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A B S T R A C T 

Time-domain astronomy is entering a new era as wide-field surv e ys with higher cadences allow for more disco v eries than ever 
before. The field has seen an increased use of machine learning and deep learning for automated classification of transients into 

established taxonomies. Training such classifiers requires a large enough and representative training set, which is not guaranteed 

for new future surv e ys such as the Vera Rubin Observatory, especially at the beginning of operations. We present the use of 
Gaussian processes to create a uniform representation of supernova light curves from multiple surveys, obtained through the 
Open Supernova Catalog for supervised classification with convolutional neural networks. We also investigate the use of transfer 
learning to classify light curves from the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) 
data set. Using convolutional neural networks to classify the Gaussian process generated representation of supernova light 
curves from multiple surveys, we achieve an Area Under the Receiver Operating Characteristic curve (AUC) score of 0.859 

for classification into Types Ia, Ibc, and II. We find that transfer learning impro v es the classification accurac y for the most 
under-represented classes by up to 18 per cent when classifying PLAsTiCC light curves, and is able to achieve an AUC score 
of 0.946 ± 0.001 when including photometric redshifts for classification into six classes (Ia, Iax, Ia-91bg, Ibc, II, and SLSN-I). 
We also investigate the usefulness of transfer learning when there is a limited labelled training set to see how this approach can 

be used for training classifiers in future surv e ys at the beginning of operations. 

Key words: methods: data analysis – techniques: photometric – catalogues – transients: supernovae. 

1  I N T RO D U C T I O N  

The emergence of synoptic all-sk y surv e ys with increased co v erage 
of the night sky (both in area and in time) has allowed astronomers to 
disco v er more objects more quickly (e.g. Pan-STARRS, Kaiser et al. 
2010 ; Asteroid Terrestrial-impact Last Alert System, Tonry et al. 
2018 ; All Sky Automated Survey for SuperNovae, Shappee et al. 
2014 ; the Gra vitational-wa ve Optical Transient Observer (GOTO), 
Steeghs et al. 2021 ; Zwicky Transient Facility, Bellm et al. 2019 ). 
The rate of disco v ery and data collection of current surv e ys and that 
of expected future surveys such as the Legacy Survey of Space and 
Time (LSST; Ivezi ́c et al. 2019 ) on the Vera Rubin Observatory have 
prompted work on machine learning and deep learning approaches 
to automate the identification and classification of new transients. 
The moti v ation for photometric classification of supernovae arises 
from the fact that not all disco v ered superno vae will be subject 
to spectroscopic follow-up for spectral classification. The ability 
to classify supernovae based on just light curves will benefit the 
studies of cosmology with Type Ia supernovae (Riess et al. 1998 ; 
Perlmutter et al. 1999 ; Betoule et al. 2014 ) and accumulating a large 
sample of core-collapse supernov ae allo ws for population studies to 
understand their diversity (e.g. Modjaz, Guti ́errez & Arcavi 2019 ). 
In the past decade, a lot of work has been done on supernova light- 
curve classification using photometric observations with machine 

⋆ E-mail: umarfarouq96@gmail.com 

learning and deep learning. At present, most of these studies focus 
on classifying supernovae from a single surv e y with either real or 
simulated data. 

Lochner et al. ( 2016 ) and Charnock & Moss ( 2017 ) used simulated 
superno va light curv es from the Supernova Photometric Classifica- 

tion Challenge (SPCC; Kessler et al. 2010 ) to classify supernovae 
into three classes (Ia, Ib/c, and II). Muthukrishna et al. ( 2019 ) used 
a recurrent neural network to classify simulated Zwicky Transient 
Facility (ZTF) light curves of various explosive transients, including 
superno vae. P asquet et al. ( 2019 ) used a convolutional neural network 
to classify supernova light curves from multiple data sets (SPCC, 
simulated LSST, and Sloan Digital Sky Survey), capable of handling 
irregular sampling of light curves and a non-representative training 
set. M ̈oller & de Boissi ̀ere ( 2020 ) developed a deep neural network 
approach to classify a set of simulated supernova light curves similar 
to the SPCC data set, capable of classification on incomplete light 
curves. Dauphin et al. ( 2020 ), Hosseinzadeh et al. ( 2020 ), and 
Villar et al. ( 2019 ) created classifiers trained on light curves of 
spectroscopically confirmed P an-STARRS1 superno vae. Takahashi 
et al. ( 2020 ) used a neural network to classify supernova light curves 
from the Hyper Suprime-Cam transient surv e y. In Burhanudin et al. 
( 2021 ), we presented a recurrent neural network for classifying light 
curves from the GOTO survey, capable of handling an imbalanced 
training data set. In all the examples listed above, the overall 
classification performance is good for a number of classification 
tasks (binary Ia/non-Ia or a multiclass problem into the different 
supernova subtypes), achieving accuracies of � 85 per cent . 

© 2022 The Author(s) 
Published by Oxford University Press on behalf of Royal Astronomical Society 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
1
/2

/1
6
0
1
/6

9
4
8
3
4
4
 b

y
 U

n
iv

e
rs

ity
 o

f S
h

e
ffie

ld
 u

s
e
r o

n
 2

6
 M

a
y
 2

0
2
3



1602 U. F. Burhanudin and J. R. Maund 

MNRAS 521, 1601–1619 (2023) 

Figure 1. A plot of FWHM against the ef fecti v e wav elength λeff of the filters 
available in the Open Supernova Catalog data set. Both λeff and FWHM are 
given in angstroms. 

The aforementioned studies all focus on classifying supernova 
light curves that have been obtained from a single surv e y or simulated 
to resemble the light curves of a particular surv e y. Pruzhinskaya 
et al. ( 2019 ) used supernova light curves from multiple surveys, 
obtained from the Open Supernova Catalog (Guillochon et al. 2017 ) 
to develop an anomaly detection algorithm, capable of identifying 
rare supernova classes and non-supernova objects within the data set. 
The challenge in working with light curves from different surv e ys 
is dealing with differences in how the photometry is calibrated, and 
the different filters used when making observations. By having a 
classifier that is agnostic to differences across different surv e ys, it 
allows the use of more available surv e y data so that the training 
of classifiers is not limited to the size of a sample obtained from 

just a single surv e y. We e xpand on the literature by applying a deep 
learning approach to classification on a heterogeneous data set of 
superno va light curv es, combined from multiple surv e ys. Using light 
curves from multiple surveys that use different filters also allows 
access to a wider wavelength coverage in broad-band photometric 
observations. 

One approach to working with a heterogeneous data set is to 
find a way to standardize the data, so that they are represented in 
a more uniform manner. Boone ( 2019 ) used a Gaussian process 
to model simulated LSST light curves from the Photometric LSST 

Astronomical Time Series Classification Challenge data set (PLAs- 
TiCC; The PLAsTiCC Team 2018 ), by interpolating in both time and 
wavelength. Gaussian processes have also been used to generate a 
2D representation of supernova light curves (Qu & Sako 2021 ; Qu 
et al. 2021 ), which are then used as inputs to a convolutional neural 
network for classification. By using a Gaussian process to interpolate 
light curves in time and wavelength, it is possible to create a uniform 

representation of light curves that consist of observations made across 
different filters. 

A challenge in creating classifiers for new surv e ys is the lack of 
a labelled training set with which to train a model. Many machine 
learning and deep learning classification methods assume that the 
training and test data come from the same distribution and share a 
common feature space. When the distribution changes, the models 
need to be retrained with a new labelled training set. In most cases, 
creating a new labelled training set to account for the change in 
distribution can be extremely difficult. Transfer learning (Pan & 

Yang 2010 ) is an approach that uses the knowledge gained in 
performing a task (e.g. classification) in one domain (e.g. data from 

one particular surv e y) to perform another task in a different domain 
(e.g. classification using data from a different surv e y). 

