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Abstract

Extensive measurement is the standard measurement-theoretic approach for con-
structing a ratio scale. It involves the comparison of objects that can be “concatenated”
in an additively representable way. This paper studies the implications of extensively
measurable welfare for social choice theory. We do this in two frameworks: an Ar-
rovian framework with a fixed population and no interpersonal comparisons, and a
generalized framework with variable populations and full interpersonal comparability.
In each framework we use extensive measurement to introduce novel domain restric-
tions, independence conditions, and constraints on social evaluation. We prove a wel-
farism theorem for the resulting domains and characterize the social welfare functions
that satisfy the axioms of extensive measurement at both the individual and social lev-
els. The main results are simple axiomatizations of strong dictatorship in the Arrovian
framework and classical utilitarianism in the generalized framework. We conclude by
drawing some lessons regarding the utilitarian significance of Harsanyi’s aggregation
theorem.

1 Introduction

Kenneth Arrow once called himself “a kind of utilitarian manqué”:

I’d like to be utilitarian but the only problem is I have nowhere those utilities
come from. The problem I have with utilitarianism is … that the epistemologi-
cal foundations are weak. My problem is: What are those objects we are adding

*I am very grateful to Zachary Goodsell, Marcus Pivato, Robert Raschka, and John Weymark for helpful
comments and discussion.
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up? I have no objection to adding them up if there’s something to add. Kelly
and Arrow, 1987, p. 59

The content of Arrow’s complaint is not entirely transparent. In the orthodox economic
sense of “utility,” an Arrovian social choice theorist who takes individuals to have numer-
ically representable preferences certainly has somewhere that “utilities come from”: a per-
son’s utility is just the numerical value of a function that represents her preferences. There
is no mystery about how such utilities can be added together: they’re just numbers, and we
can add whatever numbers we like.

Arrow’s complaint cannot be that he lacks a foundation for the numerical representation
of preferences. I take his complaint to be this. A utilitarian—more specifically, a classical (or
“total”) utilitarian—believes thatwe shouldmaximize the sumofwell-being, where a person’s
well-being is how good things are for her. (We leave open exactlywhatmakes things good for
people.) But what does it mean to “add up” people’s well-beings? A person’s well-being is not
a number, any more than her height or weight is a number. Some properties can, intuitively,
be added together: we can add together two heights, or two masses. But we cannot add
heights to masses. And it is unclear what it would mean to add up degrees of beauty or of
intelligence. Arrow’s complaint—or, rather, one complaint inspired by his remarks—is that
the classical utilitarian has not shown well-being to be the kind of thing that, like height
or mass, can be added up, as opposed to the kind of thing, like beauty or intelligence, that
cannot.

Extensive measurement offers a way to precisify this contrast. The idea of extensive
measurement is to compare objects that can be “concatenated,” or combined, to yield new
objects. If the comparison of concatenated objects satisfies certain axioms, it can be repre-
sented as maximizing a real-valued function with the concatenation operation represented
by the arithmetic operation of addition (Krantz et al., 1971). A classic example is the mea-
surement of length by stacking together rods fromend to end, or ofmass by stacking together
objects in a weightpan.

There are various ways of trying to apply extensive measurement to well-being, which
differ based on what kinds of objects are evaluated and how they are concatenated (Nebel,
forthcoming). Each of these methods depends on controversial assumptions about what is
good for people. It is therefore, in my view, an open question whether or not well-being is
susceptible to extensivemeasurement. In this paper, I want to assume that it is, and thus that
well-being can be meaningfully “added up,” in order to study the implications of extensive
measurement for social choice and welfare theory. In particular, I want to understand what

2



further commitments are necessary and sufficient to characterize classical utilitarianism,
once it is granted that well-being is extensively measurable.

We do this by developing a variable-population generalization of Arrow’s framework of
social welfare functions in which well-being is both interpersonally comparable and exten-
sively measurable. The variable-population aspect of this framework is essential, since what
distinguishes classical utilitarianism from other varieties of utilitarianism (e.g., average util-
itarianism) is its variable-population commitments. However, we warm up to this complex
framework by first applying extensive measurement in a simpler Arrovian setting, in which
the population is fixed and well-being is not interpersonally comparable. We provide some
limitative results for Arrovian social welfare functions when individual welfare is extensively
measurable; these results motivate the use of interpersonal comparisons in the generalized
framework.

This project is especially indebted to three others. One is the study of social welfare func-
tionals with ratio-scale measurable utilities (see especially Blackorby & Donaldson, 1982;
Tsui &Weymark, 1997). Extensivemeasurement is the standardmeasurement-theoretic ap-
proach for constructing a ratio scale; indeed, early work on measurement tended to assume
that extensive measurement was the only fundamental form of measurement (Campbell,
1920; Cohen & Nagel, 1934). It is surprising, then, that while the implications of ratio-scale
measurability for social welfare evaluation have been studied, apparently no attention has
been paid to extensive structures themselves in social choice theory. A second project is
the axiomatization of variable-population ethical principles pioneered by Blackorby et al.
(2005). Curiously, however, there doesn’t seem to be an axiomatization of classical utilitar-
ianism in this work; they end up, rather, with various generalizations of classical utilitarian-
ism.1 Third is the broadly “relational” approach to welfare aggregation initiated by Arrow
(1951), in which the primitive ingredients of social welfare evaluation are relations on a set
of alternatives and axioms are formulated in terms of those relations—in contrast to, for ex-

1The closest results are their axiomatizations of “classical means of order r” (discussed in Appendix E be-
low), ex-ante critical-level utilitarian principles (Blackorby et al., 2005, ch. 7), and classical generalized utili-
tarianism (Blackorby et al., 2005, chs. 6, 9). There are, of course, several axiomatizations of fixed-population
utilitarian social welfare functionals (d’Aspremont &Gevers, 1977; Deschamps&Gevers, 1978; Maskin, 1978),
but these do not discriminate between classical and other variable-population varieties of utilitarianism. In-
deed, they rest on informational invariance conditions that rule out classical utilitarianism (Blackorby et al.
(1999), for example, extend Maskin’s result to characterize average utilitarianism). Hammond (1988) derives
a principle which formally resembles classical utilitarianism, but in later work he is careful to acknowledge the
resemblance as “only formal” (Fleurbaey & Hammond, 2004, p. 1268); see also Hammond, 1991. The most
direct axiomatization of classical utilitarianism I know of is provided by Xu (1990), which appears never to
have been cited.
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ample, Sen (1970)’s framework of social welfare functionals (and Blackorby et al.’s variable-
population generalization thereof), in which numerical utilities are taken for granted and
axioms are formulated in terms of that numerical representation. Other work in the “re-
lational” tradition includes Brandl and Brandt (2020), Dhillon and Mertens (1999), Ham-
mond (1976), Harsanyi (1955), Harvey (1999),Marchant (2019), Pivato (2015), andRaschka
(2023), among many others. The use of extensive measurement in this tradition, however,
appears to be novel.2

The plan is as follows. I introduce the axioms of extensive measurement in section 2.
In sections 3 and 4, I consider Arrovian social welfare functions under the assumption that
individual well-being is extensively measurable. The main result of section 3 is a welfarism
theorem for this setting (Theorem 1). The main results of section 4 are an impossibility
theorem for anonymous Paretian evaluation (Theorem 2) and a characterization of strongly
dictatorial social welfare functions (Theorem 3). In section 5, I generalize the Arrovian
framework to accommodate both interpersonal comparisons and variable populations and
prove a welfarism theorem for this setting (Theorem 4). Section 6 provides the promised
axiomatization of classical utilitarianism (Theorem 5). Section 7 concludes by drawing some
lessons regarding the “social aggregation theorem” of Harsanyi (1955) and its relevance to
utilitarianism. All proofs are in appendices.

2 Extensive Measurement

An extensive structure contains three ingredients. There is a setX of objects to bemeasured:
for example, rods of differing lengths. There is a binary relation ≽ on that set: for example,
the at least as long as relation. (As usual, ≻ denotes the asymmetric part of ≽, ∼ its symmetric
part.) And there is a binary concatenation operation ○ ∶ X × X → X which, in some sense,
combines the objects together: for example, by stacking together rods from end to end.
Suppose that our set of objects is closed under this operation, so that we can concatenate
any two elements of X to form a new element of X. This includes the concatenation of an
object with itself, which can be interpreted in the case of length as stacking together perfect
copies of that object. For any object a ∈ X, define 1a ∶= a and, for any natural number n > 1,
let na ∶= (n − 1)a ○ a, so that na is the concatenation of n perfect copies of a.

The triple (X,≽, ○) is called an extensive structure iff the following five axioms are satisfied
2As should by now be clear, this paper is unrelated to “extensive social choice” in the sense of Bossert et al.

(2013), Ooghe and Lauwers (2005), and Roberts (1995).
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for any a, b, c,d ∈ X.

Transitivity If a ≽ b and b ≽ c, then a ≽ c.

Completeness a ≽ b or b ≽ a.

Weak Associativity a ○ (b ○ c) ∼ (a ○ b) ○ c.

Monotonicity a ≽ b iff a ○ c ≽ b ○ c iff c ○ a ≽ c ○ b.

Archimedean If a ≻ b, then for any c,d ∈ A, there is some natural number n such that
na ○ c ≽ nb ○ d.

These conditions are necessary and sufficient for a numerical representation of ≽ that is ad-
ditive with respect to concatenation—that is:

Proposition 1 (Krantz et al., 1971, ch. 3, Theorem 1). (X,R, ○) is an extensive structure iff
there is a function U ∶ X→ R such that, for any a, b ∈ X,

(i) a ≽ b iff U(a) ≥ U(b), and

(ii) U(a ○ b) = U(a) +U(b).

Another function U′ satisfies (i) and (ii) iff U′ = kU for some positive real number k.

We call U an additive representation of ≽. The last line of Proposition 1 says that such a
representation is uniqueup to similarity transformation. This is the characteristic uniqueness
condition of a ratio scale.

Nebel (forthcoming) explores various possible applications of this sort of structure to
the measurement of well-being. For example, X might be a set of experiences. For any ex-
periences a, b ∈ X, their concatenation a ○ b is an experience in which one first undergoes a
immediately followed by b. Structures like this have been proposed for the measurement of
hedonic well-being by Kahneman et al. (1997) and Skyrms andNarens (2019). Amore flexi-
ble structure takes the objects to be entire lives, which an impartial spectator might imagine
living in sequence (Lewis, 1946; Nagel, 1970). An even more flexible structure takes the
objects to be any states of affairs or properties which might be regarded as desirable or un-
desirable in a nonderivative way. For any such states of affairs a and b, their concatenation
a ○ b is the conjunction of two states which are just as good as a and b, and which are “eval-
uatively independent” in a certain sense (see Danielsson, 1997).
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On any of these (or other) interpretations, the appropriateness of the axioms above may
of course be questioned. My view is that their acceptability depends on controversial, sub-
stantive questions about well-being, so that they should be regarded as open hypotheses
worthy of further investigation. In particular, their acceptability should depend on the re-
sulting implications for social welfare evaluation. One motivation for this paper is to draw
out some of those implications for assessment. The frameworks developed below, impor-
tantly, do not presuppose any particular interpretation of welfare concatenation (or even
that welfare is extensively measurable somehow or other—they may have economic appli-
cations regardless of our theory of welfare).

An important difference between length and well-being is that, in the case of length, all
values of an additive representation are positive. Formally, this is captured by an additional
positivity axiom, which requires that a ○ b ≻ a for all a, b ∈ X. That axiom makes (X,≽, ○) a
positive extensive structure. Though this case is of formal interest, we do not impose this
restriction here, because we find it hard to think of a conception of welfare onwhich it seems
reasonable: on any plausible theory, not everything is good.

There are many other variations on extensive measurement—for example, without the
Archimedean axiom (Carlson, 2007, 2010; Narens, 1974), Completeness (Carlson, 2011), or
Transitivity (Krantz, 1967). There are also variations on extensive structures with restricted
concatenation operations (Luce & Marley, 1969), those which combine expected utility the-
ory with extensive measurement (Luce, 1972), and a more general class of “concatenation
structures” which may be nonassociative (Luce et al., 2014, ch. 19). We leave an exploration
of these variations’ applications to social choice as a topic for further research.

3 Arrovian Social Welfare Functions

We begin by considering the implications of extensive measurement in a fixed-population
setting, without interpersonal comparisons of well-being. This will serve as a warm-up to
the more complex setting of section 5.

Let X be a set of alternatives, which is closed under some concatenation operation ○ ∶
X × X → X. We assume that some alternatives (at least three) are atomic—that is, not iden-
tical to the concatenation of other alternatives.3 Let A ⊂ X be the set of atomic alternatives.

3An extensive structure does not need to have atomic elements. They play an important role, however, in
the proof ofTheorem1. Itmay be possible to dowithout them, if there are instead sufficientlymany alternatives
that are mutually independent of each other in the sense of having no “parts” in common.
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Each alternative x ∈ X is either atomic or the concatenation of some number of atomic
alternatives—that is, x = a1 ○ ⋅ ⋅ ⋅ ○ ak for some a1, . . . , ak ∈ A. For example, the atomic alter-
natives might be events or histories, and their concatenation would be a sequence of events
or series of successive epochs. Or they might be allocations of commodity bundles, or dis-
tributions of freely combinable characteristics, with their concatenation simply combining
those allocations or distributions.

We assume a fixed population N = {1, 2, . . . ,n} of individuals. An Arrovian profile
R = (R1, . . . ,Rn) is an n-tuple of orderings on X, one for each individual in N. Our inter-
pretation of these orderings is that xRiy iff (according to profile R) x is at least as good for
i as y; this ordering may but need not be understood in terms of i’s actual or enlightened
preferences. As usual, Ii denotes the symmetric part of Ri, Pi its symmetric part. R is the
set of all orderings on X. An Arrovian social welfare function is a function f ∶ D ⊆ R → R
which assigns an overall betterness or social preference ordering to some set D of Arrovian
profiles. For any profile R ∈ D, let ≽R denote the ordering f(R).

We adopt the following domain assumption:

Extensive Domain A profile R ∈ D iff, for all i ∈ N, (X,Ri, ○) is an extensive structure.

By Proposition 1, every profileR in an extensive domain can be represented by a utility profile
U = (U1, . . . ,Un), where eachUi additively represents Ri—that is,Ui(x) ≥ Ui(y) iff xRiy and
Ui(x ○ y) = Ui(x) + Ui(y)—in which case we say that U itself additively represents R. For
any Arrovian profile R, let UR denote the set of all utility profiles that additively represent R,
and let UD ∶= ⋃R∈D UR.

We will be interested in various Pareto principles:

Weak Pareto For any x, y ∈ X and any Arrovian profile R ∈ D, if xPiy for every i ∈ N, then
x ≻R y.

Pareto Indifference For any x, y ∈ X and any Arrovian profile R ∈ D, if xIiy for every i ∈ N,
then x ∼R y.

Semistrong Pareto For any x, y ∈ X and any Arrovian profile R ∈ D, if xRiy for every i ∈ N,
then x ≽R y.

Strong Pareto For any x, y ∈ X and any Arrovian profile R ∈ D, if xRiy for every i ∈ N then
xRy; if, in addition, xPiy for some i ∈ N, then x ≻R y.
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Semistrong Pareto and Strong Pareto are, unlike Weak Pareto, strengthenings of Pareto In-
difference. (Semistrong Pareto was named and distinguished by Weymark (1991, 1993).)

For any binary relation R on X and any S ⊆ X, let R∣S denote the restriction of R to S.
Arrow imposed the following “Independence of Irrelevant Alternatives” condition:

Ordinal IIA For any x, y ∈ X and any Arrovian profiles R and R′ in D, if Ri∣{x,y} = R′i ∣{x,y}
for every i ∈ N, then x ≽R y iff x ≽R′ y.

We will instead use a weaker principle, which allows the social comparison of alternatives to
depend not just on individuals’ rankings of those alternatives, but also on their rankings of
concatenations involving them. For any S ⊆ X, let S○ denote the closure of S under ○—that
is, the set of all alternatives in S together with those obtainable from repeatedly applying ○
to pairs of alternatives in S (equivalently, the intersection of all subsets of X that contain all
elements of S and are closed under ○). According to

Ratio IIA For any x, y ∈ X and any Arrovian profiles R,R′ ∈ D, if Ri∣{x,y}○ = R′i ∣{x,y}○ for
every i ∈ N, then x ≽R y iff x ≽R′ y.4

Themotivation forweakeningOrdinal IIA toRatio IIA (and for its name) is that eachRi∣{x,y}○
fully determines the ratio of Ui(x) to Ui(y) for any Ui that additively represents Ri. In a
settingwhere such information is well-defined, there is no reason to exclude it as “irrelevant”
to the comparison of alternatives. The naturalness of Ratio IIA is confirmed by the fact that,
on our domain, Ratio IIA is equivalent to the following familiar condition:

Utility IIA For any x, y ∈ X, R,R′ ∈ D, and U ∈ UR,U′ ∈ UR′ , if Ui(x) = U′i(x) and Ui(y) =
U′i(y) for every i ∈ N, then x ≽R y iff x ≽R′ y.

Proposition 2. If an Arrovian social welfare function f satisfies Extensive Domain, then f sat-
isfies Ratio IIA iff it satisfies Utility IIA.

The proof of this and other results in this section is in Appendix A. The basic reason why
Proposition 2 holds is that the values assigned to particular alternatives by an additive rep-
resentation of an extensive structure is determined solely by the ordering of concatenations
of those particular alternatives. So two utility profiles coincide on a pair of alternatives just
in case the orderings represented by those profiles are the same when restricted to concate-
nations of those alternatives.

4A slightly stronger principle would replace the consequent of Ratio IIA with “≽R ∣{x,y}○ =≽R′ ∣{x,y}○ .” This
strengthening would be harmless for our purposes, but is also unnecessary.
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For any utility profileU ∈ UD and alternative x ∈ X, the utility vector assigned byU to x is
U(x) = (U1(x), . . . ,Un(x)). A social welfare function is welfarist iff the ordering it assigns
to any profile is determined by a single social welfare ordering ≽∗ on the set of attainable
utility vectors. According to

Welfarism There is a unique ordering ≽∗ on Rn such that, for any x, y ∈ X, R ∈ D, and
U ∈ UR, x ≽R y iff U(x) ≽∗ U(y).

When f and ≽∗ are so related, we say that ≽∗ is associated with f.
The standard “welfarism theorem” in the framework of social welfare functionals ap-

peals to analogues of Pareto Indifference and Utility IIA (Bossert & Weymark, 2004, Theo-
rem 2.2). It assumes, however, an unrestricted domain of utility profiles. It does not apply to
the present setting because we have restricted the domain via Extensive Domain. Neither do
analogous results for restricted domains due to Mongin (1994) and Weymark (1998). For-
tunately, however, we are still able to characterize Welfarism in terms of Pareto Indifference
and our IIA condition:

Theorem 1 (Welfarism Theorem). If an Arrovian social welfare function f satisfies Extensive
Domain, then f satisfies Pareto Indifference and Ratio IIA iff it satisfies Welfarism.

The basic insight behind the proof is that the set of utility vectors attainable by the atomic al-
ternatives is unrestricted. We are therefore able to define a social welfare ordering using only
atomic alternatives, and then show how this ordering determines the social welfare func-
tion’s assigned ordering over all alternatives. This strategy makes use of the fact (Lemma 1
in Appendix A) that for any pair of alternatives and any utility vectors which might be as-
signed to those alternatives, there is some utility profile in which that pair is assigned those
same utility vectors and some atomic alternative is assigned one of those vectors as well.

Not just any social welfare ordering is compatible with Extensive Domain, however—
only those which are invariant to individual-specific similarity transformations of utilities:

Intrapersonal Ratio-Scale Invariance For any utility vectors u, v,u′, v′ ∈ Rn, if for every
i ∈ N there is some ki > 0 such that u′i = kiui and v′i = kivi, then u ≽∗ v iff u′ ≽∗ v′.

Proposition 3. If an Arrovian social welfare function f satisfies Extensive Domain and Wel-
farism, then the social welfare ordering associated with f must satisfy Intrapersonal Ratio-Scale
Invariance.
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Intrapersonal Ratio-Scale Invariance plays a key role in the results of section 4.
A social welfare ordering ≽∗ is anonymous iff, for every u, v ∈ Rn, u ∼∗ v whenever there

is a permutation σ ∶ N→ N such that ui = vσ(i) for every i ∈ N. There are two corresponding
properties of social welfare functions:

Anonymity For all profiles R,R′ ∈ D, if there is a permutation σ ∶ N → N such that
Ri = R′σ(i) for every i ∈ N, then f(R) = f(R′).

Utility Anonymity For all R,R′ ∈ D, U ∈ UR, and U′ ∈ UR′ , if there is a permutation
σ ∶ N→ N such that Ui = U′σ(i) for every i ∈ N, then f(R) = f(R′).

Proposition 4. If an Arrovian social welfare function f satisfies Extensive Domain, then f sat-
isfies Anonymity iff f satisfies Utility Anonymity. If, in addition, f satisfies Welfarism, then f
satisfies Anonymity or Utility Anonymity iff ≽∗ is anonymous.

The various Pareto principles have obvious analogues in terms of the social welfare or-
dering as well. We do not state them separately. When we say that a social welfare ordering
≽∗ violates or satisfies one of the Pareto principles, we mean that it violates or satisfies the
obvious translation of that principle for ≽∗.

4 Possibilities and Impossibilities

Arrow (1951) showed that if a social welfare function defined on an unrestricted domain
satisfies Ordinal IIA and Weak Pareto, then it must be dictatorial: there must be some i ∈ N
such that, for any profile R ∈ D and alternatives x, y ∈ X, x ≻R y whenever xPiy. If we weaken
Arrow’s domain and independence axioms to Extensive Domain and Ratio IIA, this impli-
cation is avoided, and even Strong Pareto can be satisfied. These axioms are satisfied, for
example, by versions of the “headcount” rule considered by List (2001). A more sophisti-
cated example is the class of social welfare functions associated with the following class of
social welfare orderings, characterized by Naumova and Yanovskaya (2001, Theorem 4.1),
extending results from Kaneko and Nakamura, 1979:

Example 1. For any u ∈ Rn, let O(u) ∶= { v ∈ Rn ∣ sgn vi = sgnui for every i ∈ N} denote the
orthant containing u. Let O ∶= {U ⊂ Rn ∣ U = O(u) for someu ∈ Rn } denote the partition
ofRn into orthants. There is a linear (i.e., antisymmetric) ordering ⪰ onO such that, for any
u, v ∈ Rn where O(u) ≠ O(v), if ui ≥ vi for every i ∈ N, then O(u) ≻ O(v). And, for each
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U ∈ O, there are real numbers c1, . . . , cn such that sgn ci = sgnui for every u ∈ U and i ∈ N.
For any u, v ∈ R:

1. If O(u) ≻ O(v), then u ≻∗ v.

2. If O(u) = O(v), then u ≽∗ v iff∏i∈N ∣ui∣ci ≥∏i∈N ∣vi∣ci .

It is not difficult to see that a social welfare function which satisfies Extensive Domain and
is associated with this ordering satisfies Strong Pareto and Utility IIA and thus Ratio IIA.

The orderings described in Example 1 satisfy a number of further properties which are ex-
plored by Naumova and Yanovskaya. For example, they are continuous within each orthant,
and they are representable by a real-valued social utility function (Naumova & Yanovskaya,
2001, Corollary 4.1). They can also be anonymous within each orthant, by requiring that
each ci = cj whenever sgnui = sgnuj. They cannot be made fully anonymous, however,
because distinct orthants must be strictly ranked against one another.

Indeed, the failure of anonymity applies more generally:

Theorem 2. There is no Arrovian social welfare function that satisfies Extensive Domain,
Anonymity, Ratio IIA, and Strong Pareto (or, when n is even, Weak Pareto and Pareto In-
difference).

Theorem 2 may suggest that Anonymity is too much to ask of a social welfare function
in the present environment. However, the Arrovian axioms can be strengthened in a way
that requires the social welfare function to be strongly dictatorial: that is, theremust be some
individual i ∈ N such that, for any profile R ∈ D and alternatives x, y ∈ X, x ≽R y iff xRiy.
One way to do this is to require the social welfare ordering to be continuous in the sense
that its upper and lower contour sets are closed in Rn. Tsui and Weymark (1997) show that
a continuous social welfare ordering which satisfies Weak Pareto and Intrapersonal Ratio-
Scale Invariance must be strongly dictatorial (see also Nebel, 2023, for a simpler proof).
In my view, however, the ethical content of and motivation for continuity is not obvious.
It is standardly motivated by considerations regarding slight measurement errors (e.g., by
d’Aspremont & Gevers, 2002, p. 496). But, while sensitivity to such errors may be unfortu-
nate, it’s far from obvious that the ethical ordering of utility vectors shouldn’t be sensitive
to such errors. In order to figure out which alternatives are better or worse, why shouldn’t
we have to identify the correct profile (as opposed to one that is merely arbitrarily “close”
to the correct profile)? Especially given the distinguished role of neutral elements in an
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extensive structure, discontinuities when some utilities are zero in particular do not seem
unreasonable.

We therefore consider a different requirementwhich does not, by itself, entail continuity:

Extensive Social Preference For each profile R ∈ D, the triple (X,≽R, ○) is an extensive
structure.

The Monotonicity and Archimedean axioms are the most questionable of the conditions
for extensive measurement in this context. But if we assume those axioms for individual
welfare, we might reasonably impose them for the social ordering as well. For example, on
the successive-epochs interpretation of ○, Monotonicity can be motivated by the idea that a
choice between c ○ a and c ○ b is relevantly like choosing between futures a and b after a past
epoch c; what happened in previous epochs, we might think, should not matter for future
evaluation except insofar as it affects people today or in the future, in which case those effects
should be considered in the valuation of a and b. The Archimedean axiom captures the
intuition that no alternatives are “infinitely” better or worse than any others. As in the case
of individual welfare, my view is that the applicability of these axioms to social evaluation
should be regarded as an open question, which depends on the nature of the alternatives,
the interpretation of ○, as well as our general ethical commitments.

Our main limitative result for Arrovian social welfare functions is as follows:

Theorem 3. If a social welfare function f satisfies Extensive Domain, then f satisfies Ratio IIA,
Weak Pareto, and Extensive Social Preference iff it is strongly dictatorial.

The proof goes as follows. First, we show that Extensive Domain, Ratio IIA, Weak Pareto,
andExtensive Social Preference together entail SemistrongPareto (Lemma2). Since Semistrong
Pareto entails Pareto Indifference, these axioms together entail Welfarism, by Theorem 1.
Next, given Welfarism, Extensive Social Preference is equivalent to (Rn,≽∗,+) being an ex-
tensive structure (Lemma 3). Thus, by Proposition 1, ≽∗ must be additively representable
by a social utility function (or “Bergson–Samuelson social welfare function”) W ∶ Rn → R.
Semistrong Pareto forces this function to be of the weighted utilitarian form—i.e., a lin-
ear combination of utilities—with nonnegative weights (Lemma 4). Finally, Weak Pareto
and Intrapersonal Ratio-Scale Invariance together require exactly one person’s weight to be
positive; this proves the theorem. An obvious corollary of this result is that there is no Ar-
rovian social welfare function that satisfies Extensive Domain, Ratio IIA, Strong Pareto, and
Extensive Social Preference.
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Some might respond to Theorems 2 and 3 by suggesting a restriction of the domain
to positive extensive structures, in the sense defined on page 6. This might seem promis-
ing because anonymous social welfare orderings on Rn

++ can satisfy Weak Pareto and In-
trapersonal Ratio-Scale Invariance. These conditions uniquely characterize the “symmetric
Cobb–Douglas” ordering, which compares vectors by the unweighted product of utilities
(Moulin, 1988, p. 38). It is worth pausing to reflect on the qualitative interpretation of this
ordering: what does it mean tomultiply together people’s utilities in the present setting? The
answer is easiest to see by reformulating the Cobb-Douglas ordering in terms of products
of ratios of utilities: u ≽∗ v iff∏i∈N ui/vi ≥ 1. For each individual, each alternative stands in
a well-defined utility ratio to every other; this ratio is preserved by all admissible transfor-
mations of utility functions, and can be understood in terms of the concatenation operation
○. The Cobb-Douglas ordering simply compares alternatives by the product of utility ratios
between those alternatives. (A similar interpretation applies to the ordering in Example 1.)

I am not satisfied by this response to our results, for three reasons. First, as I have al-
ready said, I find it difficult to imagine a conception of welfare on which everything is good
for everyone, in the sense that concatenation always increases everyone’s welfare. The re-
striction to positive extensive structures therefore seems to me unreasonable. Second, if we
want social preferences to satisfy the axioms of extensive measurement (positive or not), the
symmetric Cobb–Douglas ordering does not meet this desideratum. For example, take the
vectors u = (1, 4),u′ = (4, 1), v = (2, 3), v′ = (3, 2). We have u + u′ = v + v′, but v and v′ are
both better than u and u′ by the symmetric Cobb–Douglas ordering. That is inconsistent
with (Rn

++,≽∗,+) being an extensive structure. Third, we do not have a welfarism theorem
for positive extensive structures. Our proof strategy for Theorem 1 would not work for such
structures because the analogue of Lemma 1 would not be valid. (For example, if x is the
concatenation of all atomic alternatives and all utilities are positive, it’s not possible to assign
the same utility vector to both x and an atomic alternative.) It would be useful to have a char-
acterization of welfarism on Rn

++ for a social welfare function whose domain is restricted to
positive extensive structures. I leave that task, however, for future research.

If we want both individual welfare and social evaluation to satisfy the axioms of exten-
sive measurement, a more promising approach is to enrich the informational basis of social
evaluation so as to include interpersonal comparisons of welfare levels, rather thanmerely of
welfare ratios. Echoing Sen (1977b, p. 80), “n-tuples of individual orderings”—even when
supplemented by an extensive concatenation operation—“are informationally inadequate
for representing conflicts of interests.”
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5 Generalized Variable-Population Social Welfare Functions

We now generalize the framework of section 3 to include both interpersonal comparisons
and variable populations. We do this by adapting elements from Hammond (1976) and
Blackorby et al. (2005).

Let N = {1, 2, . . . } represent the set of all possible individuals. Let X once again denote
the set of alternatives. For any x ∈ X, N(x) ⊂ N is the set of individuals who ever live in
x—x’s population. We assume that N(x) is finite and nonempty for all x ∈ X. P denotes the
set of all finite, nonempty subsets of N. For any i ∈ N, Xi ⊆ X denotes the set of alternatives
in which i ever lives—i.e., Xi ∶= { x ∈ X ∶ i ∈ N(x) }. For any N ∈ P , XN denotes the set of
alternatives whose populations are N—i.e., XN ∶= { x ∈ X ∶ N(x) = N}.

We assume, as before, thatX is closed under a concatenation operation ○ ∶ X×X→ X. We
assume that, for each i ∈ N, there are at least three atomic alternatives a, b, c ∈ A{ i} in which
only i exists. (There may be other atomic alternatives, too.) We assume that all nonatomic
alternatives are identical to the concatenation of some atomic alternatives. We require that,
for any x, y ∈ X, N(x ○ y) = N(x) ∪N(y).

For any x ∈ X and i ∈ N(x), I call the pair (x, i) a life. L denotes the set of all lives—i.e.,
L ∶= { (x, i) ∈ X ×N ∣ i ∈ N(x) }. In order to “add up” thewell-beings of different individuals,
wewill need away of concatenating these lives. We could take such an operation as primitive,
but we can instead define it here in terms of the alternative-concatenation operation ○which
we already have, at the cost of some additional assumptions.

LetRL denote the set of all orderings onL, andRX the set of all orderings onX. An inter-
personal profile is an ordering R ∈RL. The interpretation of this ordering is that (x, i)R(y, j)
iff x is at least as good for i (according to profile R) as y is for j. Adapting terminology from
Hammond (1976), a generalized social welfare function is a mapping f ∶ D ⊆ RL → RX. For
any interpersonal profile R ∈ D, we write ≽R for f(R).

In order to define a concatenation operation on lives, we impose the following condition:

Matching For any interpersonal profile R ∈ D and any (x, i), (y, j) ∈ L, there is some k ∈ N
and x′, y′ ∈ Xk such that (x′, k)I(x, i) and (y′, k)I(y, j), and, for any such k, x′, y′, if i = j
then (x ○ y, i)I(x′ ○ y′, k).

This lets us, for anyR ∈ D, define an operation⊕R ∶ L×L→ L as follows: for any (x, i), (y, j) ∈
L, let (x, i) ⊕R (y, j) = (x′ ○ y′, k) for some k, x′, y′ such that (x′, k)I(x, i) and (y′, k)I(y, j).
When there are multiple such k, x′, y′, the choice can be arbitrary, since Matching requires
all such choices to be equally good according to R.
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The axioms of extensive measurement will tell us, for any x, y ∈ X and i ∈ N(x) ∩N(y),
how to value i’s life in x ○ y in terms of her life in x and her life in y: (x ○ y, i)I(x, i)⊕ (y, i).
But what if i ∈ N(x) ∖ N(y)? A natural hypothesis is that, since i does not even exist in y,
concatenating y to x should not affect i’s well-being—that is,

Irrelevance of Nonexistence For any interpersonal profile R ∈ D, x, y ∈ X, and i ∈ N(x) ∖
N(y), (x ○ y, i)I(x, i).

There may well be conceptions of well-being, and of alternative-concatenation, on which Ir-
relevance of Nonexistence fails. But I suspect that those conceptions would either be at odds
with the axioms of extensive measurement applied to well-being anyway, or would counte-
nance welfare comparisons to nonexistence, which would require a very different departure
from the framework of Blackorby et al. (2005).

We can now state our domain condition:

Interpersonal Extensive Domain A profile R ∈ D iff R satisfies the Matching and Irrele-
vance of Nonexistence conditions, and (L,R,⊕R) is an extensive structure.

Given Interpersonal Extensive Domain, it follows from Proposition 1 that each profile R ∈
D can be additively represented by a real-valued utility function. U ∶ L → R additively
represents a profile R ∈ D iff, for all (x, i), (y, j) ∈ L, U(x, i) ≥ U(y, j) iff (x, i)R(y, j), and
U((x, i)⊕R (y, j)) = U(x, i)+U(y, j)). As before, let UR denote the set of all utility functions
that additively represent R, and UD ∶= ⋃R∈D UR.

The various Pareto conditions have the same interpretation as in section 3; they only
apply to fixed-population comparisons:

Weak Pareto For any N ∈ P , x, y ∈ XN, and R ∈ D, if (x, i)P(y, i) for every i ∈ N, then
x ≻R y.

Pareto Indifference For any N ∈ P , x, y ∈ XN, and R ∈ D, if (x, i)I(y, i) for every i ∈ N,
then x ∼R y.

Semistrong Pareto For any N ∈ P , x, y ∈ XN, and R ∈ D, if (x, i)R(y, i) for every i ∈ N,
then x ≽R y.

Strong Pareto For any N ∈ P , x, y ∈ XN, and R ∈ D, if (x, i)R(y, i) for every i ∈ N then
x ≽R y; if, in addition, (x, i)P(y, i) for some i ∈ N, then x ≻R y.

15



The reformulation of Ratio IIA in this framework requires some care, because our life-
concatenation operation is profile-dependent. For any subset of alternatives S ⊆ X, let
L(S) ∶= ⋃x∈S { x} × N(x) denote the set of all lives led among the alternatives in S. For
any such S and any profile R, let L(S)⊕R denote the closure of L(S) under ⊕R. Given any
S,T ⊆ X and any profiles R,R′, a profile isomorphism is a bijection φ ∶ L(S)⊕R → L(T)⊕R′

such that, for all (x, i), (y, j) ∈ L(S):

(i) (x, i)R(y, j) iff φ(x, i)R′φ(y, j), and

(ii) φ((x, i)⊕R (y, j)) = φ(x, i)⊕R′ φ(y, j).

Our Independence of Irrelevant Alternatives condition will be

Interpersonal Ratio IIA For all R,R′ ∈ D and x, y ∈ X, if there is a profile isomorphism
φ ∶ L({x, y})⊕R → L({x, y})⊕R′ such that φ(x, i) = (x, i) and φ(y, j) = (y, j) for all
i ∈ N(x) and j ∈ N(y), then x ≽R y iff x ≽R′ y.

As with Ratio IIA, this principle is equivalent to a more familiar utility-theoretic condition:

Generalized Utility IIA For any R,R′ ∈ D, U ∈ UR, U′ ∈ UR′ and x, y ∈ X, if for all i ∈
N(x), j ∈ N(y), U(x, i) = U′(x, i) and U(y, j) = U′(y, j), then x ≽R y iff x ≽R′ y.

Proposition 5. If a generalized social welfare function f satisfies Interpersonal Extensive Do-
main, then f satisfies Interpersonal Ratio IIA iff f satisfies Generalized Utility IIA.

For any utility profile U ∶ L → R, let U(x, ⋅) ∶ N(x) → R denote x’s utility distribution
in profile U. For any population N ∈ P , RN denotes the set of all utility distributions with
domain N. The set of all utility distributions is Ω ∶= ⋃N∈P RN. We call these distributions
rather than vectors because Ω is not a vector space: we cannot add together utility distribu-
tions with different populations. The variable-population analogue of Welfarism is

Variable-PopulationWelfarism There is a unique social welfare ordering ≽∗ on Ω such
that, for any R ∈ D, U ∈ UR, and x, y ∈ X, x ≽R y iff U(x, ⋅) ≽∗ U(y, ⋅).

As in section 3, the key to our welfarism theorem in this setting is that the set of attainable
utility distributions for the atomic alternatives is unrestricted. We have not assumed the
existence of atomic alternatives for each population, however—only for each singleton pop-
ulation. But, for any population, we can find an atomic alternative for each member of the
population and concatenate them to form an alternative in which all of those individuals
exist. This is the strategy behind the proof of Theorem 4 in Appendix C:
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Theorem 4 (Variable-Population Welfarism Theorem). If a generalized social welfare func-
tion f satisfies Interpersonal Extensive Domain, then f satisfies Pareto Indifference and Inter-
personal Ratio IIA iff it satisfies Variable-Population Welfarism.

As in the fixed-population setting, Interpersonal Extensive Domain imposes a further con-
straint on the social welfare ordering—it must be invariant to common similarity transfor-
mations of individual utilities:

Interpersonal Ratio-Scale Invariance For every u, v ∈ Ω and positive real number k, u ≽∗

v iff ku ≽∗ kv.

Proposition 6. If a generalized social welfare function f satisfies Interpersonal Extensive Do-
main and Variable-Population Welfarism, then the social welfare ordering associated with f
must satisfy Interpersonal Ratio-Scale Invariance.

6 A Qualitative Axiomatization of Classical Utilitarianism

In the present framework, classical utilitarianism can be formulated as follows. For any
alternative x ∈ X and profile R ∈ D, let ⊕R

i∈N(x)(x, i) denote the concatenation of all the
individuals’ lives in x in arbitrary order.

Classical Utilitarianism For any x, y ∈ X and R ∈ D, x ≽R y iff⊕i∈N(x)(x, i) ≥⊕i∈N(y)(y, i).

Given Interpersonal Extensive Domain, Classical Utilitarianism is equivalent to the claim
that, for any x, y ∈ X, R ∈ D, and U ∈ UR, x ≽R y iff∑i∈N(x)U(x, i) ≥ ∑i∈N(y)U(y, i).

Our axiomatization of Classical Utilitarianism appeals to Weak Pareto, Interpersonal
Ratio IIA, and two further conditions. The first is an anonymity condition. It is not obvi-
ous how best to generalize Anonymity to the variable-population setting. In the setting of
Hammond (1976), with a fixed population N = {1, 2, . . . ,n}, Anonymity can be reformu-
lated to require that f(R) = f(R′) whenever there is a permutation σ ∶ N → N such that,
for all x, y ∈ X and i, j ∈ N, (x, i)R(y, j) iff (x, σ(i))R′(y, σ(j)). The problem is that, in the
variable-population framework, there is no nontrivial permutation σ ∶ N → N such that,
for all x, y ∈ X, i ∈ N(x), and j ∈ N(y), (x, i)R(y, j) iff (x, σ(i))R′(y, σ(j)). Blackorby et al.
(2005) get around this by imposing anonymity as an intraprofile condition. In the present
framework, the natural analogue of their condition would be

Welfare Anonymity For any profile R ∈ D and x, y ∈ X, if there is a bijection σ ∶ N(x) →
N(y) such that (x, i)I(y, σ(i)) for all i ∈ N(x), then x ∼R y
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While this has the merit of simplicity and directness, it is much stronger than a mere com-
mitment to impartiality between individuals. For example, it implies Pareto Indifference.5

Fortunately, for our purposes, wewill not need to assumeWelfareAnonymity as a premise.
Instead, we simply require the restriction of the social ordering to the alternatives facing a
fixed population to be invariant to permutations on that fixed set of individuals:

Fixed-Population Anonymity For any N ∈ P and R,R′ ∈ D, if there is a permutation
σ ∶ N → N and a profile isomorphism φ ∶ L(XN)⊕R → L(XN)⊕R′ such that φ(x, i) =
(x, σ(i)) for all (x, i) ∈ L(XN), then for all x, y ∈ XN, x ≽R y iff x ≽R′ y.

In terms of numerical utilities, Fixed-Population Anonymity amounts to the following:

Fixed-Population Utility Anonymity For any R,R′ ∈ D, U ∈ UR, U′ ∈ UR′ and N ∈ P , if
there is a permutation σ ∶ N → N such that U(x, i) = U′(x, σ(i)) for all L ∈ XN × N,
then for all x, y ∈ XN, x ≽R y iff x ≽R′ y.

Proposition 7. If a generalized social welfare function f satisfies Interpersonal Extensive Do-
main, then f satisfies Fixed-PopulationAnonymity iff f satisfies Fixed-PopulationUtilityAnonymity.

The final principle we need is

Extensive Social Preference For all R ∈ D, (X,≽R, ○) is an extensive structure.

The Monotonicity axiom of extensive measurement is particularly controversial when ap-
plied to variable-population social preference. It rules out views on which the value of ad-
ditional lives depends on how many other people have ever existed or how well off they
were (Asheim & Zuber, 2014; Hurka, 1983; Sider, 1991). However, precisely that feature
is what makes such views seem, to many, unattractive (Mulgan, 2001; Nebel, 2022a). It is
also unclear whether such views can satisfactorily avoid, in full generality, the “repugnant”
conclusions that have been used to motivate them (Spears & Budolfson, 2021).

One especially powerful implication of Extensive Social Preference in the variable-population
setting is that, in the presence of Interpersonal Extensive Domain and Pareto Indifference,
it implies that the addition of “null” lives to a population is always a matter of social in-
difference. An alternative z ∈ X is null for individual i ∈ N(z), relative to a profile R, iff
(z, i) ⊕R (z, i)I(z, i). An alternative z is universally null, relative to R, iff z is null for all
i ∈ N(z). According to

5Blackorby et al. (2005) avoid this by formally including nonwelfare information as a component of each
profile and requiring nonwelfare information to be permuted among individuals in addition to their welfare
levels. In addition to the extra complexity introduced by this information, it’s not obvious that all “nonwelfare
information” can be freely reassigned among individuals in the way required for this to work.
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Null Critical Levels For any R ∈ D and any universally null z ∈ X, x ○ z ∼R x for all x ∈ X.

Proposition 8. If a generalized social welfare function f satisfies Interpersonal Extensive Do-
main, Pareto Indifference, and Extensive Social Preference, then it satisfies Null Critical Levels.

The intuition behind Proposition 8 is that since concatenating a universally null alterna-
tive with itself is a matter of indifference for each individual, by Pareto Indifference its self-
concatenation is also a matter of indifference from the social perspective. The axioms of
extensive measurement then imply that its concatenation to any other alternative must also
be a matter of social indifference.

Null Critical Levels plays a crucial role in the proof of our main result:

Theorem5 (Characterization of Classical Utilitarianism). If a generalized social welfare func-
tion f satisfies Interpersonal Extensive Domain, then f satisfies Interpersonal Ratio IIA, Weak
Pareto, Fixed-Population Anonymity, and Extensive Social Preference iff f satisfies Classical
Utilitarianism.

The strategy behind the proof is as follows. Given Null Critical Levels, each utility distribu-
tion can be “extended” by adding individuals with zero utility; all such extensions will be
equally good. We are therefore able to strengthen Variable-Population Welfarism by con-
structing an “extended” social welfare ordering on the space R∞ of all infinite sequences
with finite support (Lemma 7). Fixed-Population Anonymity then requires this extended
social welfare ordering to be fully anonymous (Lemma 8). By Extensive Social Preference
and Proposition 1, the extended ordering can be additively represented by a real-valued so-
cial utility function. The proof of Theorem 5 then amounts to showing that this additive
representation is of the weighted utilitarian form and that all weights must be equal.

A great deal of the work in proving Theorem 5 is done by Extensive Social Preference.
Clearly this is a very strong condition. Indeed, it is sufficiently strong that we do not even
invoke Interpersonal Ratio-Scale Invariance in the proof. We might therefore want to know
how Classical Utilitarianism might be derived in this framework without assuming Exten-
sive Social Preference. An answer is provided in Appendix E. Theorem 6 there characterizes
Classical Utilitarianism in terms of Interpersonal Extensive Domain, Strong Pareto, Inter-
personal Ratio IIA, and five principles imposed directly on the social welfare ordering. This
theorem illustrates how the classical utilitarian is committed to a large number of indepen-
dent principles, some of which lack an obvious ethical motivation or qualitative interpre-
tation. One thing we learn from Theorem 5 is how many of these commitments can be
weakened, unified, and subsumed in a simple way via Extensive Social Preference.
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7 The Sen–Weymark Critique Revisited

Wehave seen how extensivemeasurement can be used to provide simple characterizations of
strong dictatorship and classical utilitarianism. As I have emphasized, it is not clear whether
the axioms of extensive measurement are satisfied when applied to well-being, so it is (in
my view) not clear whether there is even such a thing as the “sum” of people’s well-beings,
and thus whether classical utilitarianism is even well-defined, let alone true. But we have
seen that, if we can make sense of adding together individuals’ well-being (via Interper-
sonal Extensive Domain), all we need to obtain classical utilitarianism is Interpersonal Ratio
IIA, Weak Pareto, Fixed-Population Anonymity, and, most controversially, Extensive Social
Preference. It is noteworthy that analogues of the last two conditions led to impossibilities
when interpersonal comparisons were excluded.

The structure of Theorem 5 is reminiscent of Harsanyi (1955)’s “aggregation theorem”
(and its multi-profile version in Mongin, 1994). Whereas we impose extensive measure-
ment at the individual and social levels, Harsanyi imposed expected utility theory at both
levels. Both results rely on a Pareto principle to connect the individual and social evalua-
tions. Whereas our Pareto principle is applied to concatenations of alternatives, Harsanyi’s
Pareto principle is applied to lotteries over alternatives—which von Neumann and Morgen-
stern (1944, p. 24) call a “natural operation” of “combination of two utilities with two given
alternative probabilities.” Harsanyi’s conclusion is that social preferences can be represented
as maximizing a weighted sum of von Neumann–Morgenstern utilities.

It is controversial, however, whether Harsanyi’s utilities represent an “an attribute of
persons which it is meaningful to sum” (Roemer, 1998, p. 30). The key insight behind this
critique of Harsanyi is that, as Sen (1977a) and Weymark (1991) remind us, preferences
which satisfy the expected utility axioms don’t have to be represented as maximizing the
expectation of von Neumann–Morgenstern utilities (see also Arrow, 1951; Fishburn, 1989;
Luce & Raiffa, 1957). If we represent individual preferences using nonexpectational utility
functions, the social ordering won’t be representable as maximizing a weighted sum of those
utility functions. In order to get a utilitarian conclusion, then, Harsanyi needs a reason to
privilege the expectational rather than nonexpectational representations of individual pref-
erences, and it’s not clear what that reason could be.6

The connection between this “Sen–Weymark critique” and the present study is antic-
6For further discussion of this issue, see Broome (1991), Fleurbaey and Mongin (2016), Grant et al. (2010),

Greaves (2017), Nebel (2022b), and Risse (2002).
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ipated by Weymark (2005). Drawing on Krantz et al. (1971), Weymark observes that an
extensive structure does not have to be given an additive representation. Applied to our
variable-population framework, the point is as follows. Suppose that a generalized social
welfare function satisfies Interpersonal Extensive Domain, so that for each profile R ∈ D,
there is a utility function U ∶ L → R which additively represents R. It is easy to see that the
functionV ∶ L→ R++ given byV = exp(U)multiplicatively representsR, in the sense that, for
any (x, i), (y, j) ∈ L, (x, i)R(y, j) iffV(x, i) ≥ V(y, j), andV((x, i)⊕R(y, j)) = V(x, i)×V(y, j).
Using such a representation, the principle labeled Classical Utilitarianism is equivalent to
the principle that, for any alternatives x, y ∈ X, profile R ∈ D, and V ∶ L → R++ which mul-
tiplicatively represents R, x ≽R y iff ∏i∈N(x)V(x, i) ≥ ∏i∈N(y)V(y, i). What, then, justifies
the interpretation of this principle as a utilitarian, rather than “prioritarian,” social welfare
function?

My answer is that, ultimately, the numerical representation of our social welfare function
does not matter; all that matters is the ordering it assigns to each profile. A classical utilitar-
ian believes that alternatives should be compared by their sums of well-being. But since a
person’s well-being is not a number, this “sum” must be understood in terms of some qual-
itative operation on the objects of individual evaluation, rather than the arithmetic opera-
tion of addition. If Interpersonal Extensive Domain is satisfied, then the life-concatenation
operation ⊕ has as good a claim as anything to determine the semantic value of “sum” as
applied to well-being. By way of analogy, in the measurement of length, we could just as
well represent the length of a concatenation of rods by the product of numbers assigned to
the concatenated rods rather than by the sum of those numbers. But there is no temptation
to infer from this that the length of the concatenation is not the sum of the lengths of the
rods so concatenated, since we recognize that the “sum” of two lengths refers to the length
of the concatenated rod, not to the number assigned to that length by some arbitrary scale.
This is simply a semantic fact determined by our usage of the word “sum” as applied to
lengths. More generally, since alternative numerical representations of relational structures
are ubiquitous in the theory of measurement, it seems fetishistic to expect an axiomatiza-
tion of utilitarianism to deliver a social ordering that can only be represented as maximizing
an arithmetic sum of numerical utilities. Just as there is nothing wrong with a physicist
who uses multiplicative rather than additive representations of extensive physical quanti-
ties, there is nothing wrong with a classical utilitarian who represents her social ordering as
maximizing the product of numerical utilities, so long as the arithmetic product represents,
for her, the same concatenation operation that is conventionally represented by addition.
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As Krantz et al. (1971, p. 100) observe, “It would take some getting used to—for example,
the multiplicative scales are unique up to positive powers rather than up to multiplication
by positive constants—but that is only a matter of familiarity.”

A different problem is that there may be multiple concatenation operations for well-
being which satisfy the axioms of extensivemeasurement. For example, in themeasurement
of length, we could concatenate rods diagonally, by taking a ○ b to be the hypotenuse of a
right triangle with sides a and b (Ellis, 1966); this example is also discussed by Weymark,
2005. It’s clear, however, that an interpretation of our language which defines the “sum” of
the lengths of two rods to be the length of their diagonal concatenation is inconsistent with
the facts of usage. In the case of well-being, existing usage might not be sufficiently rich
to secure a determinate interpretation of expressions like “sum” (as suggested by Greaves,
2017). Our framework, however, is compatible with many possible interpretations of⊕, and
it seems to me that if there is any such thing as the sum of well-being, it must be understood
in terms of some extensive concatenation operation or other (Nebel, forthcoming). Given
a definition of “sum” as applied to well-being in terms of some interpretation of ⊕, the so-
cial welfare function characterized uniquely by the axioms of Theorem 5 compares alterna-
tives by their sums of well-being so defined. It therefore seems reasonable to call this social
welfare function “classical utilitarianism.” Indeed, I find it hard to see what else (beyond
more compelling axioms) we could reasonably expect from an axiomatization of classical
utilitarianism—or, even if we could, how it could possibly matter.

Thus, while a version of the Sen–Weymark critique could be applied to an argument for
classical utilitarianism from Theorem 5, so applied it strikes me as uncompelling. This does
not mean, however, that the actual Sen–Weymark critique, applied to Harsanyi, is similarly
uncompelling. Itmay even be strengthened by the possibility of extensivemeasurement. For
suppose that well-being is susceptible to extensive measurement and that we understand
“adding” well-being in terms of concatenation. Then Harsanyi’s sum of von Neumann–
Morgenstern utilities represents the sum of well-being only if each individual’s ranking of
lotteries maximizes the expectation of her well-being so understood. This amounts to the
requirement that von Neumann–Morgenstern utilities be affine with respect to an additive
representation of our extensive structure. But it is not at all obvious why this should be
so. And there is some reason to think that it shouldn’t be: if we can compare arbitrary
lotteries with countable support, an expectational utility representation must be bounded;
but an additive representation of a closed extensive structure with non-null elements can-
not be bounded, so von Neumann–Morgenstern utilities cannot be affine with respect to
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such a representation. On the other hand, if well-being is not susceptible to extensive mea-
surement, this might strengthen the case for thinking (with Broome, 1991) that quantities of
well-being get their meaning from an expectational utility representation (though we would
not be forced to that conclusion).

This suggests a sort of middle ground in the debate over the utilitarian relevance of
Harsanyi’s theorem, between the uniquivocal extremes that “Harsanyi’s aggregation theo-
rem is not a theorem about utilitarianism” (Roemer, 1998, p. 143) and that “Harsanyi has
gone as far towards defending ‘utilitarianism in the original sense’ as could coherently be
asked” (Greaves, 2017, p. 175). The problem for Harsanyi is not that there are alterna-
tive (i.e., nonexpectational) numerical representations of preferences which satisfy the von
Neumann–Morgenstern axioms, but rather that there are alternative qualitative structures
which may be used to measure well-being—other ways of giving “meaning to the utilities to
be added” (Arrow, 1973, p. 255).

A Proofs for Section 3

Proof of Proposition 2. Suppose that f satisfies Extensive Domain and Ratio IIA. Take some
x, y ∈ X, R,R′ ∈ D, and U ∈ UR,U′ ∈ UR′ such that Ui(x) = U′i(x) and Ui(y) = U′i(y) for every
i ∈ N. For each z ∈ {x, y}○, there must be n and m such that Ui(z) = nUi(x) +mUi(y) and
U′i(z) = nU′i(x) +mU′i(y) for every i ∈ N. Thus Ui(z) = U′i(z) for all z ∈ {x, y}○. We must
therefore have Ri∣{x,y}○ = R′i ∣{x,y}○ for every i ∈ N, so x ≽R y iff x ≽R′ y by Ratio IIA, and Utility
IIA is therefore satisfied.

For the other direction, suppose that f satisfies Extensive Domain and Utility IIA. Take
some x, y ∈ X and R,R′ ∈ D such that Ri∣{x,y}○ = R′i ∣{x,y}○ for every i ∈ N. Take some U ∈ UR
and V ∈ UR′ . For any w, z ∈ {x, y}○ and i ∈ N, we have wRiz iff wR′iz iff Vi(w) ≥ Vi(z), and
Vi(w ○ z) = Vi(w)+Vi(z). It follows that each Vi∣{ x,y}○ additively represents Ri∣{ x,y}○ . Since
U ∈ UR, Ui∣{ x,y}○ also additively represents Ri∣{ x,y}○ . Thus, by the uniqueness component
of Proposition 1, for each i ∈ N there must be some ki such that Vi = kiUi. Now let U′i =
(1/ki)Vi for every i ∈ N, so that U′ = (U′1, . . . ,U′n) ∈ UR′ and U′i ∣{ x,y}○ = Ui∣{ x,y}○ . We have
Ui(x) = U′i(x) and Ui(y) = U′i(y) for every i ∈ N, so x ≽R y iff x ≽R′ y by Utility IIA, and
Ratio IIA is therefore satisfied. (Indeed, since Ui∣{ x,y}○ = U′i ∣{ x,y}○ , we also have the stronger
consequence that ≽R ∣{x,y}○ = ≽R′ ∣{x,y}○ .)
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The following lemma plays a key role in the proof of Theorem 1; it appeals crucially to
our assumption that there are at least three atomic alternatives:

Lemma 1. If an Arrovian social welfare function f satisfies Extensive Domain, then for any
alternatives x, y ∈ X, utility profile U ∈ UD, and any utility vector w ∈ Rn, there is an atomic
alternative a ∈ A ⊂ X and some profile V ∈ UD such that V(x) = U(x), V(y) = U(y), and
V(a) = w.

Proof. For any alternatives x, y ∈ X, there are atomic alternatives a1, . . . , ak ∈ A and non-
negative integers n1, . . . ,nk (at least one of which is positive) and m1, . . . ,mk (at least one
of which is positive), where either ni or mi is positive for every i ∈ {1, . . . , k}, such that for
any profile V ∈ UD, V(x) = ∑k

i=1 niai and V(y) = ∑k
i=1miai. If k < 3, the proof is trivial: since

there are at least three alternatives in A, simply let V(ai) = w for some ai ∈ A ∖ {a1,a2} and
V(aj) = U(aj) for all j ≠ i. This obviously preserves V(x) = U(x) and V(y) = U(y). Suppose
instead, then, that k ≥ 3. The rest of the proof proceeds by cases. To simplify exposition, let
U(x) = u and U(y) = v.

Case 1. Assume that, for some real number c, ni = cmi for every i ∈ {a1, . . . , ak}. Then
let V(a1) = w. We can easily preserve V(x) = u by letting V(a2) = w(1 − n1)/n2 and
V(ai) = 0 for all i > 2. (The former is well-defined because at least one of n2 and m2 must
be positive and n2 = cm2 for some real number c.) This preserves V(y) = v because V(y) =
cn1w + cn2[w(1 − n1)/n2] = cu = v.

Case 2. Assume there is no real number c such that ni = cmi for every i ∈ {a1, . . . , ak}. Thus,
for some i, j ∈ {1, . . . , k}—say, without loss of generality, i = 1 and j = 2—nimj ≠ njmi.
(Otherwise the assumption of this case would be contradicted by c = n1/m1 or c = m1/n1;
at least one of these must be well-defined since at least one of n1 or m1 is positive.) Let
V(ak) = 0 for all k > 3, and V(a3) = w. A bit of algebra shows that, by letting

V(a1) =
m2(u − n3w) + n2(m3w − v)

m2n1 −m1n2

and
V(a2) =

m1(u − n3w) + n1(m3w − v)
m1n2 −m2n1

,

we preserve both V(x) = u and V(y) = v.
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Proof of Theorem 1. Suppose that f satisfies Extensive Domain, Pareto Indifference, and Ra-
tio IIA. By Proposition 2, f also satisfies Utility IIA. Define a social welfare ordering ≽∗ on
Rn as follows: for any u, v ∈ Rn, u ≽∗ v iff for some atomic a, b ∈ A, R ∈ D, and U ∈ UR,
U(a) = u, U(b) = v, and a ≽R b.

For any u, v ∈ Rn, there are a, b ∈ A, R ∈ D, and U ∈ UR such that U(a) = u and U(b) = v.
So, by the completeness of ≽R, either u ≽∗ v or v ≽∗ u.

We then show that, for any x, y ∈ X, R ∈ D, andU ∈ UR, x ≽R y if and only ifU(x) ≽∗ U(y):

1. Suppose x ≽R y. Using Lemma 1, choose an R′ ∈ D, U′ ∈ UR′ and atomic a ∈ A such
that U′(a) = U′(x) = U(x) and U′(y) = U(y). Utility IIA implies x ≽R′ y, and Pareto
Indifference implies a ∼R′ x, so a ≽R′ y by the transitivity of ≽R′ . Use Lemma 1 again
to find a profile R′′ ∈ D,U′′ ∈ UR′′ , and atomic b ∈ A such that U′′(b) = U′′(y) = U′(y)
andU′′(a) = U′(a). By Utility IIA, Pareto Indifference, and transitivity again, we have
a ≽R′′ b, as desired.

2. Suppose U(x) ≽∗ U(y). Let U(x) = u and U(y) = v. Then there must be some
a, b ∈ A, R ∈ D, and V ∈ UR such that V(a) = u, V(b) = v, and a ≽R b. Use Lemma 1
to find an R′ ∈ D, U′ ∈ UR′ and a′ ∈ A such that U′(a′) = U′(x) = u and U′(y) = v,
and then another R′′ ∈ D, U′′ ∈ UR′′ and b′ ∈ A such that U′′(b′) = U′′(y) = v and
U′′(a′) = u. Since the domain is unrestricted with respect to atomic alternatives and
there are at least three of them, there must be some c ∈ A ∖ {b, b′}, R1,R2,R3 ∈ D,
and V1 ∈ UR1 ,V2 ∈ UR2 ,V3 ∈ UR3 such that (i) V1(a) = V1(c) = u and V1(b) = v, (ii)
V2(c) = u and V2(b) = V2(b′) = v, and (iii) V3(a′) = V3(c) = u and V3(b′) = v. By
Utility IIA, Pareto Indifference, and transitivity again, a ≽R b iff c ≽R1 b iff c ≽R2 b′ iff
a′ ≽R3 b′ iff a′ ≽R′′ b′ iff a′ ≽R′ y iff x ≽R y, as desired.

To show that ≽∗ is transitive, suppose that u ≽∗ v and v ≽∗ w. There must be some R ∈ D,
U ∈ UR, and a, b, c ∈ A such that U(a) = u, U(b) = v, and U(c) = w. Given what we just
showed above, we must have a ≽R b ≽R c, and thus a ≽R c by the transitivity of ≽R. Thus
u ≽∗ w.

It is easy to see thatWelfarism implies Pareto Indifference andUtility IIA and thus, given
Extensive Domain and Proposition 2, Ratio IIA.

Proof of Proposition 3. Suppose that f satisfies Extensive Domain and Welfarism. Take any
utility vectorsu, v,u′, v′ ∈ Rn forwhich, for every i ∈ N, there is some ki > 0 such thatu′i = kiui
and v′i = kivi. Suppose that u ≽∗ v. Then for any R ∈ D, U ∈ UR, and x, y ∈ X such thatU(x) =
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u and U(y) = v, x ≽R y. For any such R and U, the profile U′ = (k1U1, . . . , knUn) additively
represents R as well, by the uniqueness component of Proposition 1. So by Welfarism, u′ ≽∗

v′ as well.

Proof of Proposition 4. Suppose that f satisfies Extensive Domain and Anonymity. Take any
R,R′ ∈ D, U ∈ UR, and U′ ∈ UR′ , and permutation σ ∶ N → N such that Ui = U′σ(i) for every
i ∈ N. This is possible only if Ri = Rσi . So f(R) = f(R′) by Anonymity and Utility Anonymity
is satisfied.

Suppose next that f satisfies Extensive Domain and Utility Anonymity. Take any R,R′ ∈
D and σ ∶ N → N such that Ri = R′σ(i) for every i ∈ N. Fix a profile U ∈ UR. Let U′ =
(Uσ(1), . . . ,Uσ(n)). Clearly U′ ∈ UR′ . So f(R) = f(R′) by Utility Anonymity and Anonymity
is satisfied.

Now suppose that f satisfies ExtensiveDomain,Welfarism, andAnonymity and therefore
Utility Anonymity. The anonymity of ≽∗ follows from the proofs of d’Aspremont andGevers
(1977, Lemmas 4 and 5). It is easy to see that if ≽∗ is anonymous, it must also satisfy Utility
Anonymity and therefore Anonymity.

B Proofs for Section 4

Proof of Theorem 2. Take a social welfare function f that satisfies Extensive Domain, Ratio
IIA, and either Strong Pareto or the conjunction of Pareto Indifference and Weak Pareto. By
Theorem 1 and Proposition 3, f satisfies Welfarism and its associated social welfare ordering
satisfies Intrapersonal Ratio-Scale Invariance. By Proposition 4, f satisfies Anonymity iff its
associated social welfare ordering is anonymous. We show that ≽∗ cannot be anonymous
given Strong Pareto or, when n is even, Weak Pareto.

First assume Strong Pareto. Let a > b > 0. By Strong Pareto and the anonymity of
≽∗, (a, 0, . . . , 0) ∼ (0, . . . , 0,a) ≻ (0, . . . , 0, b), so (a, 0, . . . , 0) ≻ (0, . . . , 0, b). By the same
reasoning, (0, . . . , 0,a) ≻ (b, 0, . . . , 0). But Intrapersonal Ratio-Scale Invariance implies
that (a, 0, . . . , 0) ≻ (0, . . . , 0, b) iff (b, 0, . . . , 0) ≻ (0, . . . , 0,a), by multiplying person 1’s
utilities in both vectors by b/a and person n’s by a/b.

Next assume Weak Pareto and suppose that n is even. For any x, y ∈ R, let (x, y) denote
the vector inRn the first half of whose components equal x and whose second half equals y.
By Weak Pareto and the anonymity of ≽∗, (a,−b) ∼ (−b, a) ≻ (−a,b), so (a,−b) ≻ (−a,b).
By the same reasoning, (b,−a) ∼ (−a,b) ≺ (−b, a), so (b,−a) ≺ (−b, a). But these are
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inconsistent with Intrapersonal Ratio-Scale Invariance, which implies that (a,−b) ≻ (−a,b)
iff (b,−a) ≻ (−b, a).

We now lay out three results concerning Extensive Social Preference; these lead to the
proof of Theorem 3.

Lemma 2. If an Arrovian social welfare function f satisfies Extensive Domain, Ratio IIA,Weak
Pareto, and Extensive Social Preference, then it must also satisfy Semistrong Pareto.

Proof. Suppose that f satisfies Extensive Domain, Ratio IIA, Weak Pareto, and Extensive
Social Preference. Suppose for reductio that, for some x, y ∈ X and R ∈ D, xRiy for all i ∈ N
but y ≻R x. Take some U ∈ UR and use Lemma 1 to find an R′ ∈ D, V ∈ UR′ , and z ∈ X such
that V(x) = U(x),V(y) = U(y),V(z) = U(y) − (1, . . . , 1). By Ratio IIA and Proposition 2,
y ≻R′ x. This implies, by the Archimedean property, that for some natural number n, ny ○
z ≽R′ nx ○ x. By Extensive Domain, V(ny ○ z) = V(ny) + V(z) = (n + 1)V(y) − (1, . . . , 1),
and V(nx ○ x) = V(nx) + V(x) = (n + 1)V(x). But since Vi(x) ≥ Vi(y) for every i ∈ N,
(n+ 1)Vi(x) > (n+ 1)Vi(y)− 1 for every i ∈ N and natural number n. Thus we cannot have
ny ○ z ≽R′ nx ○ x by Weak Pareto.7

Lemma 3. If a social welfare function f satisfies Extensive Domain and Welfarism, then f sat-
isfies Extensive Social Preference iff its associated social welfare ordering ≽∗ satisfies Extensive
SWO:

Extensive SWO The triple (Rn,≽∗,+) is an extensive structure.

Proof. Suppose that f satisfies ExtensiveDomain andWelfarism. Transitivity andComplete-
ness are built into the definitions of ≽R and ≽∗. Vector addition is associative, and Weak As-
sociativity of ○ with respect to ∼R follows from Extensive Domain and Pareto Indifference,
which is implied by Welfarism. So it remains to show that (X,≽R, ○) satisfies Monotonicity
and Archimedean iff (Rn,≽∗,+) does.

For Monotonicity, take any u, v,w ∈ Rn, and any R ∈ D, U ∈ UR, and x, y, z ∈ X such that
U(x) = u, U(y) = v, and U(z) = w. Welfarism implies that u ≽∗ v iff x ≽R y, and x ○ z ≽R y ○ z
iff u +w ≽∗ v +w. Extensive Social Preference implies that x ≽R y iff x ○ z ≽R y ○ z; Extensive
SWO implies u ≽∗ v iff u +w ≽∗ v +w. Whichever we assume, the other follows. The proof
for the Archimedean axiom is analogous.

7I am grateful to Zachary Goodsell for the central insight behind this proof.
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Lemma 4. If a social welfare ordering ≽∗ satisfies Extensive SWO and Semistrong Pareto, then
it is additively represented by a social utility function W ∶ Rn → R of the following form: for
some c1, . . . , cn ≥ 0,

W(u) =∑
i∈N

ciui for all u ∈ Rn. (1)

Proof. By Extensive SWO and Proposition 1, ≽∗ is representable by someW ∶ Rn → Rwhich
satisfy’s Cauchy’s functional equation (2):

W(u + v) =W(u) +W(v) for all u, v ∈ Rn (2)

The general solution to such an equation is of the following form (Aczél & Dhombres, 1989,
p. 35):

W(u) =
n
∑
i=1

Wi(ui) (3)

where each Wi ∶ R→ R satisfies equation (4):

Wi(x + y) =Wi(x) +Wi(y) for all x, y ∈ R (4)

In order to satisfy Semistrong Pareto, each Wi must be nondecreasing. Thus, by Aczél and
Dhombres (1989, Corollary 2.5, p. 15), for eachWi there must be a constant ci ≥ 0 such that

Wi(x) = cix for all x ∈ R (5)

Putting equations (3) and (5) together, we get (1).

Proof of Theorem 3. Suppose that f satisfies Extensive Domain, Ratio IIA, Weak Pareto, and
Extensive Social Preference. By Lemma 2, f also satisfies Semistrong Pareto and thus Pareto
Indifference. So, byTheorem1, Proposition 3, and Lemma 3, f satisfiesWelfarism and the as-
sociated social welfare ordering ≽∗ satisfies Intrapersonal Ratio-Scale Invariance and Exten-
sive SWO. Lemma 4 then implies that ≽∗ must be additively representable by a W ∶ Rn → R
which satisfies equation (1) with nonnegative weights.

In order to satisfy Weak Pareto, there must be some i ∈ N such that ci > 0. We then show
that, for any j ∈ N ∖ {i}, cj = 0. Suppose for reductio that, for some distinct i, j ∈ N, ci > 0
and cj > 0. Consider the unit vectors ei, ej ∈ Rn with all components equal to 0 except the
ith (resp., jth) which equals 1. We have W(ei) = ci and W(ej) = cj by equation (1). If ci and
cj are both positive, then there must be some natural numbers n and m such that nci > cj
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and mcj > ci by the Archimedean property of the real numbers. Since W(nei) = nci and
W(mej) = mcj, this implies that nei ≻∗ ej and mej ≻∗ ei. But, by Intrapersonal Ratio-Scale
Invariance, nei ≻∗ ej implies ei ≻∗ mej.

We have shown there to be exactly one i ∈ N such that ci > 0; for all other j ∈ N, cj = 0.
Thus, W(u) = ciui for all u ∈ Rn, so the social welfare function must be strongly dictatorial.
It is easy to see that if f satisfies Extensive Domain and is strongly dictatorial, it must also
satisfy Ratio IIA, Weak Pareto, and Extensive Social Preference.

C Proofs for Section 5

Proof of Proposition 5. Suppose first that f satisfies Interpersonal Extensive Domain and In-
terpersonal Ratio IIA, and that for some R,R′ ∈ D, U ∈ UR, U′ ∈ UR′ and x, y ∈ X, U(x, i) =
U′(x, i) andU(y, j) = U′(y, j) for all i ∈ N(x), j ∈ N(y). Define a bijection φ ∶ L({x, y})⊕R →
L({x, y})⊕R′ as follows. If s ∈ L({x, y}), let φ(s) = s. If s ∈ L({x, y})⊕R ∖ L({x, y}),
there must be some s1, . . . , sk ∈ L({x, y}) with k ≥ 2 such that s = s1 ⊕R ⋅ ⋅ ⋅ ⊕R sk; let
φ(s) = s1 ⊕R′ ⋅ ⋅ ⋅ ⊕R′ sk. Clearly U(s) = U′(φ(s)) for all s ∈ L({x, y}); and for all s =
s1 ⊕R ⋅ ⋅ ⋅ ⊕R sk ∈ L({x, y})⊕R ∖ L({x, y}), U(s) = U(s1 ⊕R ⋅ ⋅ ⋅ ⊕R sk) = U(s1) + ⋅ ⋅ ⋅ +U(sk) =
U′(s1) + ⋅ ⋅ ⋅ + U′(sk) = U′(s1 ⊕R′ ⋅ ⋅ ⋅ ⊕R′ sk) = U′(φ(s)). Thus, for all s ∈ L({x, y})⊕R,
U(s) = U′(φ(s)). So for any s, t ∈ L({x, y})⊕R, U(s) ≥ U(t) iff U′(φ(s)) ≥ U′(φ(t)), so
sRt iff φ(s)R′φ(t); and, by construction, φ(s ⊕R t) = φ(s) ⊕R′ φ(t). Thus φ is a profile iso-
morphism, so by Interpersonal Ratio IIA, x ≽R y iff x ≽R′ y and Generalized Utility IIA is
satisfied.

Suppose next that f satisfies Interpersonal Extensive Domain and Generalized Utility
IIA, and that for someR,R′ ∈ D and x, y ∈ X, there is a profile isomorphismφ ∶ L({x, y})⊕R →
L({x, y})⊕R′ such that φ(x, i) = (x, i) and φ(y, j) = (y, j) for all i ∈ N(x) and j ∈ N(y).
Pick a U ∈ UR and U′ ∈ UR′ . For any s, t ∈ L({x, y})⊕R , we have sRt iff φ(s)R′φ(t) iff
U′(φ(s)) ≥ U′(φ(t)), and U′(φ(s ⊕R t)) = U′(φ(s) ⊕R′ φ(t)) = U′(φ(s)) + U′(φ(t)).
Let V ∶ L({x, y})⊕R → R denote the composition of U′∣L({ x,y})⊕R′ with φ. We’ve just seen
that V additively represents R∣L({ x,y})⊕R : for any s, t ∈ L({x, y})⊕R , sRt iff V(s) ≥ V(t) iff
U′(φ(s)) ≥ U′(φ(t)), and V(s ⊕R t) = V(s) + V(t) = U′(φ(s)) + U′(φ(t)). Since U ∈ UR,
U∣L({ x,y})⊕R also additively represents R∣L({ x,y})⊕R . Thus, by the uniqueness component of
Proposition 1, there must be some k > 0 such thatV(s) = kU(s) for all s ∈ L({x, y})⊕R . Now
let V′ = (1/k)U′, so that V′ ∈ UR′ and V′(φ(s)) = U(s) for all s ∈ L({x, y})⊕R . Remember
that φ(s) = s for all s ∈ L({x, y}). So V′(x, i) = U(x, i) and V′(y, j) = U(y, j) for all i ∈ N(x)
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and j ∈ N(y). Therefore, by Generalized Utility IIA, x ≽R y iff x ≽R′ y, and Interpersonal
Ratio IIA is satisfied.

For any population N ∈ P , let {ai }i∈N be a set of atomic alternatives with N(ai) = { i}
for each ai. Let◯i∈Nai denote the concatenation of all these alternatives in arbitrary order,
so that N(◯i∈Nai) = N. Let AN denote the set of all such concatenations of one-person
alternatives involving the members of N. For any populations M,N ∈ P and x ∈ AM and
y ∈ AN, where x =◯i∈Mai and y =◯i∈Nbi, say that x and y are nonoverlapping iff {ai }i∈M ∩
{bi }i∈N = ∅. We have the following lemma:

Lemma 5. If a generalized social welfare function f satisfies Interpersonal Extensive Domain,
then for any populations M,N,O ∈ P , there are nonoverlapping alternatives x ∈ AM, y ∈ AN,
and z ∈ AO. And, for any such x, y, z, and any utility distributions u ∈ RM, v ∈ RN,w ∈ RO,
there is a utility profile U ∈ UD such that U(x, ⋅) = u,U(y, ⋅) = v,U(z, ⋅) = w.

Proof. For each individual, there are at least three atomic alternatives in which only that
individual exists. So we can find disjoint sets of atomic alternatives {ai }i∈M, {bj }j∈N, and
{ ck }k∈O. Let x = ◯i∈Mai, y = ◯j∈Nbj, z = ◯k∈Ock, so that x ∈ AM, y ∈ AN, and z ∈ AO

are nonoverlapping. For any u ∈ RM, v ∈ RN,w ∈ RO, we can find some U ∈ UD such that
U(ai, i) = ui, U(bj, j) = vj, and U(ck, k) = wk for all i ∈M, j ∈ N, k ∈ O. By the Irrelevance of
Nonexistence condition of Interpersonal Extensive Domain, (x, i)I(ai, i), (y, j)I(bj, j), and
(z, k)I(ck, k) for all i ∈ M, j ∈ N, k ∈ O. So U(x, i) = ui, U(y, j) = vj, and U(z, k) = wk for
every i ∈M, j ∈ N, k ∈ O. Thus U(x, ⋅) = u, U(y, ⋅) = v, and U(z, ⋅) = w, as desired.

Lemma 5 provides us with a set of free triples in the sense of Weymark (1998)—i.e., a set of
three alternatives for which the domain of attainable utility distributions is unrestricted. We
also have the following analogue of Lemma 1:

Lemma 6. If f satisfies Interpersonal Extensive Domain, then for any populationsM,N,O ∈ P ,
alternatives x ∈ XM and y ∈ XN, any utility profile U ∈ UD, and utility distribution w ∈ RO,
there is a z ∈ AO and V ∈ UD such that V(x, ⋅) = U(x, ⋅), V(y, ⋅) = U(y, ⋅), and V(z, ⋅) = w.

Proof. The proof is analogous to that of Lemma 1, except that we choose an atomic alter-
native ai ∈ A{ i} for each i ∈ O and let z be the concatenation of all these alternatives. This
is trivial for i ∉ O ∩M ∩ N. For i ∈ O ∩M ∩ N, we use exactly similar solutions to those
in the proof of Lemma 1 to find an ai ∈ A{ i} and a V ∈ UD such that V(ai, i) = wi while
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preserving V(x, i) = U(x, i) and V(y, i) = U(y, i). We then let z be the concatenation of all
these atomic, one-person alternatives, so that V(z, ⋅) = wi for every i ∈ O while preserving
V(x, ⋅) = U(x, ⋅) and V(y, ⋅) = U(y, ⋅), as desired.

We can then use Lemmas 5 and 6 to define our social welfare ordering on Ω:

Proof of Theorem 4. Suppose that f satisfies Interpersonal Extensive Domain, Pareto Indif-
ference, and Interpersonal Ratio IIA. Define the social welfare ordering as follows: for any
M,N ∈ P , u ∈ RM, and v ∈ RN, u ≽∗ v iff, for some nonoverlapping a ∈ AM and b ∈ AN, R ∈ D
and U ∈ UR such that U(a, ⋅) = u and U(b, ⋅) = v, a ≽R b.

By Lemma 5, for any u ∈ RM, and v ∈ RN, there must be some nonoverlapping a ∈ AM

and b ∈ AN, R ∈ D, and U ∈ UR such that u = U(a, ⋅) and v = U(b, ⋅). Since ≽R is complete,
we have either a ≽R b or b ≽R a, which implies either u ≽∗ v or v ≽ u respectively. Thus ≽∗ is
complete.

We then show that, for any x, y ∈ X, R ∈ D, and U ∈ UR, x ≽R y if and only if U(x, ⋅) ≽∗

U(y, ⋅):

1. Suppose x ≽R y. Using Lemma 6, choose an R′ ∈ D, U′ ∈ UR′ and a ∈ AN(x) such
thatU′(a, ⋅) = U′(x, ⋅) = U(x, ⋅) andU′(y, ⋅) = U(y, ⋅). Generalized Utility IIA implies
x ≽R′ y, and Pareto Indifference implies a ∼R′ x, so a ≽R′ y by the transitivity of ≽R′ . Use
Lemma 6 again to find a profile R′′ ∈ D,U′′ ∈ UR′′ , and b ∈ AN(y) such that U′′(b, ⋅) =
U′′(y, ⋅) = U′(y, ⋅) and U′′(a, ⋅) = U′(a, ⋅). By Utility IIA, Pareto Indifference, and
transitivity again, we have a ≽R′′ b, as desired.

2. Suppose U(x, ⋅) ≽∗ U(y, ⋅). Let U(x, ⋅) = u and U(y, ⋅) = v. By the definition of ≽∗,
there must be some nonoverlapping a ∈ AN(x) and b ∈ AN(y), R ∈ D, and V ∈ UR such
that V(a, ⋅) = u, V(b, ⋅) = v, and a ≽R b. Use Lemma 6 to find an R′ ∈ D, U′ ∈ UR′
and a′ ∈ AN(x) such that U′(a′, ⋅) = U′(x, ⋅) = u and U′(y, ⋅) = v, and then another
R′′ ∈ D, U′′ ∈ UR′′ and b′ ∈ AN(y) such that U′′(a′, ⋅) = u and U′′(b′, ⋅) = U′′(y, ⋅) = v.
By Lemma 5, there must be some c ∈ AN(x) which does not overlap with b or b′, and
R1,R2,R3 ∈ D, and V1 ∈ UR1 ,V2 ∈ UR2 ,V3 ∈ UR3 such that (i) V1(a, ⋅) = V1(c, ⋅) = u and
V1(b, ⋅) = v, (ii) V2(c, ⋅) = u and V2(b, ⋅) = V2(b′, ⋅) = v, and (iii) V3(a′, ⋅) = V3(c, ⋅) =
u and V3(b′, ⋅) = v. By Utility IIA, Pareto Indifference, and transitivity again, a ≽R b
iff c ≽R1 b iff c ≽R2 b′ iff a′ ≽R3 b′ iff a′ ≽R′′ b′ iff a′ ≽R′ y iff x ≽R y, as desired.

To show that ≽∗ is transitive, take any M,N,O ∈ P and u ∈ RM, v ∈ RN,w ∈ RO such that
u ≽∗ v ≽∗ w. By Lemma 5, there must be some nonoverlapping a ∈ AM, b ∈ AN, c ∈ AO,
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R ∈ D, and U ∈ UR such that U(x, ⋅) = u,U(y, ⋅) = v,U(z, ⋅) = w. We have just shown above
that x ≽R y ≽R z and thus x ≽R z by the transitivity of ≽R, so u ≽∗ v, as required.

It is easy to see that ≽∗ is unique and that Variable-Population Welfarism implies Pareto
Indifference and Generalized Utility IIA and therefore Interpersonal Ratio IIA.

The proof of Proposition 6 is exactly similar to that of Proposition 3 and is therefore
omitted.

D Proofs for Section 6

Proof of Proposition 7. Suppose that f satisfies Interpersonal Extensive Domain and Fixed-
Population Anonymity. Take some R,R′ ∈ D, U ∈ UR, U′ ∈ UR′ , N ∈ P , and permutation
σ ∶ N→ N such thatU(x, i) = U′(x, σ(i)) for all L ∈ XN×N. Define φ ∶ L(XN)⊕R → L(XN)⊕R′

as follows. For all (x, i) ∈ L(XN), let φ(x, i) = (x, σ(i)); if s ∈ L(XN)⊕R ∖ L(XN), there
must be some s1, . . . , sk ∈ L(XN) with k ≥ 2 such that s = s1 ⊕R ⋅ ⋅ ⋅ ⊕R sk, so let φ(s) =
φ(s1)⊕R′ ⋅ ⋅ ⋅ ⊕R′ φ(sk). By reasoning analogous to that in the first paragraph of the proof of
Proposition 5, φ is a profile isomorphism. Therefore, for all x, y ∈ XN, x ≽R y iff x ≽R′ y, so
Fixed-Population Utility Anonymity is satisfied.

Suppose next that f satisfies Interpersonal Extensive Domain and Fixed-PopulationUtil-
ity Anonymity. Take some R,R′ ∈ D, N ∈ P , permutation σ ∶ N → N, and profile isomor-
phism φ ∶ L(XN)⊕R → L(XN)⊕R′ such that φ(x, i) = (x, σ(i)) for all (x, i) ∈ XN ×N. By rea-
soning analogous to that in the second paragraph of the proof of Proposition 5, there exist
U ∈ UR,U′ ∈ UR′ such thatU(x, i) = U′(x, σ(i)) for all (x, i) ∈ XN×N. So, by Fixed-Population
Utility Anonymity, ≽R ∣XN =≽R′ ∣XN , and Fixed-Population Anonymity is satisfied.

Proof of Proposition 8. Take any profile R and z ∈ X such that (z, i)⊕R (z, i)I(z, i) for all i ∈
N(z). By theMatching condition of Interpersonal Extensive Domain, (z, i)⊕R(z, i)I(z○z, i)
for all i ∈ N(z). Thus, by Pareto Indifference, z○z ∼R z. So, by the Monotonicity condition of
Extensive Social Preference, x○(z○z) ∼R x○z; by Weak Associativity, x○(z○z) ∼R (x○z)○z,
so (x ○ z) ○ z ∼R x ○ z by Transitivity; by Monotonicity again, x ○ z ∼R x.

As mentioned in section 5, the field Ω of the social welfare ordering ≽∗ is not a vector
space: we cannot add together utility distributions with different domains. This can be rec-
tified by strengthening Variable-Population Welfarism in the following way. LetR∞ denote
the set of all infinite sequences with finite support—i.e., R∞ ∶= {u ∶ N → R∣ui = 0 for all i ≥

32



n for somen ∈ N}. Unlike Ω, R∞ is a vector space: for any u, v ∈ R∞, (u + v)i = ui + vi for
every i ∈ N. For any population N ∈ P , let ιN ∶ RN ↪ R∞ denote canonical inclusion such
that for each u ∈ RN, ιN(u)i = ui for all i ∈ N and ιN(u)j = 0 for all j ∈ N ∖N. Let ι ∶ Ω ↪ R∞

(no subscript) denote the union of all these inclusions. We call an ordering ≽∞ on R∞ an
extended social welfare ordering. According to

ExtendedWelfarism There is a unique social welfare ordering ≽∞ on R∞ such that, for
any profile R ∈ D, any U ∈ UR, and any alternatives x, y ∈ X, x ≽R y iff ι(U(x, ⋅)) ≽∞

ι(U(y, ⋅)).

Lemma 7. If a generalized social welfare function f satisfies Interpersonal Extensive Domain,
then f satisfies Welfarism and Null Critical Levels iff it satisfies Extended Welfarism.

Proof. Take any M,N ∈ P , u ∈ RM, and v ∈ RN. Suppose ιM(u) = ιN(v). We show that
u ∼∗ v. This is obvious if M = N, since then u = v. So suppose M ≠ N. Let u ⌢ v denote the
utility distribution in RM∪N such that, for all i ∈ M ∪ N, (u ⌢ v)i = ui = vi if i ∈ M ∩ N and
(u ⌢ v)i = 0 otherwise. We show that u ∼∗ (u ⌢ v) ∼∗ v.

By Lemma 5, there must be some x ∈ XM, z ∈ XN, R ∈ D, andU ∶ L→ R which additively
represents R such that U(x, ⋅) = u and U(z, i) = 0 for all i ∈ N. It follows from Proposition 1
that z is universally null. So by Proposition 8, x ○ z ∼R x. Notice, however, that U(x ○ z, ⋅) =
u ⌢ v, so by Welfarism u ∼∗ (u ⌢ v). An exactly similar argument shows v ∼∗ (u ⌢ v). Thus
u ∼∗ v.

We now define ≽∞ as follows: for all u, v ∈ R∞, u ≽∞ v iff, for some M,N ∈ P and
u′ ∈ RM, v′ ∈ RN such that ι(u′) = u and ι(v′) = v, u′ ≽∗ v′. For any such u, v ∈ R∞, there
exist M,N ∈ P and u′ ∈ RM, v′ ∈ RN such that ι(u′) = u and ι(v′) = v, so ≽∞ inherits
completeness from ≽∗. And we’ve just seen that for any M′,N′ ∈ P ,u∗ ∈ RM′ , v∗ ∈ RN′ such
that ι(u∗) = ι(u′) = u and ι(v∗) = ι(v′) = v, u′ ∼∗ u∗ and v′ ∼∗ v∗, so u∗ ≽∗ v∗ iff u ≽∞ v. It’s
easy to see that ≽∞ must also be transitive and is unique.

For the other direction, suppose that f satisfies Extended Welfarism. Then we define the
social welfare ordering ≽∗ as follows: for all u, v ∈ Ω, u ≽∗ v iff ι(u) ≽∞ ι(v). It’s clear that
≽∗ is an ordering and that, by Extended Welfarism, for any x, y ∈ X, R ∈ D, and U ∈ UR,
x ≽R y iff U(x, ⋅) ≽∗ U(y, ⋅). Finally, to see that Extended Welfarism implies Null Critical
Levels, suppose that z is universally null in a profile R. Then for any U ∈ UR, U(z, i) = 0 for
all i ∈ N(z). For any x ∈ X, ι(U(x ○ z, ⋅)) = ι(U(x, ⋅)), so by Extended Welfarism, x ○ zIx.

An extended social welfare ordering is fully anonymous iff, for any permutation σ ∶ N→
N and u, v ∈ R∞ such that ui = vσ(i) for every i ∈ N, u ∼∞ v.

33



Lemma 8. If a generalized social welfare function f satisfies Interpersonal Extensive Domain
and Extended Welfarism, then f satisfies Fixed-Population Anonymity iff its associated ex-
tended social welfare ordering ≽∞is fully anonymous.

Proof. Suppose f satisfies Interpersonal ExtensiveDomain and ExtendedWelfarism. Clearly
if ≽∞is fully anonymous, then Fixed-Population Anonymity must be satisfied. For the other
direction, suppose that f satisfies Fixed-Population Anonymity and thus Fixed-Population
Utility Anonymity (by Proposition 7). Take any u, v ∈ R∞ such that, for some permutation
σ ∶ N → N, ui = vσ(i) for every i ∈ N. Let N = { i ∈ N ∣ ui ≠ vi }. Since u and v have finite
support, N must be finite even if σ itself has infinite support. Consider the distributions
u∗, v∗ ∈ RN such that ι(u∗) = u and ι(v∗) = v. There is a permutation σ∗ ∶ N → N such
that u∗i = v∗σ∗(i) for every i ∈ N. By Fixed-Population Utility Anonymity and Proposition 4,
u∗ ∼∗ v∗. Thus, by Extended Welfarism, u ∼∞ v, as desired.

Proof of Theorem 5. Suppose that f satisfies Interpersonal Extensive Domain, Interpersonal
Ratio IIA, Weak Pareto, Fixed-Population Anonymity, and Extensive Social Preference. By
Lemma 2, f must also satisfy Semistrong Pareto and thus Pareto Indifference. So by Theo-
rem 4 and Proposition 8, f satisfiesWelfarism andNull Critical Levels and thus, by Lemma 7,
Extended Welfarism. By Fixed-Population Anonymity and Lemma 8, the extended social
welfare ordering ≽∞ is fully anonymous.

The proof of Lemma 3 can be easily adapted to show that (R∞,≽∞,+) is an extensive
structure. So ≽∞ is additively representable by a social utility function W ∶ R∞ → R which
satisfies Cauchy’s functional equation (6):

W(u + v) =W(u) +W(v) for allu, v ∈ R∞. (6)

For each i ∈ N, define Wi ∶ R → R so that Wi(x) =W(ι{ i}(i ↦ x)) for all x ∈ R. For every
u ∈ R∞, there is some k ∈ N such that

u = (u1, 0, 0, . . . ) + (0,u2, 0, 0, . . . ) + ⋅ ⋅ ⋅ + (0, . . . , 0,uk, 0, 0, . . . ) + (0, 0, . . . ) (7)

So, by equation (6),

W(u) =W(u1, 0, 0, . . . ) +W(0,u2, 0, 0, . . . ) + ⋅ ⋅ ⋅ +W(0, . . . , 0,uk, 0, 0, . . . ) +W(0, 0, . . . )
(8)
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Since W(0, 0, . . . ) = 0, this simplifies to

W(u) = (u1, 0, 0, . . . ) + (0,u2, 0, 0, . . . ) + ⋅ ⋅ ⋅ + (0, . . . , 0,uk, 0, 0, . . . ) (9)

so, by equation (6) and the definition of Wi,

W(u) =
k
∑
i=1

Wi(ui) (10)

For each i ∈ N, we must have:

Wi(x + y) =Wi(x) +Wi(y) for all x, y ∈ R. (11)

Thus Wi(0) = 0 for all i ∈ N, so

W(u) =
∞
∑
i=1

Wi(ui) for allu ∈ R∞ (12)

Each Wi must be nondecreasing in order to satisfy Semistrong Pareto. So by Aczél and
Dhombres (1989, Corollary 2.5, p. 15), for eachWi there must be a constant ci ≥ 0 such that

Wi(x) = cix for all x ∈ R (13)

In order to satisfy Weak Pareto and the full anonymity of ≽∞, there must be some c > 0 such
that ci = c for all i ∈ N. So

W(u) =
∞
∑
i=1

c(ui) = c
∞
∑
i=1

ui for allu ∈ R∞ (14)

For any such c, and any x, y ∈ X, R ∈ D, and U ∈ UR, W(ι(U(x, ⋅))) ≥ W(ι(U(y, ⋅))) iff
∑i∈N(x)U(x, i) ≥ ∑i∈N(y)U(y, i).

E An Alternative Characterization of Classical Utilitarianism

Blackorby et al. (2005, Theorem 6.24) characterize the “classical means of order r.” These are
social welfare orderings which compare utility distributions as follows: there exist β, r ∈ R++
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such that for any M,N ∈ P , u ∈ RM, and v ∈ RN, u ≽∗ v iff

∑
i∈M∶ui≥0

uri − β ∑
i∈M∶ui<0

(−ui)r ≥ ∑
i∈N∶vi≥0

vri − β ∑
i∈N∶vi<0

(−vi)r (15)

To characterize these orderings we introduce three new conditions:

Variable-Population Continuity For all N,M ∈ P and u ∈ RM, the sets { v ∈ RN ∣ v ≽∗ u}
and { v ∈ RN ∣ u ≽∗ v} are closed in RN.

Weak Existence of Critical Levels For someN ∈ P , u ∈ RN, i ∈ N∖N, and v ∈ RN∪{ i} such
that vj = uj for all j ∈ N, u ∼∗ v.

Existence Independence For all u, v,w ∈ Ω such that u ∪w, v ∪w ∈ Ω, u ≽∗ v iff u ∪w ≽∗

v ∪w.

Proposition 9. If a generalized social welfare function f satisfies Interpersonal Extensive Do-
main, then f is associated with a classical mean of order r iff f satisfies Interpersonal Extensive
Domain, Interpersonal Ratio IIA, Strong Pareto, and Fixed-Population Anonymity and its as-
sociated social welfare ordering satisfies Variable-Population Continuity, Weak Existence of
Critical Levels, and Existence Independence.

Proof. Weak Existence of Critical Levels, Existence Independence, and Strong Pareto to-
gether imply that there is a single critical level for all alternatives (Blackorby et al., 2005,
Theorem 6.9). Interpersonal Ratio-Scale Invariance then implies Null Critical Levels (Black-
orby et al., 2005, Theorem 6.23), so the social welfare function satisfies Extended Welfarism
(Lemma 7). So, by Fixed-Population Anonymity and Lemma 8, the social welfare ordering
must be fully anonymous. The axioms of Blackorby et al. (2005, Theorem 6.24) are therefore
satisfied, so ≽∗ must be a classical mean of order r.

The classical utilitarian social welfare ordering is the classical mean of order rwith β, r =
1. As Blackorby and Donaldson (1982, Theorem 4) show, we can force r = 1 and β ≥ 1
by requiring the social welfare ordering to be weakly averse to inequality, in the following
sense. For any N ∈ P and distributions u, v ∈ RN, u is unambiguously at least as equal as v iff
either u is a permutation of v or u is obtainable from v via finitely many Pigou-Dalton utility
transfers (Blackorby et al., 2005, p. 93).

Weak Inequality Aversion For any N ∈ P and u, v ∈ RN, if u is unambiguously at least as
equal as v, then u ≽ ∗v.
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This still leaves the possibility that β > 1, in which case negative utilities are weighted more
heavily than positive ones. This can be ruled out by imposing

Reflection Anti-Invariance For any u, v ∈ Ω and k < 0, u ≽∗ v iff kv ≽∗ ku.8

Putting all this together, we have

Theorem 6. If a generalized social welfare function f satisfies Interpersonal Extensive Domain,
then f satisfies Classical Utilitarianism iff f satisfies Strong Pareto and Ratio IIA and its associ-
ated social welfare ordering satisfies Variable-Population Continuity, Weak Existence of Criti-
cal Levels, Existence Independence, Weak Inequality Aversion, and Reflection Anti-Invariance.

Proof of Theorem 6. Suppose that f satisfies Interpersonal Extensive Domain, Strong Pareto,
and Ratio IIA. By Theorem 4 and Proposition 6, f satisfies Variable-Population Welfarism
and the associated social welfare ordering satisfies Interpersonal Ratio-Scale Invariance.
Weak Inequality Aversion implies Fixed-Population Anonymity so, by Proposition 9, ≽∗

is a classical mean of order r. Weak Inequality Aversion then implies (by Blackorby & Don-
aldson, 1982, Theorem 4) that r = 1. It is easy to see that Reflection Anti-Invariance can then
be satisfied only if β = 1 as well.
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