
This is a repository copy of Transformers with learnable activation functions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/199941/

Version: Submitted Version

Preprint:
Fang, H., Lee, J.-U., Moosavi, N.S. orcid.org/0000-0002-8332-307X et al. (1 more author)
(Submitted: 2022) Transformers with learnable activation functions. [Preprint - arXiv]
(Submitted)

https://doi.org/10.48550/arxiv.2208.14111

© 2022 The Author(s). This preprint is made available under a Creative Commons
Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Transformers with Learnable Activation Functions

Haishuo Fang1, Ji-Ung Lee1, Nafise Sadat Moosavi2, Iryna Gurevych1

1UKP Lab, TU Darmstadt, Germany
2Department of Computer Science, The University of Sheffield, UK

1< lastname >@ukp.informatik.tu-darmstadt.de

Abstract

Activation functions can have a significant impact on reduc-
ing the topological complexity of input data and therefore
improve the performance of the model. Selecting a suitable
activation function is an essential step in designing neural
models. However, the choice of activation function is seldom
discussed or explored in Transformer-based pre-trained lan-
guage models. As a common practice, their activation func-
tions are chosen beforehand and then remain fixed across the
whole life cycle of the models—from pre-training to fine-
tuning. As a result, the inductive biases they imposed on
models cannot be adjusted during this long life cycle. More-
over, subsequently developed models (e.g., RoBERTa, BART,
T5, and GPT-3) often follow up prior work (e.g., BERT)
to use the same activation function such as Gaussian Er-
ror Linear Unit (GELU) without justification. In this paper,
we investigate the effectiveness of using Rational Activation
Function (RAF) that is a learnable activation function in the
Transformer architecture. In contrast to conventional, prede-
fined activation functions, RAFs can adaptively learn the op-
timal activation function during training according to the in-
put data. Our experiments show the RAF-based Transformer
model (RAFT) achieves a lower validation perplexity com-
pared to a vanilla BERT with the commonly used GELU
function. We further evaluate RAFT on downstream tasks in
low- and full-data settings. Our results show that RAFT out-
performs the counterpart model across the majority of tasks
and settings. For instance, RAFT outperforms vanilla BERT
on the GLUE benchmark by 5.71 points on average in low-
data scenario (where 100 training examples are available) and
by 2.05 points on SQuAD in full-data setting. Analysis of the
shapes of learned RAFs further unveils that they substantially
vary between different layers of the pre-trained model and
mostly look very different from conventional activation func-
tions. RAFT opens a new research direction for analyzing and
interpreting pre-trained models according to the learned acti-
vation functions.1

1 Introduction

Activation functions introduce non-linearity and increase
neural networks’ representational capacity, and therefore,
play an essential role in designing deep learning models

1Code and models will be available on Github under
an open source license: https://github.com/UKPLab/

2022-RAFT

(Nwankpa et al. 2018; Sharma, Sharma, and Athaiya 2017;
Dubey, Singh, and Chaudhuri 2022). Naitzat, Zhitnikov, and
Lim (2020) explain the importance of activation functions
by proposing to consider data as a topology with its own
shape. They empirically show that activation functions ac-
celerate the data topology transformation through different
layers of a neural network to simplify its complexity and
make it linearly separable in the output space. Their exper-
iments show that choosing the right activation function can
have a significant impact on the overall performance.

While it is possible to use any of the existing activation
functions in Transformers (Vaswani et al. 2017), the choice
of activation functions is however determined and fixed be-
fore pre-training. Therefore, their inductive biases imposed
on the model cannot be adjusted during pre-training or fine-
tuning. It is because (a) commonly used Transformers are
pre-trained on a large amount of data, and changing the acti-
vation function during fine-tuning will negatively impact the
performance2, and (b) the simple case of selecting the best
out of k different activation functions in n different feedfor-
ward layers of a Transformer model will result in kn possi-
ble combinations for the hyperparameter optimization step,
e.g., 531,441 necessary experiments for a 12-layer BERT
model and three different activation functions. As a result,
most recent Transformer-based pre-trained models use the
GELU activation function that has been initially used for the
BERT model (Devlin et al. 2019).

To overcome this limitation of using a predefined and not
necessarily optimized activation function in Transformers,
we propose to use a learnable activation function, namely ra-
tional activation function (Molina, Schramowski, and Kerst-
ing 2020), within the Transformer architecture. The rational
activation function (RAF) is a universal function approxi-
mator that can approximate any existing activation function.
The advantage of using RAF over fixed activation functions
(e.g., ReLU or GELU) is that the model can learn the opti-
mal activation function from data during (pre)training with-
out the need for hyperparameter optimization. To evaluate
the effectiveness of RAFs in Transformers, we pre-train two
encoder-only Transformers with RAF and fixed GELU acti-

2In our preliminary experiments, the performance of BERT be-
comes worse on downstream tasks when the activation functions
are changed only for fine-tuning.

ar
X

iv
:2

20
8.

14
11

1v
1

 [
cs

.C
L

]
 3

0
A

ug
 2

02
2

vation functions within an academic budget. In our experi-
ments, we find that:

• RAF-based Transformer (RAFT) learns different activa-
tion functions at different layers after pre-training, and
they are not necessarily similar to commonly used acti-
vation functions.

• During fine-tuning, RAFT outperforms vanilla BERT on
the general language understanding benchmark (GLUE)
and the SQuAD machine reading comprehension dataset.

• After fine-tuning, the learned RAFs of the top layers are
more task-specific and change the most, which are cor-
responding to layer behaviors of Transformers according
to prior work (Mosbach et al. 2020; Merchant et al. 2020;
Zhou and Srikumar 2022).

• RAFT outperforms the vanilla BERT in the majority of
evaluated tasks and data settings.

• RAFT boosts the performance when combined with
parameter-efficient fine-tuning approaches such as BitFit
(Ben Zaken, Goldberg, and Ravfogel 2022).

