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Abstract

The classical lateral buckling of a straight drillstring confined within an inclined cylindrical borehole
is formulated as a singularly-perturbed boundary-value problem which is subsequently explored
by using asymptotic techniques. In particular, the localised nature of the critical eigenmodes
is discussed with the help of a special multiple-scale technique that yields simple and accurate
approximations for the corresponding critical loads. The asymptotic formulae obtained capture the
dependence of these loads on the magnitude of the frictional forces as well as the inclination angle
of the confining borehole.
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1 Introduction

Most traditional mechanical structures are designed to withstand buckling deformations, which are
often seen as undesirable and act as a potential source of compromising their load-carrying capacity.
This is not always possible in the case of highly flexible configurations such as the drillstrings used in
accessing natural hydrocarbon reservoirs; the variability of the axial loads to which these structures
are routinely exposed during normal drilling operations increases their susceptibility to the adverse
effects of buckling. Indeed, it can be argued that elastic buckling of tubulars (drillstring or casing) is
almost unavoidable during drilling and completion operations (e.g., see [1, 2, 3]). It is therefore not
surprising that interest in the stability analysis of downhole tubulars has invariably played a key part
in drilling design (e.g., see [4, 5, 6] and the references therein). Both the qualitative and quantitative
understanding of the buckling of these structures are important to prevent costly failures and develop
efficient future technologies for drilling highly deviated, horizontal, and extended reach wells that
could unlock further access to currently unreachable energy resources.

Although there are many similarities between buckling of a drillstring (DS for short) and the
traditional beam-column elastic stability theory [7, 8, 9], some key differences exist as well. For
example, in vertical wells the weight of the DS might be solely responsible for the compressive forces
exerted on its lower part; this introduces variable coefficients in the corresponding buckling equations
[10, 11]. In fact, a typical DS is usually characterised by the presence of a neutral point that marks
the boundary between two idealised non-overalapping one-dimensional regions which are either in
tension or in compression. Another significant difference is that, unlike the classical buckling scenarios
discussed in standard textbooks, the buckling of a DS takes place within the confined space of a
cylindrical borehole. Such geometrical constraints can lead to exotic buckled shapes in the post-
buckling regime, the most common being a spiral-like configuration [5, 6]. As it will be explained
shortly, in deviated straight wells it is also necessary to consider situations in which the DS lies on
the low side of the cylindrical boreholes; the typical buckling modes in this case are of the “snaking”
type like the ones illustrated in Figure 1. The localised shape seen on the right in Figure 1 is the most

Figure 1: Typical “snaking” buckling patterns in an inclined borehole: periodic (left) and
localised (right). Before buckling takes place the DS is assumed to lie on the low side of the
borehole wall (shown as the green concave surface).

prevalent one, with the other one (on the left) being typically encountered in horizontal wells (when
frictional effects are disregarded).
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The starting point for the systematic exploration of elastic buckling phenomena in the context
of oil and gas drilling operations is often linked to Lubinski’s classical paper [12]. Apparently, this
represents the first attempt of its kind in which mathematical/mechanical modelling was employed
to deal specifically with the buckling of long DSs laterally constrained within a vertical cylindrical
borehole. The analysis was limited to a two-dimensional setting and was based on a third-order
ordinary differential equation with a linear coefficient. Power series solutions were used to formulate
the corresponding determinantal equation whose solutions were then found numerically. Some further
insight into the implications of buckling for drilling operations was provided in a couple of follow-up
works [13, 14], which included the effects of DS internal pressure and buoyancy forces. Lubinksi’s
papers are conveniently collected in book form [15], where one can also find various discussions and
critiques stimulated by the original publication of those papers.

Almost a decade before the publication of [12], Willers [16] studied an identical equation in con-
nection with the buckling of a heavy vertical rod; his paper complements an even earlier study by
Greenhill [17] and provides a more rational mathematical analysis than [12], being based on either
Bessel or Lommel functions together with their asymptotic approximations. Some of the quantitative
results reported in [16] were much later found to be inaccurate because an insufficient number of terms
was retained in the corresponding approximations (e.g., see [18]). Rothman [19] re-discovered Willers’
equation in his study involving axially symmetric deformations of an infinite elastic strip subjected
to compressive edge loads acting at a constant angle to the plane of the plate. Suitable re-scaling of
the physical quantities involved allowed him to obtain a general compact solution based on the Airy
functions and their integrals (e.g., see [20]). Dunayevsky and Judzis [21] extended Lubinski’s original
work [12] by including the effect of an applied torque and allowing for three-dimensional deformations
of a heavy vertical DS without any borehole constraints (see [22, 23] as well). The two coupled equa-
tions for the lateral displacements of their DS were written as a third-order complex-valued single
differential equation having a very similar form to that studied previously in [16, 19]. This facilitated
a closed-form solution in terms of the Airy functions and their integrals (as in Rothman’s work) that
eventually allowed those authors to obtain a simplified asymptotic relation connecting the applied
critical compression and torque to other geometrical and mechanical parameters in their problem.

Three-dimensional buckling in the presence of an additional end-torque of a DS placed inside an
inclined borehole was first explored by Paslay and Bogy [24]. While the applied compressive forces
remained below the buckling threshold, their originally straight DS was taken to lie along the low side
of a rigid circular cylinder. Once buckling was trigerred the deformed shape of this configuration was
still assumed to remain in full contact with the inner surface of the cylinder, but frictional forces were
disregarded. The relevant bifurcation equation was derived variationally by considering a suitable
expression for the potential energy of the DS (including the effect of lifting around the borehole wall),
with the help of nonlinear elasticity kinematics [25]. As the applied torque was discovered to be a
secondary effect it was eventually neglected, and so was the relative rotation of the transverse cross-
sections. These simplifications made it possible to obtain a relatively simple fourth-order differential
equation with variable (linear) coefficients. Its solution was routinely computed by taking advantage
of the simply-supported boundary conditions and using a finite Fourier sine series approximation. For
a non-horizontal borehole the critical eigenmode turns out to be localised, as already seen in the right
sketch of Figure 1; in the horizontal case the buckling equation reduces to that of a beam on a linear
elastic foundation [26, 27], with its corresponding solution being a regular sinusoid similar to that in
the left sketch of the same Figure. In a complementary study, Bogy and Paslay [28] examined the
(planar) buckling of a heavy DS in the vertical axial plane of an inclined borehole; that is, the lateral
displacements of the DS were restricted to be perpendicular to an inclined plane. In principle, the
results of their second study can be used in conjunction with the earlier one ([24]) in order to predict
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which type of buckling is energetically more favourable.
Broadly speaking, the motivation for the present study is partly related to the recent monograph

[29], in which Gulyayev et al. have collected in one place a broad spectrum of topics related to
drillstring mechanics. This is a welcome addition to the literature, not least because the authors follow
an applied mathematics approach and do not rely excessively on purely numerical solutions. Another
notable features include the systematic introduction of frictional forces in many of the mechanical
models proposed, as well as the careful formulation of the corresponding boundary-value problems
studied. Although reference [29] emphasises the singularly-perturbed character of many of the situtions
encountered in drillstring mechanics, no serious attempts were made to capitalise on this observation.
It is the purpose of this paper to discuss in some detail the asymptotic behaviour of one of the buckling
models included in Chapter 7 of [29]. This model is an extension of that proposed earlier by Paslay
and Bogy [24], in the sense that it incorporates (albeit in a simplified form) the neglected frictional
effect of the contact interaction between the DS and the inner surface of the borehole.

A large portion of the extensive literature on static elastic instabilities in the oil well drilling is
concerned with the so-called helical buckling. Such “buckling” is the result of secondary bifurcations
that occur in the post-buckling regime but this fact is hardly acknowledged in the literature (the
word “buckling” is a bit of a misnomer in this context). Work on this form of instability started with
another paper by Lubinski et al. [30], who proposed a simplified semi-inverse approach to determine
an approximate relationship between the terminal loads on the DS and the pitch of an infinitely long
regular helix (representing the deformed DS). Subsequent efforts concentrated on refining the original
model [30] by including the effect of boundary conditions, the spatial non-uniformity of the helical
configuration, frictional forces, and so on. As this vast body of work is only tangentially relevant to
our immediate goals, we refer the interested readers to the surveys [3, 4, 5, 6], which contain numerous
pointers to the literature.

With this background in mind, we begin our study in §2 with a quick review of the linearised
bifurcation problem for a heavy DS in an inclined straight borehole, and in the presence of simple dry
friction. By casting the relevant fourth-order differential equation in non-dimensional form it proves
possible to identify the sizes of the various coefficients in that equation as a function of an intuitive
asymptotic parameter. A summary of several key direct numerical simulations of this non-dimensional
bifurcation problem is included in §3. We also take this opportunity to rectify some of the innaccurate
statements made in [29]; in particular, we show that the critical eigenmodes are localised near either
the right or the left ends of the DS, depending on the value of the borehole inclination angle relative to
a critical value (which is defined in the next section). The information gleaned from these numerical
results is later exploited in §4 to flesh out the asymptotic structure of the eigenvalue problem that
governs the buckling of the DS. As it happens, this asymptotic structure turns out to be quite different
from that already investigated previously in similar contexts (e.g., [18, 19, 21]) and requires a major
change of tack. We note in passing that the behaviour of the critical eigenmodes in the present study
shares several salient features in common with our previous work [31, 32, 33, 34, 35] dealing with
the wrinkling of various thin plate or shell configurations. The paper concludes in §5 with a brief
discussion of the main results and their extensions to related situations.

2 Formulation

A succinct account of the key differential equations and assumptions used in the rest of the paper is
presented in this section. The mathematical model we are planning to explore was discussed at length
in references [29] (pp. 407-437) or [36], to which interested readers are referred for full details and
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derivations. Here, we will be content in just highlighting those aspects that are required in order to
make the paper reasonably self-contained.

During normal drilling of an oil well the DS is periodically pulled out of the borehole in order to
replace a worn cutting element (the so-called ‘drill bit’) or a damaged drill pipe segment. Once this has
been completed, the DS is lowered back into the borehole, by ensuring that the right amount of thrust
is supplied to the lower end of the DS so that drilling can resume as efficiently as possible. For example,
too much thrust can result in buckling of the DS, while too little can cause poor drilling efficiency by
decreasing the rate of penetration [1, 2]. It is this type of scenario that the above-mentioned model
targets.

To be more specific, the situation of interest concerns an inclined straight cylindrical borehole of
uniform radius r = a, and a rectilinear drillstring assumed to initially lie along the bottom generator
of the cylindrical borehole surface (see the left sketch in Figure 2); the location of various points along
the drillstring is identified by the arclength coordinate 0 ≤ s ≤ S0 measured from O, with S0 being the
total drillstring length. The inclination of the borehole relative to the vertical axis (OX3) is controlled
by the angle β ∈ [0◦, 90◦]. The drillstring is assumed to be axially fixed at the lower end (s = S0) and
free to move at the other end (s = 0), while being loaded by distributed gravitational forces acting in
the vertical plane (i.e., in the direction of OX3); there are also distributed (Coulomb) frictional forces
characterised by the frictional coefficient η ∈ (0, 1). It is further assumed that the drillstring remains
in full contact with the borehole along its entire length (at least) until buckling takes place. As shown
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Figure 2: The DS configuration studied in [29] and [36].

in [29], the inhomogeneous axial force along the axis of the drillstring is given by

Fax(s) = fg(cosβ − η sinβ)(S0 − s)−R , (R ≡ −Fax(S0)) ; (2.1)

the notation fg used here stands for
fg := g(ρst − ρ`)e ,

where ρst and ρ` represent the densities of the drillstring material and the drilling fluid, respectively,
while e denotes the cross-sectional area of the cylindrical drillstring pipe. Both [29] and [36] contain
some confusing information about R; in the former reference this is incorrectly identified as Fax(0)
(page 428), while in the latter it is stated (page 29) that Fax(0) = fg(cosβ − η sinβ)S0 – if taken at
face value, this statement in conjunction with equations (19) and (21) in the same reference would
render R ≡ 0.
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To describe the buckled configuration of the drillstring (see the right sketch in Figure 2), use is
made of a parametrisation (u, v) of the cylindrical borehole, with the parameter u being directed along
the cylinder generator, while v identifies the (angular) position of a point on a transverse cross-section
(which is a circle of radius ‘a’). Thus, the deformed axis of the drillstring is uniquely characterised
by (u(s), v(s)), 0 ≤ s ≤ S0. Using the method of adjacent equilibrium, Gulyayev et al. [29] showed
that the buckling equation for the above situation can be reduced to a single fourth-order differential
equation in y(s) := aδv(s), where δv is an infinitesimal increment of v ≡ v(s). More precisely,

y′′′′ +

[
−fg(cosβ − η sinβ)

EI
(S0 − s) +

R

EI

]
y′′ +

fg(cosβ − η sinβ)

EI
y′ +

fg sinβ

aEI
y = 0 , (2.2)

where the ‘dash’ indicates differentiation with respect to the arclength variable ‘s’, E is the Young’s
modulus for the drillstring, and I denotes the second moment of area of its annular transverse cross-
section. This equation can be cast in a more convenient form by introducing the following non-
dimensional quantities

Γ :=
fgS

3
0

EI
, µ :=

S0

a
, λ :=

RS2
0

EI
, ρ :=

s

S0
, (2.3)

so that (2.2) becomes

d4y

dρ4
+
[
− Γ(cosβ − η sinβ)(1− ρ) + λ

]d2y

dρ2
+ Γ(cosβ − η sinβ)

dy

dρ
+ µ

(
Γ sinβ

)
y = 0 ; (2.4)

note that the range of the original independent variable 0 ≤ s ≤ S0 has changed to 0 ≤ ρ ≤ 1.
Equation (2.4) is not suitable for an asymptotic analysis as the order of magnitude of the quantities

defined in (2.3) is not yet known. With this in mind, we now turn to considering the numerical values
used in [29, 36] to settle this issue; the outer and inner diameters of the DS pipe are denoted by
d1 and d2, respectively. In the references just cited E = 2.1 × 1011 Pa, ρst = 7.8 × 103 Kg/m3,
ρ` = 1.3× 103 Kg/m3, d1 = 0.2 m, d2 = 0.18 m, e = π(d2

1 − d2
2)/4 ' 5.97× 10−3 m2, I = (π/64)(d4

1 −
d4

2) ' 2.7 × 10−5 m4, η = 0.2, a = 0.166 m, while S0 was either 500.0 m or 1000.0 m. Assuming the
smaller value for the length of the drillstring, the formulae (2.3) yield µ ' 3.01×103 and Γ ' 8.39×103;
for S0 ' 1000.0 m the corresponding values are µ ' 6.02 × 103 and Γ ' 6.70 × 104. These results
suggest that µ� 1 and a possible regime of interest for equation (2.4) would correspond to Γ = O(µ),
so we write

Γ = Γ0µ , Γ0 = O(1) . (2.5)

The use of this assumption in (2.4) leads to the alternative form

d4y

dρ4
+ [−µA(1− ρ) + λ]

d2y

dρ2
+ µAdy

dρ
+ µ2By = 0 , (2.6)

where
A ≡ A(η, β) := Γ0(cosβ − η sinβ) , B ≡ B(η, β) := Γ0 sinβ . (2.7)

It is typically assumed that the ends of the drillstring are simply supported, which requires the usual
boundary conditions

y =
d2y

dρ2
= 0 , for ρ = 0, 1 . (2.8)

The fourth-order differential equation (2.6) subject to the constraints (2.8) constitutes a boundary-
value problem in which λ plays the role of an eigenvalue. The presence of the variable coefficients
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makes it impossible to solve this analytically (except in special cases) but we can take advantage of
the presence of the asymptotic parameter µ � 1 to find suitable approximations for its solutions.
We remark in passing that the aforementioned boundary eigenvalue problem resembles closely that
studied recently in connection with the self-buckling of an equatorial spherical shell segment [31].

Before examining the asymptotic structure of (2.6)-(2.8) some observations are in order. Owing
to the presence of the two parameters η (friction coefficient) and β (borehole inclination angle), the
sizes of A and B are not a priori pre-determined; we shall assume that these quantities are O(1). For
the latter quantity this means that β is not close to zero – indeed, this is the situation considered in
[29, 36]. However, A may become equal to zero for β = β∗, with β∗ ≡ cot−1(η). As the coefficient
of friction is typically between 0 and 1, the special value β∗ will be between 90◦ and 45◦. We will
therefore assume that if η is given, the angles β considered are restricted by the requirement that
|β − β∗| = O(1) (the angles being expressed in radians). As noted in previous investigations (e.g.,
[29, 36]), for β = β∗ equation (2.6) has constant coefficients (since A ≡ 0) and hence the expression
of the lowest eigenvalue can be obtained analytically since the buckling modes have a regular number
of identical ripples. This is readily found by considering the trial function y(ρ) = Ceiπmρ (m, C ∈ R,
i ≡
√
−1) – note that its imaginary part satisfies the end constraints (2.8). On substituting this ansatz

into (2.6), one finds λ as a function of the mode number m > 0. Further minimisation with respect
to this latter quantity then produces the critical buckling values

λ∗c = 2µ
(
Γ0 sinβ

)1/2
and m∗c = µ1/2π−1

(
Γ0 sinβ

)1/4
. (2.9)

Unfortunately, this simple result is only valid for β = β∗. When β ' β∗, the value λc recorded in (2.9)
is still a good approximation for the buckling threshold because the corresponding true eigenmode
resembles a sinusoidal regular pattern (although, strictly speaking, it is a globally modulated function
– see Table 7-1, page 431 in [29]). For β-values “far” from β∗, and less than this special value, the
eigenmodes are localised near the lower end of the string and one has to resort to a more in-depth
analysis of the differential equation (2.6). We are going to unravel the corresponding asymptotic
structure in §4 by taking advantage of the large parameter µ introduced in (2.3). In preparation for
that, we will first explore briefly the numerical solutions of the boundary-value problem (2.6)-(2.8).

3 Numerical results

Examples of direct numerical simulations of the dimensional version of the linear bifurcation problem
outlined in the previous section were presented in references [29] and [36]. Unfortunately, some of
those results are incorrect as the eigenmodes shown there for β > β∗ do not correspond to the lowest
positive eigenvalue of the corresponding buckling problem. With this in mind, we include below a
quick discussion that clarifies the role played by the friction coefficient η and the inclination angle
0 < β ≤ 90◦ on the solutions of (2.6)-(2.8). All the numerical results included in this section were
obtained by using a spectral method [38, 39, 40], with an additional check being carried out with
the help of the compound matrix method (e.g., see [41, 42]). The values of the various parameters
appearing in equation (2.6) are those already mentioned in §2 (in the interest of brevity, only the value
S0 = 500.0 will be considered below).

The qualitative behaviour of the eigenmodes can be conveniently anticipated by expressing the
inhomogeneous axial force (2.1) in non-dimensional form

FaxS
2
0

EI
= −ρµA+ (µA− λ) , (3.1)
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which represents essentially a straight line in ‘ρ’. If 0 < β < β∗ the gradient of this line is negative, so
the maximum compression experienced by the drillstring will be near its right end (ρ = 1); for β = β∗
the axial force is constant for the entire range 0 ≤ ρ ≤ 1 – this is the case corresponding to the regular
buckling pattern already mentioned at the end of §2. Finally, for β∗ < β ≤ 90◦ the gradient of the
line (3.1) is positive, and the left end (ρ = 0) of the drillstring will be compressed the most. As a
matter of fact, it turns out that if β 6= β∗, then the critical eigenmodes are either globally modulated
or localised shapes, with the former situation occuring when |β − β∗| � 1.

The observations made above are supported by the numerical evidence included in Figures 3 and
4. In the interest of brevity we only show a small sample of eigenmodes obtained for η = 0.2 and a
limited range of angles β, but these results are representative for other values as well. For reasons that
will become apparent later on, in §4, we also include in the aforementioned figures the eigenmodes
associated with the second lowest eigenvalue of the buckling problem (2.6)-(2.8).
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Figure 3: Samples of eigenmodes for the lateral buckling problem consisting of (2.6) subject to
(2.8). The critical eigenmodes (in blue) appear in the left column, while those associated with
the second smallest eigenvalue are shown next to them (in red); here, η = 0.2 and the borehole
inclination angle β < β∗ ' 78.69◦ is shown individually for each of the three values considered.
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Figure 4: Same as per Fig. 3, except that here we consider values β > β∗ ' 78.69◦.

The critical modes illustrated in Figure 4 are different from those reported in [29] (see rows 5 and
6 in Table 7-1 on page 431) or in [36] (see Table 1, page 33). Those authors seem to have ended
up with non-localised modes associated with higher points in the spectrum of the buckling problem.
This is clearly the case as their predictions for the critical load λc when β > β∗ are larger than the
values corresponding to the case β < β∗. To shed further light on this last statement, we summarise in
Figure 5 the dependence λc ≡ λc(β; η) for 30◦ ≤ β ≤ 90◦ and several values of the friction coefficient
η (including η = 0, i.e. a frictionless drillstring). The information in the figure just mentioned
suggests that the angle β∗ ≡ cot−1(η) marks the boundary between two distinct types of behaviour; in
particular, as β > β∗ the critical load drops, which is in contrast to what references [29, 36] claimed.

It is somewhat easier to interpret the dependence of the critical load on the inclination angle β by
shifting our attention to how the critical non-dimensional axial load at ρ = 0 varies in terms of the
same angle. To this end, if Fc(0) denotes this former quantity, we remark that (3.1) gives

Fc(0) ≡ F cax(0)S2
0

EI
= µA− λc , (3.2)

where F cax is the critical axial force obtained from (2.1) by letting λ→ λc (see also the definition of λ
in (2.3)).

Samples of plots for Fc(0) versus β are recorded in Figure 6 for the same values of the friction
coefficient as in the previous figure; identical colour-coding is used for the corresponding curves. Several
noteworthy features that transpire from these plots are mentioned briefly next. For example, Fc(0)
turns out to be compressive for all values of β and η considered, irrespective of the location where the
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Figure 5: The dependence of the critical load λc on the borehole inclination angle 30◦ ≤ β ≤ 90◦

for different values of the friction coefficient η ∈
{

0, 0.2, 0.4, 0.6, 0.8
}

; a vertical borehole has
β = 0◦, while for a horizontal one β = 90◦. The white circular marker on each of the above curves
corresponds to the point (β∗, λ

∗
c) associated with the periodic deformation pattern mentioned at

the end of §2.

buckling deformation is localised. For µ-values larger than the one considered in this section, Fc(0)
might end up being tensile [36] (see first row of the table on page 35 in that reference). It is also
clear that the absolute value of the critical axial force at the left end of the DS increases with β. This
is unsurprising since for a steep borehole the weight of the DS contributes more to the compression
experienced by its lower end. On the other hand, in an almost horizontal borehole the compressive
forces provided at the left end of the DS must be slightly larger in order for buckling to occur; this
corresponds to the lower parts of the curves extending to the right of the white markers seen in
Figure 6. The deformations associated with points on those curve segments are localised near the left
end of the DS; this is rather unexpected and might be attributed to the rather crude modelling of the
frictional forces in the model proposed by Gulyayev et al. [29, 36]. Finally, we should note that Fc(0)
is rather insensitive to the frictional forces for β > β∗, whereas for β < β∗ the opposite is true.

The numerical findings described in this short section are in agreement with the qualitative obser-
vations made vis-à-vis the non-dimensional axial force (3.1). However, there is an important caveat
regarding the differential equation (2.6). Our study (as well as the work in [29, 36]) is based on the
a priori assumption that the equation remains valid at all “times” during the loading phase and the
incipient buckling of the drillstring. This assumption is needed because (2.1) incorporates the effect
of frictional forces, which in turn require continuous contact between the drillstring and the borehole.
When the borehole is horizontal, or close to horizontal (i.e., β ' 90◦), this assumption may not be
true; furthermore, in a practical drilling scenario there will be imperfections – either structural or
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related to how the load is being applied relative to the axis of the drillstring. As a consequence,
the deformation experienced by our configuration might not take place as hypothesised in the model
studied in this paper. This shortcoming is shared to a large degree by all previous attempts to deal
with frictional forces in similar contexts (e.g., see [6] and the references therein).
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Figure 6: Another interpretation of Fig. 5 obtained by plotting (3.2) as a function of the incli-
nation angle β. The white circular markers superimposed on the curves seen here have the same
connotation as in the previous figure.

4 Asymptotic approximations

In the previous section we have seen that when the aspect ratio µ� 1, the first two critical modes of
the drillstring bifurcation problem adopt a localised structure provided that the borehole inclination
angle β is not too close to the critical value β∗ ≡ cot−1(η). We shall designate these cases as β � β∗
and β � β∗, respectively (although, strictly speaking, this is an abuse of notation). We note that the
solution samples in Figures 3 and 4 resemble closely some of those encountered in our previous studies
[31, 32, 33, 35], an observation which suggests that the asymptotic strategy developed therein might
be relevant to the boundary-value (2.6)-(2.8) as well. This is confirmed next.

4.1 The case β � β∗

According to §3, this regime corresponds to eigenmodes that are localised near ρ = 1, with the corre-
sponding solutions displaying a multi-scale structure in which a fast spatial oscillation is modulated
over a relatively narrow region adjacent to the lower end of the drillstring. Additional numerical
work (see Table 7-2 on page 433 of [29]) suggests that the localisation process intensifies as µ→ +∞.
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Standard scaling arguments can help establish the relevant orders of magnitude of the key terms in
(2.6). Motivated by these considerations we introduce the re-scaled variable Y > 0 defined by

ρ = 1− µ−1/3Y , with Y = O(1) . (4.1)

We will look for solutions of (2.6) satisfying an ansatz of the form

y = V (Y ) exp
(
iΩµ1/6Y

)
, (i ≡

√
−1) , (4.2)

where

V (Y ) = V0(Y ) + µ−1/6V1(Y ) + µ−1/3V2(Y ) + . . . , (4.3a)

λ = λ0µ+ λ1µ
2/3 + λ2µ

1/2 + λ3µ
1/3 + . . . , (λj ∈ R , j = 0, 1, 2, . . . ) ; (4.3b)

the constant Ω ∈ R is unknown at this stage but will be found as part of the solution (e.g., see [35, 37]).
The complex exponential term in (4.2) accounts for the spatial oscillations of the eigenmodes seen in
Figures 3 and 4 – these oscillations take place on a O(µ−1/2) scale which is much shorter than that
described by the re-scaled independent variable Y in (4.1). It should be clear that the aforementioned
ansatz is equivalent to the application of the method of multiple scales (e.g., [43, 44, 45, 46, 47]); this
would correspond to introducing the spatial scales ξ1 ≡ µ1/3(1 − ρ) and ξ2 ≡ µ1/2(1 − ρ), and then
regarding the dependent variables as functions of both (i.e., y ≡ y(ξ1, ξ2)). Past experience shows
that the final results remain the same, so we shall take advantage of the simplified approach outlined
above.

The zeroth-order equation amounts to a simple algebraic relation

Γ0 sinβ − Ω2λ0 + Ω4 = 0 =⇒ λ0 = Ω2 +
Γ0 sinβ

Ω2
. (4.4)

It is clear that λ0 ≡ λ0(Ω2) and, as we are looking for the lowest λ0 > 0, we must search for the critical
value(s) of Ω2 by enforcing the usual stationarity condition ∂λ0/∂(Ω2) = 0. This equation yields the
value Ω = Ω∗ > 0,

Ω∗ :=
(
Γ0 sinβ

)1/4
=⇒ λ∗0 := λ0

∣∣∣
Ω=Ω∗

= 2(Γ0 sinβ)1/2 . (4.5)

The information that transpires at first-order consists of

2iΩ(λ0 − 2Ω2)V ′0 + (Γ0 sinβ − λ0Ω2 + Ω4)V1 = 0 ,

where the ‘dash’ stands for differentiation with respect to Y , a convention that will be employed for
the rest of this section. This equation is identically satisfied for the values of λ0 and Ω found in (4.5).

The next non-trivial piece of information emerges at the second order, namely

γ1V
′′

0 + γ2V0 + γ3V2 + γ4V
′

1 = 0 , (4.6)

where

γ1 := Ω2(AY − λ1) , γ2 := λ0 − 6Ω2 , γ3 := Γ0 sinβ − λ0Ω2 + Ω4 , γ4 := 2iΩ(λ0 − 2Ω2) .

Note that γ3 = γ4 = 0 when Ω = Ω∗ and λ0 = λ∗0, so that (4.6) can be re-stated in the simplified form

V ′′0 −
1

4
(AY − λ1)V0 = 0 . (4.7)
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Equation (4.7) is amenable to further simplifications by adopting a suitable re-scaling of the indepen-
dent variable

Z ≡ Z(Y ) := 2−2/3A1/3

(
Y − λ1

A

)
, (4.8)

whereupon it follows that d2V̂0/dZ
2 − ZV̂0 = 0, with V̂0(Z) ≡ V0(Y ). The solution of interest is

V̂0 = Ai(Z), where ‘Ai’ is the usual Airy function that decays exponentially quickly as Z → +∞.
Given that our differential equation (2.6) has real-valued coefficients, both the real and imaginary

parts of (4.2) represent approximations for two linearly independent solutions of (2.6), so the leading-
order asymptotic solution we are looking for will be of the general form

y '
[
C1 cos

(
µ1/6ΩY

)
+ C2 sin

(
µ1/6ΩY

)]
Ai(Z) + . . . , (C1, C2 ∈ R) , (4.9)

and it is this function that should be used in the boundary conditions y = y′′ = 0 for Y = 0. The
corresponding determinantal equation is

Ai(Z)Ai(1)(Z) = 0 for Y = 0 ,

and we are then immediately led to

λ∗1 := λ1

∣∣∣∣∣Ω0=Ω∗0
λ0=λ∗0

=

ζ0 (2A)2/3 , if Ai(Z(0)) = 0 ,

ζ ′0 (2A)2/3 , if Ai(1)(Z(0)) = 0 ;
(4.10)

the superscript notation above was used to indicate differentiation with respect to Z, a convention
that will be adopted tacitly henceforth. In this formula (−ζ0) ' −2.338 is the first zero of the Airy
function ‘Ai’, while (−ζ ′0) ' −1.0188 represents the first zero of its derivative; that is, Ai(Z) =
0 and dAi/dZ = 0 for Z = −ζ0 and Z = −ζ ′0, respectively. Comparisons with direct numerical
simulations of the boundary-value problem (2.6)-(2.8) indicate that it is the second expression in
(4.10) which approximates the smallest eigenvalue when combined with (4.3b) and (4.5). Similarly, the
other expression in (4.10) is associated with the second smallest eigenvalue of the original bifurcation
equation. The leading-order approximation for the eigenmode corresponding to the latter is y '
Ai(Z(Y )) cos(µ1/6ΩY ) + . . . , while the one for the former is y ' Ai(Z(Y )) sin(µ1/6ΩY ) + . . . . It can
be easily checked by direct calculations that these functions satisfy y = y′′ = 0 when Y = 0, provided
that λ1 in (4.8) is chosen according to (4.10).

The two-term asymptotic approximation λc ' λ∗0µ+λ∗1µ
2/3, which follows immediately from (4.3b)

together with (4.5) and (4.10), performs quite well but it represents an upper bound for the smallest
and second smallest eigenvalues of the boundary-value problem (2.6)-(2.8). It is therefore of interest
to explore the effect of the next few terms in the expansion of λc, and this is done next.

At the third-order, (2.6) throws an inhomogeneous Airy equation which can be cast in standard
form by using the change of variable introduced in (4.8). Expressed in terms of that re-scaled variable
the governing equation for V1 can be shown to be

d2V̂1

dZ2
− ZV̂1 = c0V̂0(Z) + c1ZV̂

(1)
0 (Z) + c2V̂

(3)
0 (Z) , (4.11)

with V̂1(Z) ≡ V1(Y ) and

c0 := −(2A)−2/3(iAB−1/4 + λ2) , c1 := −i(2A)1/3B−1/4 , c2 :=
i

2
(2A)1/3B−1/4 .
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A particular solution of (4.11) is given by

V̂1 =
1

2
(2c0 − c1 + c2)V̂

(1)
0 (Z) +

1

4
(c1 + c2)Z2V̂0(Z) ≡ V1R(Z) + iV1I(Z) , (4.12)

with

V1R(Z) := −(2A)−2/3λ2Ai(1)(Z) , V1I(Z) :=
1

4
(2A)1/3B−1/4

[
Ai(1)(Z)− 1

2
Z2Ai(Z)

]
. (4.13)

Given the form of the ansatz (4.2), we get two potential contributions coming from the O(µ−1/6)-term
in the asymptotic expansion (4.3a); these correspond to

ỹ1(Y ) := V1R(Z) cos(µ1/6ΩY )− V1I(Z) sin(µ1/6ΩY ) , (4.14a)

ỹ2(Y ) := V1R(Z) sin(µ1/6ΩY ) + V1I(Z) cos(µ1/6ΩY ) . (4.14b)

Next, we examine the boundary conditions that need to be satisfied when Y = 0. This is best done
by considering separately the two cases mentioned in (4.10).

If Ai(1)(Z(0)) = 0, we find ỹ1(Y = 0) = V1R(−ζ ′0) = 0, while

d2ỹ1

dY 2

∣∣∣∣
Y=0

= −µ1/3Ω2V1R(−ζ ′0)− µ1/6Ω(2A)1/3V
(1)

1I (−ζ ′0) + (2A)2/3V
(2)

1R (−ζ ′0) .

The first two terms on the right-hand side of this equation are zero by default – see (4.13), whereas
the underlined term is different from zero unless λ2 = 0. Thus, the function ỹ1 satisfies both boundary
conditions at Y = 0 provided that λ2 is chosen to be zero. With the benefit of hindsight, we note
that the underlined term yields an O(µ−1/6) contribution that can, in principle, be combined with a
term of similar size that emerges in the boundary condition at next order, but this only gives a linear
relationship between λ2 and λ3 (and thus both coefficients remain undetermined at that stage).

For the case Ai(Z(0)) = 0 the situation is a bit more complicated. Trying to satisfy the boundary
conditions at Y = 0 by using each of the two functions in (4.14), or a suitably constructed linear
combination of both is not possible unless V̂1 ≡ 0 and λ2 = 0. Since the ansatz (4.3) needs a few
amendments, the discussion of this case will be postponed until we complete the analysis for the
critical buckling mode.

Information about λ3 in (4.3b) emerges at the next order. For the case Ai(1)(Z(0)) = 0 we find
another inhomogeneous Airy equation that can be re-scaled as before, and assumes the form

d2V̂2

dZ2
− ZV̂2 = (d1 + d2Z

2)V̂0(Z) + (d3 + d4Z
3)V̂

(1)
0 (Z) , (4.15)

with

d1 := −(2A)−2/3λ3 , d2 :=
1

16
(2A)2/3B−1/2 , d3 := 2d2 , d4 := −d2 .

A particular solution of this equation is

V̂2 = d1V̂
(1)

0 (Z)− d2

[
4V̂

(2)
0 (Z)− 2V̂

(5)
0 (Z) +

1

8
V̂

(8)
0 (Z)

]
. (4.16)

The O(µ−1/3) contribution of (4.2) corresponds to the function V̂2(Z(Y )) sin(µ1/6ΩY ). This satisfies

the boundary conditions at Y = 0 provided that V̂
(1)

2

∣∣
Z=−ζ′0

= 0 or, in terms of (4.16),

−d1ζ
′
0 +

1

2
d2 = 0 =⇒ λ3 = λ∗3 := − 1

32ζ ′0
(2A)4/3B−1/2 < 0 . (4.17)
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To summarise, we have obtained a three-term asymptotic approximation for the smallest positive
eigenvalue of the buckling problem (2.6)-(2.8); combining the result just found together with (4.5) and
(4.10), our final formula reads

λ(I)
c = 2B1/2µ+ ζ ′0(2A)2/3µ2/3 − 1

32ζ ′0
(2A)4/3B−1/2µ1/3 + . . . , (4.18)

where the notations for A and B were recorded in (2.7), and the superscript on the left-hand side
of (4.18) is used to indicate that this is the lowest eigenvalue of the aforementioned boundary-value
problem.

Returning now to the approximation for the second smallest eigenvalue, we start by noting that
the original ansatz (4.3) must be replaced by

V (Y ) = V0(Y ) + µ−1/3V2(Y ) + . . . , (4.19a)

λ = λ0µ+ λ1µ
2/3 + λ3µ

1/3 + . . . , (4.19b)

and we emphasise that these expressions are only applicable to the case when Z(0) = −ζ0. Since we
have eliminated V̂1, the corresponding equation for V̂2 adopts a slightly simpler form

d2V̂2

dZ2
− ZV̂2 = (d1 − 3d2Z

2)V̂0(Z)− 2d2V̂
(1)

0 (Z) , (4.20)

with the particular solution

V̂2 = d1V̂
(1)

0 (Z) + d2

[
2V̂

(2)
0 (Z)− 3

5
V̂

(5)
0 (Z)

]
. (4.21)

The O(µ−1/3) contribution of (4.2) corresponds to the function V̂2(Z(Y )) cos(µ1/6ΩY ). To satisfy the
requisite boundary conditions at Y = 0 (at leading-order, at least) requires that V̂2

∣∣
Z=−ζ0 = 0; then,

a simple use of (4.21) produces

d1 −
3ζ2

0

5
d2 = 0 =⇒ λ3 = λ∗3 := −3ζ2

0

80
(2A)4/3B−1/2 < 0 . (4.22)

We are finally in a position to state the full three-term asymptotic approximation for the second lowest

eigenvalue, λ
(II)
c (say), of the original buckling problem (2.6)-(2.8)

λ(II)
c = 2B1/2µ+ ζ0(2A)2/3µ2/3 − 3ζ2

0

80
(2A)4/3B−1/2µ1/3 + . . . . (4.23)

The analysis included in this section requires only minor modifications to deal with the localisation
near the left end (ρ = 0) of the drillstring. The full details are omitted but the relevant differences
are outlined in the next section.

4.2 The case β∗ � β ≤ 90◦

As suggested by the samples of eigenmodes included in Figure 3, when µ � 1 the localisation of the
drillstring persists even for β � β∗. This phenomenon is readily captured by introducing the new
boundary-layer variable X > 0 defined according to

ρ = µ−1/3X , with X = O(1) .



Drillstring buckling & asymptotics 16

The ansatz (4.2) together with (4.3) remain valid in this case as well, where now Y must be replaced
by X and the coefficients λj in (4.3b) will be denoted by λ̃j (j = 0, 1, 2, . . . ) for clarity purposes. The
“dispersion” relation that links Ω to the leading-order term of λ changes to

Γ0 sinβ − (λ̃0 −A)Ω2 + Ω4 = 0 =⇒ λ̃0 = A+ Ω2 +
Γ0 sinβ

Ω2
. (4.24)

Comparison of this result with (4.4) confirms its close resemblance to the earlier expressions. Trivial
calculations indicate that equation (4.24) yields exactly the same value Ω = Ω∗ > 0 as in (4.5), and
then (4.24) gives

λ̃∗0 := λ̃0

∣∣∣
Ω=Ω∗

= Γ0(cosβ − η sinβ) + 2(Γ0 sinβ)1/2 . (4.25)

The next-order equations are very similar to those already discussed in §4.1 – the final results can
be immediately scooped up from (4.18) and (4.23) by changing λ0 → λ̃0 and making the substitution
A → |A| in the remaining terms; the vertical bars used here represent the absolute value function.
For the sake of convenience, we list below the corresponding asymptotic approximations for the first
two lowest eigenvalues

λ̃(I)
c = (A+ 2B1/2)µ+ ζ ′0(2|A|)2/3µ2/3 − 1

32ζ ′0
(2|A|)4/3B−1/2µ1/3 + . . . , (4.26a)

λ̃(II)
c = (A+ 2B1/2)µ+ ζ0(2|A|)2/3µ2/3 − 3ζ2

0

80
(2|A|)4/3B−1/2µ1/3 + . . . . (4.26b)

In Figure 7 the predictions of the asymptotic formulae for the critical load – see (4.18) and (4.26a),
are compared against direct numerical simulations of the full buckling problem. The analytical pre-
dictions are presented as dashed curves and the circular markers correspond to the computed values.
The agreement here is excellent, with the relative errors involved in those comparisons being about
O(10−5), or even higher. While we have focused on just one set of physical parameters (see §2), this
degree of accuracy is maintained for other values (provided that µ� 1).

5 Concluding remarks

This paper offers a new asymptotic treatment for the classical problem of (static) lateral buckling of
a long drillstring that remains in contact with the wall of an inclined straight borehole. The weight of
the drillstring as well as the frictional forces experienced by this configuration are both accounted for,
with the mathematical model being formulated as a boundary eigenvalue value problem for an angular
displacement [29, 36]. Our key results correspond to the non-dimensional three-term asymptotic
formulae (4.18), (4.23), and (4.26), which capture the dependence of the first two lowest eigenvalues
on all the relevant physical parameters. The mathematical investigations reported herein have also
revealed some discrepancies in some of the numerical results reported previously in the literature in
connection with the model considered in this paper. In particular, our theoretical results suggest that
for inclination angles β > β∗ ≡ cot−1(η) (with η being the friction coefficient), the deformation of
the drillstring tends to concentrate near its left end as β → 90◦+; the (corrected) direct numerical
simulations included in §3 have also confirmed this feature.

Our interest in the model explored in this work was partially stimulated by the recent publication
[31] in which the self-buckling of a shallow spherical equatorial segment was reduced to an equation
akin to (2.6). In that work we relied on the use of a simplified WKB analysis to deliver highly
accurate approximations for the first two lowest eigenvalues of the corresponding bifurcation equation.
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Figure 7: Comparisons of the asymptotic formulae (4.18) and (4.26a) with the direct numerical
simulations recorded in Fig. 5. The dashed curves correspond to the theoretical predictions, while
the circular markers represent the numerical data.

Although the boundary-layer approach was also tentatively pursued, the full details of the analysis were
somewhat glossed over and the application of the boundary conditions for the asymptotic expansion
was rather sketchy. In that sense, the present study fills in the missing steps and provides the basis
for applying the asymptotic strategy discussed in §4 to similar linear boundary-value problems that
exhibit localised oscillatory eigenmodes.

The main asymptotic ansatz (4.2) used in our analysis was phrased in terms of a complex expo-
nential, but we have not followed through with the usual conventions associated with that notation
(e.g., see [43, 44, 45]). For example, the expression stated in (4.9) is at odds with the spirit of the
complex notation. If one insists on taking only the real part of the right-hand side of (4.2), then that
would require introducing a phase angle θ0 and replacing (4.2) with

y = Re
{
V (Y ) exp[i(Ωµ1/6Y − θ0)]

}
, θ0 ∈ {0, π/2} , (5.1)

where V (Y ) is still as given in (4.3a), while Re{. . . } denotes the real part of the quantity enclosed
between the curly brackets. It is well known (e.g., [48, 49]) that such phase angles are not available
from a purely theoretical linear analysis; they are typically identified from the numerical integration of
the original boundary-value problem. The two values recorded in (5.1) were confirmed by comparing
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the asymptotic approximations of the eigenmodes with the relevant direct numerical simulations of
(2.6)-(2.8) which, in the interest of brevity, are not included here.

As mentioned in §1, the model studied in this paper is an extension of an earlier one proposed in
[24]. By setting η = 0 in (2.6) we recover (more or less) the equation studied by Paslay and Bogy in
the above work. Some minor discrepancies arise due to the fact that these authors left out the effect of
the drilling fluid; also, the starting point for the derivation of their equations was nonlinear elasticity
kinematics [25], whereas Gulyayev et al. [29] used the classical theory of rods [50, 51] (which ignores
the Poisson effect). Dawson and Paslay [52] used the horizontal borehole results from [24] to come up
with some sort of empirical formula for inclined boreholes. In light of this comment, it is instructive
to re-interpret our non-dimensional result (4.18) in terms of the physical parameters. Simple algebraic
manipulations indicate that

Rc = 2

(
fgEI sinβ

a

)1/2

+ 1.6172(fg)
2/3(EI)1/3(cosβ)2/3

− 0.0773 a1/2(fg)
5/6(EI)1/6(cosβ)4/3(sinβ)−1/2 + . . . , (5.2)

where Rc is the critical (buckling) value of R (the so-called ‘weight-on-bit’ or WOB for short). The
formula proposed in [52] corresponds to the underlined term, but our result contains also some addi-
tional correction terms. Although the length of the DS has dropped out of (5.2), it should be kept in
mind that the formula was derived under the assumption that S0 � a. The authors of [52] remarked
that the underlined term provides a reliable approximation for pipe lengths more than about 61 m
(which corresponds to µ & 367).

Guided by the close analogy between the current study and the eigenvalue problem studied in [31],
we have not been compelled to pursue here the effect of the borehole curvature. However, as shown
numerically by Gulyayev et al. [29], the corresponding bifurcation equations for curved boreholes
lead to a richer spectrum of localised eigenmodes. More specifically, the corresponding solutions are
spatially focused at certain points along the length of the DS, and those locations must be identified as
part of the solution. The multiple-scale asymptotic technique adopted in this paper can be extended
to cope with such difficulties as past experience confirms (e.g., [53, 54]); the details of such an analysis
have been recently completed in [55].
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