In this paper, we use Gaussian processes to create a uniform 

representation of supernova light curves from multiple surv e ys 
obtained through the Open Supernova Catalog, and use convolutional 
neural networks to classify the supernovae into different types. We 
also investigate the use of transfer learning to classify light curves 
from the PLAsTiCC data set, using domain knowledge derived from 

the task of classifying Open Supernova Catalog light curves. In 
Section 2 , we introduce data from the Open Supernova Catalog, 
and in Section 3 we present a 2D Gaussian process to generate a 
2D representation of supernova light curves. Section 4 introduces 
the convolutional neural network used for classification. We present 
the results of classifying Open Supernova Catalog data in Section 5 . 
We introduce transfer learning and the PLAsTiCC data in Section 6 , 
and results on classifying PLAsTiCC data in Section 7 . We provide 
a discussion of the work presented in this paper and conclude in 
Section 8 . 

2  OPEN  SUPERNOVA  C ATA L O G  DATA  

Supernova light curves and metadata (such as the supernova classifi- 
cation obtained via spectroscopy or through expert human inspection, 
any available spectroscopic data, and the RA and Dec.) were retrieved 
from the Open Supernova Catalog website. 1 The downloaded data 
consisted of supernovae listed on the Open Supernova Catalog 
disco v ered up to the end of 2019, totalling 80 914 objects. All objects 
that were labelled as ‘Candidate’ or other non-supernova classes 
were discarded. Only objects that had been labelled as types Ia, 
Ibc, or II (including all sub-classifications within those types) were 
kept. F or superno vae that had multiple labels, we only consider those 
that contained multiple labels of the same type (e.g. Ib/c or Ib) and 
discarded those with conflicting labels. 

2.1 Standardizing magnitudes and filters 

The light curves in the Open Supernova Catalog data set consist of 
observations that have been made with a variety of instruments across 
a number of different telescopes. In Fig. 1 , we plot the full width at 
half-maximum (FWHM) against the ef fecti v e wav elength for the 
filters used in the data set. The values for the effective wavelength 
and FWHM for the filters in Fig. 1 were obtained from the Spanish 
Virtual Observatory (SVO) Filter Profile Service (Rodrigo & Solano 
2020 ). 2 

The data set also contains photometry generated using models or 
simulations and we discard these and only keep real photometric 
observ ations. Where av ailable we use the system column in the 
photometry data to identify which magnitude system the data is 
calibrated to, otherwise the instrument column is used to identify 
which instrument was used to make the observation. The next 
step is then to convert all the magnitudes so that they are in the 
same magnitude system. The majority of magnitudes in the data 
set are given in the AB magnitude system, so we convert the 
rest of the magnitudes into AB magnitudes. Magnitudes given in 
systems other than AB were converted using Tables A1 , A2 , and A3 
listed in the appendix. After converting all magnitudes into the AB 

system, the magnitudes were then converted into flux (in units of 

1 https:// sne.space/ download/ 
2 ht tp://svo2.cab.int a-csic.es/theory/fps/
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Figure 2. Light curves from the Open Supernova Catalog, before (left) and after trimming (right). The shaded regions on the left indicate parts of the light 
curves that were discarded. 

erg s −1 Hz −1 cm 
−2 ) using: 

f ν = 10 −( m AB + 48 . 60) / 2 . 5 , (1) 

where f ν is the monochromatic flux and m AB is the AB magnitude. 

2.2 Light-cur v e trimming 

Some light curves in the data set span periods of up to multiple years, 
including seasonal gaps and periods where the only photometry 
available is actually of the host galaxy without the supernova. 
To shorten these longer light curves, so that we just consider the 
supernova, the steps listed below are taken: 

(i) Long light curves (longer than 300 d of observations) were 
split into shorter light-curve chunks if there is a gap in observations 
longer than 60 d. 

(ii) Compare the standard deviation in magnitudes of each light- 
curve chunk σ chunk to the standard deviation of the whole light curve 
σ lc . 

(iii) If σ chunk < σ lc , then that portion of the light curve is discarded. 

Fig. 2 shows some example trimmed light curves. We find that this 
method is good at isolating the rise, peak, and decline of supernovae 
in the Open Supernova Catalog data set. 
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2.3 Selection cuts 

To create the final data set, the following selection cuts were made: 

(i) Total number of observations in the light curve is ≥6. 
(ii) At least two or more filters used. 
(iii) The average number of observations per filter is ≥2. 
(iv) The length of observations spans at least 20 or more days. 

These cuts were made to ensure that the light curves had good 
co v erage across multiple wavelengths and in time so that there was 
enough information in each light curve to allow a model to learn to 
differentiate between the different classes. Good quality light curves 
are also required to ensure the light curve has enough data points to 
provide a good fit with Gaussian processes. 

After the cuts, the number of remaining objects in our sample is 
6330 of the total. The data set is split into 60 per cent for training 
(3796 objects), 15 per cent for validation (951), and 25 per cent for 
testing (1583). The data is split into three classes for the classification 
task: Ia, Ibc, and II. The proportion of each class in the training, 
validation and test set is the same. This is done to ensure that there 
are a sufficient number of samples from each class in the validation 
and test set to e v aluate classification performance across all classes, 
including those with fewer samples. 

Table 1 summarizes how the data set is partitioned. Type Ia and II 
supernovae make up the majority of objects in the data set, with only 
a small proportion of type Ibc supernovae in the data. This data set 
presents a class imbalance problem, where one class contains fewer 
examples compared to other classes. Learning from an imbalanced 
data set can be difficult, since conventional algorithms assume an 
even distribution of classes within the data set. Classifiers will tend to 
misclassify examples from the minority class, and will be optimized 
to perform well on classifying examples from the majority class (see 
Burhanudin et al. 2021 ). 

3  GAUSSIA N  PROCESSES  F O R  

INTER P OLATION  IN  TIME  A N D  WAV E L E N G T H  

3.1 Gaussian processes 

A Gaussian process can be thought of as a non-parametric mod- 
elling method based on the multi v ariate Gaussian. Gaussian process 
regression attempts to find a function f ( x ) given a number of 
observed points y ( x ) that determines the value y ( x ′ ) for unobserved 
independent variables x ′ (o v er a finite interval of x ′ values) by drawing 
from a distribution of functions. The distribution of functions is 
determined by selecting a covariance function (also referred to as 
kernels ), which specifies the covariance between pairs of random 

v ariables. Cov ariance functions have adjustable hyperparameters, 
which determine the form of the Gaussian process prediction for f ( x ). 
For a detailed discussion on Gaussian processes see Rasmussen & 

Williams ( 2005 ). 

3.2 2D Gaussian process regression 

In order to create a uniform representation of light curves in different 
filters, we follow the approach used in Qu et al. ( 2021 ) and Boone 
( 2019 ), and use 2D Gaussian process regression to interpolate the 
light curves in wavelength and time. We model the light curves to 
create a 2D image (referred to as a ‘flux heatmap’ in Qu et al. 2021 
and Qu & Sako 2021 ) where the flux is given as a function of time t 
and wavelength λ. 

We label each flux measurement in all light curves in the data 
set with the ef fecti v e wav elength λeff of the filter in which it was 
observed. The values for λeff for each filter are listed in Table 2 , 
and are obtained from the SVO Filter Profile Service (Rodrigo & 

Solano 2020 ) and Blanton & Roweis ( 2007 ). Observations co v ering 
wavelengths from the Swift UVW 2 filter (with λeff = 2085.73 Å) up 
to the Johnson–Cousins J filter (with λeff = 12 355.0 Å) were used. 
These filters were used as the vast majority of observations in the 
data set were made using filters within this wavelength range. All flux 
values of each light curve are associated with a time measurement 
t (time of observations) and a wavelength value λeff , the effective 
wavelength of the filter used to make the observation. We scaled the 
time so that the time of the first observations is t = 0. 

