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0. Overview (in German)

Laut Definition ist die Quantengravitation eine Quantenfeldtheorie der

Allgemeinen Relativitätstheorie von Albert Einstein [69]. Sie ist somit eine

Theorie, welche die beiden fundamentalen Bausteine der modernen Physik,

(1.) die allgemeine Kovarianz der Allgemeinen Relativitätstheorie und (2.)

die Unschärferelation der Quantenmechanik, verbindet.

Ein möglicher Kandidat einer solchen Theorie der Quantengravitation

ist die Schleifenquantengravitation (Loop Quantum Gravity). Sie ist

demnach ein Versuch eine nicht perturbative, Hintergrund unabhängige –

wie es für Gravitationstheorien natürlich scheint – Quantenfeldtheorie der

Gravitation zu konstruieren. Unter dem Begriff Hintergrundunabhängigkeit

versteht man vereinfacht gesprochen die Annahme, dass die Gesetze der

Physik, welche mathematisch durch die klassischen Einstein Gleichungen

ausgedrückt werden, allgemein kovariant sind.

Die Schleifenquantengravitation wurde in den neunziger Jahren des let-

zten Jahrhunderts von Ashtekar, Lewandowski, Rovelli, Smolin, Thiemann

und weiteren entwickelt [69, 62]. Ausgangspunkt der Schleifenquantengravi-

tation ist eine Hamilton’sche Formulierung der Allgemeinen Relativitätsthe-

orie. Im Rahmen dieser Formulierung wird zunächst eine sogenannte (3+1)-

Zerlegung durchgeführt, wodurch die vierdimensionale Raumzeit, modelliert

durch eine Loretz-Mannigfaltigkeit (M, g), als eine Blätterung aus dreidi-

mensionalen raumartigen Cauchy-Hyperflächen dargestellt ist. Hierbei sind

die Hyperflächen isomorph zu einer Riemannschen Mannigfaltigkeit (Σ, q),

das heißt es gilt M ∼= (R × Σ,−N2 dt2 + qt), wobei N die Lapse-Funktion

bezeichnet. Den Ansatz für die Entwicklung der Schleifenquantengravita-

tion lieferte Ashtekar in den Jahren 1986 und 1987 mit der Einführung
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2 Overview (in German)

der sogenannten Ashtekar-Variablen [5, 6]. Das Besondere an diesen Vari-

ablen ist, dass sie eine Hamilton’sche Formulierung der klassischen Gravi-

tationstheorie ermöglichen, welche vergleichsweise gut quantisierbar zu sein

scheint. Die Ashtekar-Variablen bilden somit die Basis der Schleifenquan-

tengravitation. Sie bestehen aus den kanonischen Variablen (A,E), wobei

A als Ashtekar-Zusammenhang und E als gewichtetes Dreibein bezeich-

net wird. Die Rolle der Koordinaten in dieser Theorie übernimmt A auf

TΣ und die zugehörenden konjugierten Impulse sind durch ein gewichtetes

Dreibein (orthogonaler Rahmen) E auf der Cauchy-Hyperfläche Σ gegeben.

Mit Hilfe dieser Variablen erhält man eine klassische Gravitationstheo-

rie in Hamilton’scher Formulierung, deren Zwangsbedingungen (die Gauß-,

Diffeomorphismen- und Hamilton-Zwangsbedingung) polynomial in diesen

Variablen sind [6].

Eines der zentralen Ergebnisse dieser Quantentheorie der Gravitation

ist die Vorhersage einer diskreten Struktur der Raumzeit, anhand welcher

neue physkalische Vorhersagen möglich sind. Im Einzelnen können einige

langjährige Probleme wie die Beschaffenheit des Big Bangs, welcher durch

einen sogenanntem Big Bounce ersetzt wird [24, 29], oder die Physik des

frühen Universums (Inflation) [25, 1] und die Eigenschaften von quan-

tisierten Schwarzen Löchern [7] mit Methoden der Theorie der Schleifen-

quantengravitation gelöst werden. Die Kinematik der Theorie, welche

in den Gauss- und Diffeomorphismus-Zwangsbedingungen kodiert ist, ist

wohlverstanden und dessen Lösungsraum wird durch die sogenannte Spin-

Netzwerk-Basis aufgespannt [31]. Jedoch ist keine vollständige allgemeine

Lösungstheorie bezüglich der Hamilton-Zwangsbedingung, sprich der Dy-

namik bekannt. Mit dem Lösungsansatz von Thiemann [69] erhält man ein-

erseits zwar eine wohldefinierte Hamilton-Zwangsbedingung, deren Wirkung

explizit bekannt und endlich ist. Und darüber hinaus kann gezeigt werden,

dass Thiemanns Hamilton-Zwangsbedingung frei von Anomalien ist, das

heißt, dass keine weiteren Zwangsbedingung notwendig sind, um den semik-

lassischen Limes rückzugewinnen. Dennoch kann man die Theorie nicht

als vollständig bezeichnen, denn weder das volle Spektrum der Hamilton-

Zwangsbedingung noch die physikalische Charakterisierung des Hilbert-

Raums ist vollkommen verstanden. Genauer gesagt liegt das Problem darin,
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dass die Hamilton-Zwangsbedingung nicht frei von Mehrdeutigkeiten ist,

und somit die physikalische Interpretation der Lösungen unklar ist. Um

diese Mehrdeutigkeiten zu beseitigen, werden Auswahlkriterien eingeführt,

deren physi kalische Bedeutung jedoch noch nicht geklärt ist [11]. Somit

besteht die Herausforderung darin, in der Quantendynamik der Theo-

rie Lösungen aller quantisierten Zwangsbedingungen zu finden und diese

physkalischen Zustände mit der Struktur eines geeigneten Hilbert-Raumes

zu versehen.

Diese Problematik der Schleifenquantengravitation und deren mathema-

tische Struktur soll in der vorliegenden Arbeit mit Hilfe eines differential-

geometrischen Zugangs diskutiert werden. Insbesondere wird untersucht,

inwieweit die Variablen und die Zwangsbedingungen der Theorie auch in

einer global geltenden Form dargestellt werden können und ob dadurch

ein besseres Verständnis der Theorie ermöglicht wird. Diese Arbeit ist im

Wesentlichen in zwei Teile gegliedert.

Konstruktion und Eigenschaften des Ashtekar-Zusammenhangs

Im ersten Teil wird die Konstruktion des Ashtekar-Zusammenhangs

studiert. Hierbei wird die Diskussion von [33] aufgegriffen und fortgeführt

und inbesondere werden die Beweise aus [33] mathematisch detailliert aus-

gearbeitet. Dabei konstruiert man den Ashtekar-Zusammenhang mit Hilfe

der Theorie der Faserbündel als ein global definiertes Objekt. Das überge-

ordnete Ziel dabei ist die Klassifizierung der Menge aller Zusammenhänge

C(O+(Σ, q)) auf dem SO(3)-Hauptfaserbündel der orthonormalen, geord-

neten und orientierten Rahmen O+(Σ, q) über Σ. In diesem Zusammenhang

wird C(O+(Σ, q)) mit der Menge der (1, 1)-Tensorfelder auf Σ identifiziert.

Die Konstruktion ist in drei Schritte aufgeteilt.

i.) Zunächst wird gezeigt, dass der Raum aller Zusammenhänge auf

O+(Σ, q) ein affiner Raum mit zugrundeliegendem Vektorraum

Ω1
hor(O

+(Σ, q), so(3))(SO(3),ad) der horizontalen 1-Formen vom Typ ad

auf O+(Σ, q) mit Werten in der Lie-Algebra so(3) ist. Dieser Raum

kann mit Ω1(Σ, Ead), dem Raum der 1-Formen auf Σ mit Werten

im assoziierten Bündel Ead = O+(Σ, q) ×(SO(3),ad) so(3), durch einen
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Isomorphismus X identifiziert werden.

ii.) Anschließend benutzt man die Äquivalenz der adjungierten Darstel-

lung ad und definierenden Darstellung ρ von SO(3). Der Isomorphis-

mus f:so(3)→ R3 induziert einen Isomorphismus F zwischen Ead und

Eρ := O+(Σ, g)×(SO(3),ρ)R
3. Hierbei soll darauf hingewiesen werden,

dass anhand des Isomorphismus’ f die Wahl der Standardbasis des

R3 beziehungsweise die Basis der so(3) explizit in die Konstruktion

des Ashtekar-Zusammenhangs eingeht. Diese Wahl ist fundamental

für die Konstruktion des Ashtekar-Zusammenhangs und es ist somit

ersichtlich, dass die Konstruktion ausschließlich auf vierdimension-

alen Raumzeiten, und somit dreidimensionalen Cauchy-Hyperflächen

möglich ist.

iii.) Zu guter Letzt nutzt man den Isomorphismus V zwischen dem Vek-

torbündel Eρ und dem Tangentialbündel TΣ.

Somit gibt es, wie in Chapter 4, Theorem 4.1.1 gezeigt wird, eine

Eins-zu-eins-Beziehung I zwischen der Menge der Zusammenhangsformen

C(O+(Σ, q)) auf O+(Σ, q) und der Menge der (1, 1)-Tensorfelder T(1,1)(Σ)

auf Σ. Der zugehörige Isomorphismus, der diese Identifizierung ermöglicht

ist mit

I : Ω1
hor(O

+(Σ, q), so(3))(SO(3),ad)
∼=−→ Ω1(Σ,TΣ), I := V ◦ F ◦ X (0.1)

bezeichnet.

Daraus lässt sich direkt folgendes zentrale Resultat folgern, siehe Chap-

ter 4,Theorem 4.1.2.

Theorem 0.0.1. (Siehe [33]) Die Menge aller Zusammenhänge auf

O+(Σ, q) über Σ ist durch

C(O+(Σ, q)) ∼= {ωLC + I−1(S)|S ∈ Ω1(Σ, TΣ) = T(1,1)(Σ)}

gegeben. Hierbei bezeichnet ωLC den Levi-Civita-Zusammenhang und I die

durch Eq. (0.1) definierte Abbildung.
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Die Konstruktion, die zur Identifizierung von C(O+(Σ, q)) mit der

Menge der (1, 1)-Tensorfelder T(1,1)(Σ) führt, ist die Verallgemeinerung der

Konstruktion des Ashtekar-Zusammenhangs. Man erhält den Ashtekar-

Zusammenhang, indem man die spezielle Wahl S = βWein trifft, wobei

Wein die Weingarten-Abbildung der Cauchy-Hyperfläche Σ ⊂ M und

β ∈ R∗ den Barbero-Immirzi-Parameter [16, 17, 44] bezeichnet. Aus

diesen Vorbereitungen kann folgende geometrische Definition des Ashtekar-

Zusammenhangs gewonnen werden:

Theorem/Definition 0.0.2. (Siehe [33]) Der Ashtekar Zusammenhang

bezüglich β ist definiert durch

A := ωLC + βI−1(Wein) ∈ Ω1(O+(Σ, g), so(3))(SO(3),ad). (0.2)

Um globale Ausdrücke für die kovariante Ableitung, die Torsion und

die Krümmung des Ashtekar-Zusammenhangs zu erhalten, wird auf TΣ ein

Produkt eingeführt, welches das Kreuzprodukt auf R3 verallgemeinert:

Definition 0.0.3. (Siehe [33]) Es sei e ∈ O+(Σ, q) ein orientierter, or-

thonormaler Rahmen und X =
∑

iX
iei, Y =

∑
j Y

jej ∈ TΣ, mit Xi, Y j ∈
R. Für jeden orientierten, orthonormalen Rahmen e ist die Produktstruktur

auf TΣ durch

on: TΣ× TΣ −→ TΣ, X on Y :=
∑
ijk

εijkX
iY jek

definiert. Diese Produktstruktur lässt sich durch faserweise Konstruktion

auf Schnitte in TΣ, Γ(TΣ), übertragen.

Theorem 0.0.4. (Siehe [33]) Seien X,Y ∈ Γ(TΣ). Die zum Ashtekar-

Zusammenhang Eq. (0.2) gehörende kovariante Ableitung ∇A : Γ(TΣ) −→
Γ(T ∗Σ⊗ TΣ) ist durch

∇A
X := ∇LC

X Y + βWein(X) on Y

gegeben.
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Proposition 0.0.5. i.) ∇A ist metrisch mit nichtverschwindender Tor-

sion, siehe [33]. Die Torsion TA kann wie folgt ausgedrückt werden:

TA(X,Y ) = β[Wein(X) on Y −Wein(Y ) on X]

ii.) Die Krümmung des Ashtekar-Zusammenhangs ist gegeben durch, siehe

[33]

RA(X,Y )Z =RLC(X,Y )Z

+ β[(∇LC
X Wein)(Y )− (∇LC

Y Wein)(X)] on Z

+ β2[Wein(X) on Wein(Y )] on Z,

wobei X,Y, Z ∈ Γ(TΣ) und RLC den Krümmungstensor bezüglich des

Levi-Civita-Zusammenhangs darstellt.

iii.) Für die Skalarkrümmung des Ashtekar-Zusammenhang erhalt man

den Ausdruck

RA = RLC + β2[tr(Wein)2 − tr(Wein2)],

wobei RV die Skalarkrümmung bezüglich des Levi-Civita-

Zusammenhangs ist.

Des Weiteren lassen sich die Bianchi-Identitäten verallgemeinern.

Theorem 0.0.6. Der Krümmungstensor RA ∈ Γ(Λ2T ∗Σ ⊗ End(TΣ)) des

Ashtekar-Zusammenhangs erfüllt für alle Vektorfelder X,Y, Z ∈ Γ(TΣ) die

folgenden verallgemeinerten Bianchi-Identitäten

1. Bianchi-Identität:

S{RA(X,Y )Z} = S{(Wein(X) on Wein(Y )) on Z

+∇LC
X TA(Y,Z) + TA(X, [Y,Z])};
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2. Bianchi-Identität:

S{(∇A
ZR

A)(X,Y )} =S{RA(TA(X,Y ), Z)}
=−S{RA(β[Wein(X) on Y −Wein(Y ) on X], Z)},

wobei S die zyklische Summe bezüglich X,Y, Z ist.

Nach der Einführung des Ashtekar-Zusammenhangs und dessen Eigen-

schaften wird die Spinstruktur des Ashtekar-Zusammenhangs diskutiert. Hi-

erbei wird folgendes Resultat bewiesen:

Theorem 0.0.7. Sei ω ∈ Ω1(O+(M, q), so(3)) eine Zusammenhangs-

form und ω̃ ∈ Ω1(S(Σ), su(2)) die zugehörige Zusammenhangsform im

Spinbündel. Diese induzieren die gleichen kovarianten Ableitungen auf dem

Tangentialbündel TM.

Dieses Theorem rechtfertigt also die Konstruktion des Ashtekar-

Zusammenhangs als SO(3)-Zusammenhang, im Gegenstatz zu dem in

der Literatur verwendeten Ausdrucks als SU(2)-Zusammenhang, da

die Wirkung des Ashtekar-Zusammenhangs auf dem Tangentialbündel

TΣ unabhängig davon ist, ob der Ashtekar-Zusammenhang als SO(3)-

Zusammenhang oder durch Liftung in das Spinbündel S(Σ) als SU(2)-

Zusammenhang betrachtet wird, siehe dazu auch [33].

Gleichung (0.2) erlaubt es zudem die Hamilton’sche Formulierung der

Gravitation und die zugehörigen Zwangsbedingungen in diesem neuen glob-

alen Formalismus darzustellen. Man erhält beispielsweise folgenden modi-

fizierten Ausdruck für die Einstein-Hilbert-Wirkung:

Theorem 0.0.8. Hinsichtlich des Ashtekar Zusammenhangs ist die

Einstein-Hilbert-Wirkung durch

SEH =

∫
M

(
RA + (1 + β2)[tr(Wein2)− tr(Wein)2]

)
dvol[g],
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gegeben. Wählt man – wie in den ursprünglichen Arbeiten Ashtekars’ –

β = i, so erhält man den folgenden sehr eleganten Ausdruck:

SEH =

∫
M
RA dvol[g].

Als Fortführung der Arbeit werden erste Schritte unternommen die

Zwangsbedingungen in dem hier entwickelten Formalismus zu übersetzen.

Dies führt für die Wahl β = i zu folgendem ästhetischen Ausdruck für die

Hamilton-Zwangsbedingung

H = RA. (0.3)

Quantisierung des Hamilton-Zwangsbedingung

Der zweite Teil der Arbeit befasst sich mit der Quantisierung der glob-

alen Hamilton-Zwangsbedingung Eq. (0.3), indem ein Krümmungsskalar-

Operator R̂A definiert wird. Hierfür wird die diskrete Quantengeometrie

des dualen Bildes der Schleifenquantengravitation herangezogen. Die Kon-

struktion des dualen Bildes ist mit der Konstruktion der Wigner-Seitz-Zelle

in der Festkörperphysik vergleichbar. Der Quantenzustand der 3-Geometrie

Σ wird durch eine Linearkombination sogenannter Spin-Netzwerk-Zustände

Ψ(Γ) dargestellt. Ein Spin-Netzwerk-Zustand Ψ(Γ; e, n) ist durch einen

Graphen Γ ⊂ Σ, bestehend aus Kanten e und Knoten n, definiert. Somit

entspricht die Spin-Netzwerk-Struktur von Σ der Struktur eines Kristall-

gitters, wobei die Gitterpunkte den Knoten des Graphen gleichkommen.

Dadurch liegt das folgende duale Bild der Quantengeometrie eines Spin-

Netzwerk-Zustandes vor, siehe auch Abbildung 3.8(b): jeder Knoten n ∈ Γ

des Spin-Netzwerks entspricht einer Region Rn mit bestimmetem Volumen

Vol, den sogenannten chunks of space. Die Kanten, welche zwei Knoten

verbinden, entsprechen der Fläche Si mit bestimmtem Flächeninhalt Ar.

Diese Flächen sind der Abschluss der chunks of sapce. Des Weiteren iden-

fizieren die beiden Flächen Si, Sj in ihrem Schnittpunkt eine Kurve c mit

bestimmter Länge L . Das bedeutet also, dass ein Spin-Network-Zustand im

dualen Bild zu einer Triangulierung 4 der Cauchy-Fläche Σ führt und dass

sich Größen wie Volumen, Flächeninhalt und Länge quantifizieren lassen.
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Diese Diskretisierung von Σ ist somit in natürlicher Art und Weise mit

dem Regge-Kalkül der Allgemeinen Relativitätstheorie verbunden [60] . Im

Regge-Kalkül werden Mannigfaltigkeiten durch einen Simplizialkomplex 4,

der aus Simplizes σ ∈ 4 besteht, trianguliert. Die sogenannte Regge-

Wirkung der Allgemeinen Relativitätstheorie ist durch

SRegge(L
σ
h, εh) =

∑
σ∈4

∑
h∈σ

Lσhεh

definiert, wobei Lσh die Kantenlänge eines hinges h von σ und εh =

2π−
∑

σ3h Angσ,αhh den Defizitwinkel bezeichnet. Hier beschreibt Ang(σ, h)

den Öffnungswinkel zwischen dem ausgezeichneten Symplex σ und dem be-

nachbarten Symplex σ′, welche sich in h schneiden. Der Index αh verdeut-

licht die Abhängigkeit des Öffnungswinkels von den angrenzenden Simplizes.

Somit sind (Lσh, εh(Ang)) die dynamischen Variablen in diesem Zugang. Es

zeigt sich, dass für immer feinere Triangulierungen die Riemann-Summe

der Regge-Wirkung in den Integralausdruck der Einstein-Hilbert-Wirkung

übergeht, das heißt

lim
4→0

SRegge(L
σ
h, εh) =

1

2
SEH =

1

2

∫
R

dt

∫
Σ
RA dvol[q].

Aufgrund des Theorems von Gauß-Bonnet kann die Skalarkrümmung RA

demnach mit der Summe der Defizitwinkel über alle hinges h ∈ σ mit Kan-

tenlänge L, d.h.
∑

h∈σ L
σ
hεh identifiziert werden [49, 55]. Daher ist es

möglich, einen Krümmungsskalar-Operator R̂A durch einen Längenopera-

tor L̂ und Winkeloperator Âng zu definieren und dadurch die Hamilton-

Zwangsbedingung Eq. (0.3) zu quantisieren.

Theorem 0.0.9. Auf dem kinematischen Hilbert-Raum Hkin =
⊕

Γ⊂ΣHΓ,

d.h. dem Lösungsraum der Gauß- und Diffeomorphismen-Zwangsbedingung

der Schleifenquantengravitation, wobei HΓ den Hilbertraum entsprechend

einem gegebenen Graphen Γ darstellt, ist der Längenoperator bezüglich einer

Kurve c durch

L̂(cω) =

√
δijĜi†(cω)Ĝj(cω) (0.4)
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gegeben, wobei Ĝj ein beschränkter Operator auf Hkin ist. L̂(cω) ist selb-

stadjungiert. Die Kurve cω ist dual zum Tripel ω := {n, e1, e2}, dem soge-

nannten wedge, bestehend aus einem Knoten n und zwei Kanten e1, e2 des

Graphs Γ, siehe [21].

Bei der Konstruktion des Winkeloperators werden ähnliche Regular-

isierungstechniken wie bei der Konstruktion des Längenoperators angwandt,

und man erhält den folgenden Aussdruck für den Winkeloperator zwischen

den beiden Flächen S1 ∈ σ1 (ausgezeichnet durch e1) und S2 ∈ σ2 (ausgeze-

ichnet durch e2) auf Hkin durch

Âng(cω) = arccos

(
Ŷ i(cω)

Âr(S1)Âr(S2)

)
. (0.5)

Hierbei bezeichnen Âr(Si) beziehungsweise Ŷ i(cω), die in der Schleifen-

quantengravitation bekannten Operatoren, den Flächen-Operator

beziehungsweise den sogenannten two-hand-Operator [62]. Âng(cω)

ist selbstadjungiert. Die Winkel zwischen σ1 und σ2 ist also durch das

Tripel ω := {n, e1, e2}, bestehend aus einem Knoten n und zwei Kanten

e1, e2 des Graphs Γ, eindeutig festgelegt. Daraus folgt das zentrale Resultat.

Der Krümmungsskalar-Operator bezüglich des Ashtekar-Zusammenhangs

R̂Aσ ist anhand von Eq. (0.4) und Eq. (0.5) durch

R̂Aσ :=
∑
h∈σ

[
L̂σh

(
2π−

∑
σ3h

Ângσ,αhh

)]
(0.6)

gegeben, hierbei gilt L̂σh := L̂(cω) und Ângσh := Âng(cω). Der in Eq. (0.6)

definierte Krümmungsskalar-Operator R̂Aσ hat folgende Eigenschaften:

i.) R̂Aσ ist selbstadjungiert,

ii.) R̂Aσ ist von der Wahl der Triangulierung 4 abhängig, denn

a.) Die Wirkung von R̂Aσ auf ein Spin-Netzwerk-Zustand Ψ(Γ′) ∈
HΓ, mit Γ′ 6= Γ, ergibt null, außer ein Knoten n ∈ Γ′ liegt im

Symplex σ,
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b.) Die Wirkung von R̂Aσ ist abhängig von dem Symplex σ, welches

die Knoten n von Γ einschließt (Auswahl der wedges) und von

den Symplizes, welche an σ angrenzen (bestimmt αh).

Zum Abschluss der Arbeit wird die Quanten-Hamilton-Zwangsbedingung,

ausgedrückt in der urprünglichen Darstellung, d.h. mit einer komplexen

Zusammenhangsform β = i, im dem hier vorgestelltem Formalismus

angegeben. Die Quanten-Hamilton-Zwangsbedingung ist in der globalen,

hier diskutierten Form, explizit duch

R̂Aσ |ψ(γ)〉 =
∑
h∈σ

[
L̂σh

(
2π−

∑
σ3h

Ângσ,αhh

)]
|ψ(γ)〉 ≡ 0, ∀σ ∈ 4

gegeben.

Fazit

In der vorliegenden Arbeit ist die geometrische Struktur des Ashtekar-

Zusammenhangs hergeleitet worden. In diesem Kontext konnte die

Schleifenquantengravitation in diesem mathematischen Rahmen global

formuliert werden. Darüber hinaus konnte gezeigt werden, dass die

Hamilton-Zwangsbedingung äquivalent der Forderung ist, dass die

Skalarkrümmung des Ashtekar-Zusammenhangs identisch verschwindet.

Diese Sichtweise ermöglichte es schließlich, eine quantisierte Version dieser

Zwangsbedingung anzugeben.





1. Introduction

The text in hand is build up by two main parts and is concerned with

a mathematical investigation of canonical quantum gravity. The first part

contains the mathematical construction of the so-called Ashtekar connection

within the theory of fibre bundles. The second part includes by using the

Regge calculus the implementation of the Hamiltonian constraint in the

presented global formalism of Loop Quantum Gravity (LQG), which by

itself is a candidate for a Quantum Field Theory in four dimensions which

achieves to unify the principles of Quantum Theory and General Relativity,

see e.g. for reviews [11] and [62, 69] for books.

In 1987, Abhay Ashtekar reformulated Einstein’s field equations of gen-

eral relativity using what have come to be known as Ashtekar variables

[5, 6]. Around 1990, Rovelli and Smolin obtained an explicit basis of states

of quantum geometry which illustrated the quantization of geometry, that

is, the (non-gauge-invariant) quantum operators representing the discreet-

ness of the spectrum of area and volume [63, 61] which is one of the main

predictions of LQG. Thereforet LQG implements the fundamental feature

of general relativity which is its non-perturbative background independence

[30], in a quantum setting. The main advantage of the Ashtekar variables

has been that they drastically simplified the constraints of gravity, which

become polynomial. This enables a completely new way to approach the

quantization of gravity, ultimately leading to Loop Quantum Gravity.

In Loop Quantum Gravity, the main message of general relativity is

taken seriously: in general relativity the metric itself is considered as a

dynamical object in other words this means gravity is geometry. For this

reason in a fundamental quantum gravity theory, there should be no back-

ground metric. Therefore geometry and matter should both arise quantum

13
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mechanically at once. Thus in contrast to approaches according to particle

physicists one does not start with quantum matter on a background geom-

etry and use perturbation theory to implement quantum effects of gravity.

Briefly spoken there is a manifold but no metric, or indeed any other phys-

ical fields, in the background. This point mentioned above explains why a

non-perturbative and thus background independent quantization is chosen

in the LQG framework.

In classical gravity the appropriate mathematical language to formulate

the physical, kinematical notions as well as the final dynamical equations

is provided by Riemannian geometry. Now in quantum general relativity,

quantum Riemannian geometry adopts this rôle. In the classical domain, the

best available theory of gravity is represented by Einstein’s general relativity,

whose predictions have been examined to an amazing degree of precision.

Hence, a natural question arises: exists a quantum general relativity as a

consistent theory non-perturbatively? But at this point we want to mention

that there is no consequence that such a theory would be the unique, final

and complete description of Nature. Nonetheless, in its own right this is a

really exciting and important open question.

Over the last quarter of a century, there has been only a single, but

significant extension of Ashtekar’s variables. In the mid-90s, Barbero [16, 17]

and Immirzi [44] added a new parameter β ∈ R and β ∈ C, respectively.

Where the choice β = i giving the original variables. Now the great benefit

of real β is that the structure group is no longer SlC(2), but SU(2).

For the integration theory of Loop Quantum Gravity this fact has been

crucial. Before the Barbero-Immirzi idea has been introduced, in order to

implement the real structure of the theory complicated reality condition had

been necessary. However, the new formulation has the disadvantage that

the Hamiltonian constraint is no longer polynomial. Only by the so-called

Thiemann’s trick [67] this have been mitigated. Thereby the term with pref-

actor 1 + β2 has been rewritten by means of certain Poisson brackets. This

fact unites the advantages of functional analysis of polynomial constraints

and the integration theory on compact structure groups. But we want to

emphasize that the original choice, i.e. β = i, has significant advantage over
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the real β, as we will show in this thesis.

But in the full theory the challenge of quantum dynamics is to find so-

lutions to the quantum constraint equations and equip these physical states

with the structure of an appropriate Hilbert space. In the community of

LQG the general consensus is that while on the one hand the situation for

the Gauss and diffeomorphism constraints is well-understood, but on the

other hand it is far from being definite for the Hamiltonian constraint. In

1996 non-trivial development due to Thiemann is that well-defined candi-

date operators representing the Hamiltonian constraint exist on the space of

solutions to the Gauss and diffeomorphism constraints [69]. However there

are several ambiguities [11], which must be fixed in order to make progress

but, unfortunately, we have no understanding for the physical meaning of

choices made to resolve them.

In the reduced context of Loop Quantum Cosmology detailed analy-

sis has shown that mathematically natural choices can nonetheless lead to

intolerable physical consequences. For example departures from general rel-

ativity in completely less exciting situations with low curvature [13]. Thus

the Hamiltonian constraint remains the major unsolved problem in Loop

Quantum Gravity and therefore, much more work must be done in the full

theory.

The present status can be summarized as follows. After my opinion

two main ways have been proceeded to construct and to solve the quantum

Hamiltonian constraint.

i.) The first one is the so-called Master constraint program, which was

introduced by Thiemann [69, 68] in 2003. The key idea of this

method is to avoid using an infinite number of Hamiltonian constraints

H(N) =
∫
H(x)N(x) d3x, each integrated against a so-called lapse

function N . Instead, the integrand H(x) is squared itself in a suit-

able sense and then it is integrated on the 3-manifold M. Thus one

gets finally a single constraint. This method leads in simple examples

to physically feasible quantum theories. However, in the definition

of the Hamiltonian constraint of LQG the method does not remove

any of the ambiguities. Rather, the principal strength of the method
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lies in its potential to complete the final step in quantum dynamics if

the ambiguities are resolved, i.e. finding the physically suitable scalar

product on physical states.

ii.) The second strategy comes from spin-foam models [62, 58]. Spin-foam

models provide a path integral approach to quantum gravity. Over the

last four years, there has been extensive work in this field, discussed in

the articles by Rovelli, Speziale, Perez, Freidel, Alexandrov, Bianchi

and others [22, 59, 34, 2]. Transition amplitudes from path integrals

can be applied to limit the choice of the Hamiltonian constraint op-

erator in the canonical theory. This is a very promising direction

and Freidel, Rovelli, Perez, Noui and others have analyzed this issue

especially in 2 + 1 dimensions.

But to the best of my knowledge there is no unique way out to resolve the

problem in the quantum dynamics of the full theory down to the present day.

Additionally the precise mathematical structure underlying Loop Quantum

Cosmology [26, 12, 13, 76] and the sense in which it implements the full

quantization method of LQG in a symmetry reduced model has not been

made explicit. Therefore it seems useful to obtain a better understanding

of the theory and thus a detailed studying of the fundamental principles

is necessary. Despite the fundamental rôle of Ashtekar’s variables, their

geometric origin have remained open. As far as we know, only local versions

using sophisticated index notations have been available so far. But there

exists a obviously way out. The modern approach to differential geometry

is the fact that although coordinate systems have an important rôle to play,

the key concepts are developed in a manner which is explicitly independent

of any specific reference to coordinates. Thus in the thesis in hand we want

to elaborate and to complete the discussion of [33] in the construction of

the Ashtekar variables in a differential geometrical manner and to rewrite

the classical domain of LQG using mathematically global defined objects in

order to gain new insights into the fundamental level of the theory of Loop

Quantum Gravity. Furthermore we want to make a proposal how to turn

the classical expression of the Hamiltonian as derived in that differential

geometrical manner into a well defined quantum operator.
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Outline of the thesis The present thesis aims at a first glimpse of the

differential geometry underlying Ashtekar’s variables. The road map of the

thesis is as follows: In Chapter 2 we give an overview of the differential ge-

ometry underlying the characterization of the Ashtekar variables. In order

to get a feel of the variables it is also mandatory to give a short introduction

of the Hamilton formulation of general relativity (GR), i.e. the physical ori-

gin of the Ashtekar variables in Chapter 3. The variables are a connection

in some principal fibre bundle to be determined and a densitized dreibein

field. The latter one is rather easy to state and is discussed in Section 3.1.2,

whence we will focus on the connection variables which form the configura-

tion space of the theory (up to gauge transformations). More precisely in

Chapter 4, we will describe the principal fibre bundle the connection lives

in, and then discuss Ashtekar-type connections. This Chapter is based on

[33]. The Ashtekar-type connections are compared with physical notation

in Section 4.2. In Section 4.3 we want to clarify the spin structure of the

Ashtekar connection. The reformulation of the constraints in the new global

formalism is outlined in Chapter 5. In Chapter 6 we orient our interest to-

wards the strategy of implementation of the Hamiltonian constraint in the

new framework by using the Regge calculus.





2. Mathematical Prologue

This first chapter is intended to develop the necessary mathematical tools

and techniques for the construction of the Ashtekar connection which is the

central object of this work. We will start with the basic theory of space-

times spaces and their geometric properties. We will proceed to discuss

some aspects of the theory of fibre bundles. The next step will be to study

connections on fibre bundles. We close the chapter with a discussion about

the covariant differentiation and 2nd fundamental form, respectively.

2.1. Space-times

In this Section we want to introduce some central statements about space

times, which are fundamental for the construction of the Ashtekar connec-

tion. In this Section we will follow [14]. The starting point should be a

Lorentzian manifold denoted by (M, g).

Notation 2.1.1. (See also [14].) A time cone τ is defined by τ := {x ∈

19
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x0

x1, x2

τ

Figure 2.1.: Illustration of the time cone τ , see Notation 2.1.1.

Rn+1|〈x, x〉 = 0. Furthermore, we define

I := {x ∈ Rn+1|〈x, x〉 < 0},
I± := {x ∈ I| ± x0 > 0},
τ± := {x ∈ τ | ± x0 ≥ 0},
J := τ ∪ I,
J± := τ± ∪ I±,

{light-like vectors} := τ \ {0},
{time-like vectors} := I,

{space-like vectors} := (Rn+1 \ J) ∪ {0},
{causal vectors} := J \ {0},

{future-directed light-like vectors} := τ+ \ {0},
{past-directed light-like vectors} := τ− \ {0},
{future-directed time-like vectors} := I+,

{past-directed time-like vectors} := I−.

Definition 2.1.2. Let ζ be a function on M that assigns to each point p a

time cone τp in Tp(M). ζ is smooth if for each p ∈ M there is a (smooth)

vector field V on some neighborhood U of p such that V ∈ τq,∀q ∈ U . Such

a smooth function is called a time-orientation of M . If M admits a
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time-orientation, then M is said to be time-orientable. Then to choose a

specific time-orientation on M is to time-orient M.

In the following we consider invariably time-oriented Lorentzian mani-

folds as space-times.

Theorem 2.1.3. A Lorentzian manifold (M, g) is time-orientable if and

only if there exists a time-like vector field X ∈ X(M), where X denotes the

set of all differentiable vector fields on M.

Proof. See [57]. QED.

Definition 2.1.4. A manifold M is orientable provided there exists a col-

lection O of coordinate systems inM whose domains coverM and such that

for each ξ, η ∈ O the Jacobian determinant function J(ξ, η) = det(dyi/dxj)

is positive. (O is called an orientation atlas for M.)

In the following let (M, g, ζ) a connected, time-oriented Lorentzian man-

ifold. We define:

Definition 2.1.5. In respect of a point m ∈M

I+(m) := {q ∈M|∃ future-directed, time-like curve from m to q}

denotes the chronological future of m and

J+(m) := {q ∈M|∃ future-directed, causal curve from m to q}

the causal future of m, respectively. Analogously, the chronological past

I−(m) of m respectively the causal past J−(m) of m is defined.

Remark 2.1.6. Let A ⊂M. We have I±(A) = ∪m∈AI+(m) and J±(A) =

∪m∈AJ+(m).
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U ⊂M

V ⊂M

m

prohibited

Figure 2.2.: Illustration of the strong causality condition, see Defini-

tion 2.1.9.

Corollary 2.1.7. Let A ⊂M arbitrary. Then I±(A) ⊂M is open.

Proof. See [14]. QED.

Proposition 2.1.8. Let (M, g) a compact, time-oriented Lorentzian man-

ifold. Then there exists at least one closed time-like curve.

Proof. See [14]. QED.

Definition 2.1.9. A connected, time-oriented Lorentzian manifold M ful-

fills

i.) the chronology condition, if no closed time-like curve in M exists;

ii.) the causality condition, if no closed causal curve in M exists;

iii.) the strong causality condition, if for every m ∈ M and every

neighborhood U ⊂ M of m a neighborhood V ⊂ M of m exists, such

that every causal curve, which starts and ends in V is completely in

U , see Figure 2.1.
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Remark 2.1.10. We have the following implications:

strong causality condition =⇒ causality condition =⇒ chronology condition

In general the converse is not valid.

Definition 2.1.11. A connected, time-oriented Lorentzian manifold M is

called global-hyperbolic if

i.) M fulfills the strong causality condition;

ii.) for all p, q ∈M the set J(p, q) := J+(p) ∩ J−(q) ⊂M is compact.

Definition 2.1.12. A Cauchy hypersurface of a time-oriented

Lorentzian manifold M is a hyper-surface Σ ⊂ M which is met exactly

once by every inextendible time-like curve in M.

Theorem 2.1.13. (Geroch, 1969.) If M is a globally hyperbolic Lorentzian

manifold (M, g), then M has a Cauchy hypersurface (Σ, q) and there exists

a homeomorphism

R× Σ −→M

on which each {t} × Σ is mapped onto a Cauchy hypersurface.

Proof. See [38, 20]. QED.