2 Related Work

Activation functions. There exist various predefined
activation functions such as Sigmoid, Hyperbolic Tan-
gent (Tanh), ReLU (Fukushima 1969), Softplus (Dugas
et al. 2000), and the Gaussian Error Linear Unit
(GELU) (Hendrycks and Gimpel 2016). There are also
approaches that leverage automatic search to obtain opti-
mal combinations of several base activation functions in
a predefined search space (Ramachandran, Zoph, and Le
2017; Manessi and Rozza 2018; Sütfeld et al. 2020; Bing-
ham and Miikkulainen 2022; Bingham, Macke, and Mi-
ikkulainen 2020). For instance, Ramachandran, Zoph, and
Le (2017) discovered the Swish activation function by us-
ing this method. Bingham, Macke, and Miikkulainen (2020)
show that further extending the search space using evolu-
tionary algorithms can also lead to an improvement. Fi-
nally, several search-based works investigate how to train
a combination of a set of activation functions to better
adapt to specific tasks and architectures (Manessi and Rozza
2018; Sütfeld et al. 2020; Bingham and Miikkulainen 2022).
One substantial drawback of these search-based methods is
that they are computationally expensive. Especially for pre-
trained language models where pre-training is costly, it is
infeasible to perform a hyperparameter search for selecting
the best activation function (even more so their combina-
tion). In contrast, the flexibility of Rational Activation Func-
tions (RAFs) allows them to be trained along with the model
parameters in an end-to-end fashion (Molina, Schramowski,
and Kersting 2020). Therefore, they can learn the optimized
activation function from data during training. RAFs have
been successfully used in deep reinforcement learning for
improving plasticity (Delfosse et al. 2021), cell detection
models in biology (Prangemeier, Reich, and Koeppl 2020),
and adapter architectures targeting pre-trained transformer
models (Moosavi et al. 2022).

Frequently used activation functions in NLP. Table 1
shows a list of 20 different language models that have been

Model Act. Funct.

BERT (Devlin et al. 2019) GELU
GPT-1 (Radford et al. 2018) GELU
RoBERTa (Liu et al. 2019) GELU
XLNet (Yang et al. 2019) GELU
ALBERT (Lan et al. 2019) GELU
GPT-2∗ (Radford et al. 2019) GELU
Megatron-LM (Shoeybi et al. 2019) GELU
ELECTRA+ (Clark et al. 2020) GELU
T5 (Raffel et al. 2020) ReLU
T5v1.1 (Raffel et al. 2020) GeGLU
DeBERTa+ (He et al. 2020) GELU
BART (Lewis et al. 2020) GELU
GPT-3∗ (Brown et al. 2020) GELU
Jurassic∗ (Lieber et al. 2021) GELU
Gopher∗ (Rae et al. 2021) GELU
Megatron-Turing NLG∗ (Smith et al. 2022) GELU
Chinchilla∗ (Hoffmann et al. 2022) GELU
CANINE+ (Clark et al. 2022) GELU
LaMBDA (Thoppilan et al. 2022) GeGLU
OPT (Zhang et al. 2022) ReLU

Table 1: Used activation functions across different NLP
Transformer models. Models marked by ∗ do not explicitly
state the activation function but refer to GPT-1 as the base
architecture (+ refers to BERT respectively). GeGLU is a
variant of GELU that combines GELU and GLU.

introduced after BERT. As we see, the vast majority of
the works (80%) use GELU activation functions; moreover,
many works even do not explicitly state the used activa-
tion function anymore (45%). There are only a few works
that investigate the impact of activation functions on pre-
trained Transformer models. So et al. (2021) leverage auto-
matic search methods to identify more efficient Transformer
architectures. They find that a combination of squared ReLU
used in the feedforward network (FFN) layer and a convo-
lution layer added in self-attention can lead to a substan-
tial boost in performance. Shazeer (2020) replace the FFN
in the Transformer with a gated linear unit (GLU) (Dauphin
et al. 2017) combined with different activation functions and
find a higher performance during pre-training as well as on
downstream tasks.

Closest to our work is the work by Moosavi et al. (2022)
who investigate the use of RAF in adapters (Houlsby et al.
2019); i.e., lightweight layers that are added on top of pre-
trained Transformer layers. They propose adaptable adapters
that consist of RAFs and learnable switches to select a sub-
set of adapter layers during training. They show that using
both RAFs and a fewer number of adapter layers results in
considerable performance gains, especially in low-data set-
tings. However, only using RAF instead of ReLU—a com-
monly used activation function in AdapterHub (Pfeiffer et al.
2020)—does not result in a considerable gain in their ex-
periments. Furthermore, adapter layers are only added and
updated during fine-tuning, as a result using RAF in adapter
layers has a limited impact compared to using them in Trans-

Figure 1: Rational activation function in the feed-forward
layer (left) and the vanilla GELU counterpart (right).

former layers.
In this work, we show that using RAF in Transformer

layers brings additional flexibility to the model to learn the
optimized activation function for each of its layers during
training, and that this additional flexibility benefits both pre-
training and fine-tuning steps.

3 RAFT: RAF-based Transformers

We adopt the BERT architecture (Devlin et al. 2019)
where all activation functions in feed-forward layers
Activation(W1X)W2 are replaced with rational activation
functions as shown in Figure 1. The equation of rational ac-
tivation function F (x) is as below:

F (x) =
P (x)

Q(x)
=

∑m

j=0
ajx

j

1 + |
∑n

k=0
bkxk|

(1)

Where a and b are learnable parameters, and m and n are
the order of F (x).

Similar to previous work (Telgarsky 2017; Molina,
Schramowski, and Kersting 2020; Delfosse et al. 2021), we
use order m = 5 and n = 4 in our model. In this case, each
rational activation function only has nine parameters. This
only introduces 108 new parameters in a 12-layer Trans-
former model; i.e., less than 0.000098% of its original pa-
rameters. We can initialize F (x) to approximate any of the
existing activation functions. In our experiments, we initial-
ize it with weights that approximate GELU.

To evaluate the viability of RAFT, we pre-train two com-
parable Transformer models from scratch—one using the
common fixed GELU activation functions (vanilla BERT),
and another one using RAFs (RAFT). We then further fine-
tune and evaluate both models on two NLP benchmarks.

4 Pre-training

Training Objective. Following RoBERTa (Liu et al.
2019), we use dynamic masked language modeling (MLM)
as our training objective; that means tokens in the input sen-
tences are randomly masked at each step before feeding

Model Validation loss Validation PPL

Vanilla BERT 1.645 5.18
RAFT 1.611 5.00

Table 2: Performance of the models on the validation set
after pre-training.

them into the model (in contrast to the static masked lan-
guage modeling used in BERT). We keep the masking prob-
abilities of the tokens the same as in RoBERTa and mask
15% of the tokens with an 80% chance of replacing them
with the [MASK] token, a 10% chance of replacing them
with a randomly selected different token, and a 10% chance
of not replacing them at all.

Data. English Wikipedia is used as our pre-training data.3

The dataset consists of 3.8× 109 tokens from which we se-
lect 50k sentences containing 6.4×106 tokens as the valida-
tion data. Each sentence is split into character- or word-level
tokens with Byte-Pair Encoding (Sennrich, Haddow, and
Birch 2015). Following Izsak, Berchansky, and Levy (2021),
we set the sequence length to 128 tokens throughout the
whole pre-training process for a better computational effi-
ciency.