As in Qu et al. ( 2021 ) and Boone ( 2019 ), we use the Mat ́ern 
3/2 covariance function in our 2D Gaussian process, with a fixed 
characteristic length-scale in wavelength of 2567.32 Å, which is 
obtained by dividing the wavelength range covered by all the filters 
in Table 2 by 4. We note that this value is arbitrary, and that other 
values of fixed characteristic length scale could be used. From Fig. 1 , 
one could use the FWHM of the filters to inform the choice of 
length-scale. Boone ( 2019 ) find that their analysis on using Gaussian 
processes to model light curves is not sensitive to the choice of 
the length-scale in wavelength, so we do not investigate this choice 
further. We leave the time length-scale as a trainable parameter. The 
Mat ́ern 3/2 kernel has the form: 

k( r) = σ 2 (1 + 
√ 

3 r ) exp ( −
√ 

3 r ) (2) 

where σ 2 is the variance parameter, which is left as a trainable 
parameter, and r is the Euclidean distance between two input points 
x 1 and x 2 , scaled by a length-scale parameter l (which we leave as a 
fixed constant): 

r = 
x 1 − x 2 

l 2 
. (3) 

The kernel used for the 2D Gaussian process regression to model the 
light curves in wavelength and time is: 

k 2D = σ 2 k λ( r λ) k t ( r t ) (4) 

where r λ is the Euclidean distance between the wavelength input 
points, scaled by the fix ed wav elength length-scale parameter, and 
r t is the Euclidean distance between the time input points, scaled by 
the time length-scale parameter. 

The 2D Gaussian process is trained on each light curve in the data 
set, and then used to predict flux measurements on a time-wavelength 
grid. The wavelength dimension in the grid runs from 2085.73 to 
12355.0 Å divided into 25 bins resulting in a wavelength interval of 
410.77 Å, and the time dimension runs from 10 d before and 110 d 
after the first observation with an interval of 1 d. In Section 6.5 , we 
use this approach to generate flux heatmaps for 397 990 PLAsTiCC 

supernova light curves, so the choice of dimensions is a practical 
one. The resulting flux heatmap image has dimensions of 120 × 25 
pixels, where each pixel represents a flux measurement. Fig. 3 shows 
example flux heatmaps. The flux heatmaps are used as input for a 
convolutional neural network for classification. We use the GPFlow 
PYTHON package (Matthews et al. 2017 ) to perform Gaussian 
process regression. The time taken to generate a flux heatmap 
from a light curve with a Gaussian process on a 4-core CPU is 
approximately 3 s. 
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Table 1. A breakdown of how the final Open Supernova Catalog data set (after light-curve trimming and selection cuts) 
is divided for training, validation, and testing, along with the class distribution of the three supernova classes. 

Type Training Validation Test All data 

Ia 2145 (56.5 per cent) 542 (57.0 per cent) 883 (55.8 per cent) 3570 (56.4 per cent) 
II 1563 (41.2 per cent) 385 (40.5 per cent) 657 (41.5 per cent) 2605 (41.2 per cent) 
Ibc 88 (2.3 per cent) 24 (2.5 per cent) 43 (2.7 per cent) 155 (2.4 per cent) 

Total: 3796 951 1583 6330 

Table 2. The ef fecti v e wav elengths λeff of the filters used to create flux 
heatmaps from the light curves in our sample dervied from the Open 
Supernova Catalog. 

Filter λeff ( Å) 

UVW 2 2085.73 
UVW 1 2684.14 
UVM 2 2245.78 
U 3751.0 
B 4344.0 
V 5456.0 
R 6442.0 
I 7994.0 
J 12355.0 
u 3546.0 
g 4670.0 
r 6156.0 
i 7472.0 
z 8917.0 
y 10305.0 

3.3 Using 2D Gaussian processes to infer spectra from light 

cur v es 

The 2D Gaussian process regression can be used as a method to infer 
supernova spectra from their light curves. We select iPTF13bvn from 

the Open Supernova Catalog data set as an example. This is a type 
Ib supernova that has good photometric co v erage in time and across 
multiple filters. Fig. 4 shows the light curve and the corresponding 
flux heatmap generated with a 2D Gaussian process. 

We examine three spectra for iPTF13bvn, made available through 
the Open Supernova Catalog (Guillochon et al. 2017 ; Shivvers et al. 
2019 ). To obtain the ‘simulated’ spectra from the flux heatmap, we 
take a single column at the time the spectra were taken, giving a 
vector that measures flux as a function of wavelength. The time of 
observation of the spectra is scaled to the time of first observation 
in the light curve, so it is given as the number of days since the first 
light curve observation. The real spectra for iPTF13bvn are taken 
at 20.6, 23.7, and 47.5 d after the first light-curve observation, so 
the corresponding simulated spectra are obtained by taking columns 
from the flux heatmap at 20, 24, and 48 d after the first light-curve 
observation. Fig. 5 compares the real spectra of iPTF13bvn to the 
simulated spectra obtained from the flux heatmap. 

From Fig. 5 , it can be seen that the spectra generated from the flux 
heatmap correlate quite well with the real spectra of iPTF13bvn. In 
all three spectra, the heatmap generated spectra appear to trace the 
continuum shape. For the spectra obtained at 47.5 d, the heatmap 
generated spectrum correlates with the Ca II IR triplet emission 
feature at ∼8700 Å. Although there is a correlation, there is a 
poor match between the real spectrum and the heatmap generated 
spectrum which could be due to the width of the red filters (see Fig. 1 ). 
Here, we have shown one example where the 2D Gaussian process to 
create a flux heatmap can be used to generate low resolution spectra, 

provided there is good photometric coverage across multiple filters. 
In this example, photometric data for iPTF13bvn was obtained from 

three different sources across 12 different filters. 

4  C O N VO L U T I O NA L  N E U R A L  N E T WO R K S  

4.1 Model ar chitectur e 

Convolutional neural networks (CNNs; Lecun 1989 ) are a class of 
neural networks that can process data with a grid-like structure (e.g. 
a 2D grid of pixels in an image, or a sequence of measurements 
in time-series data where there may be one or more measurements 
at each time-step). CNNs use convolution filters to identify spatial 
features in the data (such as corners or edges in an image). The output 
of a convolution applied to the input data is referred to as a ‘feature 
map’ 

We use a CNN to classify the flux heatmaps created from the Open 
Supernova Cataolog light curves (Section 3.2 ) into three different 
classes: supernovae of types Ia, Ibc, and II. We build the CNN using 
the TensorFlow 2.0 package for PYTHON (Abadi et al. 2016 ) 3 with 
Keras (Chollet et al. 2015 ) for implementation of network layers. 

The input to the CNN is a 2D flux heatmap image of a supernova 
light curve, with dimensions 120 × 25 pixels where each pixel 
represents a flux density value. All flux heatmaps are normalised 
by dividing by the highest flux density value, so that the pixels in 
every heatmap have values between 0 and 1. We use a CNN with 
three convolutional blocks, followed by two fully connected layers 
before the final output layer. Each convolutional block consists of 
a con volution layer , a batch normalization layer , and a 2 × 2 max 
pooling layer. Fig. 6 illustrates the model architecture used. For 
the convolutional and dense layers, the rectified linear unit (ReLU) 
acti v ation function is used, and in the final output layer the softmax 
acti v ation function is used to produce a list of probabilities that sum 

to unity. The probabilities returned by the model are scores that 
describe the level of ‘belongingness’ to a class. 