Theorem 2.1.14. (Bernal-Sánchez, 2004.) If M is global-hyperbolic, then

(M, g) is isometric to

(R× Σ,−f dt⊗ dt+ qt),

where f : R×Σ −→ R is a positive smooth function and qt|t∈R is a smooth

family of Riemannian metrics on Σ. Moreover each {t} × Σ is a Cauchy

hypersurface.

Proof. See [20]. QED.
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Definition 2.1.15. A space-time is a 4-dimensional, connected, time- and

space-oriented Lorentz manifold, which is globally hyperbolic.

2.2. Elements of differential geometry

In this Section we want briefly illustrate the theory of fibre bundles and

connections. The discussion will be oriented by [19]. Theorems and exam-

ples of particular interest for the construction of the Ashtekar connection

will be presented in detail.

2.2.1. Local trivial Fibre bundles

Definition 2.2.1. A fibre bundle (E , π,M;F) consists of manifolds

E ,M,F and a smooth mapping π : E −→M ; furthermore it is required that

each m ∈ M has an open neighborhood U ⊂M such that E|U := π−1(U) is

diffeomorphic to U × F via a fiber respecting diffeomorphism:

E|U
ϕ //

π

  

U × F

pr1
||
U

E is called the total space, M is called the base space, π is called the projec-

tion , and F is called standard fiber. (U , ϕ) as above is called a fiber chart

or a local trivialization of E.

A collection of fiber charts {Uα, ϕα}, such that {Uα} is an open cover

of M, is called a (fiber) bundle atlas . If we fix such an atlas, then the

transition mapping is given by (ϕα ◦ ϕ−1
β )(m, f) = (m,φαβ(m)(f)), where

φαβ : (Uα ∩ Uβ)×F −→ F is smooth and φαβ(m, f) is a diffeomorphism of

F for each m ∈ Uαβ := Uα ∩ Uβ. We may thus consider the mappings φαβ :

Uαβ −→ Diff(F) with values in the group Diff(F) of all diffeomorphisms of

F . In either form these mappings φαβ are called the transition functions of
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the bundle. They satisfy the cocycle condition : φαβ(m)◦φβγ(m) = φαγ(m)

for m ∈ Uαβγ and φαα(m) = IdF for m ∈ Uα. Therefore the collection (φαβ)

is called a cocycle of transition functions.

Proposition 2.2.2. Two local-trivial fibre bundles (E , π,M;F) and

(Ẽ , π̃,M; F̃) are called isomorphic, if there exists a fibre-preserving diffeo-

morphism f : E −→ Ẽ, i.e. π̃ ◦ f = π.

Definition 2.2.3. i.) A smooth section s in a local-trivial fibre bundle

(E , π,M;F) is a smooth function s :M−→ E such that π ◦ s = IdM,

where π is the projection E −→M. Γ(E) denotes the set of all smooth

sections in E.

ii.) A smooth mapping s :M−→ E|U such that π ◦s = IdU is called local

section in E over U . Γ(U , E) = Γ(EU ) denotes the set of all local,

smooth sections in E over U .

Principle fibre bundles

Definition 2.2.4. Let G be a Lie group and π : P −→ M a smooth map-

ping. The tuple (P, π,M; G) is called (differentiable) principle fibre

bundle over M with group G, if it is satisfying the following conditions:

i.) G acts freely on P on the right, i. e. Ψ : P ×G −→ P. The action is

fibre preserving and transitive on the fibres;

ii.) M is the quotient space of P by the equivalence relation induced by G,

M = P/G, and the canonical projection π : P −→M is differentiable;

iii.) P is locally trivial, that is, every point m ∈ M has a neighborhood U
such that π−1(U) is isomorphic to U ×G in the sense that there is a

diffeomorphism χα : π−1(Uα) −→ Uα×G such that χα(e◦g) = χα(e)◦g
for all e ∈ P and g ∈ G (G-equivariant) , where the action of G on

Uα ×G is given by (m, a) ◦ g = (m, ag) and pr1 ◦ χα = π.
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G acts freely on P on the right: Ψ : P × G −→ P. The action of G

induces the following mapppings

Ψp : G −→ P
g 7−→ Ψ(p, g) ∀p ∈ P,

respectively

Ψg : P −→ P
P 7−→ Ψ(p, g) ∀g ∈ G.

The mapping χαβ : Uα ∩ Uβ −→ G, called transition function, is defined by

χαβ(m) = χα(p) ◦ χβ(p)−1, ∀p ∈ Pm is satisfying the cocycle condition. In

the other hand we have

Proposition 2.2.5. LetM be a manifold, {Uα} an open covering ofM and

G a Lie group. Given a mapping χαβ : Uα∩Uβ −→ G for every Uα∩Uβ 6= ∅,
in such a way, that the cocycle condition is satisfied, then we can construct

a (differentiable) principle fiber bundle P(M; G) with transition functions

χαβ.

Proof. See [47]. QED.

Proposition 2.2.6. Let M be a manifold, π : P −→ M a smooth map-

ping and G a Lie group. Then the tuple (P, π,M; G) is a principle fibre

bundle, if and only if there exists an open covering {Uα, χα} and a fam-

ily of smooth mappings gαβ : Uα ∩ Uβ −→ G, α, β ∈ A, in such a way,

that the cocycle condition is satisfied, such that the transition functions

χαβ : Uα∩Uβ −→ Diff G are given by the translation on the left with cocycles

χαβ(m) = Lgαβ(m) : G −→ G.

Proof. See [19]. QED.
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Definition 2.2.7. Two G-principle fibre bundles (P, π,M; G) and

(P̃, π̃,M; G) are called isomorphic, if there exists a G-equivariant, fibre-

preserving diffeomorphism f : P −→ P̃.

At this point we want to determine bundles of orthonormal frames in

some detail, because in Chapter 4 the Ashtekar connection will be con-

structed on the frame bundle of a Cauchy hypersurface.

Example 2.2.8. Bundles of orthonormal frames over M

Let M be a n-dimensional manifold. A frame em over m ∈ M is a

ordered base e = (e1, . . . , en) of TmM. Let

GLm(M) := {em = (e1, . . . , en)}

the collection of all frames at points of m ∈M and

GL(M) =
.⋃
m∈M

GLm(M).

The projection π : GL(M) −→ M assigns to each fibre e ∈ GLm(M) the

point p of M at which the frame is located. The group GL(n,R) acts freely

on GL(M) on the right by

Ψ : GL(M)×GL(n,R) −→ GL(M)

(e = (e1, . . . , en), A = (Aij)1≤i,j≤n) 7−→ (

n∑
j=1

ejAj1, . . . ,

n∑
j=1

ejAjn).

For short we write Ψ(a,A) = e ·A, where ’·’ denotes the matrix multiplica-

tion. The action is fibre preserving and transitive on the fibres. The induced

mappings

ΨA : GL(M) −→ GL(M)

e 7−→ e ·A, A ∈ GL(n,R)

fulfill ΨA ◦ ΨB = ΨBA, ∀A,B ∈ GL(n,R). The corresponding GL(n,R)-

principle fibre bundle (GL(M), π,M; GL(n,R) is called frame bundle over

M.
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Remark 2.2.9. i.) Let (M,OM) be a oriented manifold of dimension

n, then we are able to consider the GL(n,R)+-principle fibre bundle

(GL(M)+, π,M; GL(n,R)+) of all positive-oriented frames. Then the

fibres GLm(M)+ consists of all positive-oriented bases of TmM,m ∈
M.

ii.) Let (M, g) a semi-Riemannian manifold with signature (k, l). Then

we are able to consider the set of orthonormal bases Om(M, g) =

{e ∈ GLm(M)|(e1, . . . , ek+l) is gm-orthonormal} over each point

m ∈ M. And we obtain then the O(k, l)-principle fibre bundle

(O(M, g), π,M; O(k, l)) of all orthonormal frames.

Associated fibre bundles

In the following let (P, π,M; G) a G-principle fibre bundle over M with

right G-action Ψ : P ×G −→ P and F a manifold on which G acts on the

left σ : G× F −→ F . On the product manifold P × F we let G act on the

right as follows:

(P × F)×G −→ P ×F
((p, f), g) 7−→ (Ψ(p, g), σ(g−1, f)) =: (p ◦ g, g−1 ◦ f).

The quotient space of P × F by this group action is denoted by E :=

P×GF := (P×F)/G and [p, f ] ∈ E is the equivalence class of (p, f) ∈ P×F .

We define a mapping πE , called projection, from E onto M by

πE : E −→M
[p, f ] 7−→ π(p).

Theorem/Definition 2.2.10. The tuple (E , πE ,M;F) is a local-trivial fi-

bre bundle over the base M with (standard) fibre F and (structure) group

G, which is associated with the principle fibre bundle P.

Proof. See [19]. QED.
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Theorem 2.2.11. Let G a Lie-Group and M and F manifolds, whereas G

acts on F smooth on the left. Let (Ualpha)α∈A, where A ∈ GL(n,R), a open

covering ofM and gαβ : Uα∩Uβ → G a family of cocycles. Then there is, up

to isomorphisms, exact one local-trivial fibre bundle E , πE ,M;F over M of

fibre F , which transition function is given by the left-translation with gαβ(m)

on F . This fibre bundle is associated to the uniquely determined G-principle

fibre bundle, which transition function is given by the left-translation with

gαβ(m) on G.

Proof. See [19]. QED.

Remark 2.2.12. On the basis of the mapping

ιp : F −→ Em
f 7−→ [p, f ]

each p ∈ P gives a diffeomorphism from F onto the fibre of E with π(p) = m.

The mapping ιp is called defined fibre diffeomorphism by p. For the

fibre diffeomorphisms defined by p ◦ q, q ∈ G we have ιp◦q(f) = [p ◦ q, f ] =

[p, g ◦ f ] = ιp(σ(g, f)), i.e. ιp◦q = ιpρ(g). Here ρ : G −→ GL(F) denotes

the mapping given by ρ(g)(f) := σ(g, f) for g ∈ G, f ∈ F .

In the following C∞(P,F)(ρ,G) denotes the set of smooth, G-equivariant

mappings from P onto F

C∞(P,F)(ρ,G) := {s̄ ∈ C∞(P,F)|s̄(p ◦ q) = ρ(g−1)s̄(p) ∀p ∈ P, g ∈ G}.

Thus we have the following isomorphism

Theorem 2.2.13. (See [19]) Let E : P×GF the associated fibre bundle with

reference to the G-principle fibre bundle P over M and the left G-manifold

F . Then we can identify the set of smooth sections in E with the set of the

G-equivariant mappings:

Γ(E) ∼= C∞(P,F)(ρ,G).
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Proof. See A.1.1. QED.

Vector bundles

Definition 2.2.14. A K-vector bundle (E , π,M;V ) over a manifold M
consists of a manifold E and a smooth map (projection) π : E −→ M such

that

i.) each Ep := π−1(m),m ∈M is a K-dimensional vector space;

ii.) there exists a collection of trivial trivializations (Uα,Φα)α∈A of E and

diffeomorphisms

Φα,m : Em −→ V

such that for each m ∈M and α ∈ A the map Φα,m is a linear vector

space isomorphism.

An example of a vector bundle is the tangent bundle TM of a differen-

tiable manifold M.

Definition 2.2.15. Let E π−→ M a vector bundle over M. A linear map-

ping

∇ : Γ(E) −→ Γ(T ∗M⊗E)

is called covariant derivative if it satisfies the following product rule

∇(fe) = df ⊗ e+ f∇e

for all f ∈ C∞(M) and e ∈ Γ(E).

Most operations on vector spaces can be extended to vector bundles by

performing the vector space operation fibrewise. For example:

• If (E , π,M;V ) is a vector bundle, then there is a bundle

(E∗, π∗,M;V ), with π∗ : E∗ −→M, called the dual bundle;

• The vector bundle (E ⊕ Ẽ , π⊕,M;V ⊕ Ṽ ) is called Whitney sum of

(E , π,M;V ) and (Ẽ , π,M;V ). The projection π⊕ : E ⊕ Ẽ −→ M is

given by π⊕(e⊕ ẽ) = m for e⊕ ẽ ∈ Em ⊕ Ẽm;
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• The tensor product bundle (E ⊗ Ẽ , π⊗,M;V ⊗K Ṽ ) is defined in a

similar way, using fibrewise tensor product of vector spaces.

Remark 2.2.16. Every vector bundle is associated to a principle fibre bundle

with linear structure group.

i.) Let (E , π,M;V ) be a vector bundle over M with fibre type V and let

GL(V ) the linear Lie-Group of all isomorphisms of V . Furthermore

let {Uα, ϕα}α∈A be a bundle atlas of E. Since the transition functions

ϕαβ(m) : V
ϕ−1
β,m−→ Em

ϕα,m−→ V are linear isomorphisms, they are GL(V )

valued, i.e gαβ := ϕαβ : Uα ∩ Uβ −→ GL(V ) in such a way that the

cocycle condition is satisfied. Due to Proposition 2.2.5 and Propo-

sition 2.2.6 there exists a uniquely determined principle fibre bundle

P over M with structure group GL(V ), whose transition function is

given by left translation with gαβ. According to Theorem 2.2.11 E is

up to isomorphms the uniquely determined associated fibre bundle to

P with typical fibre V .

ii.) Let (P, π,M; G) a principle fibre bundle and ρ : G −→ GL(V ) a

representation, which characterizes the G-action on V . Then E :=

P ×(G,ρ) V is a vector bundle. The vector space structure on the fibres

Em = Pm ×(G,ρ) V is given by the vector space structure in V :

λ[p, v] + µ[p, ṽ] = [p, λv + µṽ], ∀p ∈ P; v, ṽ ∈ V ;λ, µ ∈ K.

E is called the associated vector bundle to the principle fibre bun-

dle P with G-representation (ρ, V ).

Proposition/Example 2.2.17. Let M be a n-dimensional manifold. We

consider the bundle Tr,sM of (r, s)-tensor fields onM. GL(M) denotes the

GL(n,R)-principle fibre bundle of all frames on M and ρ : GL(n,R) −→
GL(Rn) the representation, given by ρ(A)(x) := A · x,∀A ∈ GL(n,R), x ∈
Rn. Let (ρ∗,Rn∗) the dual representation to ρ on the dual space of Rn given

by (ρ∗(A)ϕ)(x) := ϕ(ρ(A−1)x),∀A ∈ GL(n,R), ϕ ∈ Rn∗, x ∈ Rn. Then we
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have the following isomorphisms

TM∼= GL(M)×(GL(n,R),ρ) R
n

T ∗M∼= GL(M)×(GL(n,R),ρ∗) R
n∗.

Then the isomorphism between the tangent bundle TM and the bundle

GL(M)×(GL(n,R),ρ) R
n associated with the frame bundle is given by

Φ : GL(M)×(GL(n,R),ρ) R
n −→ TM

[e, x] 7−→
n∑
i=1

eixi =: e · x,

where e = (e1, . . . , en) ∈ GL(M) and x = (x1, . . . , xn) ∈ R.

Proof. See [47]. QED.

The following theorem is essential for the construction of the Ashtekar

connection:

Theorem 2.2.18. Let (P, π,M; G) a principle fiber bundle and let (ρ, V )

respectively (ρ̃, Ṽ ) two linear, equivalent representations of G. Then the

vector bundles E := P ×(G,ρ) V and Ẽ := P ×(G,ρ̃) Ṽ are isomorphic.

Proof. Since (ρ, V ) and (ρ̃, Ṽ ) are equivalent representations, there exists a

vector space isomorphism f : V −→ Ṽ given by

f(ρ(g), v) = ρ̃(g)f(v), ∀g ∈ G, v ∈ V.

Defining the mapping

F : E −→ Ẽ
[p, v 7−→ [p, f(v)]],
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which is well defined due to F ([p ◦ g, ρ(g−1)v]) = [p ◦ g, f(ρ(g−1)v)] = [p ◦
g, ρ̃(g−1)f(v)] = [p, f(v)] = F ([p, v]). In addition F is fibre preserving and

bijective due to construction. The inverse function is given by

F−1 : Ẽ −→ E
[p, ṽ 7−→ [p, f−1(ṽ)]],

where f−1 : Ṽ −→ V denotes the inverse isomorphism. It remains to show,

that F is smooth. For this purpose we regard the collection of local trivi-

alizations (Uα, χα)α∈A of P and the corresponding fibre charts (Uα, ϕα)α∈A
of E resp. (Uα, ϕ̃α)α∈A of Ẽ

ϕα : π−1
E (Uα) −→ Uα × V

[p, v] 7−→ (π(p), ρ(κα(p))v);

ϕ̃α : π−1

Ẽ
(Uα) −→ Uα × Ṽ

[p, ṽ] 7−→ (π(p), ρ̃(κα(p))ṽ),

where κα := pr2 ◦ χα. The mapping ϕ̃α ◦ F ◦ ϕ−1
β : (Uα ∩ Uβ) × V −→

(Uα ∩ Uβ)× Ṽ , α, β ∈ A yields

ϕ̃α ◦ F ◦ ϕ−1
β = ϕ̃α ◦ F ([p, ρ(κβ(p)−1)v])

= ϕ̃α([p, f(ρ(κβ(p)−1)v]) = ϕ̃α([p, ρ̃(κβ(p)−1)f(v)])

= (π(p), ρ̃(κα(p)) ◦ ρ̃(κβ(p)−1)f(v))

= (π(p), ρ̃(κα(p)κβ(p)−1)f(v))

= (m, ρ̃(καβ(m))f(v)).

Since κα,β and ρ̃ are smooth, F itself is smooth. Analogously we obtain:

ϕβ ◦ F−1 ◦ ϕ̃−1
α : (Uα ∩ Uβ)× Ṽ −→ (Uα ∩ Uβ)× V

(m, ṽ) 7−→ (m, ρ(κβα(m))f−1(ṽ)).

and therefore the smoothness of F−1. QED.

Example 2.2.19. The adjoint representation , i.e Ad : SO(3) −→ GL(so(3))

and defining representation , i.e ρ : SO(3) −→ GL(R3)of SO(3).
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Lemma 2.2.20. Let (M, g) be a 3-dimensional Riemannian manifold and

O+(M, g) denotes the SO(3)-principle fibre bundle of the oriented, or-

thonormal triads over M. Using Theorem 2.2.18, we obtain the following

identification

O+(M, g)×(SO(3),ρ) E ∼= O+(M, g)×(SO(3),Ad) so(3)

O+(M, g)×(SO(3),ρ) E 3 [e, ui]
ϕ←→ [e,Mi] ∈ O+(M, g)×(SO(3),Ad) so(3),

where the isomorphism ϕ is given in the proof of Theorem 2.2.18.

Reduction of the structure group

At this point we want to show, how the structure group of a principle fibre

bundle can be varied.

Definition 2.2.21. Let (P, π,M; G) and (Q, π̃,M,H) two principle fibre

bundles, λ : H −→ G a homomorphism of Lie-groups and f : Q −→ P a

smooth mapping. Then the pair (Q, f) is called λ-reduction of the principle

fibre bundle P, if

i.) π ◦ f = π̃,

ii.) f(q ◦ h) = f(q) ◦ λ(h) ∀q ∈ Q, h ∈ H

hold.

In the case that H ⊂ G is a Lie subgroup of G and λ = ι the inclusion

mapping, then a λ-reduction (Q, f) is also called reduction from P to H.

The mapping f : Q −→ P is an embedding.

Example 2.2.22. Reduction of the frame bundle. Let M a n-

dimensional, smooth manifold and (GL(M), π,M; GL(n, .R)) the GL(n,R)-

principle fibre bundle of all franes onM. Then every additional geometrical

structure on M provides a reduction of the frame bundle GL(M) on a sub-

group of GL(n,R). For a detailled discussion see [19].
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Theorem 2.2.23. Let (P, π,M,G) a principle fibre bundle with continuous,

non-compact structure group. Then P is reducible to every maximal compact

subgroup K ⊂ G.

Proof. See [19]. QED.

Theorem 2.2.24. Let (P, π,M; G) and (Q, π̃,M,H) two principle fibre

bundles, λ : H −→ G a homomorphism of Lie-groups and f : Q −→ P
a smooth mapping and ρ : G −→ GL(V ) a finite dimensional representation

on a real valued vector space V . If (Q, f) is a λ-reduction of P, then the

associated vector bundles P ×(G,ρ) V and Q×(H,ρ◦λ) V are isomorphic.

Proof. See A.1.2. QED.

Example 2.2.25. As seen in Proposition/Example 2.2.17 the tangent bundle

TM of a n-dimensional manifold M is represented as an associated vector

bundle w.r.t. the frame bundle GL(M)

TM
V∼= GL(M)×(GL(n,R),ρ) R

n.

By inclusion a pseudo-Riemannian metric g with signature (k, l) onM pro-

vides a reduction of the frame bundle to the principle O(k, l)-bundle O(M, g)

of the orthonormal frames. By theorem Theorem 2.2.24 we get the following

identification

O(M, g)×(O(k,l),ρ) R
n ∼= GL(M)×(GL(n,R),ρ) R

n,

in the case of a given orientation of M we obtain respectively

O+(M, g)×(SO(k,l),ρ) R
n ∼= GL(M)×(GL(n,R),ρ) R

n

In summary, we obtain the following identifications:

TM
V∼= GL(M)×(GL(n,R),ρ) R

n

∼= O(M, g)×(O(k,l),ρ) R
n

∼= O+(M, g)×(SO(k,l),ρ) R
n.
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2.2.2. Connections in principle fibre bundles

In the following let be (P, π,M;G) a smooth G-principle fibre bundle over

a manifold M and g denotes the Lie-algebra of G. Since π : P −→ M is

a submersion, the fibres Pm = π−1(m), m ∈ M are smooth submanifolds

of P. The tangent space TpPm is called vertical tangent space of P in p

(π(p) = m) and is denoted by Vp := TpPm. On P we let act G on the right

as Ψ : P ×G −→ P. By

Ψp : G −→ P
g 7−→ Ψ(p, g)

the orbit is given, which provides the identification of the fibres Pm =

Image(Ψp) with G. For each A ∈ g, Ã ∈ Γ(TP) is called the fundamental

vector field corresponding to A given by P 3 p 7−→ Ã := dΨp(A) = d
dt |t=0 p◦

exp(tA) ∈ Vp. We have a unique characterization of the vertical spaces by

the fundamental vector fields:

Lemma 2.2.26. For all p ∈ P the vertical tangent space Vp is isomorphic to

the Lie algebra g

g 3 A 7→ dψp(A) =
d

dt
|t=0 p ◦ exp(tA) ∈ Vp,

where dψ is the tangent mapping.

Proof. See [47]. QED.

Remark 2.2.27. One has [̃A,B] = [Ã, B̃] for all A,B ∈ g. The mapping

g 3 A 7→ Ã ∈ X(P) is then a Lie algebra-homomorphism.

Lemma 2.2.28. Let Ã the fundamental vector field corresponding to A ∈ g.

For each g ∈ G, (Ψg)∗Ã is the fundamental vector field corresponding to

(Ad(g−1))A ∈ g.
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Proof. See [47]. QED.

The complementary vector space to Vp ⊂ TpP is called horizontal tangent

space of P in p ∈ P, denoted by Hp.

Definition 2.2.29. A connection form Γ on a principle fibre bundle

(P, π,M; G) is given by a mapping

P 3 p 7→ Hp ⊂ TpP

for which one has:

i.) Hp is complementary to Vp : TpP = Hp ⊕ Vp ∀p ∈ P;

ii.) Hp is compatible with the G-action on P : dΨgHp = HΨg(p) ∀g ∈
G, p ∈ P;

iii.) Γ is a smooth distribution, i.e.: ∀p ∈ P there exists a neighbor-

hood U ⊂ P and smooth vector fields X1, . . . , Xm, such that Hq =

span(X1(q), . . . , Xm(q)), ∀q ∈ U .

In the following hor resp. ver denote the projection on the horizontal

resp. vertical subspaces hor : TpP −→ Hp resp. ver : TpP −→ Vp, for

arbitrary p ∈ P. Hence every vector X ∈ TpP can be written as X =

horX + verX.

Lemma 2.2.30. Vp = kerπp for all p ∈ P.

Proof. See A.1.3. QED.

Due to Lemma 2.2.30 the differential of the projection π, dπp|Hp −→
Tπ(p)M, restricted to the horizontal spaces Hp, is a linear isomorphism.

Hence we can lift vector fields on M uniquely to P .

Definition 2.2.31. A vector field X∗ ∈ Γ(TP) on P is called the horizon-

tal lift of a vector field X ∈ Γ(TM) on M, if
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i.) X∗ is horizontal, i.e. X∗p ∈ Hp ∀p ∈ P;

ii.) π∗X
∗ = X

hold.

Theorem 2.2.32. i.) For all vector field X ∈ Γ(TM) there exists exactly

one horizontal lift X∗ ∈ Γ(TP). X∗ is G-invariant, i.e. X∗ ◦ Ψg =

dΨgX
∗ ∀g ∈ G.

ii.) Every horizontal, G-invariant vector field Y ∈ Γ(TP) is the horizontal

lift of a vector field X ∈ Γ(TM).

Proof. See [19]. QED.

We have the following properties:

Lemma 2.2.33. Let X,Y ∈ Γ(TM), f ∈ C∞(M),Z ∈ Γ(TP) and A ∈ g

with fundamental vector field Ã ∈ Γ(TP). Then we have

i.) (X + Y )∗ = X∗ + Y ∗,

ii.) (fX)∗ = f∗X∗

with f∗ := f ◦ π,

iii.) [X,Y ]∗ = hor [X∗, Y ∗],

iv.) [Ã,horZ] is horizontal,

v.) [Ã,X∗] = 0.

Proof. See [19]. QED.

Now we want to illustrate, how connections on principle fibre bundles

can be characterized by specific 1-forms.

Definition 2.2.34. Let Ã ∈ Γ(TP) fundamental vector field of A. A con-

nection form on a principle fibre bundle (P, π,M; G) is a Lie-algebra valued

1-form ω ∈ Ω1(P, g) with the following properties:
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i.) ω(Ã) = A ∀A ∈ g;

ii.) (Ψ∗gω)(Y ) = Ad(g−1)ω(Y ) ∀g ∈ G, Y ∈ X(P).

Theorem 2.2.35. On a principle fibre bundle (P, π,M; G), there is a one-

to-one correspondence between the connections and the connection forms.

Proof. See A.1.4. QED.

Remark 2.2.36. A connection form ω ∈ Ω1(P, g) is able to identify the

vertical part of a vector by the corresponding Lie-algebra element. Let A ∈ g

with fundamental vector field Ã = verX. Due to ω ◦ hor = 0 and the

isomorphism dΨp : g −→ Vp we obtain ωp(X) = ωp(verX) = ωp(dΨpA) =

A = dΨ−1
p (verX). Thus we have ωp(X) = dΨ−1(verX),∀p ∈ P, X ∈ TpP.

A further identification of connections is given by local connection forms:

Definition 2.2.37. Let s : U −→ P a local section from the subset U ⊂M
to P and ω ∈ Ω1(P, g) a connection form. Then the pull back

ωs := s∗ω ∈ Ω1(U , g)

from ω to U is called local connection form or gauge-potential.

Let sα : Uα −→ P and sβ : Uβ −→ P two overlapping sections to

P (Uα ∩ Uβ 6= ∅). Then there exists a smooth transition function καβ :

Uα ∩ Uβ −→ G, such that sβ = sα ◦ καβ on Uα ∩ Uβ. Using this relation, we

are able to compare local connection forms ωsα and ωsβ . One obtains

ωsβ = Ad(κ−1
αβ)ωsα + καβΘ, (2.1)

where Θ ∈ Ω1(G, g) denotes the Maurer-Cartan-form on G, which is the

uniquely determined g-valued 1-form on G given by Θ(X) = X, ∀X ∈ g.

Otherwise Eq. (2.1) gives us a unique characterization of connections on P.

In summary, we have
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Theorem 2.2.38.

i.) Let be ω ∈ Ω1(P, g) a connection form on P and let be (Uα, sα) and

(Uβ, sβ) local sections in P with Uα ∩ Uβ 6= 0. Then we have

ωsβ = Ad(κ−1
αβ)ωsα + κ∗αβΘ; (2.2)

ii.) Vice versa given a cover of the bundle P by local sections

{(Uα, sα)}α∈A and a family of local 1-forms {ωα ∈ Ω1(Uα, g)}α∈A,

such that for Uα ∩ Uβ 6= 0 we have

ωβ = Ad(κ−1
αβ)ωα + κ∗αβΘ,

then there exists one connection form ω on P, which is given by ωα,

i.e. s∗αω = ωα, ∀α ∈ A.

Proof. See [19]. QED.

Remark 2.2.39.

i.) For the Maurer-Cartan-form Θ ∈ Ω1(P, g) we have Θg(Y ) =

dLg−1(Y ), ∀Y ∈ TgG, g ∈ G, where Lg : G −→ G denotes the ac-

tion on the left of g ∈ G, given by Lg : G 3 h 7−→ gh ∈ G. Then

the Maurer-Cartan-form κ∗αβΘ on Uα ∩ Uβ is given by (κ∗αβΘ)(X) =

dLκαβ(m)−1(dκαβ|mX) for all X ∈ Tm(Uα ∩ Uβ).

ii.) For a matrix group G ⊂ GL(n,R) we have due to the linearity of the

action dLg(X) = gX (matrix multiplication) and hence Ad(g)X =

dLg ◦ dRg−1X = gXg−1 for all g ∈ G and X ∈ g. Then Eq. (2.1)

yields

ωsβ = κ−1
αβω

sακαβ + κ−1
αβ dκαβ. (2.3)

Linear connections

Throughout this Section, we shell denote a n-dimensional, smooth manifold

by M and the GL(n,R)-principle fibre bundle of linear frames over M by
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GL(M).

Definition 2.2.40. Connections in the frame-bundle GL(M) are called lin-

ear connections .

We have the following relation between the covariant derivative on TM
and the linear connetions.

Theorem 2.2.41. The set of covariant derivatives on the tangent bundle

TM is bijective to the set of connections on the GL(n,R) - principle fibre

bundle GL(M) of all frames of M.

{covariant derivative on TM} 1:1←→ {connection form on GL(M)}.

Proof. i.) On the one hand let ω ∈ Ω1(GL(M), gl(n,R)) a connection

form on the frame bundle GL(M) and (Eij)1≤i,j≤n denotes the stan-

dard basis of gl(n,R), which is given by the n×n matrices Eij . In that

basis ω can be rewritten as ω =
∑

1≤i,j≤n ωijEij with real valued 1-

forms ωij ∈ Ω1(GL(M)). Let be e = (e1, . . . , en) : U −→ GL(M) a lo-

cal section. Then we can consider local connections forms ωeij := e∗ωij ,

which transforms by Eq. (2.1) when changing basis. The covari-

ant derivative associated to ω, ∇ : Γ(TM) −→ Γ(T ∗M⊗ TM) on

TM is then given by ∇ej :=
∑n

i=1 ω
e
ij(X) ⊗ ei and the Leibniz-

rule ∇fY := df ⊗ Y + f∇Y ∀f ∈ C∞, Y ∈ Γ(TM), together

with the requirement of R-linearity. Due to Eq. (2.1) the expres-

sion of the covariant derivative is well defined under change of basis

e −→ f ∈ Γ(U ,GL(M)). Let f : U −→ GL(M) an additional basis

section and let be A : U −→ GL(n,R) the associated transition func-

tion to e and f , given by f = e · A. According to Eq. (2.3) we have

for matrix valued connections forms

ωf = Ad(A−1)ωe +A−1 dA. (2.4)

Writing ωf resp. ωe in the basis (Eij)1≤i,j≤n of gl(n,R), i.e. ωe =
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∑
1≤i,j≤n ω

e
ijEij resp. ωf =

∑
1≤i,j≤n ω

f
ijEij , the transformation for-

mula yields

ωfij =
∑

1≤i,j≤n
(A−1)ikω

e
ijAlj + (A−1 dA)ij , (2.5)

where Aij denote the components of A. The latter equation is equiv-

alent to ∑
1≤i,j≤n

Alkω
f
kj = dAlj +

∑
1≤i,j≤n

ωelkAkj . (2.6)

In order to validate if ∇ : Γ(TM) −→ Γ(T ∗M⊗TM) is well defined,

we have to proof

∇(e ·A)j = ∇
∑

1≤i,j≤n
Akjek

!
= ∇fj . (2.7)

By using Eq. (2.6) the left hand side of Eq. (2.7) yields

∇
∑

1≤i,j≤n
Akjek =

∑
1≤i,j≤n

∇Akjek =
∑
k

(dAkj ⊗ ek +Akj ⊗∇ek)

=
∑
k

(dAkj ⊗ ek +Akj
∑
l

ωelk ⊗∇el)

=
∑
l

(dAlj +
∑
k

ωelk Akj)⊗ el =
∑
l,k

Alk ω
f
kj ⊗ el

=
∑
k

ωfkj ⊗
∑
l

elAlk =
∑
k

ωfkj ⊗ fk = ∇fj ,

(2.8)

where in the fifth step we have used Eq. (2.6).

ii.) On the other hand let be ∇ : Γ(TM) −→ Γ(T ∗M ⊗ TM) a co-

variant dervative on TM and e = (e1, . . . , en) ∈ Γ(U ,GL(M)) a

local section in the frame bundle. Then there exists real-valued 1-

forms ωeij ∈ Ω1(U), such that ∇ej =
∑n

i=1 ω
e
ij ⊗ ei. For each ad-

ditional basis section f : U −→ GL(M) with transition function

A : U −→ GL(n,R), such that f = e ·A, we have

∇(e ·A)j = ∇
∑

1≤i,j≤n
Akjek = ∇fj . (2.9)
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Analogous to Eq. (2.8), we obtain that the real-valued 1-forms ωeij ∈
Ω1(U) and ωfij ∈ Ω1(U) are linked by Eq. (2.6)

ωfij =
∑

1≤i,j≤n
(A−1)ikω

e
ijAlj + (A−1 dA)ij . (2.10)

Defining as stated above gl(n,R)-valued, local 1-forms on U by ωe :=∑
1≤i,j≤n ω

e
ijEij resp. ωf :=

∑
1≤i,j≤n ω

f
ijEij , such that the transfor-

mation formula Eq. (2.5) is fulfilled. It seems prudent to construct

a family of local, consistent connection forms with the help of the

real-valued 1-forms {ωeij |e is a local section in GL(M)}. For that

reason let {Uα, eα}α∈A a collection of local sections of GL(M). Defin-

ing now for all α ∈ A local gl(n,R)-valued 1-forms Ω1(Uα, gl(n,R))

by ωα =
∑

1≤i,j≤n ω
eα
ij Eij , whereas ωeαij ∈ Uα is given as above.

As already seen ωeαij ∈ Ω(Uα) transforms under change of basis

eα −→ eβ = eα ◦καβ, such that the family {ωα}α∈A of gl(n,R)-valued

1-forms fulfills the transformation rule Eq. (2.2). Hence there exists

exactly one connecion form ω ∈ Ω1(GL(M)gl(n,R)) with e∗αω = ωα
for all α ∈ A.

QED.

Metric connections of a pseudo-riemannian manifold

Let (M, g) be a n-dimensional, smooth pseudo-riemannian manifold with

metric g ∈ Γ(T ∗M⊗ T ∗M).

Definition 2.2.42. i.) A linear connection on (M, g) is called metric ,

if g is parallel to the covariant derivative ∇ given by the linear con-

nection on TM, i.e. ∇g = 0.

ii.) If ∇g = 0 for covariant derivative on TM, then ∇ is called metric.

Theorem 2.2.43. The set of covariant, metric derivatives on the tangent

bundle TM is bijective to the set of connections on the O(M, g) - principle

fibre bundle O(M, g) of all orthonormal, ordered frames of M.

{covariant, metric derivative on TM} 1:1←→ {connection form on O(M, g)}.
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Proof. i.) Let ∇ : Γ(TM) −→ Γ(T ∗M⊗TM) a covariant, metric deriva-

tion on TM and let be e : U −→ O(M, g) a local, orthonormal basis

section. Then for real-valued, local 1-forms ωeij ∈ Ω1(U) we have

∇ej =

n∑
i

ωeij ⊗ ei (2.11)

For each e ∈ Γ(U ,O(M, g)) we construct a gl(n,Rn)-valued 1-form

ωe :=
∑

i<j ω
e
ijEij . As seen this gives a family of local 1-forms, which

satisfies Eq. (2.4). In order to construct a connection form on O(M, g)

analogously to Theorem 2.2.41, it suffices to show, that ωe is valued

in the Lie-algebra o(k, l) of O(k, l). For this purpose we use that ∇
is metric. Since e : U −→ O(M, g) is an orthonormal, local basis

section, from Eq. (2.11) we obtain

g(∇ej , ek) = εkω
e
kj , (2.12)

whereas εk is given by

εk := g(ek, ek) =

{
−1 if i = 1, . . . , k;

1 if i = k + 1, . . . , n.