Model Configuration. In all experiments, we use the con-
figuration of the BERT-base model which consists of 12
Transformer encoder layers with a hidden size of 768 and
12 attention heads. The only difference between RAFT and
vanilla BERT is the use of RAFs instead of GELUs as acti-
vation functions.

Optimization Setup For fair comparison, both models are
optimized by AdamW (Loshchilov and Hutter 2019) with
β1 = 0.9, β2 = 0.98 and weight decay of 0.01. We use a
batch size of 4096 instances. The learning rate lrθ for model
parameters in both models is 7e-4 while the learning rate
lrRAF for coefficients of rational functions in RAFT is 5e-3.
Both learning rates are warmed up over the first 1% steps,
then lrθ decays linearly while lrRAF remains constant.4

Pre-training Setup and Hyperparameter Tuning. Pre-
training a high-performanced Transformer-based language
model from scratch is prohibitively expensive. To conduct
this experiment with an academic budget (Izsak, Berchan-
sky, and Levy 2021), we train the models for 23k steps com-
bined with different acceleration methods, including mixed-
precision training, sparse output prediction and tied embed-
dings (Press and Wolf 2017). The whole pre-training process
is conducted on four A100 40GiB GPUs for both models
and takes ∼ 16 hours for both models. We further find in
our preliminary experiments that some hyperparameter con-
figurations can lead to instability during training due to di-
verging model updates (e.g., for lrθ =7e-4 and batch size
of 2048). To stabilize the training without having to rely on
a larger warmup phase (e.g., 6% of the training steps), we

3https://dumps.wikimedia.org
4We find in our preliminary experiments that a constant rational

learning rate with warm up leads to better results.

instead adopt the DeepNorm (Wang et al. 2022) to initial-
ize both models. DeepNorm stabilizes training by bound-
ing the updates and further scaling the residual branches in
Transformers. Using DeepNorm makes both models, vanilla
BERT and RAFT, achieve lower validation loss and leads to
a more stable training.

We then tune the learning rate lrθ for model parameters
and lrRAF for RAFs, batch size, warmup steps, and learn-
ing rate scheduler as hyperparameters for both models sep-
arately. The full hyperparameter search space is reported
in the technical appendix. All tuning experiments are con-
ducted using a single, fixed random seed.

Results. Table 2 shows the MLM validation losses and
validation perplexity of the best performing hyperparameter
configuration for each RAFT and vanilla BERT. We observe
that RAFT achieves a lower perplexity than vanilla BERT
during pre-training.

5 Fine-tuning

We conduct experiments on the General Language Under-
standing Evaluation (GLUE) benchmark (Wang et al. 2018)
and SQuAD (Rajpurkar et al. 2016) to see how well pre-
trained RAFs can adapt to specific downstream tasks. We
further investigate the flexibility of the pre-trained RAFs by
considering different training data sizes especially in a low-
data regime. We fine-tune RAFT in two different settings:

• RAFTfull: We fine-tune the whole model, i.e., all model
parameters including the RAFs.

• RAFTfixed: We fix the pre-trained RAFs and only tune
the other model parameters.

5.1 Evaluation on the GLUE Benchmark

Data. GLUE is a collection of nine different language un-
derstanding tasks: CoLA (Warstadt, Singh, and Bowman
2019), SST2 (Socher et al. 2013), MRPC (Dolan and Brock-
ett 2005), QQP (Iyer, Dandekar, and Csernai 2017), STSB
(Cer et al. 2017), MNLI (Williams, Nangia, and Bowman
2018), RTE (Dagan, Glickman, and Magnini 2005), and
WNLI (Levesque, Davis, and Morgenstern 2012). We ex-
clude WNLI due to the adversarial nature of its development
set and the still unbeaten majority vote upper bound.5 Note
that we use the same evaluation metrics as proposed in the
GLUE benchmark; more specifically, for MRPC, QQP, and
STSB, we use the average of the two corresponding metrics
as the final score.

Experimental Setup. For a comprehensive evaluation of
RAFT, we consider two different scenarios: full-data and
low-data fine-tuning. In both scenarios, we split 75% of the
training dataset as the training set and use the remaining
25% as the development set. Following previous works, we
further use the provided development set as the test dataset.
For our low-data scenario we consider two different dataset
sizes, namely, when only 100 and 300 examples are avail-
able. We further randomly sample 100 or 300 examples with

5Cf. (12) in https://gluebenchmark.com/faq

ten different random seeds and report the average and stan-
dard deviation across all runs. For the full-data scenario,
we report the average and standard deviation of the results
across six runs with different random seeds.6

Hyperparameter Tuning. We further tune the learning
rates and number of training epochs for RAFT and vanilla
BERT separately on a single random seed. For our low-data
experiments we fix the number of training epochs to 20 and
use early stopping with a patience of 10 epochs. For our full-
data experiments, we train the large datasets (QQP, MNLI,
and QNLI) for 3 epochs and the others for 10 epochs. The
hyperparameter search space (including fixed parameters) is
as follows:

• lrθ: 2e-5, 5e-5

• lrRAF: 1e-4, 5e-4, 1e-3, 5e-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 3, 10, 20

Results. Table 3 shows the performance of RAFT and
vanilla BERT on the GLUE benchmark. We observe that
RAFT achieves consistent improvements across different
tasks in all data settings. We further find that especially in
the low-data scenario, the flexible activation functions of
RAFT substantially outperform their static GLUE counter-
parts of the vanilla BERT model. For 100 examples, RAFT
achieves better results in seven out of eight tasks, outper-
forming vanilla BERT by 5.31 points (RAFTfull) and 5.71
points (RAFTfixed) on average, respectively. While the per-
formance gap becomes smaller as the number of examples
increases, the tendency remains the same with an average
performance gain of 0.98 points (RAFTfull) and 1.59 points
(RAFTfixed) for 300 examples. In the full data scenario,
RAFT still outperforms vanilla BERT by 0.7 (RAFTfull) and
0.58 (RAFTfixed) points on average.

Our experiments indicate that fixing the RAFs is a better
choice for the GLUE benchmark in the low-data scenarios.
We conjecture that one reason for this may be that the num-
ber of instances to tune all parameters of the model are insuf-
ficient. On the contrary we find that in the full-data scenario,
tuning the RAFs can lead to better results. The increasing
number of instances especially benefit RAFs as they can
better adapt to different downstream tasks and learn better
features. We provide further analysis in Section 6.

