dependent Covariance

In this section we describe a 4D-Var based filtering

procedure that can be implemented in an online fash-

ion, with observations {y◦l }l obtained at times tl = lh,

l = 0, 1, . . . (although the method can be also easily

adapted to the case when the time between the ob-

servations varies). We first fix an assimilation window

length T = kh, for some k ∈ Z+, giving rise to consec-

utive windows [0, tk], [tk, t2k], . . ..

Let the background distribution on x(t0) be Gaus-

sian with mean xb(t0) and covariance matrix B0. In

general, let the background distributions for the po-

sition of the signal at the beginning of each assimila-

tion window, {x(tmk)}m≥0, have means {xb(tmk)}m≥0
and covariance matrices {Bmk}m≥0. There are several

ways to define these quantities sequentially, as we shall

explain later on in this section. Assuming that these

are determined with some approach, working on the

window [tmk, t(m+1)k] we set our estimator x̂(tmk) of

x(tmk) as the MAP of the posterior of x(tmk) given

background with mean xb(tmk) and covariance Bmk,

and data y◦mk:(m+1)k−1; we also obtain estimates for

subsequent times in the window, via push-forward, i.e.

x̂(tl) := M(tl, tmk)[x̂(tmk)], mk ≤ l < (m+ 1)k.

Recall that the numerical value of MAP is obtained by

the Gauss–Newton method (see (3.1), with the details

given in Section 3.1).

We now discuss choices for the specification of the

background distributions. A first option is to set these

distributions identical to the first one, and set Bmk :=

B0 and x(tmk) := x(t0) (i.e. no connection with ear-

lier observations). A second choice (used in the first

practical implementations of the 4D-Var method) is to

set Bmk := B0 (the covariance is kept constant) but

change the background mean to

xb(tmk) := M(tmk, t(m−1)k)[x̂(tm(k−1))], (3.8)

i.e. adjusting the prior mean to earlier observations.

Finally, one can attempt to update both the mean and

the covariance matrix of the background (prior) distri-

bution, and this is the approach we follow here.

Note that we still define the background means ac-

cording to (3.8). To obtain data-informed background

covariances Bmk we use Gaussian approximations for

a number, say b ≥ 1, of earlier windows of length T ,

and appropriately push-forward these to reach the in-

stance of current interest tmk. There are two reasons

why we use a fixed b and do not push-forward all the

way from time t0. The first is to avoid quadratic costs

in time. The total computational cost for our approach

up to time mT scales linearly with time for a fixed

b, but if we would start from t0, then we would incur

O(m2) computational cost (or if it is done by storing

the whole covariance matrix directly, then the approach

would have O(d2) memory cost which is prohibitive in

practice). The second reason is that a Gaussian dis-

tribution propagated through non-linear dynamics for

longer and longer intervals of length bT becomes highly

non-Gaussian for large values of b, so the resulting back-

ground distribution can lead to poorer results than us-

ing smaller values of b. Reminiscent to 4D-Var, at time

t(m−b)k we always start off the procedure with the same

background covariance B0. In Paulin, Jasra, Crisan,

and Beskos (2018b) it was shown – under certain as-

sumptions – that for a class of non-linear dynamical

systems, for a fixed observation window T , if ‖Ri‖ =

O(σ2) and σ
√
h is sufficiently small (h is the observa-

tion time step) then the smoothing and filtering distri-

butions can indeed be well approximated by Gaussian

laws. Following the ideas behind (3.5), an approxima-

tion of the Hessian of J , evaluated at the MAP given

data y◦(m−1)k:mk−1 is given as

B−1(m−1)k + D(m−1)k:mk−1,

where we have defined

D(m−1)k:mk−1 :=

k−1∑
l=0

AT
m−1,lR

−1
(m−1)k+lAm−1,l;

Am−1,l :=

H(m−1)k+lM(t(m−1)k+l, t(m−1)k)[x̂(t(m−1)k)].