Since ∇ is metric (i.e. ∇g = 0), we get

0 =(∇Xg)(ej , ek) = X(g(ej , ek))− g(∇Xej , ek)− g(ej ,∇Xek)
⇐⇒ g(∇ej , ek) = −g(ej ,∇ek)

for all X ∈ Γ(TM). Inserting in Eq. (2.12) we obtain the following

symmetry

εkω
e
kj = g(∇ej , ek) = −g(ej ,∇ek) = εjω

e
jk. (2.13)

In particular we have ωeii = 0 for all i = 1, . . . , n. Using Eq. (2.13)
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local 1-forms ωe yields

ωe =
∑

1≤i,j≤n
ωeijEij =

∑
i 6=j

ωeijEij =
∑
i<j

ωeijEij +
∑
j<i

ωeijEij

=
∑
i<j

ωeijEij +
∑
j<i

ε2iω
e
ijEij =

∑
i<j

ωeijEij −
∑
j<i

εiεjω
e
ijEij

=
∑
i<j

ε2jω
e
ijEij −

∑
i<j

εjεiω
e
ijEji =

∑
i<j

εjω
e
ij(εjEij − εiEji)

= −
∑
i<j

εjω
e
ij(εiEji − εjEij) = −

∑
i<j

εjω
e
ijOij ,

(2.14)

with n×n matrices Oij := εiEji− εjEij ∀ 1 ≤ i < j ≤ n. (Oij)1≤i<j≤n
is a basis of o(k, l). Thus ωe are o(k, l)-valued and according to The-

orem 2.2.38 ωe are the connections forms associated to a uniquely

determined connection ω on O(M, g).

ii.) On the other hand let ω ∈ Ω1(O(M, g), o(k, l)) a connection form

on the bundle of the orthonormal frames O(M, g). Then ω is given

in the basis (Eij)1≤i≤j≤n of gl(n,R) by ω =
∑

i,j ωijEij , where ωij ∈
Ω1(O(M, g)). Associated to a local section e : U −→ O(M, g) we have

ωe := e∗ω =
∑

i≤j ω
e
ijEij , where ωeij := e∗ωij ∈ Ω1(U). Defining now

the corresponding covariant derivation on TM by ∇ej :=
∑

i ω
e
ij ⊗ ei,

such that it is R-linea and ∇ fulfills the Leibnizrule. Acoording to

Theorem 2.2.41 ∇ is well defined. Since ω is o(k, l)-valued, we obtain

ωT = −ηωη, with η =

(
−1k×k 0

0 1(n−k)×(n−k)

)
and hence

ωe = −
∑
k,l

ηjkωklηli = −
∑
k,l

εjδjkωklεlδli = −εiεjωij . (2.15)

Analogously to Eq. (2.14) we get ωe = −
∑

i<j εjω
e
ijOij . And due to

Eq. (2.15) we finally obtain g(∇ej , ei) = εiω
e
ij = −εjωeji = −g(∇ei, ej).

Thus ∇ is metric.

QED.
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Example 2.2.44. Levi-Civita-connection of a pseudo-riemannian

manifold

Let (M, g) a n-dimensional, smooth pseudo-riemannian manifold with

signature (k, l) of dimension n = k + l.

Theorem 2.2.45. On TM there exists a unique metric and torsion free

covariant derivative

∇LC : Γ(TM) −→ Γ(T ∗M⊗ TM), (2.16)

which is given by the Koszul-formula

2g(∇LC
X Y, Z) =X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))− g(X, [Y, Z])

+ g(Y, [Z,X]) + g(Z, [X,Y ]).

Proof. See [19]. QED.

The corresponding connection form in the principle fibre bundle of

all orthonormal frames (O(M, g), π,M; O(k, l)) is denoted by ωLC ∈
Ω1(O(M, g), o(k, l)). The appertaining connection is called Levi-Civita-

connection . Given a local field of orthonormal basis vectors e =

(e1, . . . , en) : U −→ O(M, g) and using Eq. (2.14), ωLC can locally be rewrit-

ten as

ωLC,e :=
∑
i<j

εiεjg(∇LCei, ej)Oij ∈ Ω1(U , o(k, l)). (2.17)

Reduction of connections

Now we want to illustrate the behavior of a connection, when reducing the

structure group.
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Theorem/Definition 2.2.46. Let (P, π,M; G) and (Q, π̃,M, H) two

principle fibre bundles, λ : H −→ G a homomorphism of Lie-groups and

f : Q −→ P a smooth mapping, such that (Q,P) is a λ-reduction of P.

Furthermore let ω ∈ Ω1(Q, h) a connection form on Q. Then there exists

exactly one connection form ω̃ ∈ Ω1(P, q), such that the horizontal spaces

HQ = kerω and HP = ker ω̃ are connected as follows:

dfqH
Q
q = HPf(q).

In addition we have

f∗ω̃ = λ∗ ◦ ω
f∗Ω̃ = λ∗ ◦ Ω,

where Ω̃ := Dω̃ω̃ and Ω := Dωω denotes the corresponding curvature forms.1

The connection ω̃ ∈ Ω1(P, g) is called the λ-extension of ω ∈ Ω(Q, h). The

connection ω ∈ Ω1(Q, h) is called the λ-reduction of ω̃ ∈ Ω(P, g).

Proof. See [19]. QED.

Thus there exists always an extension of a connection. In general a

λ-reduction does not exist conversely. Therefor a criteria is given by

Theorem 2.2.47. Let (P, π,M; G) a G-principle fibre bundle with connec-

tion form ω̃ ∈ Ω1(P, g) and H ⊂ G a closed subgroup with Lie-algebra h.

Furthermore let Q ⊂ P a H-reduction of P. If there exists a vector-space-

decomposition g = h⊕m of the Lie-algebra of G, such that

Ad(H)m ⊂ m,

then

ω := prh ◦ ω̃|TQ : TQ −→ h

is a connection form on Q. In particular if ω̃ ∈ Ω1(P, g) is valued in the

Lie-algebra h ⊂ g, then ω := ω̃|TQ is a connection form on Ω.
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Proof. See A.1.5. QED.

Since we will consider the bundle O+(M, g) of all orthonormal, oriented

frames during the construction of the Ashtekar connection, we give the

following example:

Example 2.2.48. Let (M, g) a n-dimensional, pseudo-Riemannian man-

ifold with signature (k, l) of g. In addition let be ∇ : Γ(TM) −→
Γ(T ∗M⊗TM) a covariant derivation of a metric connection on TM and let

be ω ∈ Ω1(GL(M), gl(n,R)) the corresponding connection form on the bun-

dle of all frames GL(M). The pseudo-Riemannian metric induces a O(k, l)-

reduction of GL(M) on the subbundle O(M, g) of all orthonormal frames.

As seen in Theorem 2.2.43 the connection ω is valued in o(k, l) ⊂ gl(n,R).

By restriction on TO(M, g), we obtain a connection form on O(M, g), as

illustrated in Theorem 2.2.47. Thus we have:

Lemma 2.2.49. A linear connection on a pseudo-Riemannian manifold is

metric, if and only if it is reducible on O(M, g).

If orientation is imposed, O(M, g) can be further reduced to the SO(k, l)-

principle fibre bundle O+(M, g) of all orthonormal, oriented frames. Due

to o(k, l) = so(k, l) and Theorem 2.2.47 the metric connection ω can be

reduced to a connection on O+(M, g) by restriction on TO+(M, g).

Covariant differentiation in associated vector bundles

Hereafter let (P, π,M; G) a G-principle fibre bundle over a smooth mani-

fold M and let be ρ : G → GL(V ) a finite dimensional G-representation,

which provides a smooth left action on V . E := P ×(G,ρ) V denotes

the corresponding associated vector bundle. Furthermore we denote by

Ωk(M, E) := Γ(ΛkT ∗M ⊗ E) the set of the E-valued k-forms on M. In

addition the k-forms on P valued in the vector space V are denoted by

Ωk(M, V ) := Γ(ΛkT ∗M⊗V ), whereas V is the trivial bundle overM with

fibre V .
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Definition 2.2.50. A k-form ς ∈ Ωk(P, V ) on P with values in V is called

i.) horizontal if ς(X1, · · · , Xk) = 0 holds, in the case of at least one of

the vectors Xi ∈ TpP is vertical.

ii.) of type ρ, if Ψ∗gς = ρ(g−1)ς ∀g ∈ G holds.

We shell denote the set of all horizontal k-forms of type ρ on P valued

in V by Ωk
hor(P, V )(G,ρ).

Remark 2.2.51. Let G be a Lie group and g its Lie algebra and in addition

let be ω1 and ω2 two connections forms on P. Then their difference is

given by a horizontal 1-form of type (ad). Consequently, for every g-valued

horizontal 1-form η of type (ad) on P, ω1 + η is a connection form on P.

The set of all connections is an affine space in subject to the vector space

Ω1
hor(P, g)(G,ad).

No we give a generalization of Theorem 2.2.13

Theorem 2.2.52. The V -valued vector space Ωk
hor(P, V )(G,ρ) of horizontal

1-forms of type (ρ) is isomorphic to the vector space Ωk(M, E) of k-forms

on M with values in the vector bundle E := P ×(G,ρ) V .

Ωk(M, E)

ς

∼=
←→

Ωk
hor(P, V )(G,ρ)

ς̄

Proof. (outline) Let p ∈ Pm be an arbitrary point in the fibre over m ∈M.

The vector space isomorphism Ωk(M, E) ∼= Ωk
hor(P, V )(G,ρ) is obtained as

follows

• Let ς̄ ∈ Ωk
hor(P, V )(G,ρ). We define ς ∈ Ωk(M, E) by

ςm(X1, . . . , Xk) := [p, ς̄p(X̃1, . . . , X̃k)]

= ιp(ς̄p(X̃1, . . . , X̃k)),

where X̃i ∈ TpP denotes an arbitrary lift of Xi ∈ TmM. Since ς̄ of

type ρ is horizontal, ς is well defined.
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• We have ς ∈ Ωk(M, E). Then we obtain the corresponding k-form

ς̄ ∈ Ωk
hor(P, V )(G,ρ) by

ς̄p(Y1, . . . , Yk) := ι−1
p (ςπ(p)(dπpY1, . . . ,dπpYk))

= ι−1
p ◦ (π∗ς)p(Y1, . . . , Yk), ∀Y1, . . . , Yk ∈ TpP.

QED.

Let (P, π,M; G) a G-principle fibre bundle with fixed connection Γ,

ρ : G −→ GL(V ) a representation of G and E := P ×G V be the associated

vector bundle over M. Analogously to the covariant derivatives on the

tangent bundle TM, we are able to define covariant derivatives on arbitrary

vector bundles. With Theorem 2.2.52 we define a covariant derivative ∇ :

Γ(E) −→ Γ(T ∗M⊗E) on E associated to a connection form Γ on P by:

Definition 2.2.53. The linear mapping Dω : Ωk(P, V ) −→ Ωk+1(P, V )

given by

(Dως)p(X1, · · ·Xk+1) := dς(horX1, . . . ,horXk+1) for X1, . . . Xk+1 ∈ TpP
(2.18)

is called the absolute differential on P given by the connection form Γ.

The following Theorem shows, that the modified derivative Dω is pre-

serving the invariance of k-forms and it provides a formula in order to com-

pare Dω with the usual differential d.

Theorem 2.2.54. The absolute differential given by ω maps horizontal dif-

ferential forms of type ρ to horizontal differential forms of type ρ, i.e.

Dω : Ωk
hor(P, V )(G,ρ) −→ Ωk+1

hor (P, V )(G,ρ).

For each horizontal k-form ς ∈ Ωk
hor(P, V )G,ρ we have

Dως : dς + ρ∗(ω) ∧ ς, (2.19)

where the second addend is given by

ρ∗(ω) ∧ ς(X1 . . . Xk+1) :=

k+1∑
i=1

(−1)i−1ρ∗(ω(Xi))ς(X1, . . . , X̂i, . . . , Xk+1).
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Proof. See [19]. QED.

By means of Theorem 2.2.52 the absolute differential Dω induces a linear

mapping dω on k-forms on M valued in E :

Definition 2.2.55.

i.) The absolute differential

dω : Ωk(M, E) −→ Ωk+1(M, E)

ς 7−→ dως

of forms on M with values in E is given by the mapping

dως := Dως,

where ς ∈ Ωk
hor(P, V )(G,ρ) denotes the k-form of type ρ associated to

ς ∈ Ωk(M, E).

ii.) The covariant derivative on E induced by ω is then given by

∇ := dω|Ω0(M,E) : Γ(E) = Ω0(M, E) −→ Ω1(M, E) = Γ(T ∗M⊗E).

Thus we obtain for ς ∈ Ωk(M, E):

(dως)m(X1, . . . , Xk+1) = [p, (Dω ς)p(X̃1, . . . , X̃k+1)] = [p,d ςp(X
∗
1 , . . . , X

∗
k+1)],

(2.20)

where m ∈ M, X1, . . . Xk+1 ∈ TpM, p ∈ Pm are arbitrary elements of the

fibre over m, X̃1, . . . X̃k+1 ∈ TpP are arbitrary lifts and X∗1 , . . . X
∗
k+1 ∈ TpP

are horizontal lifts of X1, . . . Xk+1 (dπpX̃i = Xi = dπpX
∗
i and horX∗i = X∗i ).

Using a local section e : U −→ P in the neighborhood of m ∈ U ⊂ M
one can choose p = e(m) and X̃i = demXi, such that (2.20) yields

(dως)m(X1, . . . , Xk+1) = [e(m), (Dως)e(m)(demX1, . . . ,demXk+1)]. (2.21)
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In particular one gets for 0-forms, i.e. sections s ∈ Γ(E), the following

expression:

(∇Xs)m = (dωs)m(X) = [p,dsp(X
∗)] = [p,X∗(s(p)] (2.22)

with the horizontal lift X∗ ∈ TpP of X ∈ TmM.

Theorem 2.2.56.

i.) ∇ : Γ(E) −→ Γ(T ∗M⊗E) is a covariant derivative in E.

ii.) Let s ∈ Γ(U , E) a local section in the vector bundle E, which is

represented by a local section e : U −→ P and a smooth function

v ∈ C∞(U , V ) (v ≡ s̄ ◦ e), i.e.

s(m) = [e(m), v(m)] ∀m ∈ U .

Then we have

∇s = [e,dv + ρ∗(ω
e)v],

where ωe := e∗(ω) ∈ Ω1(U , g) is the pullback of ω to U .

Proof. See A.1.6 and [19], respectively. QED.

Covariant differentiation induced by linear connections

LetM a n-dimensional smooth manifold and ∇TM : Γ(TM) −→ Γ(T ∗M⊗
TM) a covariant derivation on the tangent bundle. Furthermore GL(M)

denotes the GL(n,R)-principle bundle of all frames on M and let ρ :

GL(n,R) −→ GL(Rn) be the natural representation of GL(n,R) on Rn.

According to Proposition/Example 2.2.17 the tangent bundle TM and the

associated vector bundle E := GL(M) ×(GL(n,R),ρ) Rn are isomorphic. The

isomorphism is explicitly given by

Φ : E = GL(M)×(GL(n,R),ρ) R
n −→ TM

[e, ui] 7−→ ei,
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where (ui)1≤i≤n denotes the standard basis of Rn and e = (e1, . . . , en) a ele-

ment of GL(M). The covariant derivative ∇TM provides a connection form

ω ∈ Ω1(GL(M),GL(n,R)) on GL(M) as illustrated in Theorem 2.2.41,

which in turn induces a covariant derivation ∇E : Γ(E) −→ Γ(T ∗M⊗E) on

the associated bundle E = GL(M)×(GL(n,R),ρ) Rn.

In the following we want to compare the derivations ∇TM and ∇E by

reference of the isomorphism Φ. To this end let X ∈ Γ(U , TM) a local

vector field and e = (e1, . . . , en) : U 7−→ GL(M) a local basis field. Then

we are able to rewrite X as X =
∑n

i=1X
iei, with real valued functions

Xi ∈ C∞(U). Then the associated local section in E is given by

Φ−1(X) =
∑
i

XΦ−1(ei) =
∑
i

Xi[e, ui] = [e,
∑
i

Xiui] =: [e, v].

Id est Φ−1(X) ∈ Γ(U , E) has the form of a local section as in Theorem 2.2.56

with v :=
∑

iX
iui ∈ C(U ,Rn). Hence the covariant derivative in E along

the vector field Y ∈ Γ(TM) yields

∇EY Φ−1(X) = [e,dv(Y ) + ρ∗(ω
e(Y ))v].

Since ρ : GL(n,R) −→ GL(Rn) is given by matrix multiplication, this

applies equally to ρ∗ : gl(n,Rn) −→ gl(Rn). In addition according to

Theorem 2.2.41 ωe ∈ Ω1(U , gl(Rn)) is given by ωe =
∑

i,j ω
e
ijEij , where

ωeij ∈ Ω1(U) is defined by

∇TMej =
∑
i

ωeij ⊗ ei ∀ i, j = 1, . . . , n. (2.23)

Hence we obtain

ρ∗(ω
e(Y ))v =

∑
i,j,k

Xkωeij(Y )Eijuk =
∑
i,k

Xkωeik(Y )ui.

Using dv(Y ) =
∑

k dXk(Y )uk, one gets

∇EY Φ−1(X) = [e,
∑
k

dXk(Y )uk +
∑
i,k

Xkωeij(Y )ui]

=
∑
k

dXk(Y )[e, uk] +
∑
i,k

Xkωeik(Y )[e, ui]
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and therefore by using Eq. (2.23)

Φ(∇EY Φ−1(X)) =
∑
k

dXk(Y )ek +
∑
i,k

Xkωeij(Y )ei

=
∑
k

dXk(Y )ek +
∑
k

Xk∇TMY ek

=
∑
k

(dXk ⊗ ek +Xk∇TMek)(Y ) =
∑
k

∇TMXkek

= ∇TMX(Y ) = ∇TMY X.

Finally, Φ transfers the constructed derivatives in each other. We obtain

Φ(∇EY s) = ∇TMY Φ(s) (2.24)

for all vector fields Y ∈ Γ(T ∗M) and sections s ∈ Γ(E). Thereby the

isomorphism Φ is distinguished.

Remark 2.2.57. As seen in Eq. (2.2.48) metric connections are reducible on

the bundle O(M, g) of orthonormal frames. According to Theorem 2.2.43

the metric covariant derivatives on TM are bijective to the set of the connec-

tions forms on O(M, g). Using Example 2.2.25 the tangent bundle TM is

equal to the associated bundle of O(M, g), i.e. TM
Φ∼= O(M, g)×(O(k,l),ρ)Rn.

The isomorphism Φ transfers the covariant derivative, induced by the re-

duced connection O(M, g)×(O(k,l),ρ)Rn into the associated covariant deriva-

tive on TM.

In the oriented case, Φ transfers analogously the covariant derivative,

induced by the reduced connection O+(M, g) ×(SO(k,l),ρ) Rn on O+(M, g)

into the associated covariant derivative on TM.

Curvature of connections

In this Section we want to define the curvature form of connections. The

curvature form is a 2-form associated to the connection. In the complete

Section let (P, π,M; G) a G-principle fibre bundle with fixed connection Γ

and associated connection form ω, ρ : G −→ GL(V ) a representation of G

and E := P ×G V be the associated vector bundle over M.
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Definition 2.2.58. The 2-form associated to the connection form ω

Fω := Dωω ∈ Ω2(P, g)

is called curvature form of ω, resp. curvature form of the connection

Γ.

Remark 2.2.59. Since ω ∈ Ω1(P, g)(G,Ad) is of type Ad and the absolute

differential Dω is type preserving, Fω is also of type Ad. In addition Fω is

horizontal according to the definition of Dω:

Fω ∈ Ω2
hor(P, g)(G,Ad).

With the intend to simplify, we introduce the following commutator of

Lie-algebra-valued differential forms

[, ]∧ : Ωk(M, g)⊗ Ωl(M, g) −→ Ωk+l(M, g).

Let ς ∈ Ωk(M, g), % ∈ Ωl(M, g) and (τ1, . . . , τn) be a basis of g. Then we

have ς =
∑n

i=1 ς
iτi resp. % =

∑n
i=1 %

iτi, where ς i ∈ Ωk(M) resp. %i ∈
Ωl(M). We define

[ς, %]∧ :=

n∑
i,j=1

(ς i ∧ %j)⊗ [ai, aj ] ∈ Ωk+l(M, g).

Then we obtain for 1-forms ς, % ∈ Ω1(M, g)

[ς, %]∧(X,Y ) =

n∑
i,j=1

(ς i ∧ %j)(X,Y )⊗ [ai, aj ] = [ς(X), %(Y )]− [ς(Y ), %(X)]

and hence

[ς, ς]∧(X,Y ) = 2[ς(X), ς(Y )].

Next, we proof basic identities of the curvature form of a connection.

Theorem 2.2.60. The curvature form Fω ∈ Ω2(P, g) of the connection

ω ∈ Ω1(P, g) fulfills the following identities:
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i.) Structure equation: Fω = dω + 1
2 [ω, ω]∧;

ii.) Bianchi - identity: DωFω = 0;

iii.) for horizontal k-forms ς ∈ Ωk
hor(P, V )(G,ρ) of type ρ holds: DωDως =

ρ∗(F
ω) ∧ ς;

iv.) moreover for horizontal 1-forms ς ∈ Ω1
hor(P, g)(G,Ad) of type Ad with

with values in the Lie-algebra g holds Dως = dς + [ω, ς]∧.

Proof. See A.1.7. QED.

As for covariant derivatives on manifolds M resp. its tangent bundle

TM, we can assign to every covariant derivative ∇ : Γ(E) −→ Γ(T ∗M⊗E)

on the vector bundle E over M a curvature endomorphism.

Definition 2.2.61. Let ∇ : Γ(E) −→ Γ(T ∗M⊗ E) a covariant derivation

on the vector bundle E. The 2-form R∇ ∈ Γ(Λ2T ∗M⊗ End(E)) is defined

by

R∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

for X,Y ∈ Γ(TM) and s ∈ Γ(E) is called curvature endomorphism of

∇.

We have the following relation between the curvature form Fω ∈
Ω2(P, g) on P and the curvature tensor R∇ ∈ Γ(Λ2T ∗M ⊗ End(E)) on

E .

Theorem 2.2.62. Let p ∈ Pm a point in the fibre over m ∈ M and ιp :

V −→ Em the fibre diffeomorphism given by p. Then we have

R∇m(X,Y ) = ιp ◦ ρ∗(Fωp (X̃, Ỹ )) ◦ ι−1
p : Em −→ Em

where X̃, Ỹ ∈ TpP are arbitrary lifts of X,Y ∈ TmM. I.e. we have

(R∇(X,Y )s)m = [p, ρ∗(F
ω
p (X̃, Ỹ ))s̄(p)]

for sections s ∈ Γ(E) and vector fields X̃, Ỹ ∈ Γ(TP), X, Y ∈ Γ(TM) with

π∗X̃ = X and π∗Ỹ = Y .
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Proof. See [19], where the following Lemma was used:

Lemma 2.2.63. Let Ã ∈ Γ(TP) the fundamental vector field of A ∈ g and

f ∈ C∞(P,W )(G,ρ) a function of type σ, where σ : G −→ GL(W ) is a

representation in a finite dimensional vector space W . Then the function

Ã(f) ∈ C∞(P, V ) is given by

Ã(f)(p) = −σ∗(A)f(p) ∀p ∈ P.

QED.

The local expression of Theorem 2.2.62 is given by the following corollary.

Corollary 2.2.64. Let s ∈ Γ(U , E) a local section in the vector bundle E,

which is represented by a local section e : U −→ P and a smooth function

v ∈ C∞ (v ≡ s̄ ◦ e), i.e.

s(m) = [e(m), v(m)] ∀m ∈ U .

Then we have

(R∇(X,Y )s)m = [e(m), ρ∗(F
ω,e
m (X,Y ))v(m)] ∀m ∈ U ,

where Ωe := e∗Ω ∈ Ω2(U , g) is the pullback of Ω ∈ Ω2
hor(p, g)(G,Ad) to U .

Proof. See A.1.8. QED.

According to Remark 2.2.51 the space of all connection forms on a G-

principle fibre bundle (P, π,M; G) is a affine space which underlying vector

space is given by the set Ω1
hor(P, g)(G,Ad) of horizontal, Lie-algebra valued

1-forms of type Ad. Modifying a connection form with a horizontal 1-form

of type Ad, then we obtain the following curvature form.
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Theorem 2.2.65. Let (P, π,M; G) a G-principle fibre bundle, ω ∈ Ω1(P, g)

a connection form on P and σ ∈ Ω1
hor(P, g)(G,Ad) a horizontal lie algebra

valued 1-form on P of type Ad. The curvature form of A := ω + σ is given

by

FA = Fω +Dωσ +
1

2
[σ, σ]∧, (2.25)

where Fω denotes the curvature form of ω and Dω the differential relative

to ω.

Proof. We have

FA = DAA = dA+
1

2
[A,A]∧ = d(ω + σ) +

1

2
[ω + σ, ω + σ]∧

= dω + dσ +
1

2
([ω, ω]∧ + [ω, σ]∧ + [σ, ω]∧ + [σ, σ]∧)

= dω +
1

2
[ω, ω]∧ + dσ + [ω, σ]∧ +

1

2
[σ, σ]∧ = Fω +D ωσ +

1

2
[σ, σ]∧,

where we used [σ, ω]∧ = (−1)(1·1+1)[ω, σ]∧. QED.

2.2.3. Covariant Differentiation and 2nd fundamental form

In the following we consider M-vector fields on Σ. These are vector fields

along the inclusion mapping i : Σ ↪→ M. Additionally we denote by

Γ(TM)|Σ the set of all differentiable vector fields; it is a real vector space

and a module over the algebra C(Σ) of differentiable functions on Σ. For

every Y ∈ Γ(TM), the restriction Y |Σ lies in Γ(TM)|Σ. Γ(TM) is a sub-

module of Γ(TM)|Σ. Since (Σ, g|Σ) is a Riemannian submanifold of M,

every tangent space TpΣ is a non-degenerate subspace of TpM and we get

a decomposition TpM = TpΣ ⊕ TpΣ⊥, where TpΣ
⊥ is also non-degenerate.

The corresponding projections are R-linear and provide a unique decompo-

sition v = tanv + norv for all vectors v ∈ TpM

tan : TpM−→ TpΣ (2.26)

nor : TpM−→ TpΣ
⊥. (2.27)
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A vector field X ∈ Γ(TM)|Σ is said to be normal to Σ, if Xp ∈ TpΣ⊥ for

all p ∈ Σ. The set of all normal vector fields Γ(TΣ)⊥ forms a submodule of

Γ(TM)|Σ. Applying Eq. (2.26) and Eq. (2.27) for each p ∈ Σ to a vector field

X ∈ Γ(TM)|Σ, we obtain vector fields tanX ∈ Γ(TΣ) and norX ∈ Γ(TΣ)⊥.

The resulting projections

tan : Γ(TM)|Σ −→ Γ(TΣ) (2.28)

nor : Γ(TM)|Σ −→ Γ(TΣ)⊥ (2.29)

are C(Σ)-linear.

Let X,Y ∈ Γ(TΣ) and p ∈ Σ. Since (∇MX Y )p is defined for each p ∈ Σ,

we shall denote by tan(∇MX Y )p its tangential component and by nor(∇MX Y )p
its normal component so that

(∇MX Y )p = tan(∇MX Y )p + nor(∇MX Y )p, (2.30)

where

tan(∇MX Y )p ∈ TpΣ and nor(∇MX Y )p ∈ TpΣ⊥.

In Eq. (2.30) tan(∇MX Y )p is introduced just as a symbol for the tangential

component; now we want to show that it is in fact the covariant differenti-

ation for the Levi-Civita connection of Σ.

Proposition 2.2.66. (See [48].) The tangential component of ∇M is the

covariant differentiation for the Levi-Civita connection of Σ. We have

tan∇MX Y = ∇LC
X Y (2.31)

for all X,Y ∈ Γ(TΣ).

Proof. See A.1.9. QED.

In a next step we want to prove the basic properties concerning the

normal component nor(∇MX Y )p. In what follows we denote the normal

component with K.

K(X,Y ) := nor∇MX Y for X, Y ∈ Γ(TΣ). (2.32)
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Thus the composition of (∇MX Y ), that is Eq. (2.30), yields

∇MX Y = ∇LC
X Y +K(X,Y ) for X, Y ∈ Γ(TΣ). (2.33)

Proposition 2.2.67. (See [48]) The mapping K : Γ(TΣ) × Γ(TΣ) −→
Γ(TΣ)⊥ is symmetric (i.e., K(X,Y ) = K(Y,X)) and bilinear over C(Σ).

Furthermore we have [K(X,Y )]p =: Kp(X,Y ) = Kp(V,W ), where the vec-

tor fields X = V and Y = W in the neighborhood U of p ∈ Σ. Consequently,

Kp(X,Y ) depends only on Xp and Yp, and there is induced a symmetric bi-

linear mapping Kp : TΣ× TΣ −→ TΣ⊥.

Proof. see [48]. QED.

Definition 2.2.68. We define K : Γ(TΣ) × Γ(TΣ) −→ Γ(TΣ)⊥ as the

second fundamental form of Σ for the given immersion in M. For each

p ∈ Σ,Kp : TpΣ× TpΣ −→ TpΣ
⊥ is called second fundamental form of Σ at

p.

In the case where Σ is a hypersurface immersed in M (see Section 2.1),

choosing a unit normal vector field n in a neighborhood U of a point p in

Σ, and we get

K(X,Y ) = k(X,Y )n ∀X,Y ∈ Γ(TΣ),

where k : Γ(TΣ)×Γ(TΣ) −→ C(Σ) is symmetric and bilinear over C(Σ). kp
is a symmetric bilinear function on TpΣ × TpΣ. In classical literature, k is

called the second fundamental form of M. Due to g(n, n) = −1, we obtain

k(X,Y ) = −g(K(X,Y ), n). (2.34)

Remark 2.2.69. Next we want to explain, how K describes the ’extrinsic

curvature’ of Σ inM. Let c be a geodesic in Σ, which satisfies c(0) = p ∈ Σ,

and d
dtc|p = v ∈ TpΣ. Since ∇ċċ = 0 the acceleration acting on c in M

originates from the curvature of Σ in M; the extrinsic curvature. But that

acceleration is just given by the second fundamental form:

∇Mċ ċ = ∇LC
ċ ċ+K(ċ, ċ) = K(ċ, ċ).
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Weingarten mapping

Next, let be ξ ∈ Γ(TΣ)⊥ respectively X ∈ Γ(TΣ) and write

∇MX ξ = tan∇MX ξ + nor∇MX ξ, (2.35)

where, for the moment, tan∇MX ξ ≡ Aξ(X) and nor∇MX ξ are just symbols

for the tangential and normal components depending on X and ξ. About

Aξ we prove

Proposition 2.2.70. (See [48])

i.) The mapping

A : Γ(TΣ)× Γ(TΣ)⊥ −→ Γ(TΣ)

(X, ξ) 7−→ tan∇MX ξ

is bilinear over C(Σ); consequently, (Aξ(X))p depends only on Xp and

ξp, and there is induced a bilinear mapping of

Ap : TpΣ× TpΣ⊥ −→ TpΣ,

where p is an arbitrary point of M.

ii.) For each ξ ∈ TpΣ⊥, we have

g(Aξ(X,Y )) = −g(K(X,Y ), ξ)

for all X,Y ∈ TpΣ; consequently, Aξ is a symmetric linear transfor-

mation of TpΣ with respect to gp.

Proof. See A.1.10. QED.

This shows that Aξ : TpΣ −→ TpΣ is the linear transformation which

corresponds to the symmetric bilinear function Kp : TpΣ × TpΣ −→ TpΣ
⊥.

Thus Aξ is symmetric w.r.t. gp : gp(Aξ(X), Y ) = −gp(Kp(X,Y ), ξ) =

−gp(Kp(Y,X), ξ) = gp(Aξ(Y ), X).
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Now we will consider the case of a hypersurface Σ. On Σ there exists a

uniquely determined – up to sign – unit normal vector field n. Then differ-

entiating g(n, n) = −1 covariant in the direction of X ∈ Γ(TΣ), we obtain

0 = g(∇MX n, n) = g(nor∇MX n, n). Since nor∇MX n is normal and therefore a

scalar multiple of n we must have nor∇MX n = 0 for all p ∈ Σ.

Every ξ ∈ Γ(TΣ⊥) can be rewritten as ξ = f · n for f ∈ C(Σ). Then

we obtain for the covariant differentiation in the direction of X ∈ Γ(TΣ)

nor∇MX ξ = nor(X(f)n+ f∇MX n) = X(f)n.

Thus we have developed for all X,Y ∈ Γ(TΣ) and ξ = fn ∈ TΣ⊥ the

first set of basic formulas for submanifolds, namely,

∇MX Y = ∇LC
X Y +K(X,Y ) (2.36)

∇MX ξ = Aξ(X) +X(f)n (2.37)

respectively

∇MX n = An(X), (2.38)

where Eq. (2.36) is called Gauss’s formula and Eq. (2.37) Weingarten’s

formula, respectively. This leads us to the following definition:

Definition 2.2.71. The Weingarten mapping with respect to n is given by

Wein : Γ(TΣ) −→ Γ(TΣ)

X 7−→ ∇MX n = An(X).

Remark 2.2.72. Generally

Aξ : Γ(TΣ) −→ Γ(TΣ)

X 7−→ Aξ(X)

is called the Weingarten mapping with respect to ξ ∈ Γ(TΣ)⊥.

In the following, we want to specify some properties of the Weingarten

mapping.
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Remark 2.2.73. i.) We have

g(Wein(X), Y ) = g(An(X), Y ) = −g(K(X,Y ), n) = k(X,Y ), (2.39)

for all X,Y ∈ Γ(TΣ). Consequently Wein : Γ(TΣ) −→ Γ(TΣ) is the

linear transformation which corresponds to the symmetric tensor field

k.

ii.) Since k is symmetric, the Weingarten mapping is also symmetric.

g(Wein(X), Y ) = k(X,Y ) = k(Y,X) = g(Wein(Y ), X).

Proposition 2.2.74. Let X and Y ∈ Γ(TΣ) vector fields on Σ. Then we

have

g(K(X,Y ), n) = −1

2
(Lng)(X,Y ).

Proof. See A.1.11. QED.

Equations of Gauss and Codazzi

In this Section we shall find a relationship between the curvature tensor

fields of Σ and M, denoted by R respectively RM, see [48]. Using the

formula of Weingarten (2.37) and Gauss (2.36), we obtain for any vector

fields X,Y and Z tangent to Σ

∇MX (∇MY Z) =∇MX (∇LC
Y Z +K(Y, Z))

=∇LC
X (∇LC

Y Z) +K(X,Z) +AK(Y,Z)(X) +X(k(Y, Z))n

=∇LC
X (∇LC

Y Z) + k(Y, Z) An(X)︸ ︷︷ ︸
=Wein(X)

+ [k(X,∇LC
Y Z) +X(k(Y,Z))]n.

(2.40)

For ∇MY (∇MX Z) we may simply interchange X and Y in Eq. (2.40) and the

same calculation then reveals

∇MY (∇MX Z) =∇LC
Y (∇LC

X Z) + k(X,Z)Wein(Y )

+ [k(Y,∇LC
X Z) + Y (k(X,Z))]n.

(2.41)
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Also we get

∇M[X,Y ]Z = ∇[X,Y ]Z +K([X,Y ], Z)

= ∇[X,Y ]Z + [k(∇LC
X Y, Z)− k(∇LC

Y X,Z)]n

by virtue of [X,Y ] = ∇LC
X Y −∇LC

Y X on Σ. Collecting terms we get

RM(X,Y )Z =∇MX (∇MY Z)−∇MY (∇MX Z)−∇M[X,Y ]Z

=∇LC
X (∇LC

Y Z)−∇LC
Y (∇LC

X Z)−∇M[X,Y ]Z + k(Y, Z)Wein(X)

− k(X,Z)Wein(Y ) + [k(X,∇LC
Y Z) +X(k(Y, Z))

− k(Y,∇LC
X Z)− Y (k(X,Z))− k(∇LC

X Y, Z)− k(∇LC
Y X,Z)]n

(2.42)

Thus the relationship between the Riemannian curvature tensors ofM and

Σ is given by

Proposition 2.2.75. (Equation of Gauss, see [48]) Regarding Eq. (2.42),

we find that the tangential component of RM(X,Y )Z is given by

RM(X,Y, Z, V ) :=g(RM(X,Y )Z, V )

=g(R(X,Y )Z, V )− k(X,Z)k(Y, V ) + k(Y,Z)k(X,V )

=R(X,Y, Z, V )− g(K(X,Z),K(Y, V ))

+ g(K(Y, Z),K(X,V ))

=R(X,Y, Z, V ) + g(Wein(Y ), Z)g(Wein(X), V )

− g(Wein(X), Z)g(Wein(Y ), V ),

(2.43)

where we have defined g(R(X,Y )Z, V ) =: R(X,Y, Z, V ) and we used

Eq. (2.39) in the fourth step. Furthermore X,Y, Z and V ∈ Γ(TΣ).

Proposition 2.2.76. (Equation of Codazzi, see [48]) For all X,Y and Z ∈
Γ(TΣ) the normal component of RM(X,Y )Z is given by

norRM(X,Y )Z = [(∇̃Xk)(Y,Z)− (∇̃Y k)(X,Z)]n

= g((∇LC
X Wein)(Y )− (∇LC

Y Wein)(X), Z)n,
(2.44)
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where we define the covariant derivative, denoted by ∇̃Xk for the second

fundamental form k, to be

(∇̃Xk)(Y,Z) = X(k(Y,Z))− k(∇LC
X Y,Z)− k(Y,∇LC

X Z).

Proof. See A.1.12. QED.

Corollary 2.2.77. If M is of constant sectional curvature, then we have

(∇LC
X Wein)(Y ) = (∇LC

Y Wein)(X)

for all X,Y ∈ Γ(TΣ).

Proof. See A.1.13. QED.

2.3. Spin Structure

With the intension of studying the spin structure of the Ashtekar connection

in Section 4.3, we want to introduce the spin structure on a space-time M.