5.2 Evaluation on SQuAD

Data. SQuAD is a reading comprehension task where
each example consists of a question, a context, and the re-
spective span from the context that answers the question (it
is also possible that the provided context contains no answer
at all). We evaluate models on SQuAD v1.1 in different data
settings: (a) the full-data scenario and (b) the low-data sce-
nario with 100, 300, 500, and 1000 examples. Similar as for

6Note that the full-data scenario is computationally more ex-
pensive to run, but also more stable as the training instances expe-
rience less variability.

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low-data 100 examples1

Vanilla-BERT 1.88±2.27 71.02±5.61 74.88±0.23 55.19±5.96 57.57±8.32 32.86±1.50/32.92±1.46 53.34±3.24 53.14±1.67 48.07

RAFTfull 4.38±3.2 73.28±3.95 75.89±1.39 62.65±2.86 70.30±3.44 38.31±1.87/39.06±2.35 63.58±3.74 53.0±1.91 53.38

RAFTfixed 7.25±4.77 72.04±5.04 75.76±0.65 62.15±4.09 71.39±3.56 39.3±1.60/40.4±1.73 63.13±3.05 52.6±2.99 53.78

low-data 300 examples1

Vanilla-BERT 13.12±5.29 77.67±3.07 79.37±1.56 66.63±1.35 76.70±1.89 43.74±2.20/45.33,2.29 69.17±2.25 55.45±2.66 58.58

RAFTfull 12.36±5.07 78.22±2.10 77.84±1.09 68.25±1.01 79.77±2.34 45.70±1.69/47.27±1.86 71.92±1.10 54.70±2.26 59.56

RAFTfixed 17.34±3.23 78.95±2.33 76.97±0.96 68.20±0.76 80.32±0.1 45.35±1.62/46.53±1.63 72.07±1.56 55.78±2.72 60.17

Full data2

Vanilla-BERT 43.18±1.52 89.2±0.63 86.42±1.37 88.08±0.08 87.08±0.21 80.92±0.21/81.78±0.22 89.42±0.38 62.22±1.35 78.70

RAFTfull 45.84±1.47 89.85±0.45 87.21±0.54 88.27±0.10 86.96±0.29 80.88±0.22/81.85±0.23 89.32±0.20 64.44±2.49 79.40

RAFTfixed 45.66±1.55 90.06±0.70 86.36±1.03 88.21±0.06 86.64±0.24 81.10±0.22/82.06±0.21 89.36±0.34 63.90±2.85 79.28
1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 3: The performance of RAFT and vanilla BERT on the GLUE benchmark across different data sizes. RAFTfull fine-tunes
all model parameters including RAFs. RAFTfixed instead fixes the RAFs pre-training.

GLUE, we split the official training data into separate train-
ing (75%) and development sets (25%)7 and use the official
development set as the test data.

Experimental Setup. We again tune hyperparameters for
both models separately. More specifically, we evaluate lrθ ∈
{2e-5, 5e-5, 1e-4} and lrRAF ∈ {1e-4, 5e-4, 1e-3, 5e-3}.
For our experiments, we fine-tune both models with their
best performing lrθ=1e-4 for 10 epochs in the full-data sce-
nario and 20 epochs in the low-data scenario. We evaluate
the results using by computing the F1 score over the word
overlap of the predicted answer and the gold answer.

Results. Table 4 shows our results of RAFT and vanilla
BERT. Compared to GLUE, that consists of sentence-level
text matching tasks, SQuAD is a more complex task in
which the model needs to comprehend a longer text se-
quence to predict an answer span (instead of a label). The
increased task difficulty is especially reflected in the low-
data scenarios, as the performances of both models are be-
low 25 points when only 100 or 300 annotated examples are
available. As a result, when there are not enough annotated
examples available to learn the task, the use of RAFs instead
of GELU is not beneficial for the Transformer model. How-
ever, we again see that RAFT outperforms the vanilla BERT
model as more examples become available.

In addition, we observe that tuning RAFs during fine-
tuning (RAFTfull) is more beneficial compared to fixing
RAFs (RAFTfixed) when the task is more complex. Consid-
ering our findings on the GLUE benchmark, we conjecture
that depending on the task difficulty, there exists different
ranges with respect to the available training data where us-
ing Transformers with (flexible and fixed) RAFs have an ad-
vantage.

6 Analysis

Finally, we provide analysis on RAFT regarding its zero-
shot capabilities and the shapes of the learned activation
functions after pre-training and fine-tuning. Besides, we
evaluate RAFT under parameter-efficient tuning paradigm.

7Again, we use the development set to identify the best per-
forming model across all epochs.

100 examples1 300 examples1 500 examples1 1000 examples1 full data2

Vanilla BERT 12.72±1.54 22.11±2.46 26.46±1.42 34.58±1.68 72.33±0.23

RAFTfull 11.81±0.95 19.49±2.01 26.68±1.91 36.69±1.56 74.45±0.47

RAFTfixed 12.19±1.08 19.00±2.68 26.27±1.39 35.98±1.81 74.38±0.25

1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320,
53

2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 4: Results of RAFTs and vanilla BERT on SQuAD.

SNLI
Trivia QA

verified-web verified-wiki

Vanilla BERT 74.22±0.19 24.62±1.48 21.01±0.75

RAFTfull 74.80±0.29 25.40±1.84 21.50±0.76

RAFTfixed 74.76±0.25 25.40±1.25 21.78±0.87

Table 5: Zero-shot performance of vanilla BERT and RAFT.
Models evaluated on SNLI are trained on MNLI. Results on
TriviaQA are based on models trained on SQuAD.

Zero-shot generalization. To investigate if the higher per-
formances of RAFT vs vanilla BERT come from overfitting
on the in-domain data (therefore may reduce generalization),
we conduct cross-domain zero-shot experiments. To do so,
we use the models that have been fine-tuned on MNLI and
SQuAD in the full-data scenario and evaluate them on the
same tasks but for different data, namely, SNLI (Bowman
et al. 2015) and TriviaQA (Joshi et al. 2017) respectively.
MNLI and SNLI are both datasets that aim to evaluate natu-
ral language inference while SQuAD and TriviaQA contain
examples for evaluating reading comprehension in different
domains. Table 5 shows the results of our zero-shot evalua-
tion. We observe that the increased flexibility and adaptivity
of RAFT does not negatively impact its generalization ca-
pabilities. In fact, both variants of RAFT consistently out-
perform the corresponding vanilla BERT model. We there-
fore conclude that the improved performances of RAFT on
GLUE and SQuAD cannot be attributed to overfitting on the
in-domain data.