If the precision (inverse covariance) of the background

were 0, then D(m−1)k:mk−1 would correspond to the

Hessian of J at the MAP, and the smoothing distribu-

tion could be approximated by a Gaussian with mean

x̂(t(m−1)k) and precision matrix D(m−1)k:mk−1. Recall

the change of variables formula: if Z ∼ N(m,P−1) in

Rn and ϕ : Rn → Rn is a continuously differentiable

function, then ϕ(Z) follows approximately

N

ϕ(m),

(( ∂ϕ
∂m

)−1)T
· P ·

(
∂ϕ

∂m

)−1−1
 .

(3.9)
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The quality of this approximation depends on the size

of the variance of Z, and the degree of non-linearity

of ϕ. A way to consider the effect of the observations

in the previous b assimilation windows is therefore by

using the recursion

Bm
(m−b)k = B0;

Bm
(m−b+j)k

=

[((
M(t(m−b+j)k, t(m−b+j−1)k)[x̂(t(m−b+j−1)k]

)T)−1
·
((

Bm
(m−b+j−1)k

)−1
+ D(m−b+j−1)k:(m−b+j)k−1

)
·
(
M(t(m−b+j)k, t(m−b+j−1)k)[x̂(t(m−b+j−1)k]

)−1 ]−1
,

(3.10)

for j = 1, . . . , b, and set Bmk := Bm
mk, where we have

defined

D(m−b+j−1)k:(m−b+j)k−1 :=

k−1∑
l=0

AT
m−b+j−1,lR

−1
(m−b+j)k+lAm−b+j−1,l, j = 1, . . . , b;

Am−b+j−1,l := H(m−b+j−1)k+l

·M(t(m−b+j−1)k+l, t(m−b+j−1)k)[x̂(t(m−b+j−1)k)].

Note that similarly to the idea of variance inflation for

the Kalman filter, one could include a multiplication by

an inflation factor (1 +α) for some α > 0 in the defini-

tion of Bm
(m−b)k in (3.10). To simplify the expressions

(3.10), we define

M−j := M(t(m−j+1)k, t(m−j)k))[x̂(t(m−j)k)],

j = 1, 2, . . . , b. (3.11)

The action of B−1mk on a vector w ∈ Rn can be computed

efficiently as follows. Let

w−j := M−1
−j · · ·M

−1
−1w, j = 1, 2, . . . , b. (3.12)

We then determine the recursion

B−b := (MT
−b)
−1(B−10 + D(m−b)k:(m−b+1)k−1)w−b

B−j := (MT
−j)
−1(B−j+1 + D(m−j)k:(m−j+1)k−1w−j),

j = b− 1, . . . , 1. (3.13)

Then it is easy to see that B−1mkw = B−1.

In order to evaluate the quantities in (3.12) and

(3.13) for the shallow-water equations (2.7)-(2.9), we

need implement the effect of the Jacobians M1, . . . ,Mk,

their inverses M−1
1 , . . . ,M−1

k , and their transpose for

the previous b assimilation windows. Note that mul-

tiplying by D(m−l)k:(m−l+1)k−1 is equivalent to evalu-

ating (3.7) for the appropriate Jacobians, hence it is

also based on multiplication by these Jacobians, their

inverses and their transposes.

Matrix-vector products of the form Mjv and M ′
jv

can be computed by the tangent linear model, and by

the adjoint equations, respectively. When computing

matrix-vector products of the form M−1
j v and (M−1

j )′v,

we need to run the tangent linear model backward in

time, while the adjoint equations forward in time. It

is important to note that while normally this would

lead to numerical instability if done for a long time pe-

riod (as the shallow-water equations are dissipative),

this is not a problem here as we only run them over

short time periods, the time between two observations

(even shorter time periods could be possible if needed

by breaking the Jacobians into products of Jacobians

over shorter intervals). The initial point of these back-

ward runs of the original equation (and forward runs of

the adjoint equation) is always based on a forward run

of the original equation, hence the instability is avoided.