Definition 2.3.1. (See [35]) A spin structure Spin on a space-time M is

a pair (S(M),Λ) consisting of

i.) a SL(2,C) principle fibre bundle (S(M), π̃,M); SL(2,C)) over M,

ii.) a double cover Λ : S(M)→ O+(M, g) such that the following diagram

commutes:

S(M)× SL(2,C)
µ̃ //

Λ×λ

��

S(M)

Λ

��

π̃

%%
M

O+(M, g)× SO0(1, 3)
µ // O+(M, g)

π

99
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where λ : SL(2,C) → SO0(1, 3) denotes the universal cover of SO0(1, 3).

In the rows the respective group action of the principle bundles S(M) and

O+(M, g) is indicated. A manifold with a fixed Spin is called a spin mani-

fold.

Theorem 2.3.2. (Bichteler, 1967.) Let (M, g) a 4-dimensional, connected,

time- and space-oriented Lorentzian manifold. Then M has spin structure

Spin, if and only if the second Stiefel-Whitney-class w2(M) on M is zero,

i.e.

M is Spin⇐⇒ 0 = w2(M) ∈ H2(M;Z2),

where H2 denotes the 2nd homology group ofM. For a definition of Stiefel-

Whitney-classes see [54].

Proof. See [23]. QED.

Theorem 2.3.3. Let Σ a orientable 3-dimensional manifold. Then we have

w2(Σ) = 0.

Proof. See [46]. QED.

Theorem 2.3.4. (Geroch, 1968.) LetM a space-time. ThenM can be par-

allelized Par this meansM can be covered by a single distinguished frame e =

(e1, . . . , e4), if and only ifM is Spin, i.e. M is Spin ⇐⇒ M is Par.

Proof. See [37]. QED.
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In the chapter in hand we want to introduce the bacis tools of loop quantum

gravity with the intension the explain the origin of the Ashtekar variables.

Furthermore the understandig of the pysical background is essential for the

construction of the Riemannian scalar curvature operator in Chapter 6.

Since there are many good books and reviews on both general relativity

[71, 65] and loop quantum gravity [69, 62, 11] we will only give a short

introduction.

3.1. Hamiltonian formulation of General Relativity

(GR)

In this Section we provide a self-contained exposition of the classical Hamil-

tonian formulation of General Relativity. It is mandatory to know all the

details of this classical work as it lays the ground for the interpretation of

the theory. It also defines the platform on which the quantum theory is

based. A Hamiltonian (canonical) formulation of a field theory requires a

breakup of space time into space and time. This split is necessary in a

canonical approach, as otherwise we cannot define velocities and hence mo-

menta conjugate to the configuration variables. The (d + 1) split seems to

break diffeomeorphism invariance. But this is not the case because we do

not fix the split in space and time, rather we keep it arbitrary, this means

we do not fix a coordinate system. Indeed, the first step in producing a

Hamiltonian formulation of a field theory consists of choosing a time func-

tion t and a vector field ta on a space time such that the surfaces Σt of

constant t are space-like Cauchy surfaces – for a mathematical definition

67
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see Definition 2.1.12 – and such that ta∇at = 1.The vector fields ta may be

interpreted as describing the flow of time in space time and can be used to

identify each Σt with initial Σ0. This selection of a particular time direction

seems to break the space-time covariance, bit in the end the formalism itself

will tell us that it really did not matter which direction of time we took to

begin with. In the sixties of the past century this approach was applied to

GR by Arnowitt, Deser and Misner (ADM), Dirac, Wheeler and De Witt,

among many others.

3.1.1. Arnowitt-Deser-Misner (ADM) formalism

The ADM action

The standard Hamilton formulation for general relativity was developed by

Arnowitt, Deser and Misner [3, 4]. A modern treatment can be found in

[71].

Let us consider a four-dimensional, Lorentzian manifold (M, gµν), compare

Section 2.1,Definition 2.1.11. The space time metric will be denoted by gµν
and will have the Lorentzian signature (−,+,+,+). Here Greek indices from

the middle of the alphabet µ, ν, ρ, ... = 0, 1, 2, 3 are indices for the component

of 4 dimensional space time tensors and we denote in the following Xµ

as coordinates of M in local trivializations. The object of interest is the

Einstein-Hilbert action for the metric tensor field gµν which evolves – as a

dynamical object – on a manifold M,

SEH[g] =
1

κ

∫
M

d4x
√
|g(x)|RM, (3.1)

where RM is the Riemannian curvature scalar associated with gµν and κ =

16πG/c3 where G is Newton’s constant.

We make the assumption that M has the topology M∼= R× Σ, where

Σ is a fixed three-dimensional manifold of arbitrary topology with metric

qab in order to derive a canonical form of the action (3.1). By a theorem

due to Geroch (Section 2.1, Theorem 2.1.13, [38]) and improved by Bernal

and Sanchez [20], any globally hyperbolic space time is necessarily of this
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kind of topology. Thus, M admits a foliation into a one-parameter family

of hypersurfaces Σt = Xt(Σ), that is, we have for all t ∈ R an embedding of

Xt = Σ →M defined by Xt(x) := X(t, x), where xa are local coordinates

of Σ. Latin indices from the beginning of the alphabet a, b, c... = 1, 2, 3

are indices for three dimensional manifold coordinates. The foliation allows

us to identify the coordinate t as a time parameter. Notice however that

this time should not be regarded as an absolute quantity, because of the

diffoemorphism invariance of the action. Any diffeomorphism ϕ ∈ Diff(M)

of M is of the form ϕ = X ′ ◦X−1, where X,X ′ are two different foliations

differ on a new time parameter t′. Any two foliations are related by ϕ via

X ′ = ϕ ◦X. Therefore, we can work with a chosen foliation, but the diffeo-

morphism invariance of the theory guarantee that the physical quantities

are independent of this choice.

Summarizing the freedom of the choice of the foliation is equivalent to

Diff(M) and since the action Eq. (3.1) is invariant under all diffeomor-

phisms of M the foliations X are not specified by it and we must allow

them to be completely arbitrary.

Given a foliation Xt and corresponding ADM coordinates (t, x). A useful

parametrization of the embedding can be given through its deformation

vector field

Tµ(X) ≡ ∂Xµ(t, x)

∂t |X=X(x,t)
= (1, 0, 0, 0) =: N(X)nµ(X) +Nµ(X),

here x are local coordinates of Σ and nµ is a unit vector normal to Σt, that

is, gµνn
µnν = −1 and Nµ is tangential, gµνn

νXν
,a = 0. It is convenient

to parametrize nµ = (1/N,−Na/N), so that Nµ = (0, Na). Tµ should

not be confused with the unit normal vector nµ. They are both timelike

(gµνT
µT ν = g00) but they are not parallel in general. The coefficients N

and Nµ respectively are called lapse function and shift vector respectively.

In terms of lapse and shift, we obtain

gµνT
µT ν = g00 = −N2 + gabN

aN b,

gµνT
µNν = g0bN

b = gµν (Nnµ +Nµ) = gabN
aN b → g0a = gabN

b ≡ Na.
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Therefore one can explicitly recast the metric into the form

ds2 = gµνdxµdxν = (−N2 +NaN
a)dt2 + 2Nadtdx

a + gabdx
adxb.

Notice that the spatial part gab is not in general the intrinsic metric on Σt.

Rather in combination with a unit vector field nµ normal to the foliation

the space-time metric gµν defines a unique metric on Σt, given by

qµν := gµν − nµnν (3.2)

and is called the first fundamental form of Σt. The quantity qµν = gµρqρν
acts as a projector on Σt, offering us to define the tensorial calculus on Σt

from the one on M. As an important quantity in the canonical description

we now consider the following tensor field, the extrinsic curvature Kµν of

Σt, also called the second fundamental form of Σ, compare Section 2.2.3,

Definition 2.2.68 respectively Remark 2.2.69. This is defined by

Kµν := qνµq
σ
ν∇ρnσ, (3.3)

where all indices are moved with respect to gµν and ∇ is the torsion-free

derivative compatible with gµν . Notice that both tensors (3.2) and (3.3) are

spatial, that means, they vanish when either of their indices is contracted

with nµ. An important property of Kµν is its symmetry. Because of this

fact one derives another useful identity connecting it to the Lie derivative

of the intrinsic metric, compare Section 2.2.3,Proposition 2.2.74:

2Kµν = (Lnq)µν .

And also we obtain

q̇µν := (Ltq)µν = 2NKµν + (L ~Nq)µν .

That is, the extrinsic curvature Kµν allows us to give a measure of the

variation of the three-dimensional metric with respect to the fiducial time

introduced by the foliation, that is, Kµν essentially contains the information

about the time derivative of qµν . Up to now we have defined quantities

defined on Σt in terms of which we can reconstruct the space-time metric
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and its time derivatives. Now, we proceed to rewrite the Einstein-Hilbert

action Eq. (3.1) in terms of these variables.

The extrinsic curvature Kµν enters the Gauss equation (see Section 2.2.3,

Eq. (2.43)), which provides a relation between the Riemann curvature tensor

of Σ, denoted by RΣ and that of M, denoted by RM, namely

RΣ;σ
ρµν = qρ

′
ρ q

µ′
µ q

ν′
ν q

σ
σ′R
M;σ′

ρ′µ′ν′ + 2Kσ
[νKµ]ρ.

With this formula we can concentrate on the Riemann curvature scalar

RM of the Einstein-Hilbert action. Employing the abbreviations K :=

Kµνq
µν and Kµν = qµρqνσKρσ, we obtain the following expression for the

Riemannian curvature scalar associated with Σ

RΣ = −K2 +KµνK
µν + qµρqνσRMµνρσ. (3.4)

Next we want to eliminate the last term in (3.4) by using g = q − n ⊗ n
and the definition of curvature RMµνρσn

σ = 2∇[µ∇ν]nρ in order to express

the latter equation purely in terms of RM alone. We get

RM = RMµνρσg
µρgνσ = qµρqνσRMµνρσ − 2qρµnν [∇µ,∇ν ]nρ

= qµρqνσRMµνρσ − 2nν [∇µ,∇ν ]nν ,
(3.5)

where in the first step we used the antisymmetry of the Riemann tensor

to eliminate the quadratic term in n and in the second step we used again

g = q − n ⊗ n and additionally the antisymmetry in the µν indices. Next,

we have

nν([∇µ,∇ν ]nν) = −(∇µnν)(∇νnµ)+(∇µnµ)(∇νnν)+∇µ(nν∇νnµ−nµ∇νnν).

In particular the addends yields:

∇µnµ = gµν∇νnµ = qµν∇νnµ = K (3.6)

and

(∇µnν)(∇νnµ) = gνσgρµ(∇µnσ)(∇νnρ) = qνσqρµ(∇µnσ)(∇νnρ) = KµνK
µν .

(3.7)
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Combining Eq. (3.4), Eq. (3.5) and Eq. (3.6) respectively Eq. (3.7), we

obtain the Codacci equation

RM = RΣ −K2 +KµνK
µν − 2∇µ(nν∇νnµ − nµ∇νnν). (3.8)

At this point it is useful to pull back various quantities to Σ, see [69].

We define N(x, t) := N(X(x, t)), ~Na(x, t) := qab(x, t)(Xµ
b gµνN

ν)(X(x, t)).

Then we get

Kab(x, t) =
1

2N

(
q̇ab − (L ~Nq)ab

)
(x, t). (3.9)

After pulling back the quantities appearing in Eq. (3.8) such as the ex-

trinsic curvature Kµν and after dropping the total differential in Eq. (3.8) as

a result the Einstein-Hilbert action (3.1) yields the Arnowitt-Deser-Misner

action

SADM[q] =
1

κ

∫
R

dt

∫
Σ

d3x
√
|q(x)||N |

[
RΣ +KabK

ab − (Ka
a )2
]
. (3.10)

Now we want to cast this action into canonical form, that is, we would like

to perform a Legendre transform from the Lagrangian density in (3.10) to

the corresponding Hamiltonian density.

Legendre transform and Dirac analysis of constraints

Before we move on, we will give some useful mathematical definitions.

Definition 3.1.1. Let T∗(C) be the tangent bundle over the m-dimensional

configuration manifold C, where v := q̇ defines the corresponding action

principle and consider a Lagrangean function L : T∗(C) → C; (qa, va) 7→
L(q, v). Then the map

ρL : T∗(C)→ T∗(C); (q, v) 7→
(
q, p(q, v) :=

∂L

∂v
(q, v)

)
is called Legendre transformation. A Lagrangean is called singular provided

that ρL is not surjective, that is,

det

((
∂2L

∂va∂vb

)m
a,b=1

)
= 0. (3.11)
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The rank of the matrix in Eq. (3.11) is m − r, with 0 < r ≤ m. Using

the inverse function theorem, we are able to solve (at least locally) m − r
velocities for m− r momenta and the remaining velocities, that is w.l.g.

pA =
∂L

∂vA
(q, v) −→ vA = uA(qA, pA, v

j).

where a, b, · · · = 1, . . . ,m, A,B, · · · = 1, . . . ,m − r and j, k, · · · = m −
r + 1, . . . ,m. Inserting the latter equation into the remaining equations it

follows that pj = ∂L/∂vj cannot depend on the vj any more as otherwise

the rank would exceed. Therefore we get equations of the form

pj =

(
∂L

∂vj
(q, v)

)
vA=uA(qA,pA,vk)

=: πj(q
a, pA).

The latter equation shows that the pa are not independent of each other.

Definition 3.1.2. The functions

φj(q
a, pa) := pj − πj(qa, pA)

are called primary constraints. Furthermore the function

H′(qa, pa, vj) := [pav
a − L(qa, pa)]vA=uA(qA,pA,vk)

is called the primary Hamiltonian corresponding to L.

At this point we want to continue with the transformation of the La-

grangian density appearing in the ADM action to the corresponding Hamil-

ton density. Eq. (3.10) do not depend on the velocities of N and Na, which

implies that N and Na are Lagrange multipliers but the action depends –

using Eq. (3.9) – on the velocities q̇ab of qab. Therefore we obtain for the

conjugate momenta (use the fact that ΣtR does not contain time derivatives)

Π(t, x) :=
δL

δṄ(t, x)
= 0,

Πa(t, x) :=
δL

δṄa(t, x)
= 0,

P ab :=
δL

δq̇ab(t, x)
=

√
det(q)

κ

(
Kab −Kc

cq
ab
)
.

(3.12)
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Since one canot solve all velocities for momenta, the Lagrangian in Eq. (3.10)

is said to be a singular Lagrangian, see Definition 3.1.1. In particular

Eq. (3.12) shows, that it is not possible to solve Ṅ , Ṅa respectively in terns

of qab,N ,Na and P ab, rather we obtain the so-called primary constraints

C := Π(t, x) = 0 and Ca := Πa(t, x) = 0, for which we introduce the La-

grange multiplier fields λ(t, x) and λa(t, x). After performing the Legendre

transform and a spatial integration by parts one can cast (3.10) into the

following compact form:

SADM =
1

κ

∫
R

dt

∫
Σ

d3x[q̇abP
ab + ṄΠ + ṄaΠa

− (λC + λaCa +NaHa + |N |H)],

(3.13)

where

Ha := −2
√
qDb

(
P ba√
q

)
,

H :=
1
√
q
GabcdP

abP cd −√qRΣ, Gabcd = qacqbd + qadqbc − qabqcd,
(3.14)

where Gabcd is called the super- or DeWitt-metric and Da is the spatial

covariant derivative. Ha are called the (spatial) Diffeomorphism or vector

constraint and H is called Hamiltonian or scalar constraint, for reasons we

will see below.

Definition 3.1.3. A symplectic structure for a differential manifoldM is a

non-degenerate, closed two-form Ω. The pair (M,Ω) is called a symplectic

manifold.

Theorem 3.1.4. Let (M,Ω) be a symplectic manifold. Then for a neigh-

borhood Z of each point p one can choose so-called canonical coordinates

(xµ)2m
µ=1 = (qa, Pa)

m
a=1 such that Ω = dPa ∧ dqa, where 2m = dim(M). The

coordinates (q, P ) are called configuration and momentum variables respec-

tively.

Proof. See [69]. QED.
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Equipped with the Hamiltonian form of the Einstein-Hilbert action,

cf. (3.13), we can evaluate the phase space of GR. The phase space is

parametrized by the pair (qab, P
ab), with the symplectic structure Ω or Pois-

son bracket is given by

{P ab(t, x), qcd(t, x
′)} = κδa(cδ

b
d)δ

(3)(x, x′) (3.15)

In the language of symplectic geometry, the first term in (3.13) is a sym-

plectic potential for the symplectic structure (3.15).

At this point we want to turn to the meaning of the term in brackets in

Eq. (3.13), the so called Hamiltomian of the action

H :=
1

κ

∫
Σ

d3x(λC + λaCa +NaHa + |N |H)

=: C(λ) + ~C(~λ) + ~H( ~N) +H(|N |).
(3.16)

The variation of the action (3.13) with respect to the Langrange multipliers

gives the equations

Hµ = (H(q, P ), Ha(q, P )) = 0.

Physical configurations, also called on-shell configurations, i.e. Gµν = 0,

must satisfy these four constraints. Now we obtain the Dirac algebra D

{Ha(x), Hb(y)} = Ha(y)∂bδ(x− y)−Hb(x)∂′aδ(x− y),

{Ha(x), H(y)} = H(x)∂aδ(x− y),

{H(x), H(y)} = Ha(y)∂aδ(x− y)−Ha(y)∂′aδ(x− y).

From the above equations we recognize that the constraint surfaceM ofM,

the submanifold of M, where the constraints hold, is preserved under the

motions generated by the constraints, see Figure 3.1.. In the terminology

of Dirac, all constraints are first class. Following [42] first class constraints

generates gauge transformations.

Geometrical interpretation of the gauge transformations

We obtain the reduced action, the so-called canonical ADM action

ScADM(qab, P
ab, N,Na) =

1

κ

∫
R

dt

∫
Σ

d3x[P abq̇ab− (NaHa+ |N |H)], (3.17)
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M̃

m

M

M

Figure 3.1.: Unconstrained phase space, constraint surface M, gauge orbit

m and physical phase space M̃.

From Eq. (3.17) we obtain the Hamiltonian of the action and the asso-

ciated equation of motions:

H :=
1

κ

∫
Σ

d3x[NaHa + |N |H]. (3.18)

Since it is proportional to the Lagrange multipliers, the Hamiltonian

has the characteristic, that it vanishes on-shell. Thus GR is an exam-

ple of a so-called constrained Hamiltonian system with no true Hamiltonian.

Now, we want to interpret the motions that the constraints generate on

M geometrically. Since Eq. (3.18) is a linear combination of constraints,

we get the equation of motion once we know the Hamilton flow of the

functions H(N) and H( ~N) for any N, ~N seperarately. To see what the gauge

transformations look like we integrate (3.14) against suitable test functions,

so that both constraint functions are simple polynominals in Pab. Hence

we obtain the smeared constraints H(N) :=
∫

ΣH(x)N(x)d3x respectively
~H( ~N) :=

∫
ΣH

a(x)Na(x)d3x. After a lengthly calculation, see [69], we
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obtain{
~H( ~N), qab

}
= L ~Nqab, (3.19){

~H( ~N), Pab

}
= L ~NPab, (3.20)

{H(N), qab} = L~nNqab, (3.21)

{H(N), Pµν} = L~nNPµν +
1

2
qµνNH − 2N

√
qqµ[ρqν]σRMρσ , (3.22)

where in the latter equation we used again g = q − n ⊗ n. Equations

(3.19) and (3.20) shows, that the Diffeomorphism or vector constraint is the

generator of space-diffeomorphisms on Σ. For the Hamiltonian or scalar

constraint we get following meaning. Equation (3.21) respectively (3.22)

give the action of time diffeomorphisms on qab respectively Pab. But notice

that (3.22) contains also two extra addends, which only vanish iff H = 0

and RMµν = 0. This means only on the constraint surface M and only

when the (vacuum) equation of motion holds – i.e. on shell, Gµν = 0 –

the Hamilton flow of Pµν with respect to H(N) can be interpreted as the

action of a diffeomorphism in the direction perpendicular to Σt. Thus we

can conclude, that the constraints Hµ are the generators of the space time

diffeomorphism group Diff(M) on physical configurations.

Fully constrained system and physical degrees of freedom

The canonical formalism has the advantage that it allows us the counting

of the number of degrees of freedom in a robust way. Recall in fact that

in classical physics a physical trajectory is characterized by each point in

phase space, i.e. initial position and momentum, and the number of degrees

of freedom is defined to be half the dimensionality of the phase space. In GR

but also gauge theories as examples of constrained theories, one has to be

careful with the constraints. For this purpose, it is ordinary to distinguish

a notion of kinematical phase space, and physical phase space .

The Poisson structure of the theory defines the kinematical phase space.

In our case, the space (qab, P
ab) , with Poisson brackets (3.15). Its dimen-

sionality is (6 + 6) · ∞3 = 12 · ∞3. On this space, the constraints Hµ = 0
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define a hypersurface, the so-called constraint surfaceM within the the full

phase space M where they are satisfied, i.e. the space of (qab, P
ab) such

that the constraints Eq. (3.1.1) are satisfied. The dimension of this space is

(12− 4) · ∞3 = 8 · ∞3. The gauge motions are defined on all of M but the

fact that the algebra of constraints is first class guarantees that the gauge

transformations generated by the constraints leave the constraint hypersur-

face invariant. Thus the orbit of a point m in the hypersurface under gauge

transformations will be a curve or gauge orbit m entirely within it. The set

of these curves defines the so-called physical phase space and Dirac observ-

ables restricted to M depend only on these orbits. Points along one orbit

correspond to the same physical configuration, only described in different

coordinate systems. In order to select the physical degrees of freedom, we

have to divide by the gauge orbits in such a way identical to what happens

in gauge theories. Since the orbits span a manifold of dimension four at each

space point, dividing by the orbits gives (8 − 4) · ∞3 = 4 · ∞3. This is the

physical phase space M̃. It has four dimensions per space point, therefore

the theory has precisely the two physical degrees of freedom per space point

of general relativity. See e.g. [42] for more details.

This has far as the counting goes. However, in the case of the linearized

analysis we are also able to identify the 2 degrees of freedom as the two

helicities, and associate a physical trajectory to each point in phase space,

thanks to the fact that we are able to solve the dyna- mics. Therefore, if

we want to know what the two physical degrees of freedom of general rela-

tivity are, we need to control the general solution of the theory. This is a

formidable task due to the high non-linearity of the equations, and in spite

of the effort in this direction, still little is known. See [45] for a review of

some attempts.

Remark on the ADM-formalism

We want to close this section with a remark. After lifting the theory onto the

quantum level, trouble appears when we want the wave functions to be an-

nihilated by the Hamiltonian constraint. We have to promote the constraint

to a wave equation, use some factor ordering, pick some regularization and

try to solve the resulting equation, the so-called Wheeler-DeWitt equation
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. But unfortunately it turns out, that this aim has never accomplished in

general. One of the main difficulties encountered in that formulation is the

fact that the Hamiltonian constraint (3.14) is a non-polynomial function of

the basic variables.

3.1.2. Ashtekar formalism

As seen the traditional canonical approach to quantum general relativity

faces serious obstructions at a very early stage. Thus in this section we

will introduce the shift from the ADM variables qab, P
ab to the connection

variables also called Ashtekar variables introduced first by Ashtekar [5, 6]

and later somewhat generalized by Immirzi [43] and Barbero [16]. The

construction actually consists of two steps: first an extension of the ADM

phase space and second a canonical transformation on the extended phase

space. In a third step we will rewrite the constraints in terms of the new

variables.

ADM phase space extension

We will extend the phase space described in Section 3.1.1 to a larger sym-

plectic co-isotropic constraint surface. We define a so-called co-3-Bein field

eia on Σ. Here the indices i, j, k... take values 1, 2, 3. The 3-Bein is defined

by the relations

eaj e
k
a := δkj , eaj e

j
b := δab , {eai } ∈ GL (3,R) and det eai > 0 .

These triads contain all the spatial information and thus the 3-metric qab is

defined in terms of eia as

qab := δjke
j
ae
k
b . (3.23)

Thus the first part of the variables used in the framework of LQG, called

Ashtekar variables, is formed by a densitized dreibein , cf. Eq. (3.25). If

the manifold Σ is three dimensional, an orthonormal frame on Σ is called

triad or dreibein, depending on whether one prefers Greek or German.
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At this point we want to give a mathematical description of the triads

and we want to emphasize that the definition of frames works in any dimen-

sion n in contrast to the Ashtekar connection to be defined in Chapter 4.

Definition 3.1.5. A frame at m ∈ Σ is a vector space isomorphism

e : Rn −→ TmΣ. (3.24)

Another possibility to specify a frame is to select a basis of TmΣ, see

[47]. Recall that the frame bundle on Σ is given by the disjoint union,

indexed by m ∈ Σ, of all frames at m. The differentiable structure on it is

naturally induced from that on Σ by decomposing each frame with respect

to some appropriate local coordinate system on TΣ. In the case of choosing

some local basis for TmΣ and the canonical basis of Rn, then – as being

a vector space isomorphism – any frame e at m is characterized by some

matrix. Its determinant is called (det e) of e. We might get an additional

factor, if we choose a different basis on TmΣ. In fact, the transformation

matrix intertwining two bases is some Gl(n) element, whose determinant is

precisely that factor. But note if we consider general local frames that this

prefactor may change from point to point. However, in the case at hand

the tangent bundle will be globally trivial, such that we may assume that

each frame is globally defined and such a change of bases corresponds to

multiplication by some function on full Σ.

Definition 3.1.6. A frame is called

i.) orthonormal w.r.t the metic q on Σ iff it is an isometry, where we

have the standard Euclidean metric on Rn;

ii.) oriented if and only if it preserve the orientation.

Again, one may specify an orthonormal frame by an orthonormal basis

of TmΣ. On the one hand any frame defines a metric such that the frame

is orthonormal with repsect to that metric. In particular,

q(X,Y ) := 〈e−1(X), e−1(Y )〉Eucl for X,Y ∈ TmΣ
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defines a metric q on Σ, such that e is an isometry, if 〈·, ·〉Eucl denotes the

Euclidean scalar product. While frames determine a metric uniquely, on

the other hand a metric does not state the orthonormal frame. Particularly

e and e′ are isometries for q if and only if e′ = e ◦ Lg for some g ∈ O(n).

Here Lg denotes the left translation by g.

By replacing Gl(n) by O(n), the bundle Oq(Σ) of orthonormal frames can be

defined completely analogously to that of general frames. Thereby, Oq(Σ)

is the reduction of the structure group Gl(n) of the frame bundle to the

structure group O(n). Analogous arguments apply to the bundle O+
q (n) of

oriented orthonormal frames with structure group SO(n).

Now we want to continue with the physical introduction of the Ashtekar

formalism. Remark that Eq. (3.23) is invariant under local SO(3) rotations

i.e.

eia 7→ e
′i
a = Oai e

j
a, (O)ij ∈ SO(3)

leaves the metric invariant. Therefore we can view eia as an su(2)-valued one

form. Our conventions are such that the generators of Lie algebra su(2) in

the adjoint - or equivalently, of so(3) in the defining representation are given

by [τi, τj ] = εijkτ
k, i.e., 2iτi = σi, where σi are the Pauli matrices. Recall

that the adjoint representation of SU(2) on its Lie algebra is isomorphic

with the defining representation of SO(3) on R3 under the isomorphism

R3 → su(2); vi → viτi, where τi is a basis of su(2). This observation makes

it obvious that we have to get rid of the 3(3−1)/2 = 3 rotational degrees of

freedom sitting in eia but not in qab. This extra degrees of freedom justifies

the naming phase space extension.

The consequence of these novelties is a much more complicated structure

than in the metric case. In particular, the constraint algebra is second

class. However, there is a particular choice of variables which simplifies

the analysis, making it possible to implement a part of the constraint and

reducing the remaining ones to first class again. These are the famous

Ashtekar variables, which we now introduce.

The Ashtekar representation is a triad formulation, but uses the triad in

a denstized form. The denstized triad Eaj , with density weight +1, is then
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related to the triad by

Eaj :=
1

2
εjj1j2ε

aa1a2ej1a1
ej2a2

=
√

det(q)eaj , (3.25)

where
√

det(q) := | det(Eaj )|1/(dim(Σ)−1) = | det(Eaj )|1/2 and has the same

properties concerning gauge rotations and its orientation as the triad eai .

Mathematically spoken the multiplication of any tensorial object with

(det e)−k gives the coresponding tensor density of weight k. Hence we arrive

at the mathematical definition of the Ashtekar fields, i.e. of Eq. (3.25).

Definition 3.1.7. (See [33]) The Ashtekar field E to a frame e is the

densitized frame field

E := (det e)−1e (3.26)

of weight 1.

The latter definition depends on the choice of the basis on each TmΣ. If

that basis is given by the imagine of the canonical basis on Rn, then (det e)

is 1. In the case n 6= 1, then the frame can reconstructed from the Ashtekar

field by using

(detE) = (det((det e)−1e)) = (det e)−n(det e) = (det e)1−n

and we obtain

e = (det e)E = ((detE)−1+n)E.

Spatial geometry is obtained directly from the densitized triad, which is

related to the spatial metric by

qab =
EajE

b
j

det(q)
(3.27)

by which R = R(q) is considered as a function of Eaj .

Next we introduce another independent one-form Ki
a on Σ, which we

also consider as su(2)-valued, from which the extrinsic curvature – for a

mathematical treatment see Section 2.2.3, Remark 2.2.69 – is derived by

Kab := Ki
(ae

i
b). (3.28)
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Since Kab was a symmetric tensor field, we recognize with equation (3.25)

that Ki
a must satisfy the constraint

Gjk := Ka[jE
a
k] = 0. (3.29)

The square brackets denote anti-symmetrization defined as an idempotent

operation x[axb] := 1/2
(
xaxb − xbxa

)
. Now we consider the following func-

tions on the extended phase space

qab := EjaE
j
b |det(Ecl )|, P ab := 2| det(Ecl )|−1EakE

d
kK

j
[dδ

b
c]E

c
j , (3.30)

where Eja is the inverse of Eaj . It is easy to see that when Gjk = 0, the

functions (3.30) precisely reduce to the ADM coordinates. Inserting (3.30)

in (3.14) we obtain the diffoemorphism and Hamiltonian constraint as func-

tions on the extended phase space, which one can check to be explicitly

given by

Ha := −2Db
[
Kj
aE

b
j − δbaKj

cE
c
j

]
(3.31)

H :=
1

det(q)

(
K l
aK

j
b −K

j
aK

l
b

)
EajE

b
l − det(q)RΣ. (3.32)

Here RΣ = RΣ(q) is considered as a function of Eaj by
√

det(q) :=

| det(Eaj )|1/2 and Eq. (3.27). Notice that, using Eq. (3.28), Eq. (3.29), ex-

pressions (3.31) indeed reduce to Eq. (3.14) up to terms proportional to

Gjk.

In the next step, we equip the extended phase space coordinatized by

the pair (Ki
a, E

a
i ) with the symplectic structure defined by

{Eaj (x), Ebk(y)} = {Kj
a(x), Ekb (y)} = 0, (3.33)

{Eai (x),Kj
b (y)} =

κ

2
δab δ

j
i δ(x, y). (3.34)

In order to prove that the symplectic reduction with respect to the con-

straint Gij of the constrained Hamiltonian system subject to the constraints

Eq. (3.31) results the ADM phase space of Section 3.1.1 with the original

diffeomeorphism and Hamilton constraint.
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First by using Eq. (3.33) we compute the Poisson algebra of the smeared ro-

tation constraints G(Λ) :=
∫

Σ d3xΛikKajE
a
k , where ΛT = −Λ is an arbitrary

antisymmetric matrix, that is, an so(3)-valued scalar on Σ. We get

{G(Λ), G(Λ′)} =
κ

2
G([Λ,Λ′]),

i.e. G(Λ) generates infinitesimal SO(3) rotations as expected. Since the

functions Eq. (3.30) are SO(3)-invariant by construction, the Poisson com-

mute with G(Λ) and as the constraints Eq. (3.31) are functions of these,

G(Λ) also Poisson commutes with Eq. (3.31).

Second we compute the Poisson brackets among qab, P
cd, given by Eq. (3.30)

on the extended phase space with symplectic structure Eq. (3.33). We ob-

tain

{qab(x), qcd(y)} =0, (3.35){
P ab(x), qcd(y)

}
=κδa(cδ

b
d)δ(x, y), (3.36){

P ab(x), qcd(y)
}

=− κ[
det(e)

4
(qbcGad + qbdGac

+ qacGbd + qadGbc)](x)δ(x, y), (3.37)

where (3.37) only vanishes at Gab := Gjke
j
aekb = 0, the so called rotation

constraints. Thus the functions (3.30), their Poisson brackets among each

other and the diffeomorphism respectively Hamiltonian constraint reduce at

Gjk = 0 to those of the ADM phase space. Therefore the ADM system and

the extended one are completely equivalent and we are able to work with

the latter. Thus we can summarize: the symplectic reduction with respect

to Gjk of the constrained Hamiltonian system described by the action

S :=
1

κ

∫
R

dt

∫
Σ

dx3
[
2K̇j

aE
a
j − (−ΛjkGjk +NaHa +NH)

]
(3.38)

is given by the system described by the ADM action in Section 3.1.1. In

equation (3.38) Λ acts as Lagrange multiplier.

Canonical transformation on the extended phase space

At the beginning of this section we want to give the following definition:
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Definition 3.1.8. The spin connection is defined as an extension of the spa-

tial covariant derivative Da from tensors to generalized tensors with so(D)

indices. One defines

Daub...vj := (Daub)...vj + ...+ ub...(Davj), where Davj := ∂avj + Γajkv
k

extends by linearity, Leibniz rule and imposes that Da commutes with con-

tractions, see [69].

As explicitly shown in e.g. [69], the motivation of introducing the above

expression and its derivation starts with the extension of the metric com-

patibility condition Daqbc = 0 to eja that is

Daejb = 0⇒ Γajk = −ebk
[
∂ae

j
b − Γcabe

j
c

]
. (3.39)

Now our goal is to rewrite the constraint Gjk in such a form equal to

the Gauss constraint of an SO(3) gauge theory, i.e. in the form Gjk =

(∂aE
a+[Aa, E

a])jk for some so(3) connection. In order to achieve this goal,

we have to make a canonical transformation, which consists of a constant

Weyl (rescaling) transformation and an affine transformation.

We start with the constant Weyl transformation. The rescaling

(Kj
a, Eaj ) 7→ ((β)Kj

a := βKj
a,(β)Eaj := Ka

j /β) is a canonical transforma-

tion, since the Poisson brackets (3.33) are obviously invariant under this

map. Now we can rewrite the rotational constraint as follows

Gj = εjklK
k
aE

a
l = εjkl(

(β)Kk
a )((β)Eal ) (3.40)

which is invariant under this rescaling.

Now we will continue with the affine transformation. Using equation

(3.39) we get DaEaj = 0 and particularly we have

DaEaj = [DaEa]j + ΓkajE
a
k = ∂Eaj + εjklΓ

k
aE

a
l = 0.

The square bracket means that D acts only on tensorial indices. Thus

we are able to make an affine transformation by replacing D by ∂ as Eaj
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is an SU(2)-valued vector with density of weight one. In order to define

Γa := Γlaτl, (τl)jk = εjkl, we used the isomorphism between antisymmetric

tensors of second rank and vectors in Euclidean space. Another important

tool is the notion of the spin connection.

Solving the spin connection in terms of Eaj from equation (3.40) we find

Γia =
1

2
εijkebk(e

j
a,b − e

j
b,a + ecje

l
ae
l
c,b)

=− 1

2
εijkEbk(E

j
a,b − E

j
b,a + EcjE

l
aE

l
c,b)

+
1

4
εijkEbk

(
2Eja

(det(E)),b
det(E)

− Ejb
(det(E)),a

det(E)

)
.

From the last equation we get the important conclusion, that

((β)Γja) := Γja(
(β)E) = Γja = Γja(E).

is itself invariant under the rescaling transformation. Therefore the we

obtain Da((β)Eaj ) = 0, since the derivative Da is independent of the Immirzi

parameter β. Finally we can rewrite the rotational constraint as

Gj = 0 + εjkl(
(β)Kk

a )((β)Eal ) = ∂a(
(β)Eaj ) + εjkl[Γ

k
a + ((β)Kk

a )]((β)Eal )

:=(β) Da (β)Eaj
(3.41)

Notice that this equation has exactly the structure of a Gauss law constraint

for an SU(2) gauge theory. Hence we will call Gj the Gauss constraint.

Eq. (3.41) suggests introducing the new connection, the so called Ashtekar-

Immirzi-Barbero connection

(β)Aja := Γja + βKj
a, (3.42)

where for β ∈ R∗ the Barbero connection [16], for complex β the Immirzi

connection [44] and for β = ±i the original Ashtekar connection [5, 6] arises.

For short, we will refer to it as the Ashtekar connection, since we will

make the choice β = i in Chapter 5. The exact mathematical structure

of Eq. (3.42) and their geometric origin will be discussed in detail in Chap-

ter 4.
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Loosely speaking the Ashtekar connection can be seen as the pull-back

to Σ by local sections of a connection on an SU(2) fiber bundle. As such it

transforms under a local gauge transformation g : Σ→ SU(2) (i.e. transfor-

mations between two sections of the principal bundle P (M, SU(2)) in the

following way:

A 7→ Ag = gAg−1 − dgg−1,

where d : Λp(M) → Λp+1(M) is the exterior derivative whose action on a

p-form is defined by

dω = d

(
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp
)

=
(
∂νωµ1...µp

)
dxν ∧ dxµ1 ∧ . . . ∧ dxµp

with the property d2 = 0. On the other hand the densitized triad transforms

according to

E 7→ Eg = g−1Eg.