In the first convolutional block we apply a 1D convolution (also 
called a temporal convolution) in the time dimension instead of a 
standard 2D convolution. This is done since the flux heatmap is 
generated from a light curve which measures the brightness of a 
superno va o v er time, so we attempt to e xtract temporal features in the 
first convolutional block and see if the CNN considers the evolution 
of flux as a function of wavelength in time. An alternative approach 
is to use the conventional 2D convolution for feature extraction as is 
conventionally done for image classification. 

The output of each convolutional block has dimensions ( n rows , 
n columns , and n filters ), where n filters is a convolutional layer parameter 
and refers to the number of convolution filters used to generate 
feature maps. In the second and third convolutional blocks, a 2D 

convolution is applied to the output of the preceding convolutional 

3 https://www .tensorflow .org/
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Figure 3. Examples of light curves (left) of SN2007ma (type Ia), SN2005aw (type Ibc), and SN2009lq (type II) and the corresponding flux heatmaps (right) 
generated using a 2D Gaussian process. The light curves are plotted as flux f ν converted from AB magnitudes in each filter against time. Also plotted with the 
light curves are the Gaussian process fits in each band. The heatmaps show flux (brighter pixels indicating higher flux values) as a function of time (in days) and 
wavelength (in Å). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
1
/2

/1
6
0
1
/6

9
4
8
3
4
4
 b

y
 U

n
iv

e
rs

ity
 o

f S
h

e
ffie

ld
 u

s
e
r o

n
 2

6
 M

a
y
 2

0
2
3



Classifying supernovae from multiple surveys 1607 

MNRAS 521, 1601–1619 (2023) 

Figure 4. The light curve of the type Ib supernova iPTF13bvn (left) and its flux heatmap generated from the light curve (right). 

Figure 5. The spectra of iPTF13bvn are shown in black, and the spectra obtained from the flux heatmap are shown in red. The time of the spectra is given 
as days from the time of the first observation of the light curve. The spectra have been normalized (using the maximum value for each individual spectra) and 
shifted for clarity. 

block. Table 3 lists the series of convolutions and max pooling applied 
in the convolutional blocks, with the corresponding layer parameters 
and output dimensions at each stage. 

The output of the last convolutional block is then flattened into 
a 1D vector and then passed on to two fully connected layers, 
each with dropout applied with the dropout fraction set to 0.5. We 
apply a L 2 regularization in the second fully connected layer with 
a regularization parameter of 0.01, which is the default TensorFlow 

value. The final output layer is a fully connected layer with the same 
number of neurons as the number of classes, which is three. In total, 
the CNN model has 536,003 trainable parameters. 

4.2 Model training 

The CNN model is trained on the flux heatmaps generated from 

the Open Supernova Catalog light curves with a learning rate of 
1 × 10 −5 for 1500 epochs with the Adam optimizer (Kingma & 

Ba 2014 ), using a batch size of 128. Fig. 7 sho ws ho w the training 
and validation loss evolve with training. Within 1500 epochs of 
training, both the training and validation loss begin to converge 
(i.e. stops improving). We use a cross-entropy loss (CE) function, 
weighted to take into account the class imbalance present in the data. 
Given a multi-class problem with N classes, the CE loss for an 
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Figure 6. A diagram of the convolutional neural network used in this paper. 
The grey dashed box indicates the layers that make up a convolutional block. 
The dimensions of the output tensors in the layers in the convolutional blocks 
(Conv 1D, Conv 2D, and Max Pooling 2D), number of neurons in the dense 
layers (Dense), and the dropout fractions (Dropout) are shown in parentheses. 

example i is: 

CE = −
N ∑ 

j= 1 

δij αj log ( p ij ) , (5) 

where p ij is the probability of example i belonging to class j , αj is 
the class weight for class j , and δij is the Kronecker delta function. 
The loss for the entire data set is given by summing the loss of all 
examples. The class weight αj for class j is 

αj = 
1 

n 
×

N 

N j 
, (6) 

where n is the total number of classes, N is the total number of 
samples in the data set, and N j is the number of samples in class j . 
The class weights are obtained using samples in the training set. 

The model is trained on an NVIDIA Quadro P2200 graphics 
processing unit with 1280 cores and 5 GB of memory, which takes 4 
s per epoch for a total time of ∼100 min to train the model. 

Table 3. The layer parameters and output dimension for each layer in the 
convolutional blocks. For the convolutional layers, the kernel size is the shape 
of the convolutional window and filters sets the number of convolutional filters 
that are learnt during training. For the max pooling layers, the pool size sets 
the shape of the window o v er which to take the maximum. The number of 
strides is one for the convolutional layers and two for the max pooling layers. 
The flattening layer takes the multidimensional output of the convolutions 
and shapes it into a single dimensional output. 

Layer Kernel/Pool size Filters Output dimension 

Conv 1D (5) 32 (25, 116, 32) 
BatchNorm – – (25, 116, 32) 
MaxPool 2D (2,2) – (13, 58, 32) 
Conv 2D (3,3) 64 (11, 56, 64) 
BatchNorm – – (11, 56, 64) 
MaxPool 2D (2,2) – (6, 28, 64) 
Conv 2D (3,3) 128 (4, 26, 128) 
BatchNorm – – (4, 26, 128) 
MaxPool 2D (2,2) – (2, 13, 128) 
Flatten – – 3328 

Figure 7. The training and validation loss for the CNN model trained on the 
Open Supernova Catalog data. 

5  RESULTS  O N  CLASSIFYING  OPEN  

SUPERNOVA  C ATA L O G  DATA  

Once the model has been trained, it is then used to make predictions 
on the test set. The test set consists of data that is kept apart from 

the training and validation sets, and used to e v aluate ho w well the 
model is able to generalize on unseen data. On the test set, the model 
achieves an Area Under the Receiver Operating Characteristic curve 
(AUC) score of 0.859, and an F 1 score of 0.708. Fig. 8 shows the 
confusion matrix for the model e v aluated with the test set. 

From the confusion matrix, the model shows good classification of 
Type Ia and II supernovae with 92 per cent (812) and 89 per cent (586) 
accuracy for each class, respectively. The performance for Type Ibc 
supernovae is poor, with the model only achieving 26 per cent (11) 
accuracy for that class and misclassifying 65 per cent (28) of Type 
Ibc supernovae as Type Ia. This may be due to the small number of 
samples of Type Ibc supernovae in the data set. The majority of Type 
Ibc supernovae are misclassified as Type Ia, and it is known that it 
can be challenging to differentiate between Type Ia and Type Ibc 
with only photometry (Lochner et al. 2016 ). The misclassifications 
between Type Ia and Type II are quite low, with � 10 per cent (61 
for Type Ia and 66 for Type II) of each being misclassified as the 
other. 
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Figure 8. Confusion matrix for the test set of flux heatmaps generated from 

the Open Supernova Catalog light curves. The y -axis shows the true class 
label, and the x -axis shows the class label predicted by the model. Entries 
along the diagonal represent where the predicted label matches the true label, 
and the off-diagonal entries show where misclassifications occur. Reading 
along the rows, the fractional v alues sho w ho w samples from a class have 
been classified, with the absolute numbers below in parentheses. 

Dobryakov et al. ( 2021 ) used a machine learning approach for 
the binary classification problem of Type Ia versus non-Ia supernova 
classification using light curves from the Open Supernova Catalog. 
They find that they achieve a best AUC score of 0.876 and a best F 1 

score of 0.917. Ho we v er, the y only consider classifying light curves 
using r -band observations and a data set of 1184 Type Ia and 344 
non-Ia supernovae. 

6  TRANSFER  L E A R N I N G  O N  PLASTICC  

SUPER N OVA  L I G H T  C U RV E S  

6.1 Ov er view 

In the case of a classification task where there is a lack of labelled 
training data, the ability to transfer classification knowledge from 

one domain to a new one is useful. In astronomy, new surv e ys 
can experience the problem of a small or complete lack of a 
labelled training set since it can take time to accumulate enough 
sources and also label them (e.g. using spectroscopy or visual 
inspection of the photometry). In the following sections, we present 
the application of transfer learning to classify supernova light curves 
from the PLAsTiCC data set (The PLAsTiCC Team 2018 ) by using 
classification kno wledge deri v ed from the Open Superno va Catalog 
light curves presented in the previous sections. 

Transfer learning is defined as improving the learning of a target 
predictive function (e.g classification, mapping inputs to a class) in 
a target domain D T using knowledge from a source domain D S and 
source task T S (Pan & Yang 2010 ). In this case, the target domain 
is the PLAsTiCC data set, the source domain is the Open Supernova 
Catalog data set, the source task is classifying Open Supernova 
Catalog light curves into one of three classes (Ia, Ibc, and II), and 
the target predictive function is classifying light curves from the 
PLAsTiCC data set. 

6.2 The PLAsTiCC data set 

The PLAsTiCC was launched in 2018 to challenge participants 
from the wider science community (open to not just astronomers 
but experts in other fields such as computer science) to develop 
classification algorithms or models to classify a large data set of 
simulated LSST observations (The PLAsTiCC Team 2018 ). 

The data set consisted of o v er 3.5 million objects with a total 
of o v er 450 million observ ations, di vided into a wide range of 
classes (supernovae of various types, variable objects, tidal disruption 
events, and more), each with light curves in six filters (LSST ugrizy ) 
that include the fluxes and corresponding errors, with the time of 
observation. Approximately 8000 objects were provided with labels 
that formed a mock ‘spectroscopically confirmed’ training set. After 
the challenge was completed, an ‘unblinded’ data set was released 
with labels for all objects in the test set. We use the unblinded data 
set in this paper. For each object, contextual information such as 
the RA and Dec, Galactic latitude and longitude, and host galaxy 
spectroscopic and photometric redshifts were available. 

The PLAsTiCC data set presents its own unique set of challenges, 
such as the presence of ‘seasonal gaps’ in the light curves where 
an object is not visible during the observing campaign, a wide 
distribution of class sizes (with some classes having only hundreds 
of examples versus others having millions), and a training set that 
is not representative in redshift of the test set (to simulate a realistic 
training set obtained from a spectroscopically confirmed sample of 
nearby and brighter objects). 

6.3 The new classification problem 

Transfer learning can be used to borrow classification knowledge 
from one task in one domain to another task in another domain. 
As defined abo v e, the domains are the two different data sets. We 
also define a new classification task for the PLAsTiCC data set, 
which is different to the classification task presented in Section 2 . 
We select only supernovae from the PLAsTiCC data set, and define 
six classifications based on the PLAsTiCC defined classifications in 
The PLAsTiCC Team et al. ( 2018 ): types Ia, Iax, Ia-91bg, Ibc, II, 
SLSN-I. The classifications now divide type Ia supernovae into three 
sub-classes, and and also include a new class, type I superluminous- 
supernovae (SLSN-I). 

6.4 Data selection 

Light curves in the PLAsTiCC data set span the duration of the 
observing campaign and feature seasonal gaps when an object is 
not observable. We use only photometry obtained from the image- 
subtraction pipeline (using the flag detected bool = 1), which 
remo v es the seasonal gaps and produces light curv es co v ering the 
period of supernova rise and decline. We also select only observations 
from up to 20 d before and 100 d after the peak (which is taken as 
the maximum flux measurement in any filter). 

After applying the selection cuts, the final data set consists of 
397 990 objects with 2398 labelled objects remaining from the 
original training set. For the transfer learning process, we use two 
training sets and compare their performance. The first is the original 
training set, and the second is an augmented training set which is 
obtained by randomly sampling 3 per cent of the test set added to the 
original training set. No stratification is used when sampling the test 
set, so the proportion of the six classes is unchanged, still presenting 
a class imbalance problem. The test set with the 3 per cent remo v ed 
for creation of the augmented training set is used as the test set 
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Table 4. Breakdown of the PLAsTiCC dataset by type, for the original, augmented, and test sets. 

Type Original Augmented Test All data 

Ia 1136 (47.4 per cent) 7168 (50.5 per cent) 197,884 (51.9 per cent) 206,188 (51.8 per cent) 
Iax 115 (4.8 per cent) 341 (2.4 per cent) 6730 (1.8 per cent) 7186 (1.8 per cent) 
Ia-91bg 78 (3.3 per cent) 197 (1.4% per cent) 4151 (1.1 per cent) 4426 (1.1 per cent) 
Ibc 259 (10.8 per cent) 1082 (7.6 per cent) 26,271 (6.9 per cent) 27,612 (6.9 per cent) 
II 670 (27.9 per cent) 4735 (33.4 per cent) 128,958 (33.8 per cent) 134,363 (33.8 per cent) 
SLSN-I 140 (5.8 per cent) 671 (4.1 per cent) 17,404 (4.6 per cent) 18,215 (4.6 per cent) 

Total: 2398 14,194 381,398 397,990 

Table 5. The ef fecti v e wav elength λeff of the LSST filters used to simulate 
observations in the PLAsTiCC data set. The values were obtained from the 
SVO Filter Profile service (Rodrigo & Solano 2020 ). 

Filter λeff λeff λeff ( Å) 

u 3751.36 
g 4741.64 
r 6173.23 
i 7501.62 
z 8679.19 
y 9711.53 

for both the original training set and the augmented training set, so 
that the models trained on the two training sets are e v aluated on the 
same test set. The case for using an augmented training set is to see 
how performance is impro v ed when a larger and more representative 
training set is used. This emulates how a classification model can 
be impro v ed o v er the lifetime of a surv e y as more labelled data is 
acquired. For a discussion on the importance of representativeness in 
spectroscopically labelled photometric data sets, see Boone ( 2019 ) 
and also Carrick et al. ( 2021 ). 

In both training sets, 10 per cent is used for validation. Table 4 
sho ws the breakdo wn of the PLAsTiCC data set. The original PLAs- 
TiCC training set contains fewer samples than the Open Supernova 
Catalog training set. This transfer learning approach emulates using 
classification knowledge from another domain after a small labelled 
training set has been obtained for a new surv e y. 

6.5 Creating heatmaps 

We follow the same steps outlined in Section 3 , and use a 2D Gaussian 
process to generate heatmaps from the PLAsTiCC supernova light 
curves. The time of observation was scaled so that the time of the first 
detection is t = 0. Each flux measurement in a light curve is labelled 
with the time it was observed, and the ef fecti v e wav elength λeff of 
LSST filter it was observed in. Table 5 lists the ef fecti ve wavelengths 
for the LSST filters. 

The light curves were then used to train a 2D Gaussian process 
to create flux heatmaps. A fixed characteristic wavelength scale of 
2980.09 Å was used, obtained by dividing the wavelength range 
co v erage of the filters by two (to produce a similar value for the fixed 
wavelength scale in Section 3 ). The time length-scale and variance 
parameter were left as trainable parameters. The flux heatmaps were 
generated on to a grid, where −5 < t < 115 with a 1-d interval and 
wavelength running from 3751.36 to 9711.53 Å, divided into 25 bins 
gi ving an interv al of 238.81 Å. The flux heatmaps have dimensions 
of 120 × 25 pixels, where each pixel represents a flux value. Fig. 9 
shows an example light curve and the flux heatmap generated using 
the 2D Gaussian process. 

