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A B S T R A C T   

The structural optimization of basal reinforced piled embankments is usually conducted by examining design 
alternatives while ignoring the inherent variability of soil properties and studying only a limited number of 
structural variables. As an alternative, this paper proposes a hybrid modeling framework to introduce soil 
property uncertainty into embankment settlement calculations. This is important because settlement is critical in 
the serviceability assessments considered during structural optimization. The proposed framework consists of 
uncertainty modeling, finite element method, surrogate modeling, and probabilistic analysis. More specifically, a 
neural network with Monte Carlo dropout that accounts for uncertainty is employed to correlate the soil 
properties which affect the long-term performance of embankments over soft clay. Next, a coupled finite element 
analysis is performed using two constitutive soil parameters generated by the neural network to predict post- 
construction settlements. Combining the finite element (input source) with a surrogate model (data-driven 
approximation) yields substantial settlement outcomes for structure evaluations. A case study is then used to 
validate the effectiveness and applicability of this framework. Finally, an exhaustive search approach is used to 
design a cost-effective improved ground within ultimate and serviceability limit state constraints. Pareto front is 
computed using a logistic function at different settlement reliability levels.   

1. Introduction 

For soft clays, uncertainties in material properties (such as hydraulic 
conductivity, creep index, and constitutive parameters) potentially 
impact the time-dependent performance of geostructures constructed 
over them (Karstunen et al., 2015; Karstunen and Yin, 2010). Uncer-
tainty is an intrinsic feature of soils (Mašín, 2015) due to various factors 
such as measurement scatter arising from the limitations of experi-
mental techniques, inherent spatial variability of soil properties and 
statistical uncertainty due to limited sampling. The uncertainty can be 
mainly divided into two categories: the local uncertainty at a specific 
location and spatial uncertainty across multiple locations. The correla-
tions derived from simple algebraic, statistical approaches, or machine 
learning-based methods, generally ignore the uncertainty induced by 

insufficient samples and measurement scatter, producing deterministic 
predictions without assessing intrinsic uncertainty. Epistemic uncer-
tainty is a type of uncertainty associated with insufficient knowledge of 
the modeling process (Kendall and Gal, 2017). Hereafter, uncertainty 
refers specifically to the epistemic and local uncertainty unless other-
wise stated. 

Basal reinforced piled embankments (BRPEs) are an effective solu-
tion to maintain the stability of embankments over thick soft clay de-
posits (Nguyen et al., 2023; Wang et al., 2023). They help enhance the 
bearing capacity and subsoil shear strength (Liu et al., 2023), while 
controlling compressibility and long-term settlement (Dang et al., 2021; 
Nguyen et al., 2023). Commonly used vertical reinforcing elements 
include deep mixing columns (Jamsawang et al., 2016; Liu and Rowe, 
2015), stone columns (Zhang et al., 2021c; Zheng et al., 2020), cement 
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fly-ash gravel (CFG) (Yoobanpot et al., 2020; Zhang et al., 2018), and 
prefabricated high-strength concrete (PHC) piles (Wu et al., 2019a). 
Basal reinforcement usually refers to the geosynthetic-reinforced 
(Alkhorshid et al., 2021; Ling et al., 2021; Nguyen et al., 2022), lime/-
cement stabilized, or fiber-reinforced load transfer platform (granular 
cushion) (Dang et al., 2021; Okyay and Dias, 2010) located at the base of 
an embankment. It has been recognized that the post-construction set-
tlement impacts the serviceability of BRPEs and their structural design 
optimization, particularly in soft ground conditions (Liu and Rowe, 
2015; Zhou et al., 2016). Predicting the time-dependent performance of 
BRPEs in the presence of uncertainties in subsoil properties can be 
challenging (Guo et al., 2023; Pham et al., 2022; Phutthananon et al., 
2021). 

A theoretical framework (Gal and Ghahramani, 2016) that combines 
neural networks and Monte Carlo dropout for Bayesian appropriation 
has recently been proposed to study the impact of uncertainty on soil 
behavior. This technique, abbreviated NN-MCD, correlates soil proper-
ties with available experimental data that exhibits intrinsic uncertainty 
(Zhang et al., 2021a). It has been shown to exhibit predictive perfor-
mance when a complete set of data is not available for the specification 
of the soil model. Numerical simulations are an affordable alternative to 
field testing and scaled physical models to conduct deterministic anal-
ysis of embankment settlements. However, it requires high computa-
tional cost when employed to analyze all possible combinations of input 
parameters for problems such as BRPEs. Surrogate modeling (aka 
emulator or metamodel) is an alternative approach (He et al., 2021) to 
numerical modelling, that can minimize the computational burden by 
constructing an approximate model for the long-term performance 
evaluation of BRPEs. Combining a surrogate approach with NN-MCD 
can potentially provide a solution to the above-mentioned challenges 
with estimating embankment settlements. Similarly, it can allow for the 
structural optimization of BRPEs with respect to settlement, while 
incorporating uncertainty. 

In this study, first, a hybrid modeling approach for embankment 
settlements is described. It contains three sections: uncertainty modeling 
of subsoil mechanical properties, deterministic hydromechanical FE 
analysis of reinforced embankments on soft clay, and surrogate-assisted 
probabilistic analysis of post-construction settlements. The applicability 
of the proposed modelling methodology is demonstrated through a 
detailed case study. Next, probability distributions of settlements are 
introduced into the structural optimization of reinforced embankments. 
Finally, cost − benefit analysis is performed based on the relationship 
between construction costs and expected settlements at different reli-
ability levels. 

2. Modeling framework 

To evaluate the influence of uncertainty on the time-dependent 
behavior of reinforced embankment systems, post-construction settle-
ment calculations should be capable of incorporating uncertainty due to 
the variance of natural soil properties. To do so, this paper proposes a 
data-driven modeling framework to meet this objective. The framework 
is described in a general way as follows: 

1) Generate random soil properties from a known experimental data-
base. Identify fundamental soil properties (e.g. constitutive model 
parameters) that exhibit inherent variability and control the long- 
term performance of geo-structures. Correlate the soil properties 
with common index properties (e.g. plasticity index) while ac-
counting for epistemic uncertainty.  

2) Perform deterministic analysis using numerical simulations (e.g., 
FEM). A few representative simulation cases (sample selection) are 
selected and calculated to compile a dataset of settlements. Each 
simulation is run with fixed values of soil properties as inputs, but 
soil properties may vary across different cases. This operation 

ensures the outcomes of the uncertainty modeling can be related to 
the deterministic analysis.  