The new phase space, which is similar to that of a Yang-Mills theory

with SU(2) as structure group, is spanned by the variables (Aja, Eaj ) and its

symplectic structure is given by

{(β)Aja(x),(β)Akb (y)} = {(β)Eaj (x),(β)Ebk(y)} = 0,

{(β)Eaj (x),(β)Akb (y)} =
κ

2
δab δ

k
j δ(x, y).

(3.43)

Yang-Mills theory is a theory defined on a background space time geome-

try. Dynamics in such a theory is described by a non vanishing Hamiltonian.

We can regard general relativity in the new Ashtekar variables as a back-

ground independent relative of SU(2) Yang-Mills theory. Without these

simple bracket structure classically it would be very hard to find Hilbert

space representations that turn these Poisson bracket relations into canon-

ical commutation relations.

To accomplish the Legendre transformation of the Einstein-Hilbert ac-

tion, the Ashtekar representation can be used. This lengthly calculation can

be found in [69] and results finally in a fully constrained system, which is

given by

S =
1

2κβ

∫
R

dt

∫
Σ

d3x
(

2 (β)Ȧia
(β)Eai − [ΛjGj +NaHa +NH]

)
,
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where Gj is the Gauss constraint, Ha the (spatial) diffeomorphism (or vec-

tor) constraint, H the Hamiltonian and Λj , Na, N are Lagrange multipliers.

The geometrical meaning of these quantities is as follows: At fixed t the

fields Na(t, x), N(t, x) label points in an phase space M.

Summarizing, in the Ashtekar formulation of General Relativity the the-

ory is described by an extended phase space of dimension 18 · ∞3 with the

fundamental Poisson bracket given in Eq. (3.43). In order to recover the

12 ·∞3 dimensional phase space of the ADM formulation, we have to regard

the hypersurface where the Gauss constraint is satisfied and have to divide

by the gauge orbits generated by Gj .

Constraints in terms of the new variables

It remains to write the constraints in terms of the variables (β)Aja,K
j
a, Eaj , for

a detailed calculation see [69]. For this purpose we introduce the curvature

of the connection A on Σ

F jab = 2∂[a
(β)Ajb] + εjkl

(β)Aka
(β)Alb.

The Gauss constraint given by the covariant derivative of Eaj w.r.t. the

connection Aja, i.e.

Gj =
1

β
(β)DaEaj =

1

β

[
∂aE

a
j + εijk

(β)AjaE
a
k

]
(3.44)

stems from the fact that gravity has to be invariant under SO(3)-rotations

of the triad Eaj → OjiE
a
j , where Oji ∈ SO(3). The diffeomorphism constraint

originates from the requirement of independence from any spatial coordinate

system or background and is given by

Ha =
1

β
(β)F jabE

b
j . (3.45)

Finally the Hamiltonian constraint tells us that gravity must be invariant

under a reparametrization of the coordinate time and is given by

H =
[

(β)F jab − (1 + β2)εjmnK
m
a K

n
b

] εjklEakEbl√
det(q)

, (3.46)
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The components of the extrinsic curvature in Eq. (3.46) are functions of the

Ashtekar connection Aja and the densitized triad Eaj because of the depen-

dence of the spin connection Γja on the triad eaj , see Eq. (3.39). In Section 5.2

we translate the constraints as given in Eq. (3.44), Eq. (3.45) and Eq. (3.46)

into our preceding differential geometrical framework of Chapter 4.

From now on we will only consider in view of several considerations, given

in [69], positive β. In order to simplify our notation we will drop the la-

bel β in what comes, but mean by the fields E,A the fields (β)E, (β)A for

β = 1 respectively for arbitrary β. In summary general relativity can be

written in terms of connections with a compact structure group resembling

a Yang-Mills theory, where Eaj respectively F jab plays the role of the electric

respectively magnetic field and the Gauss law Gj = 0 for gravity in the

new variables format is identical of that for Yang-Mills equations. But we

want to point out the appearance of the Hamiltonian- and diffeomorphism

constraint, which generates time evolution.

Holonomy-flux Poisson algebra A

With the intension to quantize gravity according to the algorithm for the

quantization of constrained systems devised by Dirac (for the original ac-

count, see his Lectures on Quantum Mechanics, for a modern treatment,

see [69]), we have to proceed in two steps.

i.) Quantization of the canonical variables (the so-called kinematic quan-

tization);

ii.) Impose the constraints as operator equations on states, and solve these

equations to obtain physical states.

The first step is what we will discuss in the present section. What we want

is a representation of the canonical commutation relations, see Eq. (3.43),

{(β)Eaj (x),(β)Akb (y)} =
κ

2
δab δ

k
j δ(x, y)

on a Hilbert space. Fields evaluated at points are usually too singular to

give good operators in the quantum theory. Thus one has to form suitably
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integrated smeared quantities, similar we did for the fields qab, P
ab in Section

3.1.1, that correspond to well defined operators in the quantum theory.

Poisson brackets then suggest commutation relations for these quantities,

and one obtains an abstract algebra of operators in order to proceed with

the quantization.

But before introducing the holonomy-flux Poisson algebra A we will give

the definitions of curves, edges and graphs:

Definition 3.1.9. (See [69])

i.) By a curve c we mean a map c : [0, 1]→ Σ; t 7→ c(t) which is contin-

uous, oriented, piecewise semianalytic, parametrized, compactly sup-

ported and embedded in Σ. The set of curves is denoted C in what

follows.

ii.) The beginning point, final point and the range of a curve is defined,

respectively, by

b(c) := c(0), f(c) := c(1), r(c) := c([0, 1]).

iii.) On C we define maps ◦, (.)−1 called composition and inversion respec-

tively by

[c1 ◦ c2](t) :=

{
c1(2t) t ∈ [0, 1

2 ]

c2(2t− 1) t ∈ [1
2 , 1]

if f(c1) = b(c2) and

c−1(t) := c(1− t).

iv.) An edge e is an equivalence class of a curve ce ∈ C which is semiana-

lytic in all of [0, 1]. In this case r(e) := r(ce).

v.) An independent set of edges {e1, . . . , eN} defines an oriented graph γ

by γ :=
⋃N
k=1 r(ek), where r(ek) ⊂ γ carries the arrow induced by ek.

We denote by E(γ) the edge set of γ. From γ we can recover its set

of edges E(γ) = {e1, . . . , eN} as the maximal semianalytic segments

of γ together with their orientations as well as the set of vertices of γ

as V (γ) = {b(e), f(e); e ∈ E(γ)}. The set of graphs is denoted by Γ.
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Figure 3.2.: Edges and its collection γ = {e1, . . . , eN}.

These objects are depicted in figure 3.2.

Now we can go over to the implementation of the Holonomy-flux Poisson

algebra A. Here the different tensorial nature of Aja and Eaj plays a central

role. The connection Aja is a 1-form, so it is natural to smear it along a 1-

dimensional graph. The topic we just described is not unique to gravity but

appears in a non-Abelian Yang-Mills theory. The only known solution is to

work with so-called Wilson loops. Before introducing Wilson loops we shall

first give a geometrical definition of a holonomy along the lines of [15, 56].

Definition 3.1.10. Let A = Ajaτidx
a ∈ su(2) be a connection. Given a

curve γ : [0, 1] → Σ in Σ we define by the holonomy hγ(A) ∈ SU(2) of the

connection A along γ the unique solution to the following ordinary differen-

tial equation

d

ds
hγs(A) = hγs(A)A(γ(s)), hγ0 = 12, hγ(A) := hγ1(A),

where γs(t) := γ(st), s ∈ [0, 1] and A(γ(s)) := Aja(γ(s))τj/2γ̇
a(s). The

solution to this equation is explicitly given by the holonomy

hγ(A) = P exp

[∫
γ

dsA (γ̇(s))

]
, (3.47)

where P denotes the path ordering symbol which orders the curve parameters

from left to right according to their value beginning with the smallest one.
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Now we want to list some basic properties of the holonomy which are

explicitly given by:

i.) The definition of hγ [A] is independent of the parametrization of the

path γ.

ii.) The holonomy of a path given by a single point is the identity, given

two oriented paths γ1 and γ2 such that the end point of γ1 coincides

with the starting point of γ2 so that we can define γ = γ1c2 in the

standard fashion, then we have

hγ [A] = hγ1 [A]hγ2 [A],

where the multiplication on the right is the SU(2) multiplication. We

also have that

hγ−1 [A] = h−1
γ [A].

iii.) The holonomy transforms in a very simple way under the action of

diffeomorphisms (transformations generated by the vector constraint).

Given ϕ ∈ Diff(Σ) we have

hγ [ϕ∗A] = hϕ−1(γ)[A],

where ϕ∗A denotes the action of ϕ on the connection. In other words,

transforming the connection with a diffeomorphism is equivalent to

simply moving the path with ϕ−1.

iv.) Under a local gauge transformation g(x) ∈ SU(2) the holonomy trans-

forms according to

hγ [Ag] = g(γ(0))hγ [A]g(γ(1))−1,

where γ(0) and γ(1) are respectively the source and target points of

the line γ.

v.) Suppose γ : [0, 1] → Σ is a loop, i.e. γ(0) = γ(1). A consequence of

the above transformation rule and the invariance of the trace is that

the so -called Wilson loop

Wγ [A] = tr(hγ [A]) = tr

(
P exp

∮
γ
A

)
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is gauge invariant.

vi.) The functional derivative with respect to the connection gives

δhγ [A]

δAja(x)
=


1
2 ẋ

aδ(3)(γ(s), x)τihγ if x is the source of γ,

1
2 ẋ

aδ(3)(γ(s), x)hγτi if x is the target of γ,

ẋaδ(3)(γ(s), x)[hγ(0, s)τihγ(s, 1)] if x is inside γ.

(3.48)

Next we turn to the conjugate electric field E. The vector density Eaj ,

defined in (3.25), is dual to the two-form (∗E)ja1,a2 defined by

(∗E)ja1,a2 := εaa1a2E
a
j , (3.49)

where εaa1a2 is the tensor density with weight −1 that is equal to the totally

anti-symmetric symbol in any coordinate system. We note that Ea has

density weight +1 whereas εaa1a2 has weight −1, so the quantity (∗E)ja1,a2

is in fact a two-form.

Since a two-form is naturally integrated in two dimensions we are led

to the following quantity. We integrate Eq. (3.49) on a two - dimensional

oriented surface S, and therefore we obtain the so-called (electric) fluxes

En(S) :=

∫
S
nj(∗E)σj dσ1 ∧ dσ2,

where n = nj is a Lie algebra valued smearing field on S and σ1 and σ2

are local coordinates on S. The quantity En(S) is the flux of E across S.

Since the integrand is a two-form the integral, using the orientation of S, is

hence coordinate independent. The densitized triad or (electric) flux En(S)

has simple geometrical interpretation. Eaj encodes the full background in-

dependent Riemannian geometry of Σ. Therefore any geometrical quantity

in space can be written as a functional of Eaj . One of the simplest is the

area-functional ArS [Eaj ] for a parameterized surface XS : S → Σ, S ⊂ R2,

which is in terms of Eaj explicitly given by

ArS [Eaj ] =

∫
S

dσ1dσ2

√
EajE

b
kδ
jknanb,
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where na = εabc
∂xb

∂σ1

∂xc

σ2
is the normal to the surface S and σ1 and σ2 are local

coordinates on S. This expression for the area of a surface is a well-defined

gauge-invariant quantity and will be a cornerstone in the quantum theory.

Now we have regularized the resulting Poisson algebra using paths and

surfaces, instead of the all of space in traditional smearings such as done in

the ADM formulation. The resulting smeared algebra of hγ [A] and En(S)

is called holonomy-flux Poisson algebra A. All requirements of the program

of canonical quantization with constraints for it to be a classical starting

point of quantization are satisfied by the algebra A generated from fluxes

and holonmies.

Cylindrical functions and the kinematical Hilbert space Hkin

Shifting the focus from connections to holonomies results in the idea of

generalized connections.

Definition 3.1.11. A generalized connection is an assignment of hγ ∈
SU(2) to any graph γ ⊂ Σ. The space of generalized connections is de-

noted by A.

In short the fundamental observable in LQG is taken to be the holonomy

itself and not its relationship (see Eq. (3.47)) to a smooth connection. The

algebra of kinematical observables is defined to be the algebra of the so

- called cylindrical functions of generalized connections denoted by Cyl.

Thus in order to define the integration measure on the space of connections

without relying on a fixed background metric we use Cyl, which we introduce

next.

The algebra of the cylindrical functions

More or less, a cylindrical function is a functional of a field that depends

only on some subset of components of the field itself. In the present case,

the field is the connection, and the cylindrical functions are functionals that
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depend on the connection only through the holonomies he[A] = P exp
(∫
eA
)

along some finite set of edges e. Accordingly a couple (γ, f) of a graph and a

smooth function f : SU(2)Ne −→ C, defines a functional of the connection

A, called cylindrical function which is explicitly given by a functional of the

connection defined as

〈A | γ, f〉 = ψ(γ, f)[A] := f(he1 [A], . . . , heNe [A]) ∈ Cylγ (3.50)

where ei with i = 1, . . . , Ne are the edges of the corresponding graph γ. The

algebra of kinematical observables is defined to be the algebra of cylindrical

functions denoted by Cyl. We can depict the latter algebra as the union of

the set of cylindrical functions defined on graphs γ ⊂ Σ, namely

Cyl =
⋃
γ

Cylγ ,

where
⋃
γ denotes the union of Cylγ for all graphs in Σ. On this algebra we

will base the definition of the kinematical Hilbert space Hkin.

But before turning towards the construction of the representation of

Cyl that defines Hkin we will give the definintion of a spin network and

spin-network function:

Definition 3.1.12. i.) Given a graph γ, label each edge e ∈ E(γ) with a

triple of numbers (je,me, ne) where je ∈ {1
2 , 1,

3
2 , 2, ..} is a half-integral

spin quantum number and me, ne ∈ {−je,−je + 1, .., je} are magnetic

quantum numbers. A quadruple

s :=
(
γ,~j := {je}e∈E(γ), ~m := {me}e∈E(γ), ~n := {ne}e∈E(γ)

)
is called a spin network (SNW). We also write γ(s) etc. for the entries

of a SNW.

ii.) Choose once and for all one representative ρj , j > 0 half integral, from

each equivalence class of irreducible representations of SU(2). Then

Ts : A → C; A 7→
∏

e∈E(γ)

{√
2je + 1 [ρje(A(e))]mene

}
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Figure 3.3.: A generic spin-network with two trivalent nodes.

is called the spin-network function (SNWF) of s. Here [ρj(.)]mn de-

notes the matrix elements of the matrix valued function ρj(.).

A generic spin-network is depicted in Figure 3.3.

So far we have introduced the algebra of functionals of generalized con-

nections Cyl. SNWs are special examples of Cyl, which in addition are

SU(2) gauge invariant. In [75] it is shown how SNWFs define a complete

basis of Hkin.

The Ashtekar-Lewandowski representation of Cyl

In this section we want to turn the space of functionals into an Hilbert space

Hkin, i.e. we have to equip it with a scalar product. For this purpose basi-

cally we need the notion of a measure in the space of generalized connections

in order to obtain a definition of the kinematical scalar product.

In this respect, the modification from the connection to the holonomy

is the crucial factor, because the holonomy is a SU(2) element, and the

integration over SU(2) is well-defined. In particular, there is the so-called

Haar measure dµH of SU(2), a unique gauge-invariant and normalized mea-

sure. Given a cylindrical function ψ(γ, f)[A] ∈ Cyl as in Eq. (3.50), the
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Ashtekar-Lewandowski measure µAL(ψ(Γ, f)) is explicitly defined as

µAL(ψ(γ,f)) :=

∫ ∏
e⊂γ

dµH,ef(he1 [A], he2 [A], . . . , heM [A]),

where dµH is the Haar measure of SU(2) and he ∈ SU(2). Using M copies of

the Haar measure, and the properties of µAL we define on Cylγ the following

scalar product,〈
ψ(γ, f) | ψ(Γ,g)

〉
:=µAL(ψ(γ, f), ψ(γ, g))

=

∫ ∏
e⊂γ

dµH,ef(he1 [A], . . . , heM [A])g(he1 [A], . . . , heM [A]).

(3.51)

This shifts Cylγ into a Hilbert space Hγ associated to a given graph γ.

Definition 3.1.13. The Hilbert space Hγ is defined as the space of square

integrable functions over A with respect to the Ashtekar-Lewandowski mea-

sure µAL, that is

Hγ = L2[A,dµAL]. (3.52)

Additionally, it can be shown, that all proper subspaces Hγ are orthog-

onal to each other, and they span Hkin. This justifies the definition of the

Hilbert space of all cylindrical functions for all graphs as the direct sum of

Hilbert spaces on a given graph.

Definition 3.1.14. The Hilbert space Hkin of all all cylindrical functions

for all graphs is defined as

Hkin =
⊕
γ⊂Σ

Hγ . (3.53)

The scalar product on Hkin is easily induced from (3.51) in the following

manner: if ψ and ψ′ share the same graph, then (3.51) immediately applies.

In the case they have different graphs, such as γ1 and γ2, we consider a

further graph γ3 ≡ γ1 ∪ γ2, we extend f1 and f2 trivially on γ3, and define

the scalar product as (3.51) on γ3:

〈ψ(γ1, f1) | ψ(γ2, f2)〉 ≡ 〈ψ(γ1 ∪ Γ2, f1) | ψ(γ1 ∪ γ2, f2)〉 . (3.54)
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Ashtekar and Lewandowski showed that (3.53) defines an Hilbert space

over the space of generalized connections A on Σ with respect to the

Ashtekar-Lewandowski measure (see [9] for details).

Eq. (3.52) implies that (3.54) can be seen as a scalar product between

cylindrical functionals of the connection with respect to the Ashtekar-

Lewandowski measure:∫
dµAL ψ(γ1, f1)(A)ψ(γ2, f2)(A) ≡ 〈ψ(γ1, f1) | ψ(γ2, f2)〉 .

The latter equation is the rigorous definition of the kinematical scalar

product claimed in step one of the quantization program of LQG. Hkin

is the Cauchy completion of the space of cylindrical functions Cyl in the

Ashtekar-Lewandowski measure. In other words we add to Hkin the limits

of all Cauchy convergent sequences in the µAL norm in addition to the

cylindrical functions. Now we have a candidate kinematical Hilbert space

Hkin which does not require a fixed background metric.

An orthonormal basis of Hkin

Until now we have a definition of the kinematical Hilbert space. In a next

step we want to search for a representation of the holonomy-flux algebra

on it. To that end it is convenient to introtroduce an orthogonal basis

in the space. The main tool for introducing an orthogonal basis is the

Peter-Weyl theorem, The Peter-Weyl theorem states that a basis on the

Hilbert space L2(G,dµH) of functions on a compact group G is given by

the matrix elements of the unitary irreducible representation (irreps) of the

group, namely

f(g) =
∑
j

fmnj D(j)
mn(g), j = 0,

1

2
, 1, . . . , m, n = −j, . . . , j,

where fmnj =
∫

SU(2) dµHD(j)
nm(g−1)f(g), where for the case of SU(2) irreps

are labeled by half-integer spin j. The Wigner matrices D(j)
mn(g) give the

spin-j irreducible matrix representation of the group element g.
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Figure 3.4.: An edge that intersects the surface at an individual point p.

Two different relative orientations of e and S are depicted.

The Peter-Weyl theorem immediately applies to Hγ , since the latter is

just a tensor product of L2(SU(2),dµH). Therefore, the basis elements are

〈A | γ; je,me, ne〉 ≡ D(j1)
m1n1

(he1) . . .D(jn)
mnnn(hen),

and an arbitrary cylindrical function ψ(γ, f)[A] ∈ Hγ can be decomposed

as

ψ(γ, f)[A] = f(he1 [A], he2 [A], . . . , heM [A])

=
∑

je,me,ne

f j1,...,jnm1,...,mn,n1,...,nnD
(j1)
m1n1

(he1 [A]) . . .D(jn)
mnnn(hen [A]).

Hence for all values of the spin j and any graph γ the product of components

of irreps
∏n
i=1D

ji
mini [hei ] associated with the n edges e ⊂ γ is a complete

orthonormal basis of Hkin.

Representation of the holonomy-flux algebra A on Hkin

On the basis introduced in the previous Section, we can give a Schrödinger

representation for the regularized holonomy-flux version of the algebra. Let

~σ = (σ1, σ2) be coordinates on the surface S, whereas the surface is defined

by S : (σ1, σ2) 7→ xa(σ1, σ2). Consider for simplicity the fundamental repre-

sentation, he ≡ D( 1
2

)(he). The holonomy - operator acts by multiplication
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on the holonomy he[A], explicitly given by

ĥγ [A]he[A] = hγ [A]he[A]. (3.55)

Next we want to compute the action of the flux operator Êi[S] =

−i~β
∫
S d2σna

δ
δAia(x(σ))

on the holonomy he[A]. For simplicity, let us as-

sume that the edge e crosses the surface S at most once, and denote the

intersection point (if any) by p. Here the edge e is separated into two parts

e = e1 ∪ e2 by the point p at which the triad acts and the sign depends on

the relative orientation of e and S, see Figure 3.4. Applying Eq. (3.48) we

obtain

Êi[S]he[A] = −i~β
∫
S

d2σna
δhe[A]

δAia(x(σ))
= ±i~βhe1 [A]τihe2 [A].(3.56)

The action vanishes, Ê[S]he1 [A] = 0, when e is tangential to S or e ∩ S =

0. Hence we obtain the simple result. The action of the operator Êi[S]

on holonomies consists of just inserting the matrix ±i~τi at the point of

intersection, we say that the operator Êi[S] grasps γ. Eq. (3.1.2) plays a

key role in the construction of gemoetrical operators, see Section 3.1.2 and

Section 6.1.2. Diagrammatically it is illustrated in the following way, see

[21]:

Êi[S] j
m m′he = ±i~β j j

i

m nhb hc .

The link represented with a dashed line denotes a link in the adjoint repre-

sentation j = 1.

The generalization to multiple intersections is immediate. We have

Êi[S]he[A] =
∑

p∈(S∩γ)

±i~βhpe1 [A]τih
p
e2 [A],

where p labels different intersections points. Thus Êi[S] is a well defined

operator in Hkin.
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In a next step we consider the action of the scalar product of two fluxes

acting inside the link,

Êi[S]Êi[S]he[A] = −~2β2 he1 [A]τ iτihe2 [A]. (3.57)

On the right hand side, we see the appearance of the scalar contraction of

algebra generators, τ iτi ≡ C2. This scalar product is known as the Casimir

operator of the algebra. In the fundamental representation considered here,

C2 = −3
412. The Casimir clearly commutes with all group elements, thus

(3.57) can be written as

Êi[S]Êi[S]he[A] = −~2C2β2 he1 [A]he2 [A] = −~2C2βhe[A]. (3.58)

This expression will be useful below. On the other hand, if two consecutive

fluxes act on one endpoint, say the target, we get

Êi[S]Êj [S]he[A] = −~2β2 he[A]τiτj .

From this result we immediately find that two flux operators do not com-

mute, [
Êi[S], Êj [S]

]
he[A] = −~2β2 he[A][τi, τj ] = −~2β2εij

k he[A]τk.

The actions of the holonomy-flux algebra, given by Eq. (3.55) resp.

Eq. (3.1.2), trivially extends to a generic basis element D(j)(h). The action

of the holonomy - operator (3.55) is unchanged, and in the case of the flux -

operator one simply has to replace in the right hand side of (3.1.2) τi by the

generator Ji in the arbitrary irreducible j. Consequently, in (3.58) we have

the Casimir C2
j = −j(j + 1)12j+1 on a generic irreducible representation,

Êi[S]Êi[S]D(j)(he) = ~2β2j(j + 1)D(j)(he). (3.59)

Finally, the action is extended by linearity over the whole Hkin. The

remarkable fact is that this representation of the holonomy-flux algebra on

Hkin is unique, as proved by Fleischhack [32] and Lewandowski, Okolow,

Sahlmann, Thiemann [51]. This uniqueness result can be compared to the
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Von Neumann theorem in quantum mechanics on the uniqueness of the

Schrödinger representation. It is well-known that the uniqueness does not

extend to interacting field theories on flat spacetime. Remarkably, insisting

on background-independence reintroduces such uniqueness also for a field

theory. But we want to remark that Eq. (3.59) is unfeasible if γ intersects S

more than once, due to the fact, that in this case the τi matrices at different

points get contracted and thus we do not obtain a gauge-invariant state.

Summarizing with this construction we have accomplished the definition

of a well-behaved kinematical Hilbert space for GR. It carries a representa-

tion of the canonical Poisson algebra, and in addition, this representation

is unique. Following Dirac, we now have a well-posed problem of reduction

by the constraints:

Hkin

Ĝj = 0
−−−−−→ HGkin

Ĥa = 0−−−−−−→ HDiff
kin

Ĥ = 0−−−−−−→ Hphys. (3.60)

By kinematical we mean here the Gauss and spatial diffeomorphism con-

straint which will be the same for any background-independent gauge field

theory. On the other hand, the Hamiltonian constraint is the the only which

depends on the Lagrangian of the classical Hamiltonian. Thus the Hamil-

tonian constraint distinguish the different background-independent gauge

field theories and we we denote the physical Hilbert space by Hphys.

Gauge-invariant Hilbert space HGkin

It is not really necessary to implement the Gauss constraint since we can

work directly with gauge invariant functions, that is we solves the constraint

classically and quantizes only the phase space reduced with respect to the

Gauss constraint. Thus as a first step to obtain a gauge invariant Hilbert

space we want to find the states in Hkin that are SU(2) gauge invariant.

Therefore these solutions define a new Hilbert space HGkin. The subindex

indicates that there are still other constraints to be solved before arriving

Hphys. In previous sections we already introduced SNWFs as natural SU(2)

gauge invariant functionals. In this section we will show how these are
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effectively a complete set of orthogonal solutions of the Gauss constraint,

that is a basis of HGkin.

The action of the Gauss constraint is easily represented in HGkin. In fact,

recall that under gauge transformations

he −→ h′e = ÛG[g]he = gs(e)heg
−1
t(e), (3.61)

where ÛG[g] denotes the operator generating a local g(x) ∈ SU(2) transfor-

mation and gs(e) is the value of g(x) at the source of the edge e and gt(e)
the value of g(x) at the target. Similarly, in a generic irrep j we have

D(j)(he) −→ D(j)(h′e) =ÛG[g]D(j)(he) = D(j)(gs(e)heg
−1
t(e))

=D(j)(gs(e))D(j)(he)D(j)(g−1
t(e)).

(3.62)

From this it follows that gauge transformations act on the source and targets

of the edge, namely on the vertices of a graph. Imposing gauge-invariance

then means requiring the cylindrical function to be invariant under action

of the group at the vertices:

f0(h1, . . . , hNe) ≡ f0(gs1h1gt1
−1, . . . , gsNehNegtNe

−1) (3.63)

This property can be easily implemented via group averaging : given an

arbitrary f ∈ Cylγ , the function

f0(h1, . . . , hNe) ≡
∫ ∏

n

dgn f(gs1h1gt1
−1, . . . , gsNehNegtNe

−1) (3.64)

clearly satisfies (3.63).

The group averaging amounts to inserting on each vertex v the following

projector,

P =

∫
dg
∏
e∈v
D(je)(g). (3.65)

The integrand of Eq. (3.65) is an element in the tensor product of SU(2)

irreducible representations,∏
e

D(je)
mene(he) ∈

⊗
e

V (je). (3.66)
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As such, it transforms non-trivially under gauge transformation and is in

general reducible, ⊗
e

V (je) =
⊕
i

V (ji). (3.67)

Then, the integration in Eq. (3.65) selects the gauge invariant part of⊗
e V

(je), namely the singlet space V (0), if the latter exists. Since P is

a projector, we can decompose it in terms of a basis of V (0). Denoting iα a

vector (ket) in this basis, α = 1, . . . ,dimV (0), and i∗α the dual (bra),

P =
dimV (0)∑
α=1

iα i
∗
α. (3.68)

These invariants are called intertwiners. For the case of a 3-valent vertex as

in the above example, dimV (0) = 1 and the unique intertwiner i is given by

Wigner’s 3j-m symbols. More precisely in the case of a three-valent vertex

the space [
V (j1) ⊗ V (j2) ⊗ V (j3)

]
inv

(3.69)

is non-empty only when the following Clebsch-Gordan conditions hold,

|j2 − j3| ≤ j1 ≤ j2 + j3. (3.70)

For an n-valent vertex, the space V (0) can have a larger dimension. To

visualize the intertwiners, it is convenient to add first two irreps only, then

the third, and so on. This gives rise to a decomposition over virtual links,

which for n = 4 and n = 5 is depicted in Fig. 3.5, where the virtual spins

ki label the intertwiners.

The facts that P acts only on the nodes of the graph that label the

basis of Hkin and equation (3.68) implies that the result of the action of P
on elements of Hkin can be written as a linear combination of products of

representation matrices D(j)(he) contracted with intertwiners.

The states labeled with a graph γ, with an irreducible representation

D(j)(h) of spin-j of the holonomy h along each link, and with an element

i of the intertwiner space Hv ≡ Inv[ ⊗
e∈v
V (je)] in each node, are called spin



3.1 Hamiltonian formulation of General Relativity (GR) 105

Figure 3.5.: The virtual spins ki label the intertwiners.

network states, and are given by

ψ(γ,je,iv)[he] = ⊗
e
D(je)(he)⊗

v
iv. (3.71)

Here the indices of the matrices and of the interwiners are hidden for sim-

plicity of notation. Their contraction pattern can be easily reconstructed

from the connectivity of the graph. Before summarizing let us introduce

some graphical notation. We represent the holonomy he[A] in representa-

tion j along a curve e embedded in Σ by a labeled edge and an intertwining

tensor vin , that is the tensor associated to an invariant vector in in the ten-

sor product of L irreducible SU(2) representations, by a L-valent node. A

spin network state can be represented diagrammatically using these building

blocks, see [21].

D(je)[he]
m′

m = j
m m′he , iv

(j1...jL)
m1...mL

=

jLj1

j2
j3

mL

m1

m2

m3

in .

(3.72)

Summarizing, spin network states (3.71) form a complete basis of the

Hilbert space of solutions of the quantum Gauss law, HGkin. The structure of

this space is nicely organized by the spin networks basis. As before, different
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graphs γ select different orthogonal subspaces, thus HGkin decomposes as a

direct sum over spaces on a fixed graph,

HG
kin =

⊕
γ∈Σ

HG
γ (3.73)

Furthermore, the Hilbert space on a fixed graph decomposes as a sum over

intertwiner spaces,

HGγ = L2[SU(2)Ne/SU(2)Nv ,dµHaar] = ⊕jl (⊗vHv) , (3.74)

where Nv are the vertices to the corresponding graph. Equations (3.73) and

(3.74) are the analogue in loop gravity of the Fock decomposition of the

Hilbert space of a free field in Minkowski spacetime into a direct sum of

v-particle states, and play an equally important fundamental role.

Kinematical geometrical operators

In this Section we will describe the kinematical geometrical operators of

Loop Quantum Gravity. To be well defined on HGkin, the space of the sates

invariant under local SU(2), an operator has to be invariant under internal

gauge transformations. Although the operator Êaj cannot be gauge invari-

ant, as the index j transforms under internal gauges, in Eq. (3.1.2) we have

introduced the action of the triad field Eaj (3.25) on a spin network state ψ

in order to obtain the quantization of the Gauss constraint and area- respec-

tively the volume-operator, that lead to one of the main physical prediction

of LQG: discreteness of geometry eingenvalues. Let us assume that there is

just one intersection P between the surface S and the graph γ of the spin

network ψ. Let be j the spin of the link at the intersection. We obtain from

Eq. (3.59)

Êaj (Sn)Êbj (Sn)|ψ(γ)〉 = ~2j(j + 1)|ψ(γ)〉. (3.75)

i.) Area operator

Now we will introduce the Area operator of Loop Quantum Gravity

[10]. Let us define a gauge-invariant operator Ar[S], see (3.76), asso-

ciated to the two-dimensional surface S ⊂ Σ, where S is an oriented,
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open, embedded, completely supported, semi-analytical surface. In

order to generalize (3.75) to a generic graph, with arbitrary amount

of intersections. To circumvent the difficulties already described at

the end of Section 3.1.2 we will regularize the expression for the area

in the following way. For any N , we will decompose the surface S

in small surfaces Sn (two-cells), which are shrinking as N → ∞, and

such ∀N,
⋃
n Sn = S. With this decomposition of S, we can write the

integral defining the area as the limit of a Riemann sum, in particular

Ar[S] = lim
N→∞

ArNS [S],

where the Riemann sum can explicity written as

ArN [S] =
N∑
n=1

√
Eaj (Sn)Ebj (Sn). (3.76)

Here Eaj (Sn) denotes the flux of Eaj through the n-th two cell.

The strategy of quantization of the area is to plug into (3.76) the

quantization of Ej(S),to apply cylindrical function and to hope that

in the limit N →∞ we obtain a consistently defined family of positive

semidefinite operators. In particular the area operator is defined as

Âr[S] = lim
N→∞

Âr
N

S [S],

In a next step we will compute the action of the area operator on a

generic spin-network state ψ(γ), where the graph is generic and can

cross S many times. Using equation (3.75), we obtain immediately

Âr
N

[S]|ψ(γ)〉 =

N∑
n=1

√
Êaj (Sn)Êbj (Sn)|ψ(γ)〉

=
∑
p∈S∪γ

~
√
β2jp(jp + 1)|ψ(γ)〉.

(3.77)

Next we list the main properties of the Area operator, namely:
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Figure 3.6.: A simple spin network (SNW) γ intersecting the surface S.

Theorem 3.1.15. The area functional admits a well-defined quanti-

zation Âr(S) on Hkin with the following properties:

a.) Âr(S) is positive semidefinite, (essentially) self-adjoint with

Cyl 2(A) as domain of (essential) self-adjointness.

b.) The spectrum Spec(Âr(S)) is pure point (discrete) with eigen-

vectors being given by finite linear combinations of spin network

functions.

c.) In physical units the eigenvalues are given explicitly by λjp =
β`2P

4

√
jp(jp + 1), where `2P = ~κ is the Planck area. The spec-

trum has an area gap (smallest non-vanishing eigenvalue) given

by λ0 = β`2P

√
3

8 .

d.) Spec (Âr(S)) contains information about the topology of Σ, for

instance it matters whether ∂S = ∅ or not.

The area operator Âr
N

S [S] has contribution from each edge of ψ that

crosses S. For a detailed discussion of the area operator see [10].

ii.) Volume operator

Here we describe in some detail the construction of the volume oper-

ator, we quote [21]. We will follow similar steps when introducing the
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length operator in Section 6.1.2. In order to introduce in the quan-

tum theory an operator corresponding to the volume of a region, the

starting point is the classical expression, given by

Vol[R] :=

∫
R

d3x
√

det(q) =

√
1

3!

∣∣∣εijkεabcEai EbjEck∣∣∣. (3.78)

Applying the canonical quantization procedure, however, is not

straightforward: at the quantum level the well-defined operator rep-

resenting the geometry of space is not Eai (x) but its flux through a

surface given by Fi(S) =
∫
S naE

a
i (x) d2σ and the holonomy of the con-

nection A along a curve c namely hc[A]. Therefore the quantization

strategy is to find a regularized expression for the classical volume in

terms of fluxes, to promote this expression to an operator and then

analyze the existence of the limit in the Hilbert space topology. If the

limit exists, then we can say that we have a candidate for the volume

operator. At this point one can forget the construction, study the

properties of this operator both in the deep quantum regime and in

the semi-classical regime and understand if it actually has the meaning

of volume of a region at both levels.

Given the number of choices to be made, it is not surprising that

two distinct mathematically well-defined volume operators exist in the

literature, one due to Rovelli and Smolin [63] the other to Ashtekar

and Lewandowski [10]. Both of them act non-trivially only at the

nodes of a spin network state. In this sense, both of them fit into

the picture 3.8(b). For a discussion of the relation between the two

operators see [10, 31, 40, 41]. Here we describe in detail some aspects

of the Rovelli-Smolin construction [63] of the volume operator as it

will play a role in the following.

a.) External regularization of the volume

The construction of the regularized expression for the volume

to be used as starting point for quantization goes through the

following steps. We want to mention that the construction we

discuss at hand is based on [63], [28], [62] but does not completely
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Figure 3.7.: 3.7(a) Cubic cell with regularized quantity (6.4) shown. Fig-

ure 3.7(b) Action of the three-hand operator. The cubic cell is

shown in gray. Figure 3.7(c) Shrinking property of the three-

hand operator [21].

coincide with it. See also [50] and [10] for a comprehensive dis-

cussion of the many subtleties involved and a comparison with

the Ashtekar-Lewandowski construction.

i. The integral over R is replaced by the limit of a Riemann

sum. More specifically, we choose coordinates xa in a neigh-

borhood in Σ containing R and consider a partition of the

neighborhood in cubic cells RI of coordinate side ∆x. There-

fore the region R is contained in the union of a number of

cells, R ⊆ ∪NRN , and the integral
∫
R d

3x can be approxi-

mated from above by the sum
∑

N (∆x)3 with N running on

the cells containing points of R.

ii. The argument of the square root in (3.78) in a point con-

tained in the cell RN is written in terms of the limit of a

quantity W∆x(xN ) given by a triple surface integral over the
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boundary of the cell:

W∆x(xN ) =
1

8× 3!