6.6 Applying transfer learning to PLAsTiCC light cur v es 

We compare two models on their classification performance on the 
PLAsTiCC data set, one with transfer learning and without. In both 
cases, we examine how including redshift information and using the 
augmented training set affects performance. We use the estimated 

Figure 9. An example of a type Ia supernova light curve from the PLAsTiCC data set (left) and the flux heatmap generated from the light curve (right). The 
interpolated flux from the 2D Gaussian process at the wavelength corresponding to the filter ef fecti ve wavelength is also plotted for the light curve on the left. 
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(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 10. Confusion matrices for models without transfer learning (trained only on the PLAsTiCC data set), e v aluated on the test set. 

host galaxy photometric redshift value in the PLAsTiCC data listed 
in the hostgal photoz column. We use the same CNN model 
architecture presented in Section 4 , but change the output layer to 
have six neurons (for the six classes in the PLAsTiCC classification 
task). For the models that include redshift information, we append the 
redshift value to the flattened output of the last convolutional block. 

Transfer learning is implemented by setting the parameters of the 
convolutional block as non-trainable parameters, a method known 
as ‘freezing’ layers in a neural network. The parameters in the 
convolutional blocks are fixed, and the model only changes the 
parameters in the dense layers during training. The idea is that 
the ‘knowledge’ of extracting salient features from the heatmaps 
developed in the convolutional blocks of the model trained on 
the Open Supernova Catalog data set is used to extract features 
from heatmaps in the PLAsTiCC data set. Since the only trainable 
parameters are those in the dense layers, the model is then just 
tasked with learning the feature-class relationship to group the data 
into different classes using the features extracted from the heatmaps. 

For the models without transfer learning, all parameters are left as 
trainable parameters. In this case, the model has to learn to extract 
features from heatmaps in the convolutional blocks as well as the 
feature–class relationship in the dense layers to classify the heatmaps 
into the six classes. Since the models used in transfer learning have 
fewer trainable parameters, the time needed to train them is less 
than the time needed to train the models without transfer learning. 
The models were trained on a NVIDIA Quadro P2200 graphics 
processing unit with 1280 cores and 5GB of memory, and the models 
with transfer learning required 0.29s per epoch of training, while 
the model without transfer learning required 0.51s per epoch. With 
transfer learning, the models could be trained ∼ 56 per cent faster. 
All models are trained for 500 epochs with a learning rate of 1 × 10 −4 . 
Example training history plots for the transfer learning models are 
shown in the Appendix B . In order to properly ascertain the benefit of 
transfer learning, we train five different models for each configuration 
(using a different random seed for each one) and analyse the averaged 
results. 
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(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 11. Confusion matrices for models with transfer learning (using models trained on the Open Supernova Catalog data set and then fine-tuned to the 
PLAsTiCC data set), e v aluated on the test set. 

7  CLASSIFYING  PLASTICC  L I G H T  C U RV E S  

WITH  TRANSFER  L E A R N I N G  

After training, all models were e v aluated on the test set, and then 
av eraged o v er fiv e different models for each configuration. When 
looking across all confusion matrices for each configuration, we find 
there is little variation across all predictions ( � 2 per cent change, 
with a notable 5 per cent change for Type Iax and Ia-91bg when 
using the augmented training sets). We suspect this may be due to 
the introduction of examples in the test that were not well represented 
in the training set. In the following discussions, we discuss results 
using the confusion matrices from a single run. 

7.1 Models without transfer learning 

After training, all models were e v aluated on the test set. Fig. 10 
shows the confusion matrices for the models trained without transfer 

learning, using the original and augmented training set, with and 
without redshift information. Looking at the confusion matrices 
for the original training set, the model achieves good accuracy 
( > 80 per cent ) for type Ia and II supernovae, a medium level of 
accuracy for type Ibc, Ia-91bg, and SLSN-I ( > 60 per cent ), and 
poor accuracy for type Iax supernovae. The biggest sources of 
confusion are type Iax and Ia-91bg being misclassified as Ia, and type 
Iax, Ibc, and SLSN-I being misclassified as type II. When redshift 
information is included, there is no major sign of impro v ement in 
performance. 

When the augmented training set is used, there is a slight 
impro v ement in accurac y for type II superno vae (and increase of 
∼ 7 per cent in accuracy), but no major change in performance in 
the other classes. Including redshift information does not hav e an y 
significant impro v ement o v er the model without redshift information. 
There is an increase in the number of type Iax being misclassified as 
type Ia, and fewer SLSN-I being classified as type II. 
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Figure 12. The difference between the confusion matrix for models trained 
on the augmented training set with redshift for with and without transfer 
learning. Positi ve v alues along the diagonal indicate an impro v ement when 
transfer learning is used. Ne gativ e values in the off diagonals indicate fewer 
misclassifications. 

7.2 Models with transfer learning 

Fig. 11 shows the confusion matrices trained with transfer learning, 
using the original and augmented training set, with and without 
redshift information. For models trained on the original training 
set, both have slightly overall better performance over the same 
models without transfer learning, with an increase in accuracy by 
a few per cent across most classes, and fewer misclassifications. 
When including redshift, there is no significant impro v ement in 
performance. 

Looking at the models trained with the augmented training set, the 
performance for the model without redshift information is similar 
to the performance for the same model without transfer learning. 
When redshift information is included, the performance of the model 
with transfer learning is impro v ed o v er the same model without 
transfer learning. There is good accuracy for type Ia and II supernovae 
( > 80 per cent ), and impro v ed accurac y for type Ibc, Ia-91-bg, and 
SLSN-I ( > 70 per cent ). There are fewer misclassifications o v erall 
( < 15 per cent ), and the model trained with transfer learning and 
redshift information achieves the best accuracy out of all models on 
type Iax (45 per cent ). We plot the difference between the confusion 
matrices for the models trained with transfer learning and without, 
for the augmented training set with redshift in Fig. 12 , to illustrate 

Table 7. AUC and F 1 scores for the transfer learning model trained on 
the augmented training set with redshift, e v aluated at dif ferent probability 
thresholds. The column on the right shows the fraction of the test set retained 
when discarding predictions that are below the threshold. 

Threshold AUC F 1 F 1 F 1 Fraction retained 

0.5 0.950 0.684 95.6 per cent 
0.7 0.960 0.752 83.2 per cent 
0.9 0.971 0.838 65.7 per cent 

the change in performance between the two models. 
Table 6 shows the area under the receiver operating characteristic 

curve (AUC) score and the F 1 score for all trained models, averaged 
across five different runs with the mean and standard deviation 
shown. The Hand & Till ( 2001 ) formulation is used to obtain 
the multiclass AUC scores presented in Table 6 . In both cases 
with models trained with and without transfer learning, including 
redshift yields an impro v ement in the AUC score, but not al w ays an 
impro v ement in the F 1 score. A higher AUC score indicates that the 
model is able to produce fewer false positives, so when redshift is 
included the models are able to make predictions that have slightly 
less contamination at the small cost of not correctly classifying all 
true positive samples in each class. 

We also examine how selecting a threshold for class membership 
reduces the number of false positives in each class. Since the model 
makes predictions by producing a list of scores that represent how 

likely an object belongs to a specific class, we can define a threshold 
score so that if the score is abo v e the threshold then the object 
belongs to that class, and if it is below then it is considered to not 
belong to that class. Three threshold values are selected: 0.5, 0.7, and 
0.9. We consider the model trained with transfer learning using the 
augmented training set and redshift information. For each threshold 
value, any predictions that are below the threshold are excluded 
(looking at the highest score out of the six classes). For the following 
results, we consider results from a single run of models. Table 7 lists 
the AUC score, F 1 score, and the fraction of samples retained at the 
different threshold values. Fig. 13 shows the confusion matrices for 
thresholds at 0.7 and 0.9. As the threshold value increases, the AUC 

score and F 1 score impro v es but the fraction of samples retained 
decreases. 

7.3 Limited training set performance 

To further investigate the impact transfer learning would have at 
the start-up phase of a new surv e y (i.e. when there is a very small 
sample of labelled data), we compare the classification performance 
of models with and without transfer learning when trained on 10, 
25, and 50 per cent of the original PLAsTiCC training set. In this 

Table 6. AUC and F 1 scores given as mean and standard deviation across five runs, trained on the original and augmented 
training sets with and without redshift, for both with and without transfer learning. 

Model AUC F 1 F 1 F 1 

No transfer learning Original, no redshift 0.891 ± 0.005 0.618 ± 0.005 
Original, with redshift 0.894 ± 0.004 0.59 ± 0.02 

Augmented, no redshift 0.923 ± 0.001 0.677 ± 0.003 
Augmented, with redshift 0.923 ± 0.003 0.651 ± 0.006 

With transfer learning Original, no redshift 0.901 ± 0.002 0.615 ± 0.004 
Original, with redshift 0.915 ± 0.001 0.607 ± 0.009 

Augmented, no redshift 0.924 ± 0.002 0.681 ± 0.001 
Augmented, with redshift 0.946 ± 0.001 0.660 ± 0.006 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
1
/2

/1
6
0
1
/6

9
4
8
3
4
4
 b

y
 U

n
iv

e
rs

ity
 o

f S
h

e
ffie

ld
 u

s
e
r o

n
 2

6
 M

a
y
 2

0
2
3



1614 U. F. Burhanudin and J. R. Maund 

MNRAS 521, 1601–1619 (2023) 

(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 13. Confusion matrices for the model with transfer learning, trained on the augmented training set with redshift at different thresholds. 

investigation, we consider a single run for each model configuration. 
Table 8 shows the AUC and F 1 scores for these models, when trained 
with and without redshift information. 

From Table 8 , we can see that the AUC and F 1 scores impro v e 
with an increased training set size for both with and without 
transfer learning. Overall, including redshift information improves 
performance across all models. An interesting point is that when 
no transfer learning is used, classification performance remains 
comparable to when transfer learning is used, and models trained 
on 50 per cent of the original training set shown an increase in F 1 

score with transfer learning compared to when no transfer learning 
is used. 

To see how transfer learning impacts classification for individual 
supernova classes, we plot how the accuracy varies for each class as 
a function on training set size with and without redshift information 
in Fig. 14 . All models achieve the best accuracies for Type Ia 
and Ibc supernovae, and the worst accuracy for Type Iax. There 
is no significant impro v ement in performance across all classes 
when transfer learning is used compared to training on the original 

PLAsTiCC training set alone. What is notable is that for type Iax and 
Ia-91bg, the classification accuracy is worse with transfer learning at 
smaller training set sizes. This could be due to the fact that the Open 
Supernova Catalog data contains many type Ia examples, and there is 
a small number of Type Iax and 1a-91bg examples in the PLAsTiCC 

training set. We also see that as the PLAsTiCC training set grows, 
the accuracy for Type Ia degrades while the accuracies for all other 
classes impro v e. This may arise from the fact that as the number of 
examples from non-Ia classes increases, the model learns to better 
classify non-Ia supernovae at the cost of misclassifying some Type 
Ia supernovae. 

8  DI SCUSSI ON  A N D  C O N C L U S I O N S  

8.1 Classifying superno v ae from multiple sur v eys 

In order to classify the heterogeneous supernova light-curve data set, 
we use a 2D Gaussian process to model the light curves, and create a 
flux heatmap image for each light curve where each pixel in the image 
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Table 8. AUC and F 1 scores, for models trained on different fractions of the original PLAsTiCC training set with and 
without transfer learning. 

Model AUC F 1 F 1 F 1 

With transfer learning 50 per cent of original, no redshift 0.888 0.582 
50 per cent of original, with redshift 0.899 0.577 
25 per cent of original, no redshift 0.869 0.574 

25 per cent of original, with redshift 0.884 0.573 
10 per cent of original, no redshift 0.827 0.520 

10 per cent of original, with redshift 0.844 0.510 

No transfer learning 50 per cent of original, no redshift 0.880 0.604 
50 per cent of original, with redshift 0.892 0.600 
25 per cent of original, no redshift 0.880 0.579 

25 per cent of original, with redshift 0.890 0.577 
10 per cent of original, no redshift 0.836 0.513 

10 per cent of original, with redshift 0.832 0.523 

Figure 14. PLAsTiCC test accuracies across the six classes for different 
fractions of the original PLAsTiCC training set. The solid lines indicate 
accuracies for models with transfer learning and the dashed lines indicate 
accuracies for models without transfer learning. 

represents flux, as a function of time and wavelength. We also show 

that in the case where a supernova has good photometric co v erage 
in multiple filters (measuring the flux at different wavelengths), the 
Gaussian process can be used to generate a low-resolution spectra 
of the supernova. Comparing the real spectra and Gaussian process 
generated spectra of supernova iPTF13bvn, we find that the two are 
comparable and the generated spectra does resemble the real spectra. 
It is not guaranteed, ho we ver, that all supernovae will have the same 
quality of photometric observations. Out of the original ∼80 000 
supernova light curves from the Open Supernova Catalog, only 6330 
were used to generate flux heatmaps with a 2D Gaussian process 
after selection cuts. A larger sample could be used, but at the cost 
of lower quality light curves (i.e. poor sampling in time and lack 

of multicolour observations), which may result in poor fitting with 
Gaussian processes. 

We used a convolutional neural network to classify the supernova 
flux heatmaps, since the data are in a grid format that is well suited 
for the convolution operations carried out in the neural network. 
The model is able to classify Type Ia and II supernovae with good 
accuracy, but the class imbalance in the data set presents a challenge 
for classifying Type Ibc supernovae, since it is the class with the 
smallest number of samples and is not well represented in the training 
set. Deep learning approaches benefit from having a large data set to 
learn from, and we note that the Open Supernova Catalog data set 
is rather small for a deep learning application with less than 4000 
samples in the training set. A future work may benefit from using 
a larger training set using flux heatmaps generated from simulated 
supernova light curves. It may also be interesting to investigate how 

the number of filters in a light curv e (i.e. wav elength co v erage) affects 
the flux heatmap. 

8.2 Transfer learning for future sur v eys 

We used a subset of 397 990 supernova light curves from the 
PLAsTiCC data set (The PLAsTiCC Team 2018 ), and use the 2D 

Gaussian process to generate flux heatmaps from the light curv es. F or 
the PLAsTiCC data set, we split the data into six classes, presenting 
a different classification task than the one for the Open Supernova 
Catalog data set. The original training set (containing 2398 SNe) 
and an augmented training set (containing 14 914 SNe) are used. 
Typically in most machine learning and deep learning methods, the 
training set is larger than the test set. Here, we use training sets that 
are much smaller than the test set to emulate the case where there 
is a scarcity of labelled data (the training set) and a large amount of 
unlabelled data (the test set). 

In Section 7 , we demonstrate that it is possible to transfer 
knowledge between two different domains (Open Supernova Catalog 
data and PLAsTiCC data) and two different classification tasks 
(three classes to six classes). The use of transfer learning shows 
a small impro v ement o v er when no transfer learning is used (and 
the model is only trained on the PLAsTiCC training set). We find 
the best increase in performance comes when redshift information is 
included and the augmented training set is used. It is possible to obtain 
better classifications with fewer misclassifications between classes 
when a threshold is used to remo v e ‘unconfident’ classifications 
provided by the classifier. Looking at the impact transfer learning 
has when there is a small labelled training set, we find that there is 
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a slight impro v ement for well-sampled classes (e.g. Type Ia and II 
supernovae), but it provides no benefit for classes that have very few 

examples. Comparing the classification for Type Ibc supernovae for 
the PLAsTiCC data set and the Open Supernova Catalog data set, 
we see that the models achieve better accuracies with PLAsTiCC. 
This may be due to artificially less heterogeneity in the Type Ibc 
class in the PLAsTiCC data set. Kessler et al. ( 2019 ) note that in 
creating simulated light curves for Type Ibc supernovae for the 
PLAsTiCC data set, only a few dozen well-sampled light curves 
were used to develop the models used to generate Type Ibc light 
curves. 

A limitation of the 2D Gaussian process approach used in this work 
is the requirement for sufficiently good co v erage across multiple 
photometric bands and also in time. For future surv e ys such as 
LSST, this is dependent on the choice of observing strategy to 
provide a good enough cadence and wavelength coverage. The use 
of a 2D Gaussian process also relies on the full supernova light 
curve to create a good flux heatmap representation, which is still 
useful for the retrospective classification of supernovae to create 
samples for population studies. Ste v ance & Lee ( 2022 ) present a 
study on how Gaussian processes are used for modelling supernova 
light curves, and conclude that they are not well suited for this task 
since the kernels used are unable to accommodate a length-scale 
that varies with time. Supernovae behave on different time-scales 
in early times than at late times due to the radioactive decay of 
dif ferent elements. Alternati ve approaches will need to take into 
account the physics of supernovae and the varying time-scales 
involved. 

In this paper, we present an approach to classify Open Supernova 
Catalog light curves from multiple surveys with a convolutional 
neural network by using a 2D Gaussian process to generate an 
image representation of supernova light curves. We find that us- 
ing this method achieves good classification when there is good 
representation of the data in the training set. In the case of Type 
Ibc classification, the performance is poor since there is a lack 
of representation of Type Ibc supernovae in the training set. For 
classification tasks, it is important to have a good representative 
training set with good co v erage in feature space for all classes so that 
a model is able to learn the feature–class relationship to make robust 
classifications. 

We then investigate the usefulness of transfer learning in the 
context of future surveys where there may be a lack of labelled 
data to form a training set with which to train classifiers. The 
use of transfer learning shows a small impro v ement in classifiers 
compared to when no transfer learning is used when classifying 
PLAsTiCC superno va light curv es. The addition of conte xtual 
information such as redshift and an augmented training set provided 
the best impro v ement in classification performance, highlighting 
the importance of a representative training set and the benefits of 
incorporating contextual information when classifying light curves. 
In the case of using transfer learning when there is a very small 
labelled training set, it may be useful to adapt a model that has 
been trained on a representative training set to account for class 
imbalance. 

The methods presented in this paper could also be extended to 
classifying light curves of other non-supernova objects (such as 
variable stars, flare events, and AGNs). The flux heatmaps generated 
with the 2D Gaussian process could be used with a different neural 
network architecture such as a recurrent neural network, where each 
the input at each time-step is a single column of the heatmap 
representing the flux interpolated along wavelength. This would 
allow classifications to be obtained with time, and also be used to 

classify partial light curves (unlike the full light curves used in this 
paper), where the Gaussian process is used to interpolate the light 
curves up to the most recent observation as in Qu & Sako ( 2021 ). 

A classification model that is agnostic to the different filters 
used across different surv e ys would be useful in the near fu- 
ture of time-domain astronomy. New objects observed by sur- 
v e ys such as LSST with the Vera Rubin Observatory could 
trigger follo w-up observ ations by v arious instruments worldwide, 
which could be ingested by such a model to provide fast early 
time classifications to identify good candidates for time-sensitive 
observations. 

AC K N OW L E D G E M E N T S  

The research of UFB and JRM was funded through a Royal 
Society PhD studentship (Royal Society Enhancement Award 
RGF \ EA \ 180234) and STFC grant ST/V000853/1, respectively. 

DATA  AVAI LABI LI TY  

The work presented in this paper makes use of publicly available data 
from the Open Supernova Catalog ( ht tps://github.com/ast rocatalogs ) 
and the unblinded PLAsTiCC Classification Challenge data set ( http: 
// doi.org/ 10.5281/ zenodo.2539456 ). 

REFERENCES  

Abadi M. et al., 2016, in 12th USENIX Symposium on Operating Systems 
Design and Implementation (OSDI 16). p. 265 , https://www.usenix.org 
/system/ files/conference/ osdi16/osdi16-abadi.pdf

Bellm E. C. et al., 2019, PASP , 131, 018002 
Betoule M. et al., 2014, A&A , 568, A22 
Blanton M. R., Roweis S., 2007, AJ , 133, 734 
Boone K., 2019, AJ , 158, 257 
Breeveld A. A., Landsman W., Holland S. T., Roming P., Kuin N. P. M., Page 

M. J., 2011, in McEnery J. E., Racusin J. L., Gehrels N., eds, AIP Conf. 
Ser. Vol. 1358, Gamma Ray Bursts 2010. Am. Inst. Phys., New York, p. 
373 

Burhanudin U. F. et al., 2021, MNRAS , 505, 4345 
Carrick J. E., Hook I. M., Swann E., Boone K., Frohmaier C., Kim A. G., 

Sulli v an M., LSST Dark Energy Science Collaboration, 2021, MNRAS , 
508, 1 

Charnock T., Moss A., 2017, ApJ , 837, L28 
Chollet F. et al., 2015, Keras, https://keras.io 
Dauphin F., Hosseinzadeh G., Villar V., Berger E., Gomez S., 2020, in 

American Astronomical Society Meeting Abstracts. p. 276.18 
Dobryakov S., Malanchev K., Derkach D., Hushchyn M., 2021, Astron. 

Comput. , 35, 100451 
Guillochon J., Parrent J., Kelley L. Z., Margutti R., 2017, ApJ , 835, 64 
Hand D., Till R., 2001, Mach. Learn. , 45, 171 
Hosseinzadeh G. et al., 2020, preprint (arXiv:2008.04912 ) 
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APP ENDIX  A :  M AG N I T U D E  C O N V E R S I O N S  

Conversions between Swift magnitudes, Vega magnitudes, and the 
Carne gie Superno va Project (CSP) magnitude system into AB 

magnitudes are showin in Tables A1 , A3 , and A3 . 

Table A1. Conversion table for Swift magnitudes given in the Vega system 

into AB magnitudes, obtained from Breeveld et al. ( 2011 ). 

Filter AB – Vega 

V −0.01 
B −0.13 
U + 1.02 
UVW 1 + 1.51 
UVM 2 + 1.69 
UVW 2 + 1.73 

Table A2. Conversion table for Vega magnitudes into AB magnitudes, 
obtained from Blanton & Roweis ( 2007 ). 

Filter AB – Vega 

U 0.79 
B −0.09 
V 0.02 
R 0.21 
I 0.45 
u 0.91 
g −0.08 
r 0.16 
i 0.37 
z 0.54 
J 0.91 
H 1.39 
K s 1.85 

Table A3. Conversion table for magnitudes given in the CSP system into 
AB magnitudes, obtained from Krisciunas et al. ( 2017 ). 

Filter AB - CSP 

u −0.06 
g −0.02 
r −0.01 
i 0.00 
B −0.013 
V −0.02 
Y RC 0.63 
J 0.90 
H RC 1.34 
Y WIRC 0.64 
J WIRC 0.90 
H WIRC 1.34 

APPENDI X  B:  TRANSFER  L E A R N I N G  

T R A I N I N G  

Fig. B1 shows the training and validation loss for models trained 
without transfer learning, and Fig. B2 shows the training and 
validation loss for models trained with transfer learning. From these 
figures, it can be seen that 500 epochs is sufficient for the models to 
converge. The models trained on the augmented training set without 
transfer learning suffer from o v erfitting, where the validation loss 
begins to increase as the training loss continues to decrease. 
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(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure B1. Training and validation loss during training for models without transfer learning. 
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(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure B2. Training and validation loss during training for models with transfer learning. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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