3) Develop a surrogate model for the purpose of minimizing the 
computational effort required to execute a large number of simula-
tion evaluations needed for risk analysis. The surrogate model is 
constructed using a data-driven, bottom-up approach to obtain input 
− output behavior.  

4) Combine the deterministic analysis with the surrogate model to 
conduct probabilistic analysis of the index of interest. 

2.1. Uncertainty modeling using NN-MCD 

This section proposes an uncertainty modeling approach for projec-
ting soil properties from an experimental database of relevant and easily 
accessible index properties based on prior knowledge. Neural network 
(NN) is a widely accepted tool for possible correlations. In the conven-
tional NN framework, the values of its weight and bias and the model 
architecture are deterministic (Zhang et al., 2021b). A Bayesian neural 
network (BNN) has been devised to combine the predictive power of 
machine learning algorithms with uncertainty. By incorporating a 
Bayesian approach into the traditional NN method, the parameters’ 
uncertainties can be quantified. This integration enables the training of a 
BNN, akin to conventional Bayesian learning, to obtain the posterior 
distribution of the weights and biases, which are treated as a multivar-
iable distribution, rather than scalar values. However, BNN models are 
computationally expensive. Alternatively, to account for the uncertainty 
effect, Monte Carlo dropout (MCD) for Bayesian approximation is 
incorporated into the neural network to develop a neural network with 
Monte Carlo dropout (NN-MCD). This approximation has been shown to 
have a reasonable performance (Zhang et al., 2022). Consequently, the 
connections between neurons will be randomly deleted at a predefined 
probability, and model uncertainty is achieved by modifying the ar-
chitecture (Fig. 1). MCD’s lower computational cost and explicit 
framework make it an effective tool for recognition tasks, while also 
reducing the likelihood of overfitting in neural networks. The dropout 
operation is activated during both the model training and testing phases; 
the necessary modules thus are compatible with those in the activation 
function and optimizer of the general neural networks. Its architecture is 
flexible because the probability of each connection being inactivated is 
fixed during implementation (Gal and Ghahramani, 2016). The standard 
output and uncertainty after performing T stochastic calculations 
through the network are expressed as: 

E(y) =
1
T

∑T

i=1
yi(x,Wi, bi)# (1a)  

Var(y) =
1
T
∑T

i=1

[
yi(x,Wi, bi)

Tyi(x,Wi, bi) − E(y)T E(y)
]

(1b)  

where × and y are the input and output, respectively; Wi, bi, and yi are 

Fig. 1. Architecture of a neural network with Monte Carlo (MC) dropout.  
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the weight, bias, and output at the ith calculation. 
The grid search method (Chen et al., 2022) is used to determine the 

optimal number of neurons and hidden layers. A mean squared error 
(MSE) function with k-fold cross-validation is employed as the loss 
function, formulated as: 

L(ya, yp) =
1
k

∑

j

1
m

∑

i

(
ya

i − yp
i
)2

(2)  

where yp and ya denote the predicted and actual outputs; k = 10, cor-
responding to 0.1 for the validation split ratio of the training set; m is the 
number of training samples within k-fold. The rectified linear unit 
(ReLU) is used as the activation function to minimize the probability of 
saturation challenges. It is expressed as: 

ReLU(x) =

{
x, x > 0

0, x ≤ 0
(3) 

A gradient descent optimization algorithm automatically updates the 
weights and biases of the NN-MCD. The number of training datasets for 
each epoch is selected according to the batch size, and sufficient training 
epochs are used to achieve convergence of the loss values. The general 
framework for the NN-MCD approach is developed by determining some 
necessary presets (hyperparameters). 

2.2. Surrogate modeling using BPNN 

Currently, there exist two common methods to simulate the vari-
ability of foundation soil parameters: the single random variable (SRV) 
approach and the random field (RF) approach. The SRV approach treats 
each layer of foundation soil as a homogeneous media and employs 
varying probability distributions to describe the variability of soil 
properties. However, this method is limited in its ability to consider the 
variations in soil mechanical properties across spatial locations. In 
contrast, the RF approach outperforms the SRV approach by capturing 
this spatial variability. Both approaches typically require a large number 
of calculations using Monte Carlo simulations to obtain the desired 
distribution. 

Exploring all combinations of variables for probabilistic analysis 

using FE simulations is challenging due to high computational cost. 
Surrogate models are used to reduce computational effort by mapping 
nonlinear relationships between input and output variables, based upon 
a limited number of training samples, computed for example using FE 
techniques (He et al., 2022). They can then capture input − output be-
haviors for scenarios where FE simulations have not been previously 
computed (He et al., 2020). In the case of RF, the number of inputs to the 
surrogate model often exceeds several hundred, making it less compet-
itive in some scenarios. Settlement distributions calculated by SRV and 
RF generally agree well when the variability of soil properties is only 
along the depth, and the distance correlation is large. However, when 
the distance correlation is small, the means of the distributions gener-
ated by SRV and RF are comparable, but the standard deviation of the 
SRV-derived distributions is larger than that of its RF-derived counter-
part (Alibeikloo et al., 2022). This study uses the upper 95% quantile of 
the settlement distribution for subsequent design to ensure computa-
tional efficiency and conservative design solutions. 

A backpropagation neural network (BPNN) algorithm is used to train 
feedforward neural networks, computing gradient weights via a loss 
function (Rumelhart et al., 1986). The predictive performance of BPNN 
depends on the number of hidden neurons and hidden layers. If the 
general architecture is defined, the weights and bias can be obtained 
using gradient descent. To further improve the generalization ability of 
BPNN for case-specific applications, it’s architecture can include pre-
defined groups of predictor variables that maintain model accuracy 
while avoiding redundant calculations. As an illustration in Fig. 2, eight 
example parameters are divided into two subgroups: structural related 
parameters and soil strength related properties. Then, variables within 
the same group will have similar effects on outputs, whereas variables 
from different groups can have a diversified impact on outputs with 
limited interaction. If subgroups are established for inputs, the con-
nections between input and hidden neurons will not be mixed until 
reaching the next hidden layer. In this case, two hidden layers are used 
for structural and soil parameters, which can be adjusted for case- 
specific applications. 