1

(∆x)6

∫∫∫
∂RN

[|T ijkxN (σ, σ′, σ′′)×

Eai (σ)na(σ) Ebj (σ
′)nb(σ

′)Eck(σ
′′)nc(σ

′′)|]
(3.79)

where
∫∫∫

∂RN
:=
∫
∂RN

d2σ
∫
∂RN

d2σ′
∫
∂RN

d2σ′′.

In Eq. (3.79) the following notation has been used. Let’s

consider a surface S, a choice of local coordinates σα and

an embedding of S in Σ given by xa = Xa(σ). The quan-

tity na(σ) is defined as na(σ) = εabc
∂Xb

∂σ1
∂Xc

∂σ2 . Notice that in

Eq. (3.79) we are considering a surface given by the bound-

ary of a cubic cell, therefore the function na(σ) is not con-

tinuous in Σ. By Eai (σ) we simply mean Eai (X(σ)). The

function T ijkxN (σ, σ′, σ′′) has been inserted in order to guaran-

tee the SU(2)-gauge invariance of the non-local expression

Eq. (3.79)). It is given by

T ijkxN (σ, σ′, σ′′) =εi
′j′k′D(1)(hc1

xNσ
[A]) i

i′ ×

D(1)(hc2
xNσ

′
[A]) j

j′ D
(1)(hc3

xNσ
′′
[A]) k

k′
(3.80)

where D(j)(hci [A]) is the representation j of the holonomy of

the connection along the edge ci and c1
xNσ

, c2
xNσ′

and c3
xNσ′′

are three curves embedded in RN having starting point xN
in RN and ending at a point on the boundary of RN given by

X(σ), X(σ′) and X(σ′′) respectively. As already explained,

by D(1)(hc[A]) ji we mean the holonomy of the real SU(2)

connection along the curve c, taken in the adjoint represen-

tation.

In the limit ∆x → 0, under the assumption of smooth

Eai (x) and Aia(x), we have that W∆x(xN ) goes to
1
3! |ε

ijkεabcE
a
i (xN )Ebj (xN )Eck(xN )|, where we recall the for-

mula

εi
′j′k′Ea

′
i′ E

b′
j′E

c′
k′ =

1

3!

(
εabcε

ijkEai E
b
jE

c
k

)
εa
′b′c′ .
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Therefore we have

Vol[R] = lim
∆x→0

∑
N

(∆x)3
√
W∆x(xN ) . (3.81)

Notice that the factor (∆x)−6 present in W∆x(xN ) cancels

with the (∆x)3 appearing in (3.81). This corresponds to

the fact that
√

1
3! |εijkεabcE

a
i E

b
jE

c
k| is a density of weight one

and can be integrated with the measure
∫

d3x. As a result,

in (3.81) ∆x appears only implicitly in the definition of the

surface ∂RN .

iii. The surface ∂RN can be partitioned in square cells SαN so

that ∂RN = ∪αSαN . As a result the triple integral over

∂RN can be replaced by a triple Riemann sum. In this way

we end up with an expression depending only on fluxes and

holonomies. Defining the quantity QNαβc for a cell RN and

three surfaces SαN , SβN and Sc
N as

QNαβc = T ijkxN Fi(S
α
N )Fj(S

β
N )Fk(S

c
N ) , (3.82)

where Fi(S) is the so called flux, which is explicitly given by

Fi(S) =
∫
S naE

a
i (x) d2σ we obtain

VolN =

√
1

8× 3!

∑′

αβ c
|QNαβc| (3.83)

and

Vol[R] = lim
∆x→0

∑
N

Vol∆x(xN )Vol[R] = lim
∆x→0

∑
N

VolN ,

(3.84)

where the prime in the sum in Eq. (3.83) stands for sum

restricted to distinct α, β, c. This corresponds to a point-

splitting of the integral over (∂RN )3.

Notice that while the regularized expression depends both

on the Eai and on Aia, the limit depends only on the electric

field.



3.1 Hamiltonian formulation of General Relativity (GR) 113

Step (ii.) and (iii.) can be called a fluxization of the Riemann

sum.

b.) Quantization of the volume

Having constructed a sequence of regularized expressions having

the appropriate classical limit, we can now attempt to promote

(3.84) to a quantum operator by invoking the known action of

the holonomy and of the flux on cylindrical functions, namely

V̂ol[R]ψ(γ, f)[A] = lim
∆x→0

(∑
N

V̂olN ψ(γ, f)[A]

)
.

To be more specific, we need to define a consistent family of

operators for finite ∆x and given cylindrical function. This step

requires a number of choices which we state below. Then we can

analyze the existence of the limit in the operator topology.

Let γ be a closed graph embedded in Σ and made of N nodes

connected by M links {e1, .., eM}. A SU(2)-gauge invariant state

which is cylindrical with respect to the graph γ is defined as

Eq. (3.50)

ψ(γ, f)[A] = f(he1 [A], ..heM [A])

with f a class function on SU(2)M . In order to define the regular-

ized operator V̂olN for finite ∆x, an adaptation of the partition

of R to the graph γ is needed. The partition of the region R in

cells RN is refined so that

• nodes of γ can fall only in the interior of cells;

• a cell RN contains at most one node. In case it contains no

node, then it can contain at most one link;

• the boundary ∂RN of a cell intersects a link exactly once if

the link ends up at a node contained in the cell and exactly

twice if it does not.
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Moreover we assume that the partition of the surfaces ∂RN in

cells SαN is refined so that links of γ can intersect a cell SαN only

in its interior and each cell SαN is punctured at most by one link.

Next we focus on the action of the operator Q̂Nαβc obtained

quantizing canonically expression (3.82):

Q̂Nαβc = T̂ ijkxN F̂i(S
α
N ) F̂j(S

β
N ) F̂k(S

c
N ) . (3.85)

Let’s call it the three-hand operator. Notice that we don’t need

a specific ordering of the fluxes and the holonomies thanks to

the fact that the self-grasping vanishes.This is a straightforward

consequence of the fact that δil(T
(1)
i )kl = 0. From properties

of the action of the flux operator on a holonomy, we know that

when the operator Q̂Nαβc acts on a state ψ(γ, f)[A] the result is

zero unless each of the surfaces SαN , SβN and Sc
N is punctured by

a link of γ. As a result if the cell RN does not contain nodes of

γ, then Q̂Nαβc annihilates the state.

Now let’s focus on a cell RN which contains a node of γ. In this

case, some further adaptation of the regularized expression (3.82)

to the graph γ is required. The point xN and the three curves

introduced by T ijkxN in the definition of the regularized volume are

adapted to the graph γ in the following way:

i. the point xN in (3.80) is chosen to coincide with the position

of the node,

ii. the three curves c1
xNσ

, c2
xNσ

and c3
xNσ

are adapted to three

of the links of γ originating at the node contained in the cell

RN .

As a result the appropriate labels for the operator (3.85) are a

node n and a triple of links e1, e2, e3. We have that, when the

operator acts on a state of the spin network basis of Hkin(γ), its
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action is the following

Q̂ne1e2e3ψ(γ, j, ik)[A]

=Q̂n e1e2e3

(
D(j1)(he1 [A]) m1

m′1
· · · D(jL)(heL [A]) mL

m′L
vk

(j1···jL)
m1···mL

)
× restm

′
1···m′L

=(8πcL2
P )3 εi

′j′k′D(1)(he1 [A]) ii′D(1)(he2 [A]) j
j′D

(1)(he3 [A]) k
k′

× (T
(j1)
i )

m′′1
m′1

(T
(j2)
j )

m′′2
m′2

(T
(j3)
k )

m′′3
m′3

×
(
D(j1)(he1 [A]) m1

m′′1
· · · D(jL)(heL [A]) mL

m′L
vk

(j1···jL)
m1···mL

)
× restm

′
1···m′L

(3.86)

This expression has the diagrammatic representation Fig-

ure 3.7(b).

The adaptation of T ijkxN to the graph γ as described above has

the following remarkable property: shrinking the region RN cor-

responds to moving the graspings in Figure 3.7(b) towards the

node; however, thanks to the invariance properties of the inter-

twiner inserted by the grasping, the result of the triple-grasping

is independent of the position of the grasping and it can be moved

to the node as shown in Figure 3.7(c). In formulae we have the

identity

εi
′j′k′D(1)(he1 [A]) ii′D(1)(he2 [A]) j

j′D
(1)(he3 [A]) k

k′

× (T
(j1)
i )

m′′1
m′1

(T
(j2)
j )

m′′2
m′2

(T
(j3)
k )

m′′3
m′3

×
(
D(j1)(he1 [A]) m1

m′′1
· · · D(jL)(heL [A]) mL

m′L
vk

(j1···jL)
m1···mL

)
= D(j1)(he1 [A]) m1

m′1
· · · D(jL)(heL [A]) mL

m′L

×
(
εijk(T

(j1)
i )

m′′1
m1 (T

(j2)
j )

m′′2
m2 (T

(j3)
k )

m′′3
m3 vk

(j1···jL)
m′′1 ···mL

)
(3.87)

where the left hand side corresponds to the evaluation of the

diagram Figure 3.7(b) while the right hand side to the evaluation

of Figure 3.7(c).
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As a result we have that, for finite ∆x and with the refinement

of the partition and adaptations to the graph described above,

the action of the operator Q̂Nαβc on a spin network node is

• independent of ∆x,

• does not change the graph of the state,

• does not change the spin labelling of the state.

Therefore its matrix elements are non-trivial only in the inter-

twiner sector and can be computed using standard recoupling

techniques [28, 66, 27]. In formulae we have that

Q̂n e1e2e3 Ψγ,j,ik [A] =
∑
h

(Qn e1e2e3) h
k ψ(γ, j, ih)[A]

Given the valence of the node and the spins of the incoming

links, we have a finite dimensional hermitian matrix (Qn e1e2e3) h
k .

In the case of a trivalent node, the intertwiner space is one-

dimensional. Therefore we have that trivalent nodes are always

eigenstates of the operator QN (and of the operator VolN ). Ex-

plicit computation [52] shows that the eigenvalue is zero. As a

result the simplest non-trivial case is for 4-valent nodes. The

operator V̂olN involves taking a modulus of such matrix and a

square root of a sum of matrices and this can be done through

spectral decomposition. This defines the operator V̂olN for finite

∆x. Moreover this is enough to define the action of the operator

V̂ol(R) on a given spin network state too as, once an appropriate

refinement of the partition is reached, the action of the regu-

larized operator is independent of ∆x and the limit in equation

(3.84) is guaranteed to exist as it is simply the limit of a constant.

Having defined the matrix elements of the operator V̂ol(R) on a

orthonormal basis, the spin network basis, then one can attempt

to promote it to a well-defined operator on the whole Hilbert

space Hkin through self-adjoint extension.

The volume operator for a region has the remarkable feature

that it can be expressed in terms of elementary volume opera-
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tors. Let’s consider a graph γ embedded in Σ, focus on a node

n of γ and choose a region Rn such that it contains the node n,

but does not contain any other node of γ. We call the region Rn
dual to the node n. Then we consider the Hilbert space Hkin(γ)

spanned by spin network states having exactly γ as graph. This

is a subspace of the Loop Quantum Gravity state space Hkin. On

this Hilbert space the operator V̂ol(Rn) is well defined, acts only

on the intertwiner space at the node n and the matrix elements

do not depend on the specific choice of the surface Rn. That is, if

two regions Rn and R′n are both dual to the node n, then the op-

erators V̂ol(Rn) and V̂ol(R′n) coincide on Hkin(γ), i.e. they have

the same matrix elements on the spin network basis of Hkin(γ).

As a result it can be said that it measures the volume of a region

dual to the node n. We call this operator the elementary volume

operator for the node n and indicate it as V̂oln. For a generic

region R the volume operator on Hkin(γ) is given by a sum of

elementary volume operators

V̂ol[R]ψ(γ, f)[A] =
∑
n⊂R

V̂olnψ(γ, f)[A] .

This property enlightens the quantum geometrical meaning of

states belonging to Hkin(γ), and in particular of spin network

states. Moreover it offers the possibility of identifying a region R

in a relational way, i.e. with respect to the state of the gravita-

tional field [61]. This concludes our description of the construc-

tion of the Rovelli-Smolin volume operator.

Next we want to state some properties of Vol.

Theorem 3.1.16. The volume functional admits a well-defined quan-

tization V̂ol(R) on Hkin with the following properties:

a.) The family of V̂ol(R) defines a linear unbounded operator on

Hkin.

b.) V̂ol(R) is symmetric, positive semidefinite, (essentially) self-

adjoint with Cyl 2(A) as domain of (essential) self-adjointness.
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c.) The spectrum Spec(V̂ol(R)) is pure point (discrete) with eigen-

vectors being given by finite linear combinations of spin network

functions.

d.) Trivalent vertices are annihilated 1.

e.) The action of the volume operator vanishes on vertices whose

edges lie on plane, i.e. planar vertices.

The proof a that theorem can be found in [69]. The essential property

of the volume operator is that it has contributions only from the nodes

of a SNW state |ψ〉. This means, that he volume of a region R is a

sum of terms, one for each node of ψ inside R. Thus each node of a

SNW represents a quantum of volume.

Quantum geometry and its dual picture

figure In Loop Quantum Gravity, the state of the 3-geometry can be given

in terms of a linear superposition of spin network (SNW) states. Each

SNW state describes a quantum geometry. Such SNW states consist of a

graph embedded in a 3-manifold and a coloring of its links and its nodes in

terms of SU(2) irreducible representations and of SU(2) intertwiners. The

area operator Âr
N

S [S] has contribution from each link of γ that crosses S.

The essential property of the volume operator V̂ol[R] is that it has only

contribution from the nodes (also called vertices) of the SNW state and

thus we get, that the volume of a region R is a sum of terms, one for each

vertex of γ inside R. Now we are able to interpret a SNW with N nodes as

an ensemble of N quanta of volume, also called chunks of space, localized

in the manifold around the node, each with a quantized volume Volin . The

elementary chunks of quantized volume are separated from each other by

surfaces, which area is governed by the area operator. Thus thanks to the

existence of a volume operator and an area operator, the following dual

picture of the quantum geometry of a SNW state is available (see [62] a

for a detailed discussion): a node of the SNW corresponds to a chunk of

space with definite volume while a link connecting two nodes corresponds to
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an interface of definite area which separates two chunks (see Figure 3.8(b)).

Moreover, a node connected to two other nodes identifies two surfaces which

intersect at a curve. The operator we will introduce in Section 6 corresponds

to the length of this curve.

Implementation of HDiff
kin and Hphys – quantum dynamics

The next step is to implement the spatial diffeomorphisms. In this regard,

we would like to refer to [69, 62, 75, 39] since as far as further work is

concerned all the necessary tools are explained. But before proceeding with

the mathematical construction of the Ashtekar connection we want to make

some comments concerning the Hamilton constraint. As we have seen in

Section 3.1.2, the Hamilton constraint of the classical theory is given by

H =
[

(β)F jab − (1 + β2)εjmnK
m
a K

n
b

] εjklEakEbl√
det(q)

. (3.88)

The dicussion of how how to turn this classical expression into a well defined

operator is in detail given in [69, 62, 39]. The general difficulty with this

is obviously that H is a complicated nonlinear function in the phase space

variables, hence ordering problems present themselves. There are also some

specific difficulties with the expression:

i.) Eq. (3.88) contains the inverse volume element. The volume element

itself has a large kernel when quantized, see the discussion in Sec-

tion 3.1.2, so its inverse is ill defined.

ii.) The expression (3.88) contains the curvature F of A, as well as the ex-

trinsic curvature K. For neither of them there is a simple operator in

the quantum theory. A guiding principle in the quantization process

can be the Dirac algebra. In particular, the quantum Hamiltonian

constraint should be invariant under gauge transformations, covariant

under diffeomorphisms, and the commutator of two Hamilton con-

straints should give a diffeomorphism constraint.

We should say that the knowledge about the quantization and implementa-

tion of the Hamilton constraint is not complete. A new proposal to turn the

classical expression into a well defined operator is outlined in Section 6.
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(a)

S1

S2

l1

l2

n
c

Rn

(b)

Figure 3.8.: Figure 3.8(a) On the left: the graph of a abstract spin network

(SNW) and on the right panel the ensemble of chunks of space,

it represents. Figure 3.8(b) A portion of spin network graph

and the associated dual picture of quantum gravity. The region

Rn is dual to the node n. Two adjacent region are illustrated.

The surfaces S1 and S2 are dual to the links l1 and l2. They

identify a curve c on the boundary of Rn.



4. The Ashtekar Connection

4.1. Construction of the Ashtekar Connection

In this Chapter we will systematical carry out the construction of the

Ashtekar connection as a metric connection on the tangent bundle step by

step as outlined in [33]. In particular, we will mathematically work out in

detail the proofs of the results presented in [33]. Additionally we complete

the discussion of [33] by Theorem 4.1.17 and Proposition 4.1.18.

In more detail the construction is composed of:

1. Defining the second fundamental form and the Weingarten mapping

of Σ;

2. Construction of metric connections on 3-dimensional orientable Rie-

mannian manifolds;

3. Defining the Ashtekar connection.

In the following let Σ be a Cauchy hypersurface of dimension 3, in more

detail an immersed submanifold in a four-dimensional Lorentzian manifold

(M, g), whereas the metric q on Σ is induced by g to Σ. Furthermore we

denote by ∇M covariant differentiation in M.

4.1.1. Step I: Second fundamental form and Weingarten
mapping

In this Section we refer to the discussion of Section 2.2.3 such as the Levi-

Civita connection of a submanifold by using the formalism of covariant

121
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differentiation ∇. In addition we want to repeat parameters for the second

fundamental form and the Weingarten mapping, the first ingredient of the

Ashtekar connection. The Weingarten mapping with respect to the normal

vector field n is given by Wein : Γ(TΣ) −→ Γ(TΣ), X 7−→ ∇MX n = An(X),

see Definition 2.2.71. Here again n is normal to Σ within (M, g). ∇M

denotes the Levi-Civita connection associated to g on M. The second fun-

damental form of Σ for a given immersion in M is defined by K(X,Y ) =

g(Wein(X), Y ), see Section 2.2.3. The other way around this allows us to

obtain Wein from K as g is non-degenerate.

4.1.2. Step II: Metric connections on 3-dimensional oriented
Riemannian manifolds

In this Section we shall describe a technique of constructing connections

and their covariant derivative on the tangent bundle, motivated by the

construction of the Ashtekar connection in the physics literature. In the

following let (Σ, g) an oriented 3-dimensional Riemannian manifold and

∇LC:Γ(TΣ) −→ Γ(T ∗Σ ⊗ TΣ) the covariant derivative with respect to the

Levi-Civita connection. Moreover ωLC ∈ Ω1(O+(Σ, g), so(3)) denotes the

corresponding connection form on the principle SO(3)-bundle of the or-

thonormal, oriented frames O+(Σ, g) over Σ. In this Section we want to

classify the set of of all connections C(O+(Σ, g)) on O+(Σ, g). For this pur-

pose we will identify C(O+(Σ, g)) with the set of (1, 1)-tensor fields on Σ,

denoted by T(1,1)(Σ). In addition we determine the corresponding metrical

covariant derivatives. Therefor we introduce a product structure on TΣ,

generalising the cross product on R3.

Correspondence C(O+(Σ, g)) with T(1,1)(Σ)

On the basis of a (1, 1)-tensor field S ∈ T(1,1)Σ the construction of a con-

nection form is divided into three parts:

i.) By using Remark 2.2.51 we are able to state that two connections

forms on a principle bundle differ in horizontal 1-forms of type (ad).
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Therefore the space of all connections on O+(Σ, g) is an affine space

underlied by the vector space Ω1
hor(O

+(Σ, g), so(3))(SO(3),ad). In what

follows let be e ∈ O+(Σ, g)m an arbitrary element in the fibre over

m ∈ Σ and let be X̃ ∈ TeO
+(Σ, g) an arbitrary lift of X ∈ TmΣ.

Then by using Theorem 2.2.52 we obtain the following identification

Ω1(Σ, Ead) ∼= Ω1
hor(O

+(Σ, g), so(3))(SO(3),ad)

ς ←→ ς̄ ,
(4.1)

where ς and ς̄ respectively are related by ςm(X) = [e, ς̄e(X̃)] = ιe◦ς̄(X̃)

and thus we are able to identify Ω1
hor(O

+(Σ, g), so(3))(SO(3),ad) with the

space of 1-forms on Σ with values in the associated bundle, given by

Ead := O+(Σ, g)×(SO(3),ad) so(3). (4.2)

Vice versa let be ς ∈ Ω1(Σ, Ead), then we obtain ς̄ ∈
Ω1

hor(O
+(Σ, g), so(3))(SO(3),ad) by

ς̄e(X̃) = ι−1
e ◦ ςπ(e)(dπeX̃).

ii.) We will use the equivalence between the adjoint representation and the

natural representation of SO(3) in the following step. Briefly spoken:

on the one hand we have

ρ:SO(3) −→ GL(R3)

with ρ(A)x = Ax for all A ∈ SO(3) and x ∈ R3; and on the other

hand we have the adjoint representation of SO(3)

ad:SO(3) −→ GL(so(3))

which is given by ad(A)Ξ = AΞA−1 for all A ∈ SO(3) and Ξ ∈ so(3).

The equivalence is given by the vector space isomorphism

f:so(3) −→ R3;

3∑
i=1

xiΞi 7−→
3∑

i=1

xiui,
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where {ui}1≤i≤3 respectively {Ξi}1≤i≤3 denotes the basis of R3 respec-

tively so(3). With respect to {ui}1≤i≤3, the components of {Ξi}1≤i≤3

are given by {Ξi} := εijk. Thus we have

f(ad(A)Ξ) = ρ(A)f(Ξ)∀A ∈ SO(3), A ∈ so(3).

By theorem 2.2.18 the isomorphism f provides an isomorphism F be-

tween Ead and O+(Σ, g)×(SO(3),ρ) R
3 =: Eρ, explicitly given by

F:Ead = O+(Σ, g)×(SO(3),ad) so(3)
∼=−→ O+(Σ, g)×(SO(3),ρ) R

3 = Eρ

[e,Ξ] 7−→ [e, f(Ξ)].

(4.3)

But we want to note, that at this point the isomorphism f and there-

fore the choice of the bases {ui}1≤i≤3 respectively {Ξi}1≤i≤3 enters

explicitly the construction of the Ashtekar connection. This choice is

fundamental for the construction of the Ashtekar connection.

iii.) And in addition by using example 2.2.25, we get

V:Eρ = O+(Σ, g)×(SO(3),ρ) R
3 ∼=−→ TΣ

[e, x] 7−→
3∑
i=1

eixi = e · x.
(4.4)

On the basis of the identifications (4.1), (4.3) and (4.4) we obtain the fol-

lowing correspondence, see also [33].

Theorem 4.1.1. There is a one-to-one identification I between the set of

connection forms C(O+(Σ, g)) on O+(Σ, g) and the set of (1, 1)-tensor fields

T(1,1)(Σ) on Σ, i.e.

C(O+(Σ, g)) ∼= T(1,1)(Σ). (4.5)

The isomorphism enabeling Eq. (4.5) is defined in the following way

I:Ω1
hor(O

+(Σ, g), so(3))(SO(3),ad)
∼=−→ Ω1(Σ,TΣ) (4.6)

and is explicitly given by V ◦ F ◦ ς.
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Thus with Theorem 4.1.1 we are able to conclude the following key result:

Theorem 4.1.2. The set of all connections on O+(Σ, g) is given by

C(O+(Σ, g)) ∼= {ωLC + I−1(S)|S ∈ Ω1(Σ, TΣ) = T(1,1)(Σ)}, (4.7)

whereas ωLC denotes the connection form of the Levi-Civita connection.

Discussion of the isomorphism I

In the following we shall discuss the isomorphism I in detail. Here e ∈
O+
m(Σ, g) and X̃ ∈ TeO+

m(Σ, g) denotes an arbitrary point in the fiber over

m ∈ Σ and an arbitrary lift of X ∈ TmΣ, respectively. Then for ς ∈
Ω1(Σ, Ead) the isomorphism I(ς̄) ∈ Ω1(Σ, TΣ) is explicitly given by

[I(ς̄)]m(X) =V ◦ F ◦ ςm(X) = V ◦ F[e, ς̄e(X̃)] = V[e, f(ς̄e(X̃))]

=e · f(ς̄e(X̃)) = V ◦ ιe ◦ f(ς̄e(X̃)).

On the one hand a (1, 1)-tensor field S ∈ Ω1(Σ, TΣ) is given and let be

S̃ := I−1(S), then we have

S̃e(X̃) :=(I−1(S))e(X̃) = (F−1 ◦V−1 ◦ S)e(X̃)

=ι−1
e ◦ F−1 ◦V−1 ◦ Sπ(e)(π∗X̃)

=
∑
i

g(Sπ(e)(π∗X̃), ei)ι
−1
e ◦ F−1 ◦V−1(ei)

=
∑
i

g(Sπ(e)(π∗X̃), ei)ι
−1
e [e,Ξi] =

∑
i

g(Sπ(e)(π∗X̃), ei)Ξi.

Therefore the i-th component of S̃ w.r.t. {Ξi}1≤i≤3 obtains for all e ∈
O+(Σ, g) and X̃ ∈ TeO+(Σ, g)

S̃i,e(X̃) = g(Sπ(e)(π∗X̃), ei).

With respect to a local section s = (s1, . . . , s3):U −→ O+(Σ, g) on U , S ∈
Ω1(U, TΣ) yields

S|U =
∑
i

Sisi ∈ Ω1(U, TΣ),
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where the real valued one form Si ∈ Ω1(U) is defined by Si := g(S, si).

Thus the pullback S̃s := s∗(S̃) ∈ Ω1(U, so(3)) on U of S̃ := I−1(S) =

F−1 ◦ V−1 ◦ S ∈ Ω1
hor(O

+(Σ, g), so(3))(SO(3),ad) with s ∈ Γ(U,O+(Σ, g)) is

given by

S̃sm(X) = S̃s(m)(demX) =
∑
i

(Sπ(s(m))(dπs(m) demX), si)Ξi

=
∑
i

g(Sm(X), si)Ξi =
∑
i

Si,m(X)Ξi.
(4.8)

Otherwise let be S̃ ∈ Ω1
hor(O

+(Σ, g), so(3))(SO(3),ad) in the basis {Ξi}i=1,...,3

of so(3) given, i.e.

S̃ =

3∑
i=1

S̃iΞi

with S̃i ∈ Ω1
hor(O

+(Σ, g)). Then I(S̃) ∈ Ω1(Σ, TΣ) takes the form

(I(S̃))m(X) =V[e, f(S̃e(X̃))] =
∑
i

S̃i,e(X̃)V[e, f(Ξi)]

=
∑
i

S̃i,e(X̃)V[e, ui] =
∑
i

eiS̃i,e(X̃).

Thus the components of [I(S̃)]m(X) with respect to the basis {ei}i=1,...,3 of

TmΣ are given by

g([I(S̃)]m(X), ei) = S̃i,e(X̃).

Induced vector product

In this Section we want to transfer the vector product on R3 by means of

the metric to TΣ as introduced in [33].

i.) The orientation of Σ provides every fiber TmΣ of TΣ over m ∈ Σ the

structure of an oriented, 3-dimensional vector space. Whereas V is an

isomorphism of the vector bundle TΣ and Eρ, we get

Vm : Eρm = O+
m(Σ, g)×(SO(3),ρ) R

3

[e, x]

∼=−→
7−→

TmΣ∑3
i=1 eixi = e · x.
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The fibres TmΣ are isomorphic to R3 and since the basis e =

{ei}i=1,...,3 ∈ O+
m(Σ, g) of TmΣ is positive oriented, we can also re-

gard the basis u := {ui}i=1,...,3 of R3 as positive oriented, where we

used Vm[e, ui] = ei. Therefore the fiber TmΣ ∼= R3 together with the

inner product induced by g

〈ui, uj〉 := gm(ei, ej) = δij

yields an oriented euclidean space, which is equipped with a Lie alge-

bra, namely the vector product × : R3 ×R3 −→ R3 given by

ui × uj :=
∑
k

εijkuk.

Thus we are able to define on the fibres of Eρ the following product

structure:

Definition 4.1.3. Let m ∈ Σ. On the fibres Eρm the product structure

is defined by

·:Eρm × Eρm −→ Eρm,

with [e, x] · [e, y] := [e, x× y].

ii.) Due to Eq. (4.2) the fibers of Ead are isomorphic to so(3), and there-

fore we obtain the Lie algebra structure in a natural way. The iso-

morphism f:so(3) −→ R3 preserves the Lie algebra structures on so(3)

respectively on R3. That implies that (so(3), [·, ·]SO(3))
f−→ (R3,×).

And thus we obtain

f([Ξ,Π]so(3)) = f(Ξ)× f(Π) ∀Ξ,Π ∈ so(3),

where [Ξ,Π]so(3) denotes the Lie algebra structure on so(3). Thus for

all [e,Ξ], [e,Π] ∈ Ead
m and m ∈ Σ the vector space isomorphism

Fm:Ead
m

[e,Ξ]

∼=−→
7−→

Eρm
[e, f(Ξ)]

fulfills

Fm([e, [Ξ,Π]so(3)]) =[e, f([Ξ,Π]so(3))] = [e, f(Ξ)× f(Π)]

=[e, f(Ξ)] · [e, f(Π)] = Fm([e,Ξ]) · Fm([e,Π]).
(4.9)
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Therefore ensuing from the product structures on Eρm respectively Ead
m the

isomorphism Vm respectively Vm ◦ Fm defines a product structure on TmΣ

for all m ∈ Σ.

Definition 4.1.4. Let m ∈ Σ. We define on: TmΣ× TmΣ→ TmΣ by

X on Y :=Vm(V−1
m (X)×V−1

m (Y ))

=(V ◦ F)m([(V ◦ F)−1
m (X) ◦ (V ◦ F)−1

m (Y )]so(3)),

where X,Y ∈ TmΣ.

Summing up we obtain the following identifications:

Ead
m

Fm←→ Eρm
Vm←→ TmΣ,

[
e, [Ξi,Ξj ]so(3)

]
←→ [e, ui × uj ]←→ ei on ej .

Definition 4.1.5. (See [33]) Let e = {ei}i=1,...,3 ∈ O+
m(Σ, g) be an oriented,

orthonormal basis of TmΣ. Then we have ei · ej =
∑

k εijkek. Therefore for

any e the product structure on TΣ is defined by

on: TΣ× TΣ −→ TΣ, X on Y :=
∑
ijk

εijkX
iY jek, (4.10)

for X,Y ∈ TmΣ given by X =
∑

iX
iei and Y =

∑
j Y

jej, for Xi, Y j ∈ R.

Proposition 4.1.6. The product structure given by Eq. (4.10) is indepen-

dent of the given basis of TmΣ.

Proof. Rewriting X and Y in the basis ẽ = {ẽi}1≤i≤3 ∈ O+(Σ, g) of TmΣ,

X =
∑

i X̃
iẽi and Y =

∑
j Ỹ

j ẽj with X̃i, Ỹ j ∈ R3, then there exists an

element A ∈ SO(3) with ẽ = e on A. Due to

X =
∑
i

X̃iẽi =
∑
i,j

X̃iekAki =
∑
k

Xkek = X,

Y =
∑
j

Ỹ j ẽj =
∑
j,l

Ỹ jelAlj =
∑
l

Y lel = Y



4.1 Construction of the Ashtekar Connection 129

we have ∑
i

AkiX̃
i = Xk ⇐⇒ X̃i =

∑
k

AkiX
k,∑

j

Alj Ỹ
j = Y l ⇐⇒ Ỹ j =

∑
j

AljY
l.

By using det(A) = 1 and∑
i,j,m,k,l,nAkiAljAnmεijmεkln

∑
i,j,mAkiAljAnmεijm

⇐⇒
= 3! det(A) = det(A)εkln

we finally obtain∑
i,j

X̃iỸ j ẽi on ẽj =
∑
i,j,m

X̃iỸ jεijmẽm =
∑

i,j,m,k,l,n

AkiX
kAljY

lεijmenAnm

=
∑
k,l,n

εklnX
kY len = X on Y.

QED.

On sections of TΣ the product structure is given by:

Definition 4.1.7. The product structure on Γ(TΣ)

on :Γ(TΣ)× Γ(TΣ)

(X,Y )

−→
7−→

Γ(TΣ)

X on Y

is given by (X on Y )(m) := X(m) on Y (m) for all m ∈ Σ.

Let X,Y be vector fields on Σ. Then we can rewrite X and Y locally

on U with respect to the section s = {si}i=1,...,3:U −→ O+(Σ, g) as

X|U =
∑
i

Xisi and Y |U =
∑
i

Y isi ∈ Γ(U, TΣ),

where Xi := g(X, si) ∈ C(U) and Y i := g(Y, si) ∈ C(U). We have

V[s, X̄] = X|U and V[s, Ȳ ] = Y |U ,



130 The Ashtekar Connection

where we have defined

X̄ :=
∑
i

Xiui ≡ {Xi}i=1,...,3:U −→ R3,

Ȳ :=
∑
i

Y iui ≡ {Y i}i=1,...,3:U −→ R3.

Ragarding analogously the definition

X̃ :=
∑
i

XiΞi ≡ f−1(X̄) : U −→ so(3),

Ỹ :=
∑
i

Y iΞi ≡ f−1(Ȳ ) : U −→ so(3)

so that on U the following applies

F[s, X̃] = [s, X̄] and F[s, Ỹ ] = [s, Ȳ ].

In summary we get the following correspondences:

Γ(U,Ead)
F←→ Γ(U,Eρ)

V←→ Γ(U, TΣ),[
s,
[
X̃, Ỹ

]
so(3)

]
←→

[
s, X̄ × Ȳ

]
←→ X on Y.

As already seen in Proposition 4.1.6 the product structure is independent

on the given basis. However, the product structure on TΣ has even more

interesting properties:

Lemma 4.1.8. (See [33]) Let X,Y and Z ∈ Γ(TΣ) vector fields on Σ. Then

we have

i.) X on Y = −Y on X (antisymmetry);

ii.) g(X on Y,Z) = g(X,Y on Z);

iii.) X on (Y on Z) = g(X,Z)Y − g(X,Y )Z;

iv.) S{X on (Y on Z)} = 0 (Jacobi’s identity), where S denotes the cyclic

sum with respect to X,Y and Z.

Proof. See A.2.1. QED.
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Connection forms on O+(Σ, g)

Let s : U −→ O+(Σ, g) some orthonormal frame. Then we can pull back the

connection form ωLC ∈ Ω1(O+(Σ, g), so(3)) of the Levi-Civita connection to

U by s

ωLC,s := s∗ωLC ∈ Ω1(U, so(3))).

And in addition let {Λij}1≤i≤j≤3 be a basis of so(3), given by the 3 × 3

matrices

Λij = Eji − Eij ∈ so(3), (4.11)

in particular we have

Λ12 =

0 −1 0

1 0 0

0 0 0

 , Λ13 =

0 0 −1

0 0 0

1 0 0

 , Λ23 =

0 0 0

1 0 −1

0 1 0

 .

The relation between the basis {Λij} of so(3) and the basis {Ξi}1≤i≤3 given

by {Ξi}jk := εijk is given by Λij =
∑

k εijkΞk. With respect to Eq. (4.11)

we are able to rewrite ωLC,s as

ωLC,s =
∑
i<j

g(∇LCsi, sj)Λij . (4.12)

Then it is easy to check that Eq. (4.12) yields

ωLC,s =
∑
i<j,k

εijkg(∇LCsi, sj)Ξk =
1

2

∑
ijk

εijkg(∇LCsi, sj) =
∑
k

ΓekΞk,

(4.13)

where we have defined

Γsk :=
1

2

∑
ij

εijkg(∇LCsi, sj) ∈ Ω1(U). (4.14)

Γsk denotes the local expression of the k-th component Γk ∈ Ω1(O+(Σ, g))

of ωLC with respect to the basis {Ξk}1≤k≤3 of so(3). And we have

ωLC =
∑
k

ΓkΞk and Γsk = s∗Γk.
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As a central result we state the following Definition and get the following

Theorem, as first mentioned in [33].

Theorem/Definition 4.1.9. (See [33]) An arbitrary connection form on

O+(Σ, g) is defined by

A := ωLC + S̃ ∈ Ω1(O+(Σ, g), so(3))(SO(3),ad),

where S ∈ Ω1(Σ, TΣ) is an arbitrary (1, 1)-tensor field and S̃ := I−1(S) ∈
Ω1

hor(O
+(Σ, g), so(3))(SO(3),ad) denotes the corresponding horizontal 1-form

of type (SO(3), ad).

Theorem 4.1.10. (See [33]) Let X,Y ∈ Γ(TΣ). With respect to the con-

nection A := ωLC + S̃ the covariant derivative

∇A:Γ(TΣ) −→ Γ(T ∗Σ⊗ TΣ)

is given by

∇A
XY := ∇LC

X Y + S(X) on Y.

Proof. Consider locally the connection form A ∈
Ω1(O+(Σ, g), so(3))(SO(3),ad) w.r.t an orthonormal, oriented basis sec-

tion s:U −→ O+(Σ, g). By Eq. (4.8) we obtain

S̃s := s∗(S̃) =
∑
k

SskΞk ∈ Γ1(U, so(3)),

whereas Ssk ∈ Ω1(U) are the components of S in the basis {si}1≤i≤3, namely

Ssk.m(X) = gm(Sm(X), sk) for all X ∈ Γ(U, TΣ),m ∈ U.