Visualizing learned RAFs. Next, we analyze how the
shapes of RAFs change after pre-training and fine-tuning at
different layers of the model, and for different tasks. First,
we analyze the learned RAFs in different layers of RAFT

Figure 2: Rational activation functions across different lay-
ers after pre-training

Figure 3: Rational activation functions of RAFTfull among
different layers on MNLI and SST2 after fine-tuning

after pre-training to see whether they resemble the common
predefined activation functions. Figure 2 shows the plots
of learned RAFs across different layers in RAFT after pre-
training. As we see, rational functions have different shapes
across different layers, none of which are similar to GELU,
or other commonly used activation functions in Transform-
ers. This indicates that using the same activation function
across all layers may not be beneficial. Moreover, it also
shows that some features like monotonicity that are deemed
to be good for predefined activation functions are not neces-
sary, which is in line with the findings of the Swish activa-
tion function (Ramachandran, Zoph, and Le 2017).

Second, we analyze how the learned RAFs during pre-
training change after fine-tuning in RAFTfull. Figure 3
shows the learned RAFs after fine-tuning RAFTfull on
MNLI and SST2 datasets. We observe that some of the
learned RAFs trained on these two tasks differ from each
other and the RAFs after pre-training (cf. Figure 2). We fur-
ther see that several RAFs between both tasks have similar
shapes but different slopes across many layers.

To better understand the behavior of learned RAFs af-
ter fine-tuning in different layers on various tasks, we plot
RAFs from the same layer together across all tasks. Fig-
ure 4 shows the learned RAFs in layer 1 (the first layer),
layer 6, and layer 12 (the top layer) after pre-training and
fine-tuning on different tasks. We observe that after fine-
tuning, the RAFs in the top layer are more task-specific
and change the most, compared to those in bottom layers.
This is in line with prior work that analyzed the behav-

ior of BERT layers during fine-tuning, which showed that
higher layers exhibit more changes compared to lower lay-
ers (Mosbach et al. 2020; Merchant et al. 2020; Zhou and
Srikumar 2022). Our results confirm this finding from the
perspective of learned activation functions. It also demon-
strates that RAFs can self-adapt to different layers and tasks
during fine-tuning. In addition, an interesting observation is
that the output ranges of the RAFs of MNLI and QQP in the
top layer are very close to zero. The output of the FFN layer
Layernorm(FFN(x) + ID(x)) consists of two parts: the
feedforward branch FFN(x) and the skip connection branch
where ID(x) is the identity function. The very small output
of activation functions may indicate that the FFN branch of
the top layer does not contribute much to the final model per-
formance on MNLI and QQP when coupled with the skip
connection branch. For future work, we will investigate if
there are other layers that exhibit a similar shape and if such
layers can be pruned with only a minimal loss of perfor-
mance.

Overall, we find that RAFT provides a new opportunity
to analyze and interpret pre-trained language models from
the perspective of learned activation functions. It is also
worth investigating the similarities and dissimilarities of lay-
ers with similar learned activation functions in terms of the
learned embedding space or linguistic properties.

RAFTfixed vs. RAFTfull. In our experiments on GLUE
and SQuAD (Tables 3 and 4), we observe that fixing the
RAFs after fine-tuning (RAFTfixed) often achieves the best
or second best performance compared to the full-tuning
model (RAFTfull) and vanilla BERT. Fine-tuning RAFs re-
sults in higher performances when (a) more data is avail-
able, i.e., the full-data scenario in GLUE, or (b) the input
task is more complex such as in SQuAD. However, the per-
formance gain is minor compared to RAFTfixed in our ex-
periments. We hypothesize that training RAFs during fine-
tuning will be more effective when evaluated on more com-
plex tasks and datasets than the ones used this work.

Parameter-efficient fine-tuning with RAFTs. In con-
trast to fine-tuning all parameters in a pre-trained language
model, parameter-efficient tuning techniques that freeze
the majority of pre-trained parameters and only fine-tune a
small set can be promising alternatives (Ding et al. 2022).
One such method is BitFit (Ben Zaken, Goldberg, and
Ravfogel 2022) which only updates the bias terms in the
Transformer model. To investigate the effectiveness of
RAFT in a parameter-efficient fine-tuning paradigm, we
fine-tune the vanilla BERT and RAFT models with BitFit
on the GLUE benchmark. We use the same settings as in
our previous experiments and test RAFT and vanilla BERT
in three configurations in the low-data 100 and full-data sce-
nario: (a) BitF itBERT uses BitFit with vanilla BERT, (b)
BitF itfull uses BitFit with RAFTfull, and (c) BitF itfixed
uses BitFit with RAFTfixed. As shown in Table 6, RAFT-
based BitFit achieves higher performance than the vanilla
BERT on average in both data settings: BitF itfixed achieves
3.95 points improvements and BitF itfull gets 4.15 points
improvements in the low-data scenario while BitF itfixed
performs better with a 2.87 points boost and BitF itfull

Figure 4: Learned rational activation functions of RAFTfull in layers 1 (bottom), 6, and 12 (top) among different tasks

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itBERT 1.44±2.85 63.33±9.63 68.82±1.74 55.49±3.94 46.04±24.69 32.92±1.33/32.95±1.24 51.95±3.50 52.20±2.82 45.02
BitF itfull 4.39±3.41 76.49±1.90 74.11±1.04 61.53±3.09 50.41±20.20 33.75±1.38/33.81±1.30 57.22±6.15 50.83±2.74 49.17
BitF itfixed 6.25±3.68 75.96±1.24 74.71±0.34 61.35±3.42 49.91±26.88 33.73±1.40/34.04±1.71 53.19±4.02 51.63±2.26 48.97

Full data1

BitF itBERT 37.75±1.26 87.80±0.67 82.94±1.20 81.35±0.13 59.29±33.04 71.94±0.38/73.57±0.38 85.38±1.07 55.89±1.70 70.66
BitF itfull 38.46±1.37 88.19±0.16 86.73±1.00 81.03±0.12 85.28±0.33 70.23±0.41/72.53±0.33 80.51±10.75 60.72±1.88 73.74
BitF itfixed 39.96±1.95 88.46±0.28 84.91±5.10 81.02±0.14 85.55±0.44 71.25±0.19/73.26±0.36 77.23±14.23 60.15±0.90 73.53

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 6: Comparison between RAFT and vanilla BERT combined with BitFit.

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itsubBERT 1.49±1.87 62.82±7.56 74.80±0.00 52.57±3.83 14.71±7.21 32.73±1.41/32.76±1.30 49.77±0.40 50.83±1.86 41.39

BitF itsubRAFT 2.45±3.58 72.34±3.41 74.67±0.68 55.61±2.35 23.99±10.41 35.32±0.67/35.66±1.05 51.08±0.71 51.70±1.85 44.75
RAFRAFT 4.33±3.02 72.91±2.82 74.47±0.88 51.92±5.03 17.27±10.60 35.24±0.61/35.69±0.92 51.12±0.48 50.47±1.63 43.71

Full data1

BitF itsubBERT 6.61±7.08 79.52±0.52 71.32±0.22 70.48±0.66 37.33±5.70 53.33±1.13/55.30±0.75 64.04±2.03 54.88±1.42 54.76

BitF itsubRAFT 8.78±5.54 82.02±0.57 71.76±0.77 70.88±1.17 71.40±0.52 51.57±0.54/53.27±1.20 69.87±1.20 57.04±1.19 59.62
RAFRAFT 9.71±12.04 81.70±0.12 74.81±3.09 73.57±0.48 80.79±0.60 57.34±0.19/60.69±0.51 67.89±8.64 56.53±1.83 62.56

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 7: Comparison between fine-tuning RAFs and a subset of 117 BitFit parameters with RAFT and vanilla BERT.

performs better with a 3.08 points boost in the full-data
scenario. It is worth noting that in some tasks, the reported
results have a very large standard deviation (e.g., 33.04 for
BitF itBERT on STSB) due to several random seed runs
not converging. In our experiments, BitFit is not as stable as
fine-tuning the whole model.

How much can we achieve by only fine-tuning RAFs?
To see to what extent the model can learn from different
tasks by only updating rational activation functions, we con-
duct experiments to only tune RAFs on the GLUE bench-
mark in low- and full-data settings. We call this setup where
only 117 parameters of the RAFs are updated during fine-
tuning, RAFRAFT. For comparison, we tune our models
with the BitFit setting using the same amount of parame-
ters, i.e. 117.8 BitF itsubBERT represents tuning the subset of

BitFit of vanilla BERT, and BitF itsubRAFT represents tun-

8Note that we also update the classification head in all models
and experiments.

ing the subset of BitFit of RAFT. Table 7 presents the re-
sults of this comparison. To further compare with the re-
sults in Table 3 and Table 6, we plot Figure 5. We observe
that if only a few annotated examples are available (100
examples), BitF itfixed and BitF itfull can achieve bet-
ter performance than full fine-tuning of Vanilla BERT. Only
fine-tuning 117 parameters (BitF itsubBERT, BitF itsubRAFT and
RAFRAFT) —i.e., a negligible number of parameters com-
pared to 110M parameters in vanilla BERT—results in a
comparable performance as fine-tuning all the parameters
with only a drop of 4.21–6.68 percentage points. In the
full-data scenario, the performance of BitFit (BitF itfull,
BitF itfixed and BitF itBERT) lags behind full fine-tuning
of both models. Only tuning RAFs or a subset of Bit-
Fit cannot achieve comparable results as well. However,
RAFRAFT outperforms BitF itsubBERT by 7.8% and performs

better than BitF itsubRAFT by 2.94% in this setting.

0.000106% 0.09%
Number of tuned parameters

40

45

50

55

60

65

70

75

80
Av

er
ag

e
m

et
ric

 o
n

G
LU

E
be

nc
hm

ar
k

Full Fine-Tuning

RAFRAFT
BitFitsubRAFT

BitFitsubBERT
BitFitfull
BitFitfixed
BitFitBERT
RAFTfull
RAFTfixed
Vanilla BERT

(a) Comparison performance in low-data 100 scenario

0.000106% 0.09%
Number of tuned parameters

40

45

50

55

60

65

70

75

80

Av
er

ag
e

m
et

ric
 o

n
G

LU
E

be
nc

hm
ar

k

Full Fine-Tuning

RAFRAFT
BitFitsubRAFT

BitFitsubBERT
BitFitfull
BitFitfixed
BitFitBERT
RAFTfull
RAFTfixed
Vanilla BERT

(b) Comparison performance in full-data scenario

Figure 5: The number of parameters vs. the performance for different fine-tuning methods of RAFT and vanilla BERT.

7 Conclusion and Future Work

In this work, we propose to utilize rational activation func-
tions (RAF) in Transformers to directly learn optimal activa-
tion functions from data during pre-training and fine-tuning.
To evaluate the effectiveness of rational activation func-
tions, we pre-trained a Transformer-based language model,
namely, RAFT. RAFT achieves a lower validation perplex-
ity than vanilla BERT during pre-training. Our experimental
results show that RAFT performs better than vanilla BERT
in general language understanding tasks and reading com-
prehension tasks across different data size scenarios. We
further visualize and analyze rational activation functions
across different layers and tasks after pre-training and fine-
tuning and find that they can substantially vary across differ-
ent layers and tasks. This provides us a new way to analyze
and better understand Transformer-based language models.
For instance, if layers with similar rational activation func-
tions encode similar linguistic properties. We further find
that some layers exhibit a close to zero throughput of the
rational activation function which indicates that the corre-
sponding feedforward layer does not contribute too much to
a model’s prediction. We consider these as our future work.

Acknowledgments

The authors would like to thank Quentin Delfosse for his
continued support and valuable advice regarding the existing
implementation of rational activation functions. We further
thank Stella Biderman, Fengyu Cai, Nils Dycke, Haau-Sing
Li, Andreas Rücklé, Martin Tutek, Kexin Wang, and Neha
Warikoo for their fruitful discussions and helpful feedback.
This work has been funded by the German Federal Min-
istry of Education and Research and the Hessian Ministry
of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Ap-
plied Cybersecurity ATHENE.

References

Ben Zaken, E.; Goldberg, Y.; and Ravfogel, S. 2022. Bit-
Fit: Simple Parameter-efficient Fine-tuning for Transformer-
based Masked Language-models. In Proceedings of the 60th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), 1–9. Dublin, Ireland: As-
sociation for Computational Linguistics.

Bingham, G.; Macke, W.; and Miikkulainen, R. 2020. Evo-
lutionary Optimization of Deep Learning Activation Func-
tions. In Proceedings of the 2020 Genetic and Evolution-
ary Computation Conference, GECCO ’20, 289–296. New
York, NY, USA: Association for Computing Machinery.
ISBN 9781450371285.

Bingham, G.; and Miikkulainen, R. 2022. Discovering Para-
metric Activation Functions. Neural Networks, 148: 48–65.

Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D.
2015. A large annotated corpus for learning natural lan-
guage inference. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 632–
642. Lisbon, Portugal: Association for Computational Lin-
guistics.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Mod-
els are Few-Shot Learners. In Larochelle, H.; Ranzato, M.;
Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neu-
ral Information Processing Systems, volume 33, 1877–1901.
Curran Associates, Inc.

Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; and Specia,
L. 2017. SemEval-2017 Task 1: Semantic Textual Similar-
ity Multilingual and Crosslingual Focused Evaluation. In

Proceedings of the 11th International Workshop on Seman-
tic Evaluation (SemEval-2017), 1–14. Vancouver, Canada:
Association for Computational Linguistics.

Clark, J. H.; Garrette, D.; Turc, I.; and Wieting, J. 2022.
Canine: Pre-training an Efficient Tokenization-Free Encoder
for Language Representation. Transactions of the Associa-
tion for Computational Linguistics, 10: 73–91.

Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D.
2020. ELECTRA: Pre-training Text Encoders as Discrim-
inators Rather Than Generators. In International Confer-
ence.

Dagan, I.; Glickman, O.; and Magnini, B. 2005. The PAS-
CAL recognising textual entailment challenge. In Machine
Learning Challenges Workshop, 177–190. Springer.

Dauphin, Y. N.; Fan, A.; Auli, M.; and Grangier, D. 2017.
Language Modeling with Gated Convolutional Networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, 933–941. JMLR.org.

Delfosse, Q.; Schramowski, P.; Molina, A.; and Kersting,
K. 2021. Recurrent Rational Networks. arXiv preprint
arXiv:2102.09407.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171–4186. Min-
neapolis, Minnesota: Association for Computational Lin-
guistics.

Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.;
Hu, S.; Chen, Y.; Chan, C.-M.; Chen, W.; et al. 2022.
Delta tuning: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

Dolan, W. B.; and Brockett, C. 2005. Automatically con-
structing a corpus of sentential paraphrases. In Proceed-
ings of the Third International Workshop on Paraphrasing
(IWP2005).

Dubey, S. R.; Singh, S. K.; and Chaudhuri, B. B. 2022. Ac-
tivation functions in deep learning: A comprehensive survey
and benchmark. Neurocomputing, 503: 92–108.

Dugas, C.; Bengio, Y.; Bélisle, F.; Nadeau, C.; and Garcia,
R. 2000. Incorporating Second-Order Functional Knowl-
edge for Better Option Pricing. In Leen, T.; Dietterich, T.;
and Tresp, V., eds., Advances in neural information process-
ing systems, volume 13. MIT Press.

Fukushima, K. 1969. Visual feature extraction by a multi-
layered network of analog threshold elements. IEEE Trans-
actions on Systems Science and Cybernetics, 5(4): 322–333.

He, P.; Liu, X.; Gao, J.; and Chen, W. 2020. DeBERTa:
Decoding-Enhanced BERT with disentangled Attention. In
International Conference on Learning Representations.

Hendrycks, D.; and Gimpel, K. 2016. Bridging Nonlineari-
ties and Stochastic Regularizers with Gaussian Error Linear
Units. CoRR, abs/1606.08415.

Hoffmann, J.; Borgeaud, S.; Mensch, A.; Buchatskaya, E.;
Cai, T.; Rutherford, E.; Casas, D. d. L.; Hendricks, L. A.;
Welbl, J.; Clark, A.; et al. 2022. Training Compute-Optimal
Large Language Models. arXiv preprint arXiv:2203.15556.

Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-Efficient Transfer Learning for
NLP. In Chaudhuri, K.; and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, 2790–2799. PMLR.

Iyer, S.; Dandekar, N.; and Csernai, K. 2017. First Quora
Dataset Release: Question Pairs.

Izsak, P.; Berchansky, M.; and Levy, O. 2021. How to Train
BERT with an Academic Budget. In Proceedings of the
2021 Conference on Empirical Methods in Natural Lan-
guage Processing, 10644–10652. Online and Punta Cana,
Dominican Republic: Association for Computational Lin-
guistics.

Joshi, M.; Choi, E.; Weld, D.; and Zettlemoyer, L. 2017.
TriviaQA: A Large Scale Distantly Supervised Challenge
Dataset for Reading Comprehension. In Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 1601–1611. Vancou-
ver, Canada: Association for Computational Linguistics.

Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.;
and Soricut, R. 2019. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations. In In-
ternational Conference on Learning Representations.

Levesque, H.; Davis, E.; and Morgenstern, L. 2012. The
winograd schema challenge. In Thirteenth International
Conference on the Principles of Knowledge Representation
and Reasoning.

Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 7871–7880. On-
line: Association for Computational Linguistics.

Lieber, O.; Sharir, O.; Lenz, B.; and Shoham, Y. 2021.
Jurassic-1: Technical details and evaluation. White Paper.
AI21 Labs.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In International Conference on Learn-
ing Representations.

Manessi, F.; and Rozza, A. 2018. Learning combinations of
activation functions. In 2018 24th international conference
on pattern recognition (ICPR), 61–66. IEEE.

Merchant, A.; Rahimtoroghi, E.; Pavlick, E.; and Tenney,
I. 2020. What Happens To BERT Embeddings During Fine-
tuning? In Proceedings of the Third BlackboxNLP Workshop

on Analyzing and Interpreting Neural Networks for NLP,
33–44. Online: Association for Computational Linguistics.

Molina, A.; Schramowski, P.; and Kersting, K. 2020. Pad\’e
Activation Units: End-to-end Learning of Flexible Activa-
tion Functions in Deep Networks. In International Confer-
ence on Learning Representations.

Moosavi, N.; Delfosse, Q.; Kersting, K.; and Gurevych, I.
2022. Adaptable Adapters. In Proceedings of the 2022
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, 3742–3753. Seattle, United States: Association for
Computational Linguistics.

Mosbach, M.; Khokhlova, A.; Hedderich, M. A.; and
Klakow, D. 2020. On the Interplay Between Fine-tuning and
Sentence-Level Probing for Linguistic Knowledge in Pre-
Trained Transformers. In Proceedings of the Third Black-
boxNLP Workshop on Analyzing and Interpreting Neural
Networks for NLP, 68–82. Online: Association for Compu-
tational Linguistics.

Naitzat, G.; Zhitnikov, A.; and Lim, L.-H. 2020. Topology
of Deep Neural Networks. Journal of Machine Learning
Research, 21(184): 1–40.

Nwankpa, C.; Ijomah, W.; Gachagan, A.; and Marshall,
S. 2018. Activation functions: Comparison of trends in
practice and research for deep learning. arXiv preprint
arXiv:1811.03378.

Pfeiffer, J.; Rücklé, A.; Poth, C.; Kamath, A.; Vulić, I.;
Ruder, S.; Cho, K.; and Gurevych, I. 2020. AdapterHub: A
Framework for Adapting Transformers. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, 46–54. Online:
Association for Computational Linguistics.

Prangemeier, T.; Reich, C.; and Koeppl, H. 2020. Attention-
based transformers for instance segmentation of cells in mi-
crostructures. In 2020 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 700–707. IEEE.

Press, O.; and Wolf, L. 2017. Using the Output Embedding
to Improve Language Models. In Proceedings of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers, 157–
163. Valencia, Spain: Association for Computational Lin-
guistics.

Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.;
et al. 2018. Improving language understanding by gener-
ative pre-training.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog, 1(8): 9.

Rae, J. W.; Borgeaud, S.; Cai, T.; Millican, K.; Hoff-
mann, J.; Song, F.; Aslanides, J.; Henderson, S.; Ring, R.;
Young, S.; et al. 2021. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; Liu, P. J.; et al. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140): 1–67.

Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension
of Text. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, 2383–2392.
Austin, Texas: Association for Computational Linguistics.

Ramachandran, P.; Zoph, B.; and Le, Q. V. 2017. Searching
for activation functions. arXiv preprint arXiv:1710.05941.

Sennrich, R.; Haddow, B.; and Birch, A. 2015. Neural ma-
chine translation of rare words with subword units. arXiv
preprint arXiv:1508.07909.

Sharma, S.; Sharma, S.; and Athaiya, A. 2017. Activation
functions in neural networks. towards data science, 6(12):
310–316.

Shazeer, N. 2020. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202.

Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper,
J.; and Catanzaro, B. 2019. Megatron-lm: Training multi-
billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Smith, S.; Patwary, M.; Norick, B.; LeGresley, P.; Rajbhan-
dari, S.; Casper, J.; Liu, Z.; Prabhumoye, S.; Zerveas, G.;
Korthikanti, V.; et al. 2022. Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990.

So, D.; Mańke, W.; Liu, H.; Dai, Z.; Shazeer, N.; and Le,
Q. V. 2021. Searching for Efficient Transformers for Lan-
guage Modeling. Advances in Neural Information Process-
ing Systems, 34: 6010–6022.

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A.; and Potts, C. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods
in natural language processing, 1631–1642.

Sütfeld, L. R.; Brieger, F.; Finger, H.; Füllhase, S.; and Pipa,
G. 2020. Adaptive blending units: Trainable activation func-
tions for deep neural networks. In Science and Information
Conference, 37–50. Springer.

Telgarsky, M. 2017. Neural Networks and Rational Func-
tions. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, 3387–3393.
JMLR.org.

Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kul-
shreshtha, A.; Cheng, H.-T.; Jin, A.; Bos, T.; Baker, L.; Du,
Y.; et al. 2022. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.

Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461.

Wang, H.; Ma, S.; Dong, L.; Huang, S.; Zhang, D.; and
Wei, F. 2022. Deepnet: Scaling transformers to 1,000 lay-
ers. arXiv preprint arXiv:2203.00555.

Warstadt, A.; Singh, A.; and Bowman, S. R. 2019. Neural
Network Acceptability Judgments. Transactions of the As-
sociation for Computational Linguistics, 7: 625–641.

Williams, A.; Nangia, N.; and Bowman, S. 2018. A Broad-
Coverage Challenge Corpus for Sentence Understanding
through Inference. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), 1112–1122. Association for Compu-
tational Linguistics.

Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. XLNet: Generalized Autoregres-
sive Pretraining for Language Understanding. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox,
E.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X. V.; et al. 2022.
Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068.

Zhou, Y.; and Srikumar, V. 2022. A Closer Look at How
Fine-tuning Changes BERT. In Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 1046–1061. Dublin, Ireland:
Association for Computational Linguistics.

A Hyperparameters Tuning for Pre-training

The hyperparameter search space for pre-training stage is as
follows:

• Learning rate lrθ for model parameters: 1e-4, 4e-4, 7e-4,
1e-3

• Learning rate lrRAF for RAFs: 1e-3, 5e-3, 1e-2

• Batch size: 2048, 4096

• Warmup ratio: 0%, 1%, 6%

Table 8 shows hyperparameters we used for pre-training
RAFT and vanilla BERT.

Hyperparameters Vanilla BERT RAFT

Peak lrθ 7e-4 7e-4
Peak lrRAF n/a 5e-3

Learning rate decay linear constant
Gradient clipping 0 0

Batch size 4096 4096
Adam beta1 0.9 0.9
Adam beta2 0.98 0.98

Attention dropout 0.1 0.1
Warmup ratio 1% 1%
Training steps 23k 23k

Table 8: Hyperparameters for pre-training RAFT and Vanilla
BERT

B Data Statistics

Table 9 and Table 10 show data statistics of SQuAD and
GLUE benchmark respectively.

C Learned RAFs during pre-training and

after fine-tuning

Figure 6 and Figure 7 show learned RAFs in 12 layers after
pre-training and fine-tuning on different tasks, respectively.

D Hyperarameters Tuning for BitFit

The hyperparameters search space for BitFit is as below:

• Learning rate lrθ for model parameters: 5e-5, 1e-3, 5e-3,
1e-2

• Learning rate lrRAF for RAFs: 1e-3, 5e-3, 1e-2

• Batch size: 32

• Training epochs: 3-20 epochs

|Train| |Dev| |Test|

SQuAD v1.1 66,236 21,530 10,789

Table 9: Statistics of SQuAD: the official training dataset
is split into training and development sets, and the official
development dataset is used as the test data.

Figure 6: Learned RAFs of different layers after pre-training

We use 3 training epochs for large dataset(QQP, MNLI,
QNLI), 10 epochs for other datasets and 20 epochs for low-
resource scenarios. Both models can converge in the above
settings.

Task CoLA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE

|Train| 8,551 67,349 3,668 363,846 5,749 392,702 104,743 2,490
|Dev| 1,043 872 408 40,430 1,500 9,815/9,832 5,463 277
Metric Matthews corr. acc. acc./F1 acc./F1 Person/Spearman corr. acc. acc. acc.

Table 10: Dataset statistics of the GLUE benchmark

Figure 7: Learned RAFs in 12 layers across different tasks after fine-tuning

	1 Introduction
	2 Related Work
	3 RAFT: RAF-based Transformers
	4 Pre-training
	5 Fine-tuning
	5.1 Evaluation on the GLUE Benchmark
	5.2 Evaluation on SQuAD

	6 Analysis
	7 Conclusion and Future Work
	A Hyperparameters Tuning for Pre-training
	B Data Statistics
	C Learned RAFs during pre-training and after fine-tuning
	D Hyperarameters Tuning for BitFit