Given a set of input values ×, the mathematical description of the 
established model is expressed as: 

Fig. 2. Schematic of the internally devised BPNN architecture.  
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H1 = ReLU(W1x + b1) (4a)  

H2 = ReLU(W2x + b2) (4b)  

H3 = ReLU(W3x + b3) (4c)  

y = W4H3 + b4 (4d)  

where H1, H2, H3, and y are the outputs of first, second, third hidden 
layers and the final output layers, respectively. W1, W2, W3, and W4 are 
the weight matrices, while b1, b2, b3, and b4 are the bias vectors. 

2.3. Evaluation metrics 

The following three metrics are applied to evaluate the performance 
of the proposed NN-MCD and BPNN models: the coefficient of deter-
mination R2, root mean square error (RMSE), and mean absolute per-
centage error (MAPE). 

R2 = 1 −

∑n

i=1
(yp

i − ya
i )

2

∑n

i=1
(ya

i − ya
i )

2 (5a)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
yp

i − ya
i

)2
√

(5b)  

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yp

i − ya
i

ya
i

⃒
⃒
⃒
⃒× 100% (5c)  

where n denotes the total number of datasets; ya
i is the mean of the 

observed results; n is the sample size. The metrics are measured sepa-
rately for the predicted soil parameters and post-construction 
settlement. 

2.4. Probabilistic analysis of settlements 

Fig. 3 shows the flowchart for the proposed probabilistic analysis of 
post-construction settlements of basal reinforced piled embankments 
overlying multilayered soft soils. In this illustrative example, DM 

columns are inserted as vertical reinforcement and a fiber-reinforced 
load transfer platform (FRLTP) is used as horizontal reinforcement. 
The case-specific process is:  

1. Identify the fundamental structural parameters (e.g. pile length and 
spacing) as design variables and their corresponding design space 
based on site conditions, construction techniques, and design 
requirements;  

2. Assess the uncertainty in soil properties (e.g. strength parameters 
from soil constitutive models) and perform predictions by validated 
NN-MCD algorithm, yielding a collection of input vectors (M1, M2, 
κ1, κ2); 

3. A numerical model is developed for basal reinforced piled embank-
ment and is verified against field case history. A set of representative 
design scenarios are selected using the orthogonal design method 
and their post-construction settlements are computed using deter-
ministic numerical simulations; 

4. Simulations that produced excessive deformation (convergence dif-
ficulties) are rejected while the remaining datasets become the 
sample database. These are divided into training and test sets that are 
used for developing a surrogate model (BPNN with two individual 
input layers).  

5. For each possible combination of design variables, the probability 
distribution of post-construction settlements is calculated using the 
surrogate model. 

In summary, the structural parameters are fed into the BPNN model 
for structural optimization while the soil (strength) properties are fed in 
for uncertainty impact. The proposed probabilistic analysis framework 
can be extended to more complex geotechnical structure problems. 

3. Case study 

The implementation of the proposed methodology is demonstrated 
through a case study. Each section of the modeling framework is vali-
dated separately. The finite element method is employed to obtain the 
deterministic post-construction settlements of basal reinforced piled 
embankments (Ma et al., 2021). Further, the hydromechanical model is 

Fig. 3. Flowchart for the settlement probability analysis of basal reinforced piled embankments over soft ground.  
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developed based on a well-documented field test history (Chai et al., 
2017, 2015; Dang et al., 2021). The model construction process and site 
conditions are briefly introduced, emphasizing the modifications made 
to uncertainty modeling of soil parameters. 

3.1. FE model 

A FE model was developed of a 6-m-high embankment overlying a 
multilayered soft soil, supported by DM columns and a reinforced 
cushion (Vivi et al., 2015). The geometry and meshing of the support 
system is shown in Fig. 4, only right half of the domain is shown due to 
symmetry. The embankment was constructed on a 1-m-thick surface 
layer, underlain by an 11-m-thick deposit of soft clay, divided into upper 
and lower portions due to the difference in their mechanical properties. 
Below the soft soil is a 3-m-thick stiff clay layer and 15-m-thick sand 
stratum. The properties of each soil layer and embankment fill are 
provided in Table 1. A 0.5-m-thick fiber-lime-treated granular layer 
(Vivi et al., 2015) is adopted for the load transfer platform over pile tops. 
The floating DM columns have a diameter of 1.2 m and a total length of 
10 m, leaving 2 m of unreinforced soft soil below the pile toes. The 
unconfined compressive strength, tensile strength, and undrained shear 
strength of the DM columns are prescribed as 1000 kPa, 150 kPa, and 
500 kPa, respectively (Dang et al., 2021). The construction sequence 
was simulated by compacting the fills in lifts of 0.5 m at 0.06 m/d. 
Suppose a termination criterion of 0.1 mm/a for the settlement rate 
(Chen et al., 2021); in that case, the consolidation period could be 
prescribed as 15 years to approximate the final post-construction set-
tlements. Secondary consolidation, also known as creep, is not included 
in this analysis. 

A two-dimensional plane strain model was established using the 
commercial software PLAXIS 2D based on a conversion approach (Chai 
et al., 2015; Vivi et al., 2015; Zhang et al., 2019; Dang et al., 2021). The 
DM columns are modelled as 0.6-m-wide continuous plane-strain walls 
that result in an area replacement ratio of 31%, accounting for the 
equivalent axial stiffness (EA). The center-to-center wall spacing is 1.9 
m, the same as the center-to-center column spacing. A Mohr − Coulomb 
(MC) model is used for the linear elastic–perfectly plastic properties of 
DM columns (Liu and Rowe, 2015; Zhang et al., 2019), fills, cushion, and 
sand. The mechanical performance of both the soft soil layers and sur-
face soil layer is represented using the Modified Cam Clay (MCC) model. 
The variation of hydraulic conductivity (k) due to the embankment 
loading is expressed as a function of the void ratio (e) (Taylor, 1948): 

logk = logk0 −
2(e0 − e)

e0
(6)  

where k0 and e0 are the initial hydraulic conductivity and void ratio, 
respectively. An impermeable boundary is applied to the right and left 
sides of the model (Zhang et al., 2019), while pore fluid flow is allowed 
at the model’s ground surface and bottom. Roller supports are used for 
both sides, and a pinned boundary is employed at the bottom. Drained 
behavior is considered for the embankment fill and sand layer, while the 
other system elements behave in an undrained condition. (15)-node 
triangular elements are used for all the meshes, with extra excess pore 
water pressure considerations for the DM columns and reinforced 
cushion. The shear behavior at the cushion − soil and column − soil 
interfaces is modeled by introducing the shear strength reduction factor, 
Rint = 0.8 in this case (Wu et al., 2019b; Yapage and Liyanapathirana, 
2014). Fig. 5 compares predicted settlement at points B and C against 
field observations of the same locations (Dang et al., 2021). It is 
demonstrated that the proposed numerical approach is reasonable. 

3.2. Uncertainty in constitutive soil parameters 

3.2.1. Data source 
If embankments are to be constructed on soft ground, the mechanical 

behaviors of soft deposits can be a concern. The Modified Cam-Clay 
(MCC) model is a well-established constitutive model to describe the 
strength, compression, and critical state of the soft subsoils. Although κ 
and M of the MCC model have been provided in Table 1 based on lab-
oratory tests, the proposed NN-MCD approach generates random values 
for κ and M, which are associated with the plasticity index. The NN-MCD 
algorithm is applied for the uncertainty modeling of three MCC consti-
tutive parameters: critical state ratio M, isotropic swelling index κ, and 
logarithmic hardening modulus λ. The consolidation settlement of soft 
ground is significantly influenced by the λ parameter, which is closely 
related to κ. On the other hand, the plastic deformation of soft subsoil is 
highly affected by the M parameter. This is because subsoil can easily 
reach a plastic state when the M value is low. Therefore, to account for 
uncertainty, these three constitutive parameters have been selected as 
inputs. Fifty parallel simulations were performed for the same design 
scenario; the input parameters κ, M, λ=10κ for each layer of soft clay 
were assigned different values based on Monte Carlo simulations (MCS) 
during each run. In practice, κ is usually chosen in the range: λ/10 - λ/3. 
Consequently, if the uncertainty of κ and M is considered in the 

Fig. 4. Meshing and boundary conditions of the 2D basal reinforced piled embankment model: Points A, B, and C indicate the monitoring locations.  
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reliability analysis of post-construction embankment settlements, λ can 
be sequentially determined based on the value of κ. 

It was reported in (Zhang et al., 2021a) that it is possible to predict 
the creep index and hydraulic conductivity of soft clays using three soil 
index properties. Previous investigations have also shown that the pa-
rameters for a MCC model can be approximated by the Atterberg limits 
(Akio et al., 1988; Burland, 1990; Yoon et al., 2004). Linear correlations 
between the Atterberg limit and the soil parameters for constitutive 
relations were experimentally found to have high correlation co-
efficients (Akio et al., 1988). The database for training the ML-based 
model was formed by collecting a total of 69 datasets of κ and 24 
datasets of M (Akio et al., 1988) with the same single influential vari-
able, Atterberg limit (Ip). Table 2 shows the statistical properties of the 
database. The experimental datasets are randomly divided into 20% and 
80% portions for testing and training purposes. Note that min–max 
normalization is employed for feature scaling so each feature contrib-
utes (approximately) proportionately to the final output. 

3.2.2. Model construction 
A suitable architecture for the NN-MCD model was developed to 

have optimal weights and biases. This section presents an architecture 
comparison and hyperparameter selection with scientific methods for 
model development. The number of hidden layers and neurons are two 
fundamental factors describing the model architecture. The number of 
hidden layers in the trial architectures was increased from 1 to 4 in in-
crements of 1, and the number of hidden neurons within a range of 10 
and 100, in increments of 10, giving a total of 400 trials (10 trials for 
each architecture). Although the desirable weights and biases can be 
determined after these training, the dropout-induced random model 
connection can produce various outputs per calculation in the same set 
of input parameters conditions. The final prediction must be the mean of 
80 stochastic calculations (Eq. 1). 

Fig. 6 demonstrates a comparison of R2 values of NN-MCD on 
training and test sets considering the number of hidden layers and 
neurons. Other configurations are kept the same, including the total 
number of epochs = 8,000 and batch size = 3. The predictive perfor-
mance of NN-MCD typically improves with increased hidden layers and 
neurons, as a complex architecture enhances the model’s mapping 
capability. The prediction of M and κ exhibits a similar trend, and an 
identical architecture is identified for these two parameters. The grid 
search method has been used to determine the optimal combination of 
architecture parameters, find a simpler model architecture, and hence 
reduce the computational cost. Three hidden layers and 50 neurons are 
employed to develop the NN-MCD-based model for predicting M and κ. 

Dropout probability also has a fundamental influence on architec-
ture. In the implementation, an NN-MCD-based model is trained ten 
times with a variation of initial biases and weights. The optimal dropout 
probability is then selected after comparing and evaluating the predic-
tive performance between all dropout probabilities concerned (ranging 
from 0.1 to 0.5). The mean of 80 stochastic calculations performed for 
each group of input parameters is obtained for the final output. Fig. 7 
illustrates the dropout probability impact on the NN-MCD model for M 
and κ, respectively, while the boxplot shows the range of calculated R2. 
With the increase in dropout probability, a simpler architecture and 
poorer mapping ability are anticipated with more connections cut, and 
larger variations have been observed on the training set with much 
lower R2. The R2 in the test sets exhibits a similar trend for κ. However, 
the values of R2 vary significantly with the dropout probability for M. 
The optimal dropout probability is 0.1 because the predictive perfor-
mance on both training and test sets is relatively consistent, yielding the 
largest R2. 

In this case, the weight matrices W1, W2, W3, and W4 (Eq. 4) have 
sizes of 50 × 1, 50 × 50, 50 × 50, and 1 × 50, respectively. The bias 
vectors b1, b2, b3, and b4 (Eq. 4) have sizes of 50 × 1, 50 × 1, 50 × 1, and 
1 × 1, respectively. A total of 5,251 weights and biases were automat-
ically optimized during the model training process. 

3.2.3. Predictions 
The optimal configuration of the NN-MCD model, including the 

general architecture, drop probability, activation and loss functions, 
optimizer, validation split, batch size, number of epochs, and stochastic 

Table 1 
Material models and associated parameters in FE modeling (Chai et al., 2015; Dang et al., 2021; Vivi et al., 2015).  

Material Model E 
(MPa) 

υ C′

(kPa) 
φ(◦) λ κ M e0 kv(10− 4 m/day) kh(10− 4 m/day) OCR 

Surface layer MCC  —  0.15  —  —  0.25  0.025  1.2  1.5 6 9.1  1.5 
Soft clay 1 MCC  —  0.15  —  —  0.87  0.087  1.2  3.1 4.4 6.6  2.5 
Soft clay 2 MCC  —  0.15  —  —  0.43  0.043  1.2  2.5 4.6 6.9  1.2 
Stiff clay MCC  —  0.15  —  —  0.12  0.012  1.2  0.8 25 25  1.0 
Sand MC  20.0  0.10  20.0  35.0  —  —  —  0.7 250 250  — 
FRLTP MC  125.8  0.32  75.0  42.0  —  —  —  — — —  — 
Fill MC  1.0  0.40  20.0  35.0  —  —  —  — — —  — 
DM columns MC  100.0  0.15  500.0  —  —  —  —  — 4.6 4.6  — 

Note: c′ , effective cohesion; OCR, over-consolidation ratio.  

Fig. 5. Time histories of numerical settlement predictions at Points B and C 
compared against the field measurements (Dang et al., 2021). 

Table 2 
Statistical measurements of the experimental datasets for the NN-MCD model.  

Variable Sample Size Min. Max. Mean Std. Dev. 

κ(× 10-2) 69  0.41  17.60  4.20  3.32 
M 24  1.27  1.69  1.61  0.10 
Ip 93  4.09  65.44  30.68  14.45  
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calculations, are determined based on the steps mentioned earlier. It has 
been demonstrated that 8,000 epochs enable the convergence of the 
training process. 

Fig. 8 presents the comparison of experimental and predicted data 
for two soil parameters (κ and M). Combining these indicators allows for 
a comprehensive evaluation of model performance (Wang et al., 2021). 
Most data points in the testing and training sets are located close to the 
identity line. The prediction errors of M yield RMSE = 0.008 and 0.114 
in the training and test sets, respectively. Some outliers have been 
observed in training set for larger values of κ, but κ in the lower range 
shows better agreement with the experimental results. The comparison 
in Fig. 8 confirms strong predictive performance of the NN-MCD model 
for κ and M. 

The predicted κ and M with 68%, 95%, and 99.7% confidence in-
tervals are further plotted against the plasticity index in Fig. 9 to reflect 
the uncertainty of the NN-MCD algorithm. Although more outliers have 
been found for κ in the higher range, consistent with Fig. 8, most data 
points are scattered around the 99.7% confidence interval. The corre-
lation between the plasticity index and M is negative, while it becomes 
positive for the plasticity index and κ, which is consistent with the lab-
oratory observations (Akio et al., 1988). The confidence interval is 
generally wider for limited data sets, however, narrows for compre-
hensive datasets because the accuracy of data-driven models is depen-
dent on the sample size. The variations in confidence intervals are 

contrasting, when comparing κ and M. Although the training data is 
discrete, the developed NN-MCD-based model can perform continuous 
predictions across a wide range of plasticity index and capture different 
trends in κ and M with uncertainty considerations. 

Fig. 10 represents the generated data points by NN-MCD for κ and M 
in the form of frequency distribution with, Ip = 57, 30. Note that these 
two levels of plasticity are selected because they are of interest in the 
following finite element simulations. One thousand stochastic calcula-
tions were conducted on each case based on a Monte Carlo approach. 
The Kolmogorov–Smirnov test demonstrates that the output of NN-MCD 
follows a normal distribution curve. The mean and standard deviation 
correspond to the results at Ip = 57, 30 in Fig. 9. Considering only one 
predictor (Ip) is used in this NN-MCD model, the model performance can 
be expected to have reduced accuracy compared to reported results 
(Zhang et al., 2021a) computed using three predictors. Overall, the 
proposed NN-MCD is suitable to serve as the foundation of the subse-
quent reliability analysis of settlement. 

3.3. Probability analysis of settlements 

3.3.1. Development of surrogate model 
Fig. 10 shows the uncertainty in the MCC model parameters 

considering two soft clay layers sandwiched between the surface and 
stiffened clay (Table 1). λ is calculated as a function of κ, meaning there 

Fig. 6. The R2 values of NN-MCD with different architectures on training and test sets: (a) parameter M; (b) parameter..κ  
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is four independent input variables, κ1 and M1 for the upper layer, and κ2 
and M2 for the underlying layer. This selection is reasonable because the 
settlement of piled embankments is primarily governed by the 

Fig. 7. Dropout probability impact on the predictive performance of the NN- 
MCD model: (a) parameter M; (b) parameter..κ 

Fig. 8. Comparison of experimental and predicted data: (a) parameter κ; (b) 
parameter M. 

Fig. 9. Evolution of predicted values based on NN-MCD and experimental data 
along with the plasticity index: (a) parameter M; (b) parameter..κ 

Fig. 10. NN-MCD derived frequency distribution of κ (a) and M (b) given Ip =

57 (upper soil layer) and 30 (lower soil layer). 
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properties of layered soils in field conditions. Note that the other ma-
terial parameters of interest are deterministic constants (Table 1). In 
addition to the soil parameters, four structural parameters (design var-
iables), including pile length lp, pile diameter d, pile spacing a, and 
thickness of reinforced cushion h, are used for the model geometry. The 
statistical properties of eight inputs (as part of the initial conditions for 
the numerical modeling) are provided in Table 3. Note the uncertainty 
of the soil parameters is quantified using the NN-MCD algorithm for a 
given Ip (the interval is 1.0 m for lp and 0.1 m for geometries d, a, and h). 
The total number of simulation cases is then: 7(lp) × 8(d) × 10(a) × 8(h) 
× 1000(M1, M2, κ1, κ2) = 4.48 × 106. 

To shortlist the simulations to be computed, initial sample selection 
was performed using an orthogonal design before constructing a sur-
rogate model. Through the optimization of the dataset size, 243 cases 
were selected as representative samples. It is known from the numerical 
simulations that 98 out of 243 cases failed to converge due to excessive 
deformation, so they were removed from the dataset used to develop the 
surrogate model. 20% of 145 valid cases were randomly chosen to 
structure a test set, and the remaining 80% were used for the training 
set. 

The sample points are first normalized to the (0, 1) range using the 
min–max normalization method that guarantees all features have the 
same scale, expressed by 

xnorm =
x − xmin

xmax − xmin
(7)  

where xnorm is the normalized value, x is the original data point, xmax and 
xmin are the maximum and minimum values. The training of the BPNN- 
based model involves the determination of optimal architecture and 
hyper-parameters, which have been extensively discussed (Zhang et al., 
2021b; Zhang et al., 2021d). 

3.3.2. Performance evaluation 
Fig. 11 shows the scatter plots of predicted post-construction set-

tlement using the surrogate model to derive FEM computed outputs, 
considering training and test sets, along with statistical performance 
indicators. The BPNN-derived settlements match the numerical results 
well, and the predictive performance in both training and test sets is 
consistent, exhibiting similar performance indicator values. All in-
dicators confirm the generalization ability of the BPNN-based model, 
and this model is thus incorporated into the probabilistic design 
framework as a suitable surrogate modeling approach. BPNN effectively 
balances the requirements of intelligibility and predictive accuracy, 
especially for test data acquired from numerical simulations with high 
signal-to-noise ratios. The optimal configuration of the BPNN model is 
two hidden layers, each with 32 hidden neurons, ReLU as the activation 
function, Adam (adaptive moment estimation) as the optimization al-
gorithm, and a maximum of 100 iterations. 

Fig. 12 represents the sensitivity analysis results. The contribution of 
each input variable to the post-construction settlement is considered 
reasonable in terms of FEM calculations for a real-life case. In order of 
importance, four design variables are critical factors for settlement: pile 
length, pile diameter, pile spacing, and the thickness of the cushion. 
However, the importance of predictors for the uncertainty in soil 

properties is marginal, adding up to 7.2% of total contributions. Pile 
length plays a fundamental role in the development of settlement 
because it matters most whether the pile toe has reached the layer of 
stiffened clay or not. The uncertainty in soil properties may influence the 
post-construction settlement, but this effect is likely to be less profound 
than that of the design variables in most real-world scenarios. 

3.3.3. Probabilistic distribution of settlements 
Given a particular set of design variables, 1,000 input vectors (M1, 

M2, κ1, κ2) are first generated from stochastic calculations using the NN- 
MCD algorithm, then fed into the validated BPNN-based surrogate 
model, resulting in a total of 1,000 outputs of post-construction settle-
ment. Concerning the simulation case specified in Fig. 4, the frequency 
of predicted settlements is displayed in Fig. 13. The Kolmogorov- 
Smirnov test is performed, showing that the set of settlements follow a 
normal distribution with mean and standard deviation, being 0.23 and 
0.021 respectively. It is recommended to use a target reliability index 
within a range of 1.0 to 2.5 for SLS of railway infrastructures, as per 
China’s design code (MOHURD, 2019); for RI = 1.96 (probability of 

Table 3 
Statistical measurements of the simulation datasets for the surrogate model.  

Variable Min. Max. Mean S.D. 

κ1(× 10-2) 6.53  10.71  8.77  0.96 
M1 1.37  1.68  1.56  0.05 
κ2(× 10-2) 2.0.64  4.76  3.77  0.49 
M2 1.49  1.68  1.63  0.03 
lp(m) 6.00  12.00  8.86  1.92 
d (m) 0.80  1.50  1.10  0.20 
a (m) 1.60  2.50  2.08  0.28 
h (m) 0.20  0.90  0.52  0.24  

Fig. 11. Predictive performance of the surrogate model compared against 
FE analyses. 

Fig. 12. Feature importance of the RF-based surrogate model concerning post- 
construction settlement. 
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failure Pf = 2.5%), the corresponding settlement is 0.27 m. This example 
demonstrates that surrogate modeling for each combination of design 
variables can efficiently determine the frequency distribution of post- 
construction settlement. 

4. Settlement-based structural optimization 

As an illustration of potential application, the calculated probability 
distribution of post-construction settlements can be used to assist the 
structural optimization of reinforced embankments. The procedure is 
performed by establishing a settlement-based optimization problem, 
which is solved to determine the Pareto fronts when all design con-
straints and requirements are satisfied. 

4.1. Variables and constraints 

During the design process, the geometry of the embankment, 
including the height, crest width, and slope gradient, is generally pre-
defined per the specification requirements and traffic analysis (Yang 
et al., 2021). The mechanical properties of FRLTP may be fixed values 
and vary slightly according to regional construction practices. There-
fore, the general configuration of embankments and material properties 
of FRLTP (affected by the addition of fiber reinforcement and soil sta-
bilization techniques) are not treated as design variables in this inves-
tigation. The critical design parameters of interest encompass the pile 
diameter d, pile length lp, pile spacing s, and the thickness of FRLTP h, in 
the case of basal reinforced DM column-supported embankments, as 
shown in Fig. 14. 

The design constraints fall into three main categories: site conditions, 
constructability, and specification requirements. The geotechnical 
design must recognize feasible FRLTP and DM column-supported 
embankment designs with a limited range of design variables in 
design space. The limit state requirements of concern, such as service-
ability limit state (SLS) and ultimate limit state (ULS), should also be 
satisfied. The design results are also dependent upon the target reli-
ability of post-construction settlements of FRLTP and DM column- 
supported embankments. 

Each design variable’s upper and lower bounds are determined based 
upon subsoil conditions and constructability issues, which will be 
described and examined hereafter. The design of the geotechnical 
structure will be subject to nonlinear constraints per the design code GB/ 
T 50783–2012 (MHURC, 2012). The bearing capacity requirement 
(ULS) is expressed as: 

pz + pcz ≤ faz (8)  

where pz denotes the additional stress induced by surcharge, pcz is the 
overburden pressure, and faz is the allowable bearing capacity. The piles 
and the surrounding soil at their tip are deemed a coherent block (or 
equivalent footing). The bearing capacity is then only related to the soil 
supporting the pile toe. In contrast, the piles and adjacent soil at the base 
of the embankment contribute individually to the bearing capacity. This 
contribution is in two parts, the axial capacity of piles and bearing ca-
pacity of the soil, and is given by: 

qaz = βpm
Ra

Ap
+ βs(1 − m)fsk (9)  

where βp and βs are the correction factors for the pile and soil, respec-
tively; m denotes the area replacement ratio; Ra is the ultimate axial 
capacity of a single pile; Ap is the cross-sectional area of pile perpen-
dicular to its vertical axis; fsk is the bearing capacity of the subsoil 
support. More specifically, the ultimate axial capacity of a single pile Ra 
is examined by: 

Rs ≤ min[Ra1,Ra2] (10a)  

Ra1 = πd
∑n

i=1
qsili + αqpAp (10b)  

Ra2 = ηfcuAp (10c)  

where Rs is the axial compressive load on pile head (negative skin fric-
tion is also included if any); Ra1 and Ra2 are the ultimate axial capacity 
obtained by the two methods; qsi and li are the skin friction mobilized at 
the ith soil layer and corresponding layer thickness; qp and α are the 
bearing capacity of subsoil support beneath pile toe and corresponding 
correction factor; η is the strength reduction factor for piles; fcu is the 
average of compressive strength of cube specimens with the same mix-
ing ratio as DM columns at 90 days curing. 

Fig. 13. Probability distribution of surrogate-based post-construction settle-
ment considering uncertainty (simulation conditions specified in Table 2 
and Fig. 8). 

Fig. 14. Structural parameters for basal reinforced DMC-supported embankments (DMC is the deep mixing column; FRLTP is the fiber-reinforced load transfer 
platform; columns in a square pattern). 
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Meanwhile, the post-construction settlement is also restricted as per 
SLS requirements, expressed as: 

spc ≤ [Δs] (11)  

where spc is the post-construction settlement and [Δs] is the allowable 
settlement for ensuring the serviceability of the embankment. 

Considering all design constraints, the post-construction settlement 
is the most challenging to obtain, while the rest can be calculated 
explicitly. The layer-wise summation method and Mindlin stress solu-
tion are two widely adopted approaches for calculating the settlement of 
building foundations. However, some fundamental factors in DM 
column-supported embankments cannot be assessed by these two 
methods. Finite element simulation evaluations of the post-construction 
settlement are performed as an alternative (Sec. 3.1). 

4.2. Objective function 

The most feasible design in a defined design space may not be 
unique, meaning additional requirements can be used to find an optimal 
set of variables considering additional variable(s). Thus, in this study, 
construction cost optimization is considered using a cost function as the 
design objective. The design with the minimum construction cost is 
defined as: 

minQ(x) = f̂
(
lp, d, s, h

)
(12)  

where Q(x) is the cost function, and x = (lp, d, s, h) is the vector of four 
design variables. Note that the material and installation costs are closely 
associated with regional prices and the selection of construction tech-
niques. Therefore, in this study the cost function is determined using 
specification JTG/T 3832–2018 (MOTPRC, 2018), given by: 

Q(x) =
c1VFRLTP + nc2lp

al
(13)  

where c1 and c2 are the construction costs for FRLTP per cubic meter (c1 
= 3.2 USD/m3 with the addition of 0.25% fiber) and a single DM column 
per lineal meter, respectively; VFRLTP is the volume of FRLTP within a 
transverse dimension of a pile spacing; n is the total number of DM 
columns along the transverse axis; al is the distance in the longitudinal 
direction.c2 = 51 USD/m for lp ≤ 10 m, and = 59 for lp > 10 m; a 
correction factor 1.05(d− 0.5)/0.05 is used for c2 if d > 0.5m. Be noted that 
all costs are approximate and may not fully reflect market conditions. 

4.3. Analysis 

All feasible design scenarios for a target RI = 1.96 are plotted in 
Fig. 15, and those yielding the minimum costs for similar settlement 
conditions are identified and marked red. These data points can be fitted 
using a logistic function, expressed by 

spost =
0.61

1 +
( cmin

4625.8

)5.8 + 0.3 (14)  

where spost is the post-construction settlement, and cmin is the minimum 
construction cost per lineal meter of the entire embankment into the 
page. The original design used in the field is offset from the optimal line, 
indicating the post-construction settlement and construction cost can 
both be reduced through design optimization. The threshold is pre-
scribed as the point of maximum curvature (cmc, smc), wherecmc = 1,275 
USD/m andsmc = 0.083 m in this case. The left-hand region of the 
optimal line (logistic curve) with cmin < cmc is defined as cost-effective, 
while the right side with cmin ≥ cmc corresponds to the low cost- 
effective region. More generally, if the control of post-construction set-
tlement 

[
spost

]
with SLS requirements is smaller than smc, it is recom-

mended to change the original design to a reinforced foundation using 

alternative ground improvement techniques, or to modify the type of 
infrastructure. The optimal design should lie within the range of (smc, [
spost

]
) if 

[
spost

]〉
smc. 

Table 4 contains a partial summary of the optimized design variables 
from the identified optimal data points shown in Fig. 15. Case 15 is the 
point closest to the point of maximum curvature, corresponding tolp =

12 m, d = 1.2 m, a = 2.5 m, h = 0.9 m. In most optimal conditions, lp 

equals to 12 m because end-bearing piles have much larger bearing 
capacities than floating piles, resulting in reduced compressive defor-
mation of the underlying problematic soil layers. Increasing the diam-
eter of the piles is also more effective than using closer pile spacing 
which is consistent with the sensitivity analysis in Fig. 12. A reasonable 
range of 0.5–0.9 m for the cushion thickness favors the load transfer 
between pile and soil. For cases where the design variables satisfy both 
ULS and SLS constraints, the combined use of larger diameter of piles 
and wider pile spacing is a cost-effective solution. This is because it 
balances the settlement performance of basal reinforced piled embank-
ments and construction costs. 

As displayed in Fig. 16, the optimal lines are obtained by logistic 
regression for different target reliability levels, RI = 1.0, 1.6, 2.2, and 

Fig. 15. Design cases and Pareto front of post-construction settlements versus 
construction costs at RI = 1.96. 

Table 4 
Partial optimized design parameters at RI = 1.96.  

Scenario lp(m) d (m) a (m) h (m) spost(m) cmin(USD/m) Zone 

0 (Base)  10.0  1.2  1.9  0.5  0.275  1,388.3 / 
1  11.0  0.8  2.5  0.8  0.277  814.2 H 
2  12.0  0.8  2.5  0.6  0.264  800.1 H 
3  11.0  0.8  2.5  0.9  0.246  848.8 H 
4  12.0  0.8  2.5  0.7  0.236  834.8 H 
5  12.0  0.8  2.5  0.8  0.210  869.5 H 
6  12.0  0.9  2.5  0.7  0.207  895.5 H 
7  12.0  0.8  2.5  0.9  0.188  904.1 H 
8  12.0  0.9  2.5  0.8  0.181  930.2 H 
9  12.0  0.9  2.5  0.9  0.158  964.8 H 
10  12.0  1.0  2.5  0.8  0.150  997.1 H 
11  12.0  1.0  2.5  0.9  0.128  1,031.8 H 
12  12.0  1.1  2.5  0.8  0.126  1,070.9 H 
13  12.0  1.1  2.5  0.9  0.105  1,105.5 H 
14  12.0  1.2  2.5  0.8  0.105  1,152.2 H 
15  12.0  1.2  2.5  0.9  0.093  1,186.9 H 
16  12.0  1.3  2.5  0.8  0.095  1,241.9 L 
17  12.0  1.3  2.5  0.9  0.089  1,276.5 L 
18  12.0  1.4  2.5  0.7  0.094  1,306.1 L 
19  12.0  1.4  2.5  0.8  0.089  1,340.7 L 
20  12.0  1.4  2.5  0.9  0.086  1,375.4 L 

Note: H, highly cost-effective; L, low cost-effective. 
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2.5. All optimal curves show a similar trend, and thresholds can be 
determined by calculating the points of maximum curvature. A linear 
relationship is observed between smc (cm) and target reliability index RI, 

smc = 1.2RI + 5.89 (15) 

Eq. (15) can be used to approximate the range of post-construction 
settlement expected for the cost-effective designs explored, and serves 
as a reference for deciding whether alternative ground improvement 
techniques should be employed. 

5. Discussion 

The proposed method exhibits potential for conducting reliability 
assessments of piled embankments coupled with economic evaluations, 
thereby assisting project decision-making, as demonstrated by the case 
study. Nevertheless, careful attention must be paid to the following as-
pects when implementing this method. 

The case study utilizes 2D FEM models to analyze post-construction 
settlements. Previous research (Chai et al., 2015) found that the 2D 
model can accurately predict ground settlement and excess pore pres-
sure dissipation in soft clay under embankment loading. However, it 
may be less reliable in determining column bending moments and lateral 
ground movement beneath embankment slope toe compared to 3D 
models. Despite this, the calculated settlements from the 2D models are 
used primarily as inputs for structural optimization, rendering them 
acceptable. Nonetheless, it is crucial to address potential errors in spe-
cific scenarios, particularly when lateral ground movement and column 
bending moments are adopted as indicators in the embankment design. 

Soil creep behavior is not considered in the FEM models for settle-
ment analysis. Primary consolidation is usually more impactful than 
secondary consolidation, but ignoring secondary consolidation can be 
problematic when settlement rates are high and the consolidation pro-
cess continues over a prolonged period, especially in organic clays and 
sensitive clays. Although the measured settlement over time in Fig. 5 
shows insignificant soil creep in this study, it is essential to adequately 
characterize soil creep behavior for uncertainty modeling of embank-
ment settlements depending on the specific soil types, environmental 
factors, and stress conditions present. 

The case study focuses solely on incorporating the soil constitutive 
parameters as random variables in the uncertainty modeling, to 

showcase the proposed modeling framework. However, for investigating 
time-dependent ground behavior under embankment loading, there is 
potential for further analysis of additional parameter variations, such as 
creep index and pre-consolidation of soft clay, as well as column 
properties. 

The uncertainty of MCC constitutive parameters in the case study 
was linked solely to the soil plastic index using the NN-MCD algorithm. 
While this estimation proved effective and utilized well-documented 
experimental data inputs, it is important to recognize that material 
properties are influenced by numerous factors. Disregarding the effects 
of soil state and structure in determining κ could result in unanticipated 
biased estimates. Therefore, it is crucial to employ alternative ap-
proaches or comprehensive databases to accurately assess and address 
these potential errors. 

Assessing the economic viability of DM columned embankments is a 
multifaceted challenge, yet the presented case study offers a simplified 
perspective. To effectively design DM columns for ground improvement 
initiatives, several factors must be taken into account, such as the soil 
type, intended use of the improved ground, and load requirements. The 
costs of constructing DM columns are contingent upon site investigation, 
design parameters, selection of appropriate mixing equipment, and a 
quality control program. Thus, inclusion of these variables in the eco-
nomic assessment model is crucial to ensuring the practicality of the 
projected outcomes. When the number of factor inputs is high, 
exhaustive search becomes impractical for structural optimization, and 
advanced optimization algorithms (Chen et al., 2021) should be used 
instead to facilitate decision-making. 

In addition, constructing columned embankments can be economi-
cally viable if the long-term costs of maintaining the geo-structure are 
taken into account. Evaluating the total cost of the project over its 
lifespan, by including whole-of-life maintenance in the economic 
assessment, can identify the most cost-effective design and construction 
options that minimize long-term maintenance costs. For instance, set-
tlement can be substantially reduced with relatively low-cost measures 
(Fig. 15), leading to significant savings in maintenance costs over the 
pavement’s lifespan. To make informed decisions regarding the use of 
deep mixing columns, future investigations should explore performing 
cost-benefit analyses before a comprehensive reliability assessment of 
columned embankments. 

6. Conclusions 

A novel hybrid modeling framework was developed to simulate the 
long-term settlements of basal reinforced piled embankment (BRPE) 
systems. The mathematical model and optimization problem were 
described by identifying structural components, fundamental design 
variables, design constraints including ULS and SLS requirements, and 
an objective function related to construction costs. The settlement-based 
optimization was conducted to obtain optimal design that satisfied the 
constraints while giving the minimum construction cost and meting the 
target settlement reliability level. 

The NN-MCD algorithm can predict strength-related Modified Cam- 
Clay model parameters (critical state ratio M, the isotropic swelling 
index κ) based on an experimental dataset of soil plasticity index, with 
results obeying a normal distribution instead of producing a single 
value. Coupled FE analysis using the constitutive parameters of soil 
generated by NN-MCD allows for the uncertainty analysis of long-term 
deformation behavior for assessing BRPE performance, agreeing with 
monitoring results. 

The designed BPNN architecture with double input layers is suitable 
for surrogate modeling. The integration of the BPNN-based surrogate 
model and FE analysis can efficiently obtain the post-construction set-
tlements of BRPEs in any design scenario using a limited number of 
training samples. In the application, the proposed settlement-oriented 
cost optimization technique avoids incorporating any complex 
gradient-based optimization method and is easy to interpret. In optimal 

Fig. 16. Pareto fronts with different reliability levels of settlements.  
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design scenarios, the Pareto fronts can be well captured by the logistic 
functions at any target reliability level (settlement). A threshold is 
suggested to be located at the maximum curvature of the fitting curve, 
defining two zones whether the design is highly or low cost-effective. 
The ground modification technique should be modified (use of BRPE 
may not satisfy economic feasibility) if the optimized system corre-
sponds to a low cost-effective solution. 

The proposed hybrid framework balances computational effort and 
accuracy. It can be extended to examine the variability of additional 
critical parameters (e.g. over-consolidation ratio, hydraulic conductiv-
ity, initial structure, and creep index) and their impacts on the devel-
opment of embankment settlements. In addition, the presented work 
shows excellent potential to analyze similar engineering-scale optimi-
zation problems while conducting risk evaluation. 
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