Thus we have

As = ωs + S̃s =
∑
k

(Γsk + S̃sk)Ξk.
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Let X ∈ Γ(TΣ) and using

Ξkul =
∑
m,n

{Ξk}mn{ul}num =
∑
m,n

εknmδlnum =
∑
m

εklmum,

then we obtain

ρ∗(ω
s(X))ul =

∑
k

Γsk(X)Ξkul =
∑
k,m

εklmΓsk(X)um,

ρ∗(S̃
s(X))ul =

∑
k

S̃sk(X)Ξkul =
∑
k,m

εklmS̃
s
k(X)um.

Additionally let be

∇A,Eρ :Γ(Eρ) −→ Γ(T ∗Σ⊗ Eρ) (4.15)

the covariant derivative on Eρ = O+(Σ, g)×(SO(3),ρ) induced by A ∈
C(O+(Σ, g)). The set {[s, ul]}1≤l≤3 forms the basis of local sections Γ(U,Eρ)

in Eρ. On purpose to determine the covariant derivative of [s, ul] in the di-

rection of the vector field X, we calculate

[s, ρ∗(ω
s(X))ul] =

∑
k,m

εklmΓsk(X)[s, um]

=
1

2

∑
m,i,j

∑
k

εklmεijkg(∇LC
X si, sj)[s, um]

=
1

2

∑
m

(g(∇LC
X sl, sm)− (g(∇LC

X sm, sl))[s, um]

=[s,
∑
m

(g(∇LC
X sl, sm)um]

(4.16)

and
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[s, ρ∗(S̃
s(X))ul] = [s,

∑
k,m

εklmSk(X)um = [s,
∑
k,m

εklmg(S(X), sk)um]

= [s,
∑
k,m

εklm〈S̄(X), uk〉um] = [s,
∑
k

〈S̄(X), uk〉uk × ul]

= [s, S̄(X)× ul],
(4.17)

where S̄ ∈ Ω1(U,R3) is given by

V−1(S(X)) = [s, S̄(X)] ∀ X ∈ Γ(U, TΣ).

Using Eq. (4.16) and Eq. (4.17), we obtain

∇A,Eρ

X [s, ul] :=[s, ρ∗(A
s(X))ul] = [s, ρ∗(ω

s(X) + S̃s(X))ul]

=[s,
∑
m

(g(∇LC
X sl, sm)um] + [s, S̄(X)× ul]

=[s,
∑
m

(g(∇LC
X sl, sm) +

∑
k

εklmg(S(X), sk))um].

By the isomorphism V, see Eq. (4.4),∇A,Eρ induces the the covariant deriva-

tive ∇A on TΣ by

∇A:Γ(TΣ) −→ Γ(T ∗Σ⊗ TΣ)

Y −→ V−1(∇A,EρV(Y )).

Thus for the local vector field sl ∈ Γ(U, TΣ) we get

∇A
Xsl = V−1(∇A,EρV(sl)) = V−1(∇A,Eρ [s, ul])

= V−1

[∑
m

{g(∇LC
X sl, sm) +

∑
k

εklmg(S(X), sk)}[s, um]

]
=
∑
m

g(∇LC
X sl, sm)sm +

∑
m,k

εklmg(S(X), sk)em

= ∇LC
X sl +

∑
k

g(S(X), sk)sk on sl = ∇LC
X sl + S(X) on sl.
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Due to the fact that we can evolve every Y ∈ Γ(TΣ) in the basis {si}1≤i≤3,

we obtain generally

∇A
XY := ∇LC

X Y + S(X) on Y.

QED.

Proposition 4.1.11. (See [33]) Let X,Y and Z ∈ Γ(TΣ) are vector fields

on Σ. Then we have

i.) ∇LC
Z (X on Y ) = (∇LC

Z X) on Y +X on (∇LC
Z Y ) and

ii.) ∇A
Z(X on Y ) = (∇A

ZX) on Y +X on (∇A
ZY ).

Proof. See A.2.2. QED.

Theorem 4.1.12. (See [33]) ∇A is metric.

Proof. See A.2.3. QED.

Curvature

The Riemannian curvature tensor RLC respectively the torsion TLC in

terms of the covariant differentiation ∇LC w.r.t the Levi-Civita connection

is expressed as RLC(X,Y )Z = [∇LC
X ,∇LC

Y ]Z − ∇LC
[X,Y ]Z and TLC(X,Y ) =

∇LC
X Y − ∇LC

Y X − [X,Y ]. Now we want to determine this objects w.r.t an

arbitrary connection as constructed in Proposition 4.1.9, which originally

implemented by [33].

Theorem 4.1.13. (See [33]) With respect to ∇A the torsion TA ∈ (Λ2T ∗Σ)

can expressed as follows

TA(X,Y ) = S(X) on Y − S(Y ) on X

for all X,Y in Γ(TΣ).
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Proof. See A.2.4. QED.

Theorem 4.1.14. (See [33]) With respect to ∇A the Riemannian curvature

RA ∈ Γ(Λ2T ∗Σ⊗ End(TΣ)) is given by

RA(X,Y )Z = RLC(X,Y )Z+[(∇LC
X S)(Y )−(∇LC

Y S)(X)+S(X) on S(Y )] on Z

for all X,Y, Z in Γ(TΣ) on Σ. RLC ∈ Γ(Λ2T ∗Σ ⊗ End(TΣ)) denotes the

curvature of the Levi-Civita connection ∇LC.

Proof. See A.2.5.

QED.

Clearly RA satisfies the following symmetries, which are generally valid

for RLC.

Lemma 4.1.15. (See [33]) For all X,Y, Z and V ∈ Γ(TΣ) the curvature

tensor RA ∈ Γ(Λ2T ∗Σ⊗ End(TΣ)) has the following symmetries:

i.) RA(X,Y ) = −RA(Y,X)

ii.) g(RA(X,Y )Z, V ) = −g(RA(X,Y )V,Z).

Proof. See A.2.6. QED.

But we want to continue with the following remark:

Remark 4.1.16. The additional symmetry properties of the curvature tensor

w.r.t. the Levi-Civita connection, namely

g(RLC(X,Y )Z,W ) = g(RLC(Z,W )X,Y ) for all X, Y, Z,W ∈ Γ(TΣ)

and

S{RLC(X,Y )Z} = 0 for all X, Y, Z ∈ Γ(TΣ) (Bianchi’s 1st identity)
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are not fulfilled by RA, since in general w.r.t. ∇A the torsion TA 6= 0. In

the latter equation S denotes the cylclic sum with respect to X,Y, Z.

In what follows we want to complete and to round up the discussion of

[33]. In the case of RA we find the generalized Bianchi identities.

Theorem 4.1.17. (generalized Bianchi identities.)

Let RA ∈ Γ(Λ2T ∗Σ ⊗ End(TΣ)) and TA ∈ (ΛT ∗Σ) be the curvature

and the torsion of the connection A := ωLC +S̃. Then for all all vector

fields X,Y and Z ∈ Γ(TΣ) we have

(1) Bianchi’s 1st identity

S{RA(X,Y )Z} =S{[S(X) on S(Y )] on Z

+∇LC
X TA(Y,Z) + TA(X, [Y,Z])}.

(4.18)

If S:Γ(TΣ) −→ Γ(TΣ) is a symmetric operator, i.e. g(S(X), Y ) =

g(X,S(Y )) for all X,Y ∈ Γ(TΣ), we have

S{RA(X,Y )Z} = S{∇LC
X TA(Y,Z) + TA(X, [Y,Z])};

(2) Bianchi’s 2nd identity

S{(∇A
ZR

A)(X,Y )} =−S{RA(TA(X,Y ), Z)}
=−S{RA(S(X) on Y − S(Y ) on X,Z)},

(4.19)

where S is the cyclic sum with respect to X,Y, Z.

Proof. See A.2.7.

QED.

Proposition 4.1.18. With respect to the connection A := ωLC + S̃ respec-

tively its covariant derivative ∇A



138 The Ashtekar Connection

(a) the Ricci tensor RicA is given by

RicA(Y,Z) =RicLC(Y, Z)

−
∑
i

{g(S(Y ) on ∇eiZ, ei)

+ g(S(∇eiY ) on Z, ei)

+ g((S(ei) on Z),∇Y ei)
− g(S(ei) on ∇Y Z, ei)
− g(S(∇Y ei) on Z, ei)}

+
∑
i

{g(Z, S(Y )g(S(ei), ei)− g(Z, S(ei)g(S(Y ), ei)},

(4.20)

where RicLC is the Ricci tensor with respect to the Levi-Civita connec-

tion,

(b) and in addition the Ricci curvature scalar RA w.r.t the connection A

is given by

RA = RLC + tr(S)2 − tr(S2), (4.21)

where RLC is the Ricci curvature scalar with respect to the Levi-Civita

connection.

Proof. See A.2.8. QED.

4.1.3. Step III: Ashtekar connection

Let be Wein ∈ Γ(T ∗Σ ⊗ TΣ) the Weingarten mapping on Σ. By replacing

S := βWein, where β ∈ R∗, in the previous construction, we obtain the

following expression:

Definition 4.1.19. The Ashtekar connection w.r.t. Barbero-Immirzi pa-

rameter β is defined by

A := ωLC + βW̃ein ∈ Ω1(O+(Σ, g), so(3))(SO(3),ad), (4.22)
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where W̃ein = I−1(Wein) and β ∈ R∗.

Theorem 4.1.20. Let X,Y ∈ Γ(TΣ). With respect to the Ashtekar connec-

tion A := ωLC + βW̃ein the covariant derivative

∇A : Γ(TΣ) −→ Γ(T ∗Σ⊗ TΣ)

is given by

∇A
X := ∇LC

X Y + βWein(X) on Y.

Proof. Follows directly from Theorem 4.1.10. QED.

All statements as given in Sections 4.1.2 respectively 4.1.2 hold for the

Ashtekar connection. We want to summarize:

Proposition 4.1.21. ∇A is metric with torsion. With respect to the

Ashtekar connection in terms of the covariant differentiation the torsion

T and curvature R can expressed as follows:

TA(X,Y ) = β[Wein(X) on Y −Wein(Y ) on X]

and

RA(X,Y )Z =RLC(X,Y )Z + β[(∇LC
X Wein)(Y )− (∇LC

Y Wein)(X)] on Z

+ β2[Wein(X) on Wein(Y )] on Z,

(4.23)

where X,Y and Z ∈ Γ(TΣ) are vector fields on Σ.

Proof. Follows directly from Theorem 4.1.13 and Theorem 4.1.14. QED.

Lemma 4.1.22. For all X,Y, Z and V ∈ Γ(TΣ) the curvature tensor RA has

the following symmetries:
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i.) RA(X,Y ) = −RA(Y,X)

ii.) g(RA(X,Y )Z, V ) = −g(RA(X,Y )V,Z).

Proof. Follows directly from Lemma 4.1.15. QED.

Proposition 4.1.23. If M is of constant sectional curvature, then we have

RA(X,Y )Z = RLC(X,Y )Z + β2[Wein(X) on Wein(Y )] on Z

for all X,Y, Z ∈ Γ(TΣ).

Proof. Follows directly from Corollary 2.2.77 of Section 2.2.3. QED.

Proposition 4.1.24. Let X,Y and Z ∈ Γ(TΣ) are vector fields on Σ. Then

∇A obeys the Leibniz rule

∇A
Z(X on Y ) = (∇A

ZX) on Y +X on (∇A
ZY ).

Proof. Follows directly from Proposition Proposition 4.1.11. QED.

Theorem 4.1.25. (generalized Bianchi identities.) For RA ∈ Γ(Λ2T ∗Σ ⊗
End(TΣ)) and TA ∈ (ΛT ∗Σ) of the Ashtekar connection we have for all all

vector fields X,Y and Z ∈ Γ(TΣ)

(1) Bianchi’s 1st identity

S{RA(X,Y )Z} = S{∇LC
X TA(Y, Z) + TA(X, [Y, Z])};

(2) Bianchi’s 2nd identity

S{(∇A
ZR

A)(X,Y )} =S{RA(TA(X,Y ), Z)}
=−S{RA(β[Wein(X) on Y

−Wein(Y ) on X], Z)},
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where S is the cyclic sum with respect to X,Y, Z.

Proof. See proof of Theorem 4.1.17. QED.

Proposition 4.1.26. With respect to the Ashtekar connection in terms of

the covariant differentiation the Ricci tensor Ric and the Ricci curvature

scalar R can expressed as follows:

(a)

RicA(Y,Z) =RicLC

− β
∑
i

{g(Wein(Y ) on ∇eiZ, ei)

+ g(Wein(∇eiY ) on Z, ei)

+ g((Wein(ei) on Z),∇Y ei)
− g(Wein(ei) on ∇Y Z, ei)
− g(Wein(∇Y ei) on Z, ei)}

+ β2
∑
i

{[g(Z,Wein(Y )g(Wein(ei), ei)

− g(Z,Wein(ei)g(Wein(Y ), ei)]},

(4.24)

where RicLC is the Ricci tensor with respect to the Levi-Civita connec-

tion respectively

(b)

RA = RLC + β2[tr(Wein)2 − tr(Wein2)], (4.25)

where RLC is the Ricci curvature scalar with respect to the Levi-Civita

connection.

Proof. See proof of Proposition 4.1.18. QED.
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4.2. Physics notation

In the physics literature, the Ashtekar connection is given by its components

in some coordinate system. In order to reproduce this, let {Ξi}i=1,...,3 be

again a basis of so(3) with [Ξi,Ξj ] = εkijΞk, and let χ : U −→ R3 be some

chart for open U ⊆ Σ. Then we get a local basis {δi}i=1,...,3 for the tangent

space. Finally, choose some orthonormal frame s : U −→ O+(Σ, g). Hiding

the dependence on U , we get s(ui) =: eai ∂a with ui being the i-th vector in

the standard basis of R3. Then we can rewrite the components of Eq. (4.22)

into

As,ia := As,i(∂a) = ωLC;s,i(∂a) + βW̃ein
s,i

(∂a)

=:ωLC;s,i
a + βW̃ein

s,i

a

=
1

2

3∑
i,j=1

εijkg(∇LC
∂a ei, ej) + βg(Wein(∂a), ei)

=
1

2

3∑
i,j=1

εijkω
s
ji(∂a) + βk(∂a, ei)

=Γs,ia + βk(∂a, e
bi∂b) = Γs,ia + βk(∂a, ∂b)e

bi

=Γs,ia + kabe
bi = Γs,ia + βkia.

(4.26)

Thus by dropping the superscript s in Eq. (4.26), we have recovered the

Ashtekar connection as given in Eq. (3.42) and [5, 6, 62, 69], respectively.
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4.3. Spin Structure of the Ashtekar connection

In this Chapter we want to review spin structures and spin connections on

globally hyperbolic space times with the intension to study the Ashtekar

connection with respect to the choice of the underlaying structure group, in

particular SO(3) or SU(2). Since we are working within the framework of

a foliation of the globally hyperbolic space times M into spacelike Cauchy

hypersurfaces Σ in particular we analyze the concept of spin structure on

such 3-dimensional hypersurfaces, as given in [33].

Let (M, g) a 4-dimensional, orientated space time, where g ∈ Γ(T ∗M⊗
T ∗M) is a pseudo-Riemannian metric with signature (1, 3). Consider the

SO0(1, 3)- principle fiber bundle O+(M, g) of all orientated, orthonormal

frames on M. Thereby SO0(1, 3) denotes the connection component of Id

of SO(3), therefor the proper, orthochronous Lorentz group. In the following

let (S(M),Λ) a spin structure on M as introduced in Definition 2.3.1 and

Z ∈ Ω1(O+(M, g), so(1, 3)) a connection form on O+(M, g). Via the follow-

ing diagram Z can be lifted into a connection form Z̃ ∈ Ω1(S(M), sl(2,C)).

TS(M)
Z̃ //

Λ∗

��

Λ∗(Z)

$$

sl(2,C)

λ∗

��
TO+(M, g)

Z // so(1, 3)

where Λ∗(Z) ∈ Ω1(S(M), so(1, 3)) is the pull back of Z by Λ to TS(M).

Since λ∗ : sl(2,C)→ so(1, 3) is a Lie algebra isomorphism, we obtain

Z̃ ∈ Ω1(S(M), so(1, 3)) with λ∗ ◦ Z̃ = Λ∗(Z). (4.27)

Theorem/Definition 4.3.1. Let Z̃ ∈ Ω1(S(M), sl(2,C)) a connection

form on S(M). If Z ∈ Ω1(O+(M, g), so(1, 3)) is the Levi-Civita connection

form, then the connection corresponding to Z̃ is called spin connection .
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Proof. Let Ad : SO0(1, 3) −→ GL(so(1, 3)) resp. Ãd : SL(2,C) −→
GL(sl(2,C)) the adjoint actions of SO0(1, 3) resp. SL(2,C). Since Z ∈
Ω1(O+(M, g)so(1, 3)) is a connection form, we obtain

i.) Z(XB) = B ∀ B ∈ so(1, 3), whrereas XB ∈ Γ(TO+(M, g)) de-

notes the fundamental vectorfield given by B.

ii.) µ∗A(Z) = Ad(A−1)Z ∀ A ∈ SO0(1, 3).

Now we have to proof the corresponding equations with respect to Z̃:

• Consider the conjugationsmappings on SO0(1, 3) and SL(2,C)

CA : SO0(1, 3) −→ SO0(1, 3), A ∈ SO0(1, 3)

B 7−→ ABA−1,

C̃g : SL(2,C) −→ SL(2,C), g ∈ SL(2,C)

h 7−→ ghg−1.

Then we have

Ad(A) = (dCA)Id : TIdSO0(1, 3) ∼= so(1, 3) −→ so(1, 3),

Ãd(g) = (dC̃g)Ĩd
: T

Ĩd
SL(2,C) ∼= sl(2,C) −→ SL(2,C),

where Id ∈ SO0(1, 3) resp. Ĩd ∈ SL(2,C) denotes the corresponding

identities. For g, h ∈ sl(2,C) we have

λ ◦ C̃g(h) = λ(ghg−1) = λ(g)λ(h)λ(g−1) = Cλ(g)(λ(h)).

Thus we have λ ◦ C̃g = Cλ(g) ◦ λ for all g ∈ sl(2,C) and we obtain

λ∗ ◦ Ãd(g) = dλ
Ĩd
◦ (dC̃g)Ĩd

= d(λ ◦ C̃g)Ĩd

!
= d(Cλ(g) ◦ λ)

Ĩd

=(dCλ(g))Id ◦ dλ
Ĩd

= Ad(λ(g)) ◦ λ∗

for all g ∈ sl(2,C). Hence we have

Ad(λ(g−1)) ◦ λ∗ = λ∗ ◦ Ãd(g−1) (4.28)

for all g ∈ SL(2,C).
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• For all m ∈ M and arbitrary elements in the repective fibres over m

e ∈ O+
m(M, g) and ẽ ∈ S(M)m the group actions µ on O+(M, g) and

µ̃ on S(M)give fibre isomorphisms by

µe : SO0(1, 3)
∼=−→ O+

m(M, g)

A 7−→ µ(e,A)

and

µ̃ẽ : SL(2,C)
∼=−→ S(M)m

g 7−→ µ̃(ẽ, g)

such that the following diagramm commutes:

SL(2,C)
µ̃ẽ //

λ

��

S(M)m

Λ

��
SO0(1, 3)

µΛ(ẽ) // O+(M, g).

This induces the following commuting diagram:

sl(2,C)
(dµ̃ẽ)Ĩd //

λ∗

��

TẽS(M)

dΛẽ

��
so(1, 3)

(dµΛ(ẽ))Id// TΛ(ẽ)O
+(M, g).

Let h ∈ sl(2,C) and Xh ∈ Γ(TS(M)) the corresponding vector field

given by Xh
p = (dµ̃p)Ĩd

h. We obtain:

Z̃ẽ(X
h) = λ−1

∗ ◦ (Λ∗(Z))ẽ(X
h
ẽ ) = λ−1

∗ ◦ ZΛ(ẽ)(dΛẽ ◦ dµ̃ẽh)

= λ−1
∗ ◦ ZΛ(ẽ)(dµΛ(ẽ) ◦ λ∗h) = λ−1

∗ ◦ ZΛ(ẽ)(X
λ∗h
Λ(ẽ))

= λ−1
∗ ◦ λ∗h = h,

in the forth step we have used the fact, that dµΛ(ẽ) ◦ λ∗h is a fun-

damnetal vector field of λ∗h.
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• Due to

Λ ◦ µ̃h(ẽ) = Λ ◦ µ̃(ẽ, h) = µ(Λ(ẽ), λ(h)) = µλ(h)(Λ(ẽ))

for all ẽ ∈ S(M) and h ∈ sl(2,C) the following diagrams commutes:

S(M)
µ̃h //

Λ

��

S(M)

Λ

��
O+(M, g)

µλ(h) // O+(M, g)

and

TẽS(M)
(dµ̃h)ẽ //

dΛẽ

��

Tẽ◦hS(M)

dΛẽ◦h

��
TΛ(ẽ)O

+(M, g)
(dµλ(h))Λ(ẽ) // TΛ(ẽ◦h)O

+(M, g)

Therefore we finally obtain for all X ∈ TpS(M):

(µ̃∗h(Z̃))p(X) =Z̃p◦h((dµ̃h)pX) = λ−1
∗ ◦ (Λ∗(Z))p◦h((dµ̃h)pX)

=λ−1
∗ ◦ ZΛ(p◦h)(dΛp◦h(dµ̃h)pX)

=λ−1
∗ ◦ ZΛ(p)◦λ(h)(d(µλ(h))Λ(p) ◦ dΛpX)

=λ−1
∗ ◦ (µ∗λ(h)(Z))Λ(p)(dΛpX)

=λ−1
∗ ◦Ad(λ(h)−1) ◦ ZΛ(p)(dΛpX)

=Ãd(h−1) ◦ λ−1
∗ ◦ (Λ∗(Z))p(X) = Ãd(h−1) ◦ Z̃p(X),

where we have used dΛp◦h(dµ̃h)p = d(µλ(h))Λ(p) ◦ dΛp and Eq. (4.28).

QED.

Analogously we can introduce the concept of spin structure on orientated

Riemannian manifolds. Let again Σ ⊂M a spacelike Cauchy hypersurface.
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Definition 4.3.2. A spin structure on (Σ, q = g|Σ) is a pair (S(Σ),Λ)

consisting of

i.) a SU(2) principle fibre bundle (S(Σ), π̃,Σ; SU(2)) over Σ,

ii.) an a double cover Λ : S(Σ) → O+(Σ, q) such that the following dia-

gram commutes.

S(Σ)× SU(2)
µ̃ //

Λ×λ

��

S(Σ)

Λ

��

π̃

$$
Σ

O+(Σ, q)× SO(3)
µ // O+(Σ, q)

π

::

where λ : SU(2)→ SO(3) denotes the universal cover of SO(3). In the rows

the respective group action of the principle bundles S(Σ) and O+(Σ, q) is

indicated.

Remark 4.3.3. The concept of spin structure can be generalized to arbitrary

dimensional pseudo-Riemannian manifolds. Therefor the introduction of the

spin group Spin(q, p), as universal covering group of SO0(p, q) in arbitrary

dimensions n = p + q is necessary, see [18]. But we want to point out,

that such an introduction is not required in the context of the Ashtekar

connection. There are the following isomorphism:

SL(2,C) ∼= Spin(1, 3) and SU(2) ∼= Spin(3).

Let (S(Σ),Λ) be a fixed spin structure on Σ. Analogously to (4.27) we

can define to every connection form ω ∈ Ω1(O+(Σ, q), so(3)) a connection

form ω̃ ∈ Ω1(S(Σ), su(2)) by

λ∗ ◦ ω̃ = Λ∗(w).

Corresponding to Theorem/Definition 4.3.1 we get the following definition.
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Theorem/Definition 4.3.4. Let ω̃ ∈ Ω1(S(Σ), su(2)) a connection form

on S(Σ). If ω ∈ Ω1(O+(M, g), so(1, 3)) is the Levi-Civita-connection form,

then the connection ω̃ is called spin connection.

Proof. See proof of Theorem/Definition 4.3.1. QED.

Theorem 4.3.5.

TM∼= S(Σ)×(SU(2),ρ◦λ) R3.

Proof. According to Example 2.2.25, we have TM
Φ∼= O+(Σ, g) ×(SO,ρ) R

3

it suffices to indicate an isomorphisms

O+(Σ, g)×(SO,ρ) R
3 ∼= S(Σ)×(SU(2),ρ◦λ) R3

The isomorphism is explicitly given by

N : S(Σ)×(SU(2),ρ◦λ) R3 −→ O(Σ, g)×(SO(3),ρ) R3

[ẽ, x] 7−→ [Λ(ẽ, x].

Next, we want to consider the isomorphism N in detail.

i.) N is well defined, because we have:

N[ẽ ◦ g, ρ(λ(g−1))x] =[Λ(ẽ ◦ g), ρ(λ(g−1))x]

=[λ(ẽ) ◦ Λ(g), ρ(λ(g−1))x]

=[Λ(ẽ, x] = N[ẽ, x].

ii.) N is surjective, due to: Let [e, x] ∈ O+(Σ, g)×(SU(2),ρ◦λ) R
3 arbitrary.

Since Λ : S(Σ) −→ O+(Σ, g) is surjective, there exists a ẽ ∈ S(Σ) with

Λ(ẽ) = e. Then we have N[ẽ, x] = [e, x].

iii.) N is injective, because we have: Let [ẽ, x] and [ē, x] ∈ S(Σ)×(SU(2),ρ◦λ)

R3 with N[ẽ, x] = [Λ(ẽ, x] = [Λ(ē), y] = N[ē, y]. Then we have to show
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[ẽ, x] = [ē, x]. W.l.o.g. let x = y. Then we obtain Λ(ẽ) = Λ(ē).

For the choice ẽ = ē the statement is fulfilled. Now let ẽ 6= ē. Due

to π̃(ẽ) = π ◦ Λ(ẽ) = π ◦ Λ(ē) = π̃(ē), ẽ and ē are in the same

fibre. Thus there exists a g ∈ SU(2) such that ẽ = ē ◦ g. Since we

have Λ(ē) = Λ(ẽ) = Λ(ē ◦ g) = Λ(ē) ◦ λ(g), we get λ(g) = 1. Since

λ : SU(2) −→ SO(3) is a double covering homomorphism and we

assumed ẽ 6= ē, we obtain g = −1 and hence we get ẽ = ē ◦ (−1).

Therefore we have

[ẽ, x] = [ē ◦ (−1), x] = [ē, ρ(λ(−1))x] = [ē, ρ(1)x] = [ē, x].

QED.

Theorem 4.3.6. (See [33]) Let ω ∈ Ω1(O+(M, q), so(3)) a connection form

and ω̃ ∈ Ω1(S(Σ), su(2)) the corresponding connection form in the spin

bundle. Then they induce via Φ and N the same covariant derivative on the

tangent bundle TM.

Proof. Let ẽ : U −→ S(Σ) a local section into the spin bundle. Then e :

U −→ O+(Σ, g), such that e := Λ(ẽ) is a local, orientated and orthonormal

frame. Let (ui) be the standard basis of R3, then the sections [e, ui] : U −→
O+(Σ, g)×(SO(3),ρ)R

3 = Eρ resp. [ẽ, ui] : U −→ S(Σ)×(SU(2),ρ◦λ)R
3 = Ẽρ◦λ

provide a basis of all local sections U −→ Eρ resp. U −→ Ẽρ◦λ. The

covariant derivative associated to ω resp. ω̃ of [e, ui] resp. [ẽ, ui] along the

vector field X ∈ Γ(TΣ) is given by

∇EρX [e, ui] = [e, ρ∗(ω
e(X))ui)]

resp.

∇Ẽρ◦λX [ẽ, ui] = [ẽ, (ρ ◦ λ)∗(ω̃
ẽ(X))ui)] = [ẽ, ρ∗ ◦ λ∗(ω̃ẽ(X))ui)].

Due to λ∗ ◦ ω̃ = Λ∗(ω), we have

λ∗ω̃
ẽ = λ∗ẽ

∗(ω̃) = ẽ∗(λ∗ω̃) = ẽ∗ ◦ Λ∗(ω) = (Λ ◦ ẽ)∗(ω) = ẽ∗(ω) = ωe
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and therefore ∇Ẽρ◦λX [ẽ, ui] = [ẽ, ρ∗(ω
e(X))ui)]. Thus the given covariant

derivatives are transfered in each other by the isomorphism N

N(∇Ẽρ◦λX [ẽ, ui]) =N([ẽ, ρ∗(ω
e(X))ui)]) = [Λ(ẽ), ρ∗(ω

e(X))ui)]

=[e, ρ∗(ω
e(X))ui)] = ∇EρX [e, ui] = ∇EρX N([ẽ, ui]).

QED.

Remark 4.3.7. (See [33])

i.) With Theorem 4.3.6 the action of the Ashtekar connection on the tan-

gent bundle TΣ is independent of the choice of the underlaying struc-

ture group SO(3) or SU(2).

ii.) Theorems 4.3.5 and 4.3.6 can be generalized in arbitrary dimensions.



5. Reformulated General Relativity

5.1. Reformulated Einstein-Hilbert action

In the Section in hand we want to introduce a global version of the the

Hamiltonian formulation of General Relativity. Id est we want to rewrite

the Einstein-Hilbert action in terms of the Weingarten mapping Wein and

the Ricci-scalar w.r.t. the Asktekar connection RA, see Eq. (4.25). Starting

point is the Einstein-Hilbert action

SEH :=

∫
RM dvol, (5.1)

where RM resp. dvol denotes the Rici scalar of the Levi-Civita connection

on M resp. the volume form on M. Let (e0, . . . e3) : U −→ O+(M, g) be

an oriented, local basis system on U ∈ M, then on U dvol can be rewritten

as dvol = e0 ∧ · · · ∧ e3, where (e0, . . . , e3) is the dual basis.

As a first step , we want to analyze the Ricci scalar RM. By definition,

we have for an arbitrary orthonormal system (e0, . . . , e3) of TM

RM = trgRicM =

3∑
i,j=0

εiεjg(RM(ei, ej)ej , ei),

where Ric denotes the Ricci tensor w.r.t the Levi Civita connection on M
and εi is given by

εi := g(ei, ej) =


−1, if ei timelike,

0, if ei Null,

1, if ei spacelike.

151
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In order to simplify we introduce a compatible, oriented, orthonormal sys-

tem (n, e1, . . . , e3), i.e. (e1, . . . , e3) is a oriented, orthonormal system of Σ

and n denotes the vector field of normals on Σ. We obtain

RM =

3∑
i,j=1

g(RM(ei, ej)ej , ei)−
3∑
i=1

g(RM(ei,n)n, ei)

−
3∑
j=1

g(RM(n, ej)ej , n) + g(RM(n, n)n, n)

=

3∑
i,j=1

g(RM(ei, ej)ej , ei)− 2

3∑
i=1

g(RM(ei,n)n, ei).

(5.2)

Theorem 5.1.1. The Ricci curvature scalar RM onM as given in Eq. (5.2)

can be shifted to the submanifold Σ. We have

RM = RΣ + tr(Wein2)− tr(Wein)2, (5.3)

where we have dropped as usual the terms containing the divergence of ∇Mn n

and tr(Wein)n in Eq. (A.9).

Proof. See A.3.1. QED.

By using Theorem 5.1.1, we finally can rewrite Eq. (5.1) as

SEH =

∫ (
RΣ + tr(Wein2)− tr(Wein)2

)
dvol. (5.4)

Next, we want to indicate the Einstein Hilbert action with respect to the

Ashtekar connection A.

Theorem 5.1.2. With respect to the Ashtekar connection A the Einstein

Hilbert action is given by

SEH =

∫ (
RA + (1 + β2)[tr(Wein2)− tr(Wein)2]

)
dvol, (5.5)
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where RA is the Ricci curvature scalar on Σ and β is the Barbero-Immirzi

parameter.

Proof. This follows from the expression of RA given in Proposition 4.1.26

of Chapter 4. QED.

Corollary 5.1.3. Using the choice β = i we obtain the simple expression

Sβ=i
EH =

∫
RA dvol. (5.6)

5.2. Reformulated Constraints

In the Ashtekar formulation of General Relativity (cf. Section 4.1.3) a

system of constraints arises, as seen in Section 3.1.2. Now we shall translate

the constraints as given in Eq. (3.44), Eq. (3.45) and Eq. (3.46) into our

preceding framework of Chapter 4, see again [33].

Rewriting the diffeomorphism constraint, (3.45), we obtain

Ha ∼
∑
i

g((∇A
eaWein)(ei)− (∇A

eiWein)(ea), ei), (5.7)

where {ei}1≤i≤3 denotes an orthonormal, oriented dreibein on Σ. And in

addition the Hamiltonian constraint yields

H ∼ RA + (1 + β2)[tr(Wein2)− tr(Wein)2], (5.8)

where RA denotes the Riemannian scalar curvature w.r.t. the Ashtekar

connection. Using again the choice β = i, we get

Hβ=i ∼ RA. (5.9)
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Remark 5.2.1. By Corollary 2.2.77 for spacetimes of constant sectional

curvature, we have

(∇A
XWein)(Y ) = (∇A

Y Wein)(X)

for all X,Y ∈ Γ(TΣ). Therefore for spacetimes of constant sectional cur-

vature the diffeomorphism constraint is generally fulfilled.



6. Implementation of the

Hamiltonian constraint - a

suggestion

This Chapter presents the continuation of [33]. In particular by using the

Regge calculus [60], we want to present how to turn the classical expression

of the Hamiltonian into a well defined operator. The Hamiltonian constraint

(5.8) in the choice of the Barbero-Immirzi parameter β = i reads

H ∼ RA.

Due to implement Hamiltonian operators in the kinematical Hilbert space,

we need to define R̂A. In this Chapter we will use the index notation since

we will reclaim results of the physics community.

6.1. Derivation of the Hamiltonian constraint

operator

6.1.1. Regge Calculus

Let M an n-dimensional Riemannian manifold. The Regge approach goes

back to Regge in 1961 [60], who proposed to approximate Einstein’s con-

tinuum theory by a simplicial discretization 4 of the metric space-time

manifold and the gravitational action. Thus its local building blocks are

n-simplixes σ. The metric tensor associated with each simplex is expressed

as a function of the squared edge lengths L2 of σ, which are the dynamical

155
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variables of this model. For introductory material on classical Regge calcu-

lus and simplicial manifolds, see [64, 74, 73, 36]. One may regard a Regge

geometry as a special case of a continuum Riemannian manifold, a so-called

piecewise flat manifold, with a flat metric in the in terior of its n-simplixes

σ, and singular curvature assignments to its hinges (n− 2-simplixes) h.

The Einstein-Hilbert action in n = 4 in the discrete Regge approach is

given by

SRegge(Lh) =
∑
σ

∑
h∈σ

Lσhεh =
1

2

∫
R

dt

∫
Σ

d3xRA, (6.1)

where RM denotes the Riemannian curvature scalar onM w.r.t. the Levi-

Civita connection and RA is the Riemannian curvature scalar on Σ w.r.t.

the Ashtekar connection. εh = 2π −
∑

σ3h Ang(σ, h) the deficit angle there

and Ang(σ, h) is the angle between the two 2-simplixes of σ (the angle

between their inward normals) intersecting in h.

Definition 6.1.1. A cellular decomposition 4 of a space Σ is a disjoint

union (partition) of open cells of varying dimension satisfying the following

conditions:

i.) An n-dimensional open cell is a topological space which is homeomor-

phic to the n-dimensional open ball;

ii.) The boundary of the closure of an n-dimensional cell is contained in

a finite union of cells of lower dimension.

To match Regge calculus context with LQG framework we invoke the

dual picture of LQG, see Section 3.1.2. Thus in the following we describe the

picture of quantum geometry coming from Loop Quantum Gravity and the

rôle played by the length in this picture, we recall the standard procedure

used in Loop Quantum Gravity when introducing an operator corresponding

to a given classical geometrical quantity.

A spin network graph → a cellular decomposition = covering cellular

decomposition

Definition 6.1.2. A cellular decomposition 4 of a three-dimensional space

Σ built on a graph γ is said to be a covering cellular decomposition of γ if:
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i.) Each 3-cell of 4 contains at most one vertex of γ;

ii.) Each 2-cell (face) of 4 is punctured at most by one edge of γ and the

intersection belongs to the interior of the edge;

iii.) Two 3-cells of 4 are glued such that the identied 2-cells match.

iv.) If two 2-cells of the boundary of a 3-cell intersect, then their intersec-

tion is a connected 1-cell.

6.1.2. Construction of the Riemannian scalar curvature operator

Based on the Gauss-Bonnet theorem [49, 55] respectively Eq. (6.1) the cur-

vature can be identified by
∑

h∈σ L
σ
hεh, i.e. the contribution from all hinges

within a small region to curvature. Thus we have to find the following op-

erators in order to construct R̂A: the length operator L̂σh and the angle

operator Âng(σ, h).

Construction of the length operator L̂σh

The starting point is a classical expression for the length of a curve. We

will follow [21]. Let c be a curve embedded in the 3-manifold Σ, c.f. Defi-

nition 3.1.9, namely

c : [0, 1] −→ Σ

t 7−→ ca(t).