For the shallow-water equations, the Jacobians Mj can

be stored directly in a sparse format, see the Appendix

for more details (this reduces the need to use the ODE

solvers repeatedly during the optimization steps, how-

ever, this is not necessary for the method to work as

we can always use the adjoint/tangent linear solvers

directly as described above).

Our method is based on the forward and adjoint

equations of the model. The computational cost of us-

ing these b previous intervals in each iteration of our

proposed flow-dependent 4D-Var methodology (requir-

ing the calculation of the gradient of the cost function

J , and the and the product of its Hessian with a vec-

tor) is at most O(b) times more than just using the

observations in the current window. The key idea be-

hind the choice of the precision matrices (3.10) is that

we approximate the likelihood terms corresponding to

the observations in the previous windows by Gaussian

distributions, and then propagate them forward to the

current time position via the Jacobians of the dynamics

according to the change of variables formula (3.9). This

allows us to effectively extend the assimilation time T to

(b+1)T , but without the non-convexity issue that would

occur if it would be extended directly (this was con-

firmed in our simulations). Moreover, the choice (3.10)

introduces a strong linkage between the successive as-

similation windows, and effectively allows the smooth-

ing distribution to rely on two sided information (both

from the past and the future), versus one sided informa-

tion if one would simply use a longer window of length

(b + 1)T . In fact, this was confirmed during our simu-

lations, and we have found that increasing T beyond a

certain range did not improve the performance, while

increasing b has resulted in an improvement in general
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up to a certain point.

We note that the incremental 4D-Var strategy of

Courtier et al. (1994) can be implemented here as fol-

lows. In the inner loops, we compute the gradient ∂J
∂x(t0)

using the the adjoint equations with lower resolution

models (see (3.2)) . The Hessian-matrix products re-

quired to compute the B−10 [x(t0)− xb(t0)] term in the

gradient from the flow-dependent matrix covariances

can also be computed using lower resolution models.

For the Hessian matrix products in the iterative Krylov

subspace solvers, we can always use the lower resolution

model.

In contrast with this, in the outer loops, when com-

puting the gradient ∂J
∂x(t0)

we always need to use the

highest resolution model (including in Hessian-matrix

products required to compute the B−10 [x(t0) − xb(t0)]

term in the gradient). The Hessian-matrix products for

the iterative solvers can still be computed on lower res-

olution models.

4 Simulations

In this section, we are going to illustrate the perfor-

mance of our proposed method through simulation re-

sults. As a comparison, we also apply the Hybrid 4D-

Var method on the same datasets as these form the

basis of most currently used data-assimilation systems

(see Clayton et al. (2013), Lorenc et al. (2015)). Section

5 of Kalnay (2003), Evensen (2009) and Sections 7-8 of

Reich and Cotter (2015) offer excellent introductions

to standard data assimilation methods such as 4D-Var

and ENKF and its variants.

We consider two linear observation scenarios. In both

of them, it is assumed that the observations happen in

every h time units, and that the linear observation op-

erators Hi are the same each time, represented by a

matrix H ∈ Rn◦×n. The scenarios are as follows.

1. We observe the height h at every gridpoint 1 ≤
i, j ≤ d, and the velocities u and v at selected lo-

cations with spatial frequency r in both directions

for a positive integer r. All of the observation errors

are i.i.d. N(0, σ2) random variables.

2. We observe the height h at selected locations with

spatial frequency r in both directions for a posi-

tive integer r. All of the observation errors are i.i.d.

N(0, σ2) random variables.

The motivation of using these scenarios is that the he-

ights are in general easier to observe than the veloc-

ities (for example, by satellite altimetry). In the fol-

lowing experiments, we are going to compare the per-

formance of our proposed 4D-Var method using flow-

dependent background covariances with the Hybrid 4D-

Var method. In Section 4.1 we use sythetic data, while

Section 4.2 we use data from the tsunami waves after

the 2011 Japan earthquake. Note that we did not have

access to observations over multiple locations at multi-

ple time points, only an estimate of the initial position

of the ocean surface after the earthquake. We ran our

shallow-water model initiated from this estimate, and

then generated observations from the model to be fed

into the data assimilation systems.

Data assimilation methods are often evaluated in

the literature over long time periods using real data,

and their performance is reaching some sort of sta-

tionary. While using longer time periods is natural,

the shallow-water equations are unstable and so are

their discretised version. The solution blows up after

a while, and we are not able to use these equations

directly for periods longer than 10 days. A standard

practice in the literature is to modify the dynamics us-

ing a filter that smooths out the high-frequency com-

ponents and removes the instability from the system

(see Laible and Lillys (1997)). We have tried to add

a similar filter for our discretisation scheme, and this

managed to stabilize the process, so it could run for

a longer period. Nevertheless, this somewhat arbitrary

modification means that all 4D-Var based approaches

that rely on the likelihood using the original discretiza-

tion of the shallow-water equations (without the filter-

ing part) seemed to be significantly less accurate when

applied to the data generated by the filtered equations.

We believe that this is due to the fact that the model is

misspecified in this case, so we cannot expect the same

level of performance as before. None of the methods for

generating flow-dependent covariances seemed to have

outperformed simple fixed diagonal background covari-

ances in these experiments. The arbitrary filtering step

dramatically impacts the results. Due to this, in the

absence of real data, we believe that using the original

dynamics over shorter periods (where it can be evalu-

ated without resorting to filters) is a more appropriate

way to evaluate the performance of data assimilation

methods on the shallow-water equations. We have used

this approach in the paper.

Our flow-dependent 4D-Var method is fully deter-

ministic, hence the simulation results would be exactly

the same if we ran them again on the same dataset. The

Hybrid 4D-Var method is using at least 100 particles in

our implementation, which is sufficient to ensure good

stability, and we did not detect significant variability in

the results over multiple runs.
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4.1 Comparison based on synthetic data

First we compare the performance of various methods

using synthetic data. The shallow water equations were

solved on the torus [0, L]2 with L = 210km. The ini-

tial condition U(0) := (u(0), v(0), h(0)), ocean depth

H and other ODE parameters were chosen as follows,

u(0) = 0.5 + 0.5 sin( 2π(x+y)
L ),

v(0) = 0.5− 0.5 cos( 2π(x−y)
L ),

h(0) = 2 sin( 2πx
L ) cos( 2πy

L );

H = 100 + 100(1 + 0.5 sin(2πx
L ))(1 + 0.5 sin(2πy

L ));

ν = 10−3, cb = 10−5, g = 9.81, f = 10−4.

The discretised versions of the initial condition and the

ocean depth were obtained under the choices d = 21,

∆ = 10km. In the first observation scenario we have

chosen the spatial frequency of the velocity observations

as r = 3 (giving 49 velocity observations). All of the

heights are also observed. Observations are made every

10 seconds, the total observation time is 1 day, and the

observation errors had standard deviation σ = 10−2.

In the second observation scenario we have chosen

the spatial frequency of the height observations as r = 3

(giving 49 height observations). Velocities are not ob-

served. Observations are made every 60 seconds, the

total observation time is 10 days, and the observation

errors had standard deviation σ = 10−2.

For the Hybrid 4D-Var, we have used localisation,

as described in Section 8.3 of Reich and Cotter (2015).

This localisation matrix was chosen as (C)kl = ρ
(
rl,l
rloc

)
,

where rk,l denotes the spacial distance on the torus be-

tween two gridpoints k and l, and ρ is the filter function

describing the decay of correlations, and rloc is the lo-

calisation radius. The filter function in the localisation

was chosen according to equation (8.29) of Reich and

Cotter (2015) as

ρ(s) =



1− 5
3s

2 + 5
8s

3 + 1
2s

4 − 1
4s

5

for 0 ≤ s ≤ 1

− 2
3s
−1 + 4− 5s+ 5

3s
2 + 5

8s
3 − 1

2s
4 + 1

12s
5

for 1 ≤ s ≤ 2,

0

otherwise.

(4.1)

We have also used multiplicative ensemble inflation, as

described in Section 8.2 of Reich and Cotter (2015).

This consists of rescaling the ensemble members around

their mean by a factor 1 + cinf for some cinf > 0. Fi-

nally, the climatological covariance B0 and mean were

estimated from the true unobserved path of the sys-

tem during the total assimilation time (1 day in our

first experiment, and 10 days in our second). This is

typically estimated from past data, or by running the

model over longer time periods (see Fairbairn et al.

(2014)), but this was not possible as the non-linear

shallow-water equations suffer from numerical instabil-

ities over long time periods (due to the breaking waves

phenomenon). The initial ensemble was sampled from

a Gaussian distribution corresponding to the estimated

climatological mean, and climatological covariance. We

have used hybridization so the ensemble based flow-

dependent covariances were combined with the clima-

tological covariances according to a hybridization pa-

rameter chyb ∈ [0, 1].

Table 1 states the values of the localization radius,

multiplicative inflation, and hybridization parameters

that we tested in a grid search for two experiments. In

total 3 × 3 × 6 = 54 different values were tested, with

chyb = 0 corresponding to 4DEnVar.

In the case of the proposed 4D-Var method with

flow-dependent background covariances, the initial co-

variance B0 was chosen as a diagonal matrix. The as-

similation window T was chosen as 3 hours (which of-

fered the best performance for fixed background covari-

ance). Fig. 1 illustrates the performance of the various

methods in the first observation scenario for the 1 day

run case.

The 4D-Var method was optimised based on the

Gauss-Newton method with preconditioned conjugate

gradient (PCG) based linear solver. We did not use any

preconditioner, and the maximum number of iterations

per PCG step was set to 100 (which was sufficient for

reducing the relative residual below 0.01 in most cases).

In the Hybrid 4D-Var method, we used a hybrid version

of the ENKF based on fixed covariances (i.e. a linear

combination of them), and the optimization was done

in a similar way as for the 4D-Var method. All of the

methods were implemented in Matlab and ran on a sin-

gle node of the Oxford ARC Arcus-B HPC cluster (16

cores per node). The measure of performance is the rel-

ative error of the unobserved component at a certain

time t, i.e. if w(t) ∈ Rn−n◦
denotes the true value of

the unobserved component, and ŵ(t) ∈ Rn−n◦
is the

estimator, then ‖ŵ(t) − w(t)‖/‖w(t)‖ is the relative

error (‖ · ‖ refers to the Euclidean norm).

We have also repeated the experiment in the more

challenging second observation scenario. Fig. 2a shows

the performance of 4D-Var with a fixed background co-

variance matrix with varying window sizes T = 3h, 6h,

9h, 12h and 18h. In the case of 12h and 18h, we have

used the idea of Pires et al. (1996) to first find the

optimum for shorter windows, and then gradually ex-

tend the window length to T to avoid issues with non-

convexity. This has resulted in a better optimum at the
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Parameter & Experiment Synthetic 1 day Synthetic 10 days Tsunami
rloc (localisation) 2,3,4 2,3,4 2,3,4
cinf (inflation) 2.5 · 10−4, 5 · 10−4, 10−3 5 · 10−4, 10−3, 2 · 10−3 0.01, 0.02, 0.03
chyb (hybridization) 0, 0.1, 0.3, 0.5, 0.7, 0.9 0, 0.1, 0.3, 0.5, 0.7, 0.9 0, 0.1, 0.3, 0.5, 0.7, 0.9
Ensemble size 200 200 100

Table 1: Tested parameter values for Hybrid 4D-Var

cost of longer computational time (it did not make a

difference at shorter window lengths). Overall, we can

see that the T = 12h has the best performance, but

the computational time is longer than for T = 9h (as

we in fact first find the optimum based on the first half

of the observations in the window, and then continue

with the other half). At T = 18h the performance di-

minishes due to the non-convexity of the likelihood, and

even the gradual extension of the window length fails

to overcome this problem.

Fig. 2b compares the performance of our method

(based on T = 9h, but with choices of b from 1 to

5) with 4D-Var with fixed window length (T = 12h),

ENKF and Hybrid 4D-Var. For this synthetic dataset,

our 4D-Var-based method with b = 3 offered the best

performance. b = 4 was similar but with higher compu-

tational cost, and b = 5 resulted in worse performance,

likely due to the non-linearity of the system. We can

see that using observations in earlier assimilation win-

dows to update the background covariance matrix in a

flow-dependent way is very beneficial, with relative er-

rors reduced by as much as 70-90% compared to using

a fixed background matrix.

To better understand the reason for this improve-

ment in performance, on Fig. 3 we have plotted the av-

erage correlations in background covariances between

the components at a given distance, in the cases b =

1, 2, 3, for the first observation scenario computed at

the last observation window (after 24 hours). As we

can see, as b increases, the background covariance ma-

trix changes and becomes less-and-less localised.

The performance of the Hybrid 4D-Var was quite

good and it considerably improved upon using a fixed

background covariance matrix, but nevertheless our met-

hod still had significantly better accuracy, especially

in second observation scenario which involved data as-

similation over a longer time period (10 days) with

less frequent observations. We believe that this increase

in accuracy is due to the more accurate modelling of

background covariances, which become less-and-less lo-

calised over longer time periods.
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Synthetic data 21x21 grid 24 hour comparison, obs. scenario 1

4DVAR b=0 (649s)

4DVAR b=1 (1163s)

4DVAR b=2 (1428s)

4DVAR b=3 (1591s)

4DVAR b=4 (2219s)

Hybrid 4D-Var (4084s)

Fig. 1: Relative errors of velocity estimates in the case

of synthetic data for all methods. Setting: d = 21, k =

1080, T = 3h, σ = 10−2, ∆ = 104, 10 seconds between

observations. The 4D-Var and Hybrid 4D-Var methods

process the data is batches of size k, hence the filtering

accuracy is poor until we have reached the end of the

first observation window. The best parameter values for

Hybrid 4D-Var were rloc = 4, chyb = 0, cinf = 2.5 · 10−4

(see Table 1 for all of the parameter values that we

tested).

4.2 Comparison based on tsunami data

The shallow water equations are applied in tsunami

modelling. Saito, Ito, Inazu, and Hino (2011) estimate

the initial distribution of the tsunami waves after the

2011 Japan earthquake. They use data from 17 loca-

tions in the ocean, where the wave heights were ob-

served continuously in time. We have used these esti-

mates as our initial condition for the heights, and set

the initial velocities to zero (as they are unknown). Us-

ing publicly available bathymetry data for h, and the

above described initial condition, we have run a simu-

lation of 40 minutes for our model, see Fig. 4. We have

tested the efficiency of the data assimilation methods

also on this simulated dataset, considering a time in-

terval from 10 to 40 minutes (thus the initial condition

corresponds to the value of the model after 10 minutes

and is shown in Fig. 4b). Due to the somewhat rough

nature of the tsunami waves, in this example we have

found that setting the background precision (inverse
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Effect of different 4D-Var window lengths, b=0, obs. scenario 2

T=3h (run time 825s)
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Synthetic data 10 days comparison, obs. scenario 2

4DVAR T=12h, b=0 (run time 1310s)
4DVAR T=9h, b=1 (1753s)
4DVAR T=9h, b=2 (2198s)
4DVAR T=9h, b=3 (2423s)
4DVAR T=9h, b=4 (2887s)
4DVAR T=9h, b=5 (3419s)
Hybrid 4D-Var 200 particles (4124s)

Fig. 2: Relative errors of velocity estimates for syn-

thetic data with observation scenario 3. Setting: d = 21,

σ = 10−2, ∆ = 104, 60 seconds between observations.

Fig. 2a shows the performance of 4D-Var with fixed co-

variance matrix for different time lengths. Fig.2b com-

pares the performance of our method with Hybrid 4D-

Var. The best parameter values for Hybrid 4D-Var were

rloc = 2, chyb = 0, cinf = 5 · 10−4 (see Table 1 for all of

the parameter values that we tested) .

covariance) matrix B−10 as zero offered the best perfor-

mance for the proposed 4D-Var method, while we used

a diagonal matrix for the Hybrid 4D-Var method. The

localisation and ensemble inflation was implemented as

described in Section 4.1, with the tested parameter val-

ues shown in Table 1. The 4D-Var method was opti-

mised based on the Gauss-Newton method with precon-

ditioned conjugate gradient (PCG) based linear solver

without any preconditioner, and the maximum number

of iterations per PCG step was set to 500.

Fig. 5 compares the performance of the methods for

this synthetic dataset implemented for grid size d =

0 5 10 15 20
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Synthetic data 21x21 grid background covariance localization

b=1
b=2
b=3
b=4

Fig. 3: Correlation decay in flow-dependent background

covariances for different values of b. Setting: d = 21,

k = 540, T = 9h, σ = 10−2, ∆ = 104, observation

scenario 2.

336 (so the dimension on the dynamical system is n =

3d2 = 338, 688) in the first observation scenario, where

the spatial frequency of the velocity observations was

chosen as r = 48 (i.e. 7 · 7 = 49 velocity observations in

total).

As in the previous synthetic example, the proposed

4D-Var based method offer the best performance. Note

that the best performance of the Hybrid 4D-Var was

achieved when we have used only a fixed background

covariance matrix, and coefficient for the ENKF based

background covariance is set to zero in the hybridiza-

tion (see Table 1 for the tested parameter values for

hybridization, inflation and localization). Hence in this

complex highly unstable situation the ENKF based back-

ground covariances did not help, while our proposed

flow-dependent covariances improved the precision of

the velocity estimates when using b = 1 and b = 2.

5 Conclusion

In this work we have presented a new method for updat-

ing the background covariances in 4D-Var filtering, and

applied it to the shallow-water equations. Our method

finds the MAP estimator of the initial position using

the Gauss-Newton’s method with the Hessian matrix

stored and the background covariances obtained in a

factorised form. Our method is computationally effi-

cient and has memory and computational costs that

scale nearly linearly with the size of the grid.

4D-Var-based methods are less directly parallelis-

able compared to ENKF as the optimization steps and

the ODE solver steps are indeed inherently serial. Hence

in a parallel environment, it is likely that the back-
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Fig. 4: Evolution of the height of the tsunami waves

(in meters) at 0, 10, 20, 30, and 40 mins (for grid size

d = 336).

ground covariance part of the Hybrid 4D-Var can be

computed significantly faster using the ENKF based

methods compared to the proposed method. However,

we have shown in the experiments that the method

proposed by this paper can be significantly more ac-

curate in the perfect model scenario for the shallow-

water equations. Moreover, both Hybrid 4D-Var and

the proposed method use the same computations based

on adjoint equations and tangent linear model for the

data in the current assimilation window (they only dif-

fer in formulation of the flow-dependent background co-

variances). The total computational time of the back-

ground covariances takes typically at most factor of b

times longer than the computations for the data in the

current window, thus the proposed method is not overly

computationally expensive.

It remains to be seen if the improvements in accu-

racy for the proposed method also hold in more com-

plex weather forecasting models, in the presence of some

model error. Our hope is that the proposed method

could yield significant improvements in accuracy in some

challenging data assimilation scenarios where modelling
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Tsunami data 336x336 grid 30 mins, obs. scenario 1

4DVAR b=0 (9529s)

4DVAR b=1 (16876s)

4DVAR b=2 (21865s)

Hybrid 4D-Var (9529s)

Fig. 5: Relative error of estimates of velocities for

tsunami data in the first observation scenario, all meth-

ods. Setting: d = 336, k = 30, T = 30mins, σ = 10−2.

The best performance for hybrid Hybrid 4D-Var was

obtained by only using the fixed background covari-

ance matrix, hence the performance and running time

is equivalent to 4D-Var with b = 0 (see Table 1 for all

of the parameter values that we tested).

covariance localization is difficult, without the need of

extensive tuning.

The Matlab code for the experiments is available at

https://github.com/paulindani/shallowwater.
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A Sparse storage of Jacobians for

Shallow-Water Dynamics

In this section we explain a possible method for the compu-
tation and storage of the Jacobians Mi, 1 ≤ i ≤ k specifically
for the case of the shallow-water equations (2.7)-(2.9). For
other equations, it might be the case that storing (Mi)1≤i≤k

https://github.com/paulindani/shallowwater
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directly as follows is not practical because the interaction be-
tween the components is not local and the Jacobian matrix
is not sparse. In such cases, we can still apply the tangent-
linear and adjoint equations for computing the matrix-vector
products Miv and MT

i v, as explained in Section 3.3.

One can observe that time derivatives at a grid position
only depends on its grid neighbours. Moreover, the shallow-
water equations are of the general form dx

dt
= −Ax−B(x,x)+

f , where A is an n×n matrix, B is a n×n×n array, and f is a
constant vector in Rn (note that for the shallow-water equa-
tions (2.7)-(2.9), we have f = 0). For equations of this form,
there is an efficient way of calculating the time derivatives
and their Jacobians, stated in equations (3.14) and (3.16) of
Paulin et al. (2018b). Based on these, one can use Taylor’s
expansion to compute the Jacobian M(t, s)[x(s)], that is

M(t, s)[x(s)] ≈ In +

lmax∑
l=1

∂
(

dl

dtl
M(t, s)[x(s)]

∣∣∣
t=s

)
∂x(s)

·
(t− s)l

l!
,

(A.1)

for some lmax > 0. Due to the fact that the first derivatives
only contain terms from neighbouring gridpoints, it is easy to
see that the above approximation only has non-zero elements
for gridpoints that are no more that lmax steps away. This
means that as long as t− s is sufficiently small, the Jacobian
M(t, s)[x(s)] can be stored as a sparse matrix with O(n) non-
zero elements. If the time interval between the observations
is sufficiently small, then each of M1, . . . ,Mk can be stored
as a single sparse matrix defined by (A.1). The inverse of the
Jacobian satisfies that (M(t, s)[x(s)])−1 = M(s, t)[x(t)], so
it can be calculated by (A.1) with terms (s − t)l instead of
(t− s)l and x(t) instead of x(s).

At this point we note that one could attempt to use the
Jacobians M(tl, t0) directly. However, for l � n, storing the
Jacobians M1, · · · ,Ml separately requires O(nl) memory, and
the effect of MlMl−1 · · ·M1 on a vector can be evaluated
in O(nl) time, while for 2D lattices, the product Ml · · ·M1

would require O(nl2) memory, and its effect on a vector would
require O(nl2) time to evaluate (for 3D lattices, it would in-
cur up to O(nl3) memory and computational cost). For the
same reason, for longer time intervals between observations,
it is more effective to break the interval into r > 1 smaller
blocks of equal size, and store the Jacobians corresponding
to each of them. In this case, when applying the Jacobian Ml

on a vector, the result can computed as the product of the
Jacobians for the shorter intervals.
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