The length of the curve is given by functional of the Ashtekar field Eai , in

particular a one dimensional integral given by

L(c) =

∫ 1

0
dt
√
δijGi(t)Gj(t), (6.2)

where Gi(t) = eia(c(t))ċa(t) is the pullback of the triad on the curve c given

by

Gi(t) =
1
2ε
ijkεabcE

b
jE

c
kċ
a(t)√

1
3! |εijkεabcE

a
i E

b
jE

c
k|
,
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where Eai is analyzed at xa = ca(t) and ċa(t) = d
dtc

a(t). Now we are able to

present an external regularization of the length of a curve.

i.) External regularization of the length No we want to present an external

regularization of the length of a curve L(c). The regularization is

divided into the following steps:

a.) We replace Eq. (6.2) by the limit of Riemann sum as done in

Section 3.1.2, i.e. L(c) = lim∆t→0
∑

N LN . We make a decom-

position of the curve c in small segments cN corresponding to

the embeddings xa = ca(t) with t ∈ [N ∆t, (N + 1)∆t] such that

c =
⋃
N cN . Then we rewrite Eq. (6.2) as

L(c) = lim
∆t→0

∑
N

∆t

√
δijGi

∆t(tN )Gj
∆t(tN ),

with tN is a point belonging to [N ∆t, (N + 1)∆t]. The subscript

∆t in Gi
∆t(tN ) indicates the dependence of the step ∆t.

Let be c a curve embedded in Σ. We consider two surfaces S1

and S2 which intersect at c. To achieve a visualization we choose

of coordinates xa = (σ1, σ2, t) in Σ such that the curve c has

embedding xa = ca(t) = (0, 0, t) and S1 resp. S2 is the σ2 = 0

resp. σ1 = 0 surface. Now we consider a decomposition of Σ in

cubic cells w.r.t. the coordinates xa = (σ1, σ2, t) of coordinate

size ∆t, as illustrated in Figure 6.1(a). As result we obtain, that

the cell RN = {xa ∈ Σ|σ1 ∈ [0,∆t], σ2 ∈ [0,∆t], t ∈ [N ∆t, (N +

1)∆t]} has the segment cN as a side. Furthermore cN corresponds

to the intersection of S1
N and S2

N pertaining to the boundary RN .

b.) Thanks to the partition introduced in Section 3.1.2, now we can

make the first step of the fluxization procedure, in particular we

are able to write Gi(t) in terms of surface integrals:
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Gi
∆t(tN ) =

(1

2

1

(∆t)4

∫∫
SiN

V ijk
xN

(σ, σ′)Eaj (σ)na(σ)Ebk(σ
′)nb(σ

′)
)

×
( 1

8× 3!

1

(∆t)6

∫∫∫
∂RN

|T ijkxN (σ, σ′, σ′′)Eai (σ)na(σ)

Ebj (σ
′)nb(σ

′)Eck(σ
′′)nc(σ

′′)|
)−1/2

,

(6.3)

where the notation of Section 3.1.2 is used and in

particular
∫∫
SiN

:=
∫
S1
N

d2σ
∫
S2
N

d2σ′ and
∫∫∫

∂RN
:=∫

∂RN

d2σ
∫

∂RN

d2σ′
∫

∂RN

d2σ′′, respectively. V ijk
xN (σ, σ′) is in-

troduced in order to make such non-local expression in the field

Eai (x) SU(2)-gauge invariant. It is explicitly defined as

V ijk
xN

(σ, σ′) = εi j
′k′ D(1)(hc1

xNσ
′
[A]) j

j′ D
(1)(hc2

xNσ
′′
[A]) k

k′ .

Due to the fact that

lim
σ1,σ2→0

εabcnb(σ1, t)nc(σ2, t) = ċa(t)

the numerator converges in the limit ∆t −→ 0 to 1
2ε
ijkεabcE

b
jE

c
kċ.

The denominator constitutes to the external regularization of the

volume density Vol as discussed in Eq. (3.79).

c.) In the second step of the fluxization scheme we rewrite surface

integrals in Eq. (6.3) into Riemann sums of fluxes. The surface

∂RN is decomposed into squares cells SNα, such that ∂RN =⋃
α = SNα. In particular we have S1

N =
⋃
α S

1
Nα resp. S2

N =⋃
α S

2
Nα, see Figure 6.1(b). Thus Gi

∆t(sN ) can be written as

Gi
∆t(tN ) = lim

α→∞

(
(∆t)−1Gi

I

)
,

where Gi
I is given by

Gi
I =

1
2

∑
αβ Y

i
Nαβ√

1
8×3!

∑′
αβ c |QNαβc|

=

∑
αβ Y

i
Nαβ

2VolN
. (6.4)
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S1

S2 c

(a)

Sn,1

Sn,2

cn

Rn

i
xn

(b)

Figure 6.1.: Figure 6.1(a) A curve as intersection of two surfaces. Fig-

ure 6.1(b) Cubic cell with regularized quantity (6.4) shown.

Here Y i
Nαβ is defined by

Y i
Nαβ = V ijk

xI
Fj(S

1
Nα)Fk(S

2
Nβ) (6.5)

and QNαβc and VolN has been introduced in Section 3.1.2. Re-

mark subscripts Nαβ in YNαβ represent a cubic cell RN and two

S1
Nβ and S2

Nβ corresponds respectively to the two faces S2
N and

S1
N . Thus the length of segment cN is then given by

LI =

√
δij Gi

I Gj
I . (6.6)

As a result we have that the length of the curve c can be written

as the limit ∆t → 0 of a sum of terms depending on ∆t only

implicitly

L(c) = lim
∆t→0

∑
N

LN .

ii.) Quantization of the length L̂N

Now we can attempt the quantization of the regularized expression by

invoking the known action of the holonomy Eq. (3.55) and the flux

Eq. (3.1.2) on cylindrical functions, i.e.

L̂(c) Ψγ,f [A] = lim
∆t→0

(∑
I

L̂I Ψγ,f [A]

)
.
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The construction of L̂N for finite ∆t requires two two building blocks,

namely the two-hand operator Ŷ i
Nαβ and the inverse of the local vol-

ume operator V̂ol−1
N as seen in Eq. (6.4) resp. Eq. (6.6). We will

illustrate that L̂N can be implemented such that the limit ∆t is well-

defined and the action on cylindrical function has a number of desir-

able properties.

a.) The two-hand operator Ŷ i
Nαβ

The expression
∑

αβ Y
i
Nαβ given by Eq. (6.5) can be quantized

analogous to the the volume operator V̂ol discussed in some detail

in Section 3.1.2. We want to remark again that the subscripts

Nαβ in YNαβ represent a cubic cell RN and two square pieces

S1
Nα and S2

Nβ corresponds respectively to the two faces S1
N and

S2
N . We will consider a cylindrical function with graph γ. The

decomposition in cells RN is refined such that each cell contain

at most one node. Now we are assuming that a node is contained

in RN and that two edges two edges e1 resp. e2 originating at

the node intersects the surfaces S1
Nα̃ respectively S2

Nβ̃
. The flux

operator for a surface S acts non-trivial on a cylindrical function

Ψ only if the surface S is punctured by a edge of γ. Thus only

YNα̃β̃ contributes. Here an adaptation of the curves to the graph

γ is invoked, namely (1.) the point xI is chosen to coincide with

the position of the node, and (2.) the two curves c1
xIσ

and c2
xIσ

are adapted to the portions of the two links e1 and e2 contained

in the cell RI . This adaptation to γ hast the property, that

the operator is independent of the size ∆t of the cell due to the

shrinking property of the volume. Thus the limit ∆t −→ 0 can be

taken trivially. The appropriate labeling for the operator Ŷ i
Nαβ

is a node n and two edges e1 resp. e2 originating at n, i.e. the

so called wedge {n, e1, e2} of γ, labeled with the symbol ω. Thus

the two-hand operator Ŷ i(cw) is defined as

Ŷ i(cw) := εi j
′k′ D(1)(he1 [A]) j

j′ D
(1)(he2 [A]) k

k′ F̂j(Se1)F̂k(Se2).

And the action of Eq. (iia) on a spin network state belonging to
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HGkin(γ) (in the nomenclature of Section 3.1.2 is given by:

Ŷ i(cw) Ψγ,j,ik [A] =Ŷ i(cw)
(
D(j1)(he1 [A]) m1

m′1

· · · D(jL)(heL [A]) mL
m′L

vk
(j1···jL)
m1···mL

)
× restm

′
1···m′L

=(8πcL2
P )2
(
D(j1)(he1 [A]) m1

m′1

· · · D(jL)(heL [A]) mL
m′L

)
×
(
εijkT

(j1) m′′1
j m1

T
(j2) m′′2
k m2

vk
(j1 j2···jL)
m′′1m

′′
2 ···mL

)
× restm

′
1···m′L .

The substance is that we are able to define a two-hand operator

for each pair of edges originating at a SNW-node. The way the

operator knows about the curve: choosing a pair of edges identi-

fies two surfaces dual to the edges. Such two surfaces intersect at

a curve called cω. In other words the wedge ω identifies a surface

bounded by the two edges. The dual to this surface is the curve

cω.

b.) The inverse volume operator V̂ol−1
N

The denominator of Eq. (6.4) characterizes the volume of the cell

RN . Shifting to the quantum level it corresponds to the volume

operator V̂ol. Now we are focused with the problem that V̂ol

has a non-trivial kernel. The kernel consists of (1.) SNWS with

graph γ which have no node contained in RN , which has the

geometrical interpretation, that nodes of the SNW correspongs

to chunks of space of definite volume. I.e. no node, no volume.

And (2.) superpositions over intertwiners of SNWS with graph γ

having a node in RN , for details see [52]. We want to introduce

an operator corresponding to the inverse of the volume of the

cell RN . Obviously the inverse of V̂ol does not exists. The nat-

ural solution is to restrict the domain of V̂ol such that resulting

restricted operator is invertible then define an extension of its

inverse to its maximal domain.
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But given the geometrical interpretation of the operator the re-

quirements for the operator corresponding to the inverse volume

are stronger. We have the following conditions: (1.) the operator

have to preserve the dual picture of quantum geometry, namely

the inverse volume acts at nodes. Thus resulting in annihilating

SNWS having no node in RN . And (2.) the operator have to have

same semiclassical behaviour, i.e have as eigenvalue the inverse

of the corresponding one of VolN .

The idea to fulfill both requirements mentioned above goes back

to a technical too, the so called Tikhonov regularization [70]. We

define

Definition 6.1.3. Let ε be finite. The inverse volume operator

is defined as the limit of

V̂ol−1 = lim
ε→0

( V̂ol
2

+ ε2`pl
6 )−1 V̂ol,

where `pl is the Planck length. And the operator V̂ol−1 satisfies

the foloowing properties:

i. V̂olV̂ol−1V̂ol = V̂ol;

ii. V̂ol−1V̂olV̂ol−1 = V̂ol−1;

iii. (V̂ol−1V̂ol)† = V̂ol−1V̂ol;

iv. (V̂olV̂ol−1)† = V̂olV̂ol−1.

Such limit exists and we expect a hermitian operator V̂ol−1

which commutes with V̂ol and admits self-adjoint extension to the

Hilbert space HGkin(γ). Obviously the operator annihilates SNWS

having no node in th region RN as V̂ol does. Furthermore V̂ol−1

has the same kernel as V̂ol and additionally (1− V̂ol−1V̂ol) is the

projector of the kernel. Moreover the non-vanishing eigenvalues

of V̂ol−1 are trivially the inverse of the corresponding eigenvalues

of V̂ol. Thus it is shown that the local inverse volume operator

V̂ol−1
N for the cell RN is well-defined. Hence as a result we are

able to define an inverse volume operator for a region Rn dual to

the node n, denoted by V̂ol−1(Rn).
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c.) The length operator

Both operators, at the one hand Ŷ i(cw) and on the other

V̂ol−1(Rn) admit a dual description in terms of nodes and edges

of the graph γ of the SNWS. Thus in the final step we build an

operator to the quantity LN , compare Eq. (6.6), consisting of

Ŷ i(cw) and V̂ol−1. The idea is to introduce an operator which

measures the length of the curve cω. Thus we obtain a length

operator L̂(cω) for each wedge ω of the graph γ, given by

L̂(cω) =
1

2

[
V̂ol−1(Rn)δij Ŷ

i(cw)Ŷ j(cw)V̂ol−1(Rn)
] 1

2

=
[
δijĜ

i†(cω)Ĝj(cω)
] 1

2
,

where we have introduced

Ĝi(cω) =
1

2
Ŷ i(cw)V̂ol−1.

But we want to note that there exists an ordering ambiguity. We want to

mention an alternative ordering choice. The Weyl ordering [72] of the length

operator in terms of fluxes could be an interesting ordering choice since the

fluxes appearing in Eq. (6.5) are generators of SU(2) transformations.

Construction of angle operator Âng(σ, h)

Now we want to consider the second building block of the Riemannian scalar

curvature operator, namely the angle operator Âng(σ, h). The angle opera-

tor is fundamentally a quantization of the classical expression for an angle

between the inward normals of two surfaces intersecting at a curve.

i.) Classical expression:

Given two surfaces S1 and S2 of σ intersecting a curve c, the deficit

angle Ang(σ, h) is the angle between the two 2-simplixes, i.e. the angle

between their inward normals intersecting in h. The deficit angle is
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na

nb

Ang

Figure 6.2.: Illustration of the angle Ang.

explicity given by [53]

Ang(σ, h) =

arccos

(
na(S1)Eainb(S2)Ebk√

na(S1)Eainb(S1)Ebi
√
na(S2)Eajnb(S2)Ebj

)
,

(6.7)

where na resp. nb is the normal 1-form on the surface Sk.

ii.) Operator regularization:

We proceed with the same scheme to regularize the expression of the

dihedral angle Eq. (6.7) as it was done for the length in Section 6.1.2.

We obtain after the fluxization procedure, i. e. rewriting Eq. (6.7) in

terms of surface integrals

AngIα12 = arccos

(
V ijk
xN (σ, σ′)Fi(S

Iα
1 )Fk(S

Iβ
2 )

Ar(S1)Ar(S2)

)

where we used V ijk
xN (σ, σ′) given by Eq. (ib) and Fi(S) =∫

S naE
a
i (x) d2σ. After applying the second step of the fluxization pro-

gram, namely we write the surface integrals as Riemann sums of fluxes

AngIα12 = arccos

( ∑
αβ Y

i
Nαβ

Ar(S1)Ar(S2)

)
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or written out

Ang12
Iα =

arccos

D(1)(hc1
xIσ

[A])ii′D(1)(hc2
xIσ

[A])kk′Fi(S
Iα
1 )Fk(S

Iβ
2 )√

Fi(SIα1 )Fi(SIα1 )

√
Fj(S

Iβ
2 )Fj(S

Iβ
2 )


(6.8)

iii.) Angle operator:

At the point we are able to state an operator associated to the angle,

denoted by Ang:

Âng(cω) = arccos

(
Ŷ i(cω)

Âr(S1)Âr(S2)

)

The action on SNWS ψ(γ) of the area operator Âr(S) and the two

hand operator Ŷ i(cw) are well known, see Eq. (3.77) and [62] page

186. Thus the action of Ângik in the intertwiner basis is explicitly

given by

Âng(cω)|ψ(γ)〉 =[
arccos

(
1
2 [jik(jik + 1)− ji(ji + 1)− jk(jk + 1)]√

ji(ji + 1)jj(jj + 1)

)]
|ψ(γ)〉.

But we want to remark that due to the non-commutativity of the area

operator [8] an ordering ambiguity is again present.

The Riemannian scalar curvature operator

Thus we are able to state the Riemannian scalar curvature operator. The

Riemannian scalar curvature operator associated to the 3-cell σ is given by

R̂Aσ :=
∑
h∈σ

[
L̂σh

(
2π−

∑
σ3h

Ângσ,αhh

)]
.

Let R̂Aσ be the Riemannian scalar curvature operator. The following prop-

erties of R̂Aσ are immediate:
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i.) R̂Aσ is self-adjoint.

ii.) R̂Aσ depends on the choice of 4, since we have

a.) The action of R̂Aσ on a cylindrical function ψ(γ) gives zero unless

the 3-cell σ contains a node. The action is explicitly given by

R̂Aσ |ψ(γ)〉 =
∑
h∈σ

[
L̂σh

(
2π−

∑
σ3h

Ângσ,αhh

)]
|ψ(γ)〉.

b.) The action of R̂Aσ depends on the 3-cells containing the nodes

of γ (selecting the wedges) and the cells glued to them (fix the

values of the coefficients αωn).

The Hamiltonian constraint is written in terms of the original complex con-

nection variables. Thus we obtain the following Hamiltonian constraint

operator In the choice β = i the quantum Hamilton constraint is given by

R̂Aσ |ψ(γ)〉 =
∑
h∈σ

[
L̂σh

(
2π−

∑
σ3h

Ângσ,αhh

)]
|ψ(γ)〉 ≡ 0, ∀σ ∈ 4.





A. Technical Proofs

A.1. Proofs of Chapter 2

Proof of Theorem 2.2.13: A.1.1.

• Let s̄ ∈ C∞(P,F)(ρ,G) a G-equivariant mapping. Then the correspond-

ing section s ∈ Γ(E) is given by s(m) := [p, s̄(p)] = ιp(s̄(p)) ∈ Em,

whereas p ∈ Pm is an arbitrary point in the fibre over m ∈ M. Due

to the G-equivariance of s̄ we have

[p ◦ s, s̄(p ◦ g)] = [p ◦ g, ρ(g)−1s̄(p)]

= [p, s̄(p)], ∀g ∈ G.

Hence the latter expression is independent of the choice of p ∈ Pm and

s is well defined.

• Given s ∈ Γ(E). The corresponding G-equivariant mapping s̄ ∈
C∞(P,F)(ρ,G) is given by s̄(p) := ι−1

p (s(π(p))). Due to

s̄(p ◦ g) = ι−1
p◦g(s(π(p ◦ g))) = (ιpρ(g))−1(s(π(p)))

= ρ(g)−1ι−1
p (s(π(p))) = ρ(g−1)s̄(p), ∀g ∈ G,

s̄(p) is well defined.

Proof of Theorem 2.2.24: A.1.2. Consider the following mapping:

Ψ : Ẽ := Q×(H,ρ◦λ) V 7−→ P ×(G,ρ) V =: E
[q, v] 7−→ [f(q), v].

169
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i.) Ψ is well defined, because we have

Ψ([q ◦ h, ρ ◦ λ(h−1)v]) =[f(q ◦ h), ρ ◦ λ(h−1)v]

=[f(q) ◦ λ(h), ρ(λ(h)−1)v]

=[f(q), v] = Ψ([q, v])

for all [q, v] ∈ Q×(H,ρ◦λ) V and h ∈ H.

ii.) Due to πE ◦ Ψ([q, v]) = π ◦ f(q) = π̃(q) = πẼ([q, v]), ∀[q, v] ∈ Ẽ, Ψ is

fibre preserving and - restricted on the fibre - linear.

iii.) Ψ is injective, because we have: Let [q, v] ∈ E and [q̃, ṽ] ∈ Ẽ with

Ψ([q, v]) = [f(q), v] = [f(q̃), ṽ] = Ψ([q̃, ṽ]).

Since Ψ is fibre preserving, there exists h ∈ H with q̃ = q ◦ h. Then

we have

[f(q̃), ṽ] = [f(q ◦ h), ṽ] = [f(q) ◦ λ(h), ṽ]

= [f(q), ρ(λ(h)−1)ṽ]
!

= [f(q), v].

Hence we have v = ρ(λ(h)−1)ṽ, whence we obtain [q, v] =

[q, ρ(λ(h)−1)ṽ] = [q ◦ h, ṽ] = [q̃, ṽ].

iv.) Ψ is surjective, because we have: Let [p, v] ∈ E arbitrary. Then we

have p ∈ Pm for a m ∈ M. Let q ∈ Qm arbitrary. Since f(q) ∈ Pm,

there exists a g ∈ G, such that f(q) ◦ g = p. then we have

Ψ([q, ρ(g)v]) = [f(q), ρ(g)v] = [f(q) ◦ g, v] = [p, v].

v.) Ψ is smooth, because we have: Let (Uα, ϕ̃α) and (Uβ, ϕβ) charts of Ẽ
and E induced by the charts (Uα, χ̃α) resp. (Uβ, χβ) of Q resp. P with

Uα ∩ Uβ 6= ∅.

ϕ̃α : π−1

Ẽ
(Uα) −→ Uα × V

[p, v] 7−→ (π̃(q), ρ ◦ λ(κ̃α(q))v);

ϕβ : π−1
E (Uβ) −→ Uβ × V

[p, v] 7−→ (π(p), ρ(κβ(p))v),
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whereas pr2◦ χ̃α =: κ̃α and pr2◦χα =: κα. In that local trivializations,

the mapping Ψ yields (q ∈ Qm arbitrary)

ϕβ ◦Ψ ◦ ϕ̃−1
α : (Uα ∩ Uβ)× V −→ (Uα ∩ Uβ)× V

ϕβ ◦Ψ ◦ ϕ̃−1
α (m, v) =ϕβ ◦Ψ([q, ρ ◦ λ(κ̃α(q)−1)v])

=ϕβ([f(q), ρ ◦ λ(κ̃α(q)−1)v])

=(π ◦ f(q), ρ(κβ(f(q)))ρ ◦ λ(κ̃α(q)−1)v)

=(π̃(q)ρ(κβ(f(q))λ(κ̃α(q)−1))v)

=(m, ρ(κβ(f(q))λ(κ̃α(q)−1)v).

Thus the mapping is smooth w.r.t. the charts (Uα, ϕ̃α) and (Uβ, ϕβ).

Proof of Lemma 2.2.30: A.1.3. Since the vertical tangent spaces Vp are

given as the tangent spaces to the fibres Pπ(p) = π−1(π(p)) we have Vp ⊂
ker dπp. Otherwise let χ : π−1(U) −→ U × G a local trivialization in m :=

π(p) ∈ U ⊂M. Due to π = pr1◦χ, X ∈ TpP is in ker dπp, if dχpX = (0, Y )

for Y ∈ Tpr2◦χ(p)G, i.e. if there exists a curve γ : (−ε, ε) −→ U × M
with γ(t) = (m, g(t)), such that dχpX = γ̇(0). As a result X is given by

X = χ̇−1(γ)(0). Since the curve takes place solely in the fibre Pm, we have

X ∈ Vp.

Proof of Theorem 2.2.35: A.1.4. One the one hand let ω ∈ Ω1(P, g)

be a connection form. A connection is given by the mapping P 3 p 7−→
kerωp ⊂ TpP. On the other hand let Γ be a connection. Then a connection

form is defined by ω(X̃) = X, ∀X ∈ g and ω(Y ) = 0, ∀Y ∈ Hp.

Proof of Theorem 2.2.47: A.1.5. Let A ∈ h ⊂ g with fundamental vector

field Ã ∈ Γ(TQ). Since ω̃ is a connection form, we have ω(Ã) = prh◦ω̃(Ã) =

prhA = A. Let φ := prm ◦ ω̃|TQ the m-component of ω̃ restricted on Q. For

h ∈ H and X ∈ TqQ, we obtain

(Ψ∗hω)q(X) + (Ψ∗hφ)q(Y ) =ωq◦h(dΨhX) + φq◦h(dΨhX)

=(ω + φ)q◦h(dΨhX) = ω̃q◦h(dΨhX)

=(Ψ∗hω̃)(X) = Ad(h−1)ω̃(X)

=Ad(h−1)ω(X) + Ad(h−1)φ(X).

Due to Ad(h)m ⊂ m, finally we have (Ψ∗hω)(X) = Ad(h−1)ω(X).
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Proof of Theorem 2.2.56: A.1.6.

i.) Let X,Y ∈ Γ(TM), f ∈ C∞, s ∈ Γ(E) and let X∗ ∈ Γ(TP) be a

horizontal lift of X. Then we have

a.) ∇X is R-linear;

b.) ∇X+Y = ∇X +∇Y ;

c.) ∇fX = f∇X due to ∇fXs = (ds̄)((f(X)∗) = (ds̄)(f◦π)X∗ = (f◦
π)(ds̄)(X∗) = (f ◦ π)∇Xs = f∇Xs. resp. due to (fX)∗ = f∗X∗

and fs = f∗f̄ with f∗ = f ◦ π as horizontal lift of f ;

d.) The Leibniz rule ∇fs = df ⊗ s+ f∇s is proofed by

(∇Xfs)m =(dωfs)m(X) = [p,d(fs)p(X
∗)]

=[p,df∗p s̄(p) + f∗(p) dsp(X
∗)]

=[p,d(f ◦ π)p(X
∗)s̄(p) + (f ◦ π)(p) ds̄p(X

∗)]

=[p,dfm(X)s̄(p)] + f(m) · [p,ds̄p(X∗)]
= dfm(X) · s(m) + f(m) · (∇Xs)m.

ii.) Using Theorem 2.2.54 and Eq. (2.21) the covariant derivative of s =

[e, v], where v = s̄ ◦ e, yields

(∇Xs)m = (dωs)m(X) = [e(m), (Dω s̄)e(m)(demX)]

= [e(m),ds̄e(m)(demX) + ρ∗(ωe(m)(demX))s̄(e(m))]

= [e(m),d(s̄ ◦ e)m(X) + ρ∗((e
∗ω)m(X))(s̄ ◦ e)(m)]

= [e(m),dvm(X) + ρ∗(ω
e
m(x))v(m)]

for all X ∈ TmM.

Proof of Theorem 2.2.60: A.1.7.

i.)-iii.) see [19];

iv.) Let ς ∈ Ω1
hor(P, g), then according to Theorem 2.2.54, we obtain
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for all X,Y ∈ TpP

(Dως(X,Y ) = dς(X,Y ) + (Ad∗(ω) ∧ ς)(X,Y )

= dς(X,Y ) + Ad∗(ω(X))ς(Y )−Ad∗(ω(Y ))ς(X)

= dς(X,Y ) + adω(X)ς(Y )− adω(Y )ς(X)

= dς(X,Y ) + [ω(X), ς(Y )]− [ω(Y ), ς(X)]

= dς(X,Y ) + [ω, ς]∧(X,Y ).

Proof of Corollary 2.2.64: A.1.8. ∇MX fulfills the following properties,

which characterize the covariant derivative, see Proposition 2.8. in [47]

i.) ∇X(Y + Z) = ∇XY +∇XZ;

ii.) ∇X+Y Z = ∇XZ +∇Y Z;

iii.) ∇fX = f∇XY ∀f ∈ C(M);

iv.) ∇XfY = f∇XY +

X(f)Y ∀f ∈ C(M).

Properties (i), (ii) and (iii) are obvious from the corresponding proper-

ties of ∇M and the linearity of the projection tan, Eq. (2.28). In order to

verify (iv), let f ∈ C(Σ) and X,Y ∈ Γ(TΣ). Then we have

∇MX (fY ) = f(∇MX Y ) + (Xf)Y, (A.1)

where (Xf)Y is tangential to Σ. Thus taking the tangential components of

both sides, we obtain

tan(∇MX (fY )) = f(tan(∇MX Y )) + (Xf)Y (A.2)

proving property (iv) for tan∇M. Using Section 2.2.44, we see that there is

a unique linear connection Γ on M for which tan(∇MX Y ) is the covariant

differentiation.

To show that Γ is the Levi-Civita connection for the induced metric Σ, it is

sufficient to show that (a) the torsion tensor of Γ is 0 and (b) tan∇Mg = 0.

(a) Let us write

∇MX Y = tan∇MX Y + nor∇MX Y

∇MY X = tan∇MY X + nor∇MY X.
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Additional let be X̄ respectively Ȳ vector fields on U ⊂ M, then the

restriction of X̄, Ȳ to U ∩Σ is tangent to Σ and coincides with [X,Y ].

Thus we have

[X̄, Ȳ ]p = [X,Y ]p, p ∈ Σ;

and

∇MX̄ Ȳ = ∇MX Y, ∇MȲ X̄ = ∇MY X on U ∩ Σ.

From the equations above and the fact that the torsion of the Levi-

Civita connection ∇MLC of M is 0, we obtain

0 = ∇MX̄ Ȳ −∇MȲ X̄ − [X̄, Ȳ ]

= tan∇MX Y − tan∇MY X − [X,Y ] + nor∇MX Y − nor∇MY X.

Then we see that

tan∇MX Y − tan∇MY X − [X,Y ] = 0,

proving (a).

(b) We start from ∇MLCg = 0, which implies for X,Y, Z ∈ Γ(TΣ) on Σ

Xg(Y,Z) = g(∇MX Y, Z) + g(Y,∇MX Z)

= g(tan∇MX Y,Z) + g(Y, tan∇MX Z),

which means tan∇Mg = 0. Thus we have proved Proposition 2.2.66.

Proof of Proposition 2.2.66: A.1.9. According to Theorem 2.2.62, we

have (R∇(X,Y )s)m = [p, ρ∗(F
ω
p (X̃, Ỹ ))s̄(p)], with arbitrary p ∈ Pm and

arbitrary lifts X̃, Ỹ ∈ TpP of X,Y ∈ TmM. Select p = e(m) and X̃ = demX

as well Ỹ = demY , then we have

(R∇(X,Y )s)m = [e(m), ρ∗(F
ω
e(m)(denX,deMY ))s̄(e(m))]

= [e(m), ρ∗((e
∗Fω)m(X,Y ))v(m)].

Proof of Proposition 2.2.70: A.1.10.
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i.) Addivity in X or ξ (when the other is fixed) is obvious. For any

f ∈ C(Σ), we have

Afξ(X) + nor∇MX (fξ) = ∇MX (fξ) = f∇MX (ξ) + (Xf)ξ

= f(Aξ(X)) + f nor∇MX ξ + (X(f))ξ.

Thus we obtain Afξ(X) = fAξ(X) for the tangential components and

nor∇MX (fξ) = f nor∇MX ξ + (X(f))ξ for the normal components. On

the other hand a similar argument for Aξ(fX)+nor∇MfX(ξ) = ∇MfX(ξ)

implies that Aξ(fX) = fAξ(X) and nor∇MfX(ξ) = f nor∇MX ξ. This

shows that Aξ(X) is bilinear over C(Σ).

ii.) For any Y ∈ Γ(TΣ) and ξ ∈ Γ(TΣ)⊥, we have g(Y, ξ) = 0. Differen-

tiating covariant w.r.t. to X we have

0 = g(∇MX Y, ξ) + g(Y,∇MX ξ)

= g(∇LC
X Y +K(X,Y ), ξ) + g(Y,Aξ(X) + nor∇MX ξ).

Since g(∇LC
X Y, ξ) = g(Y,nor∇MX ξ) = 0, we get

g(K(X,Y ), ξ) = −g(Aξ(X), Y ).

Proof of Proposition 2.2.74: A.1.11.

(Lng)(X,Y ) = Lng(X,Y )− g(LnX,Y )− g(X,LnY )

= n[g(X,Y )]− g([n,X], Y )− g(X, [n, Y ])

and using [X,Y ] = ∇MX Y −∇MY X, we finally get

(Lng)(X,Y ) = g(∇MX n, Y ) + g(X,∇MY n) = g(Wein(X), Y ) + g(X,Wein(Y ))

= 2g(Wein(X), Y ) = −2g(K(X,Y ), n).

Proof of Proposition 2.2.76: A.1.12.

(∇̃Xk)(Y, Z) =X(k(Y,Z))− k(∇LC
X Y,Z)− k(Y,∇LC

X Z)

=X(g(Wein(Y ), Z))− g(Wein(∇LC
X Y ), Z)

− g(Wein(Y ),∇LC
X Z)

=g(∇LC
X Wein(Y ), Z) + g(Wein(Y ),∇LC

X Z)

− g(Wein(∇LC
X Y ), Z)− g(Wein(Y ),∇LC

X Z)

=g((∇LC
X Wein)(Y ), Z).
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Proof of Corollary 2.2.77: A.1.13. (outline, see [57]) If M has con-

stant sectional curvature C, then

RM(X,Y )Z = C[g(Y, Z)X − g(X,Z)Y ]

for X,Y, Z ∈ Γ(TΣ). Thus we know that RM(X,Y )Z is tangent to Σ; hence

its normal component is 0.

A.2. Proofs of Chapter 4

Proof of Lemma 4.1.8: A.2.1.

i.) Applies, since the cross product on R3 respectively the Lie bracket on

so(3) are antisymmetric;

ii.) We have 〈ui, uj×uk〉 = 〈ui×uj , uk〉 for the standard basis {ui}i=1,...,3

of R3, where 〈·, ·〉 denotes the inner product of R3. Since g(ei, ej) =

δij = 〈ui, uj〉, we obtain

g(ei on ej , ek) =
∑
m

εijmg(em, ek) =
∑
m

εijm〈um, uk〉

= 〈ui × uj , uk〉 = 〈ui, uj × uk〉 = g(ei, ej on ek)

and by using the linearity of g the statement is proven;

iii.) As a consequence of Jacobi’s identity on R3

X̄ × (Ȳ × Z̄) = 〈X̄, Z̄〉Ȳ − 〈X̄, Ȳ 〉Z̄

for all X̄, Ȳ , Z̄ ∈ R3;

iv.) As a consequence of Jacobi’s identity on so(3)

S{[X̃, [Ỹ , Z̃]so(3)]so(3)} = 0

for all X̃, Ỹ , Z̃ ∈ so(3), respectively of the Jacobi’s identity of the cross

product in R3.

Proof of Proposition 4.1.11: A.2.2.
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i.) Let be X ∈ Γ(TΣ) a vector field and s = {si}1≤i≤3:U −→ O+(Σ, g) a

local, oriented basis field. Then we have

∇LC
X si = V−1 ([s, ρ∗(ω

s(X))ul])

= V−1

(
[s,
∑
k

Γsk(X)Ξkul]

)
.

(A.3)

Using Ξiuj =
∑

k εijkuk = ui × uj we have

Ξk(ui × uj) = uk × (ui × uj) = (uk × ui)× uj + ui × (uk × uj)
= Ξkui × uj + ui × Ξkuj

and therefore the covariant derivative of (si on sj) w.r.t. X yields

∇LC
X (si on sj) =V−1([s, ρ∗(ω

s(X))(ui × uj)])

=V−1([s,
∑
k

Γsk(X)Ξk(ui × uj)])

=V−1([s,
∑
k

Γsk(X)(Ξkui × uj + ui × Ξkuj)])

=V−1([s,
∑
k

Γsk(X)Ξkui × uj ])

+ V−1([s, ui ×
∑
k

Γsk(X)Ξkuj ])

=V−1([s,
∑
k

Γsk(X)Ξkui]) on V−1([s, uj ])

+ V−1([s, ui]) on V−1([s,
∑
k

Γsk(X)Ξkuj ])

=(∇LC
X si) on sj + si on (∇LC

X sj),

where in the last step we used Eq. (A.3). Let Y and Z ∈ Γ(TΣ) two

vector fields. Since the covariant derivative (∇Y )m of the vector field

Y at a point m ∈ Σ depends in a neighborhood U of m only on Y , we

can expand Y and Z in terms of {si}1≤i≤3 of Γ(U, TΣ). Thus on U

we obtain Y =
∑

i Y
isi and Z =

∑
j Z

jsj, Y
i, Zj ∈ C(U). Thus by
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using Leibniz rule we get

∇LC
X (Y on Z) =

∑
i,j

∇LC
X (Y iZjsi on sj)

=
∑
i,j

{d(Y iZj)(X)⊗ (si on sj) + Y iZj∇LC
X (si on sj)}

=
∑
i,j

{[d(Y i(X))Zj + Y i(dZj(X))]⊗ (si on sj)

+ Y iZj [(∇LC
X si) on sj + si on (∇LC

X sj)]}

=
∑
i,j

{[dY i(X)⊗ si + Y i∇LC
X si] on Zjsj}

+
∑
i,s

{Y isi on [dZj(X)⊗ sj + Zj∇LC
X sj ]}

=(∇LC
X Y ) on Z + Y on (∇LC

X Z).

(A.4)

ii.) By using Jacobi’s identity of the product structure as defined in 4.1.4,

cf. Lemma 4.1.8, and using Eq. (A.4) we obtain the covariant deriva-

tive w.r.t the connection form A, namely

∇A
X(Y on Z) = ∇LC

X (Y on Z) + S(X) on (Y on Z)

= (∇LC
X Y + S(X) on Y ) on Z + Y on (∇LC

X Z + S(X) on Z)

= (∇A
XY ) on Z + Y on (∇A

XZ),

for X,Y and Z ∈ Γ(TΣ).

Proof of Theorem 4.1.12: A.2.3. Let X,Y and Z ∈ Γ(TΣ) vector fields

on Σ. By Lemma 4.1.8 we have

g(∇A
XY,Z) + g(Y,∇A

XZ) =g(∇LC
X Y + S(X) on Y,Z)

+ g(Y,∇LC
X Z + S(X) on Z)

=g(∇LC
X Y, Z) + g(Y,∇LC

X Z)

+ g(S(X) on Y, Z) + g(Y, S(X) on Z)

=X(g(Y,Z)) + g(S(X) on Y + Y · S(X), Z)

=X(g(Y,Z)).
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Therefore ∇Ag = 0.

Proof of Theorem 4.1.13: A.2.4. For vector fields X,Y ∈ Γ(TΣ) we

have

TA(X,Y ) := ∇A
XY −∇A

YX − [X,Y ]

= ∇LC
X Y −∇LC

Y X − [X,Y ] + S(X) on Y − S(Y ) on X

= S(X) on Y − S(Y ) on X

by virtue of [X,Y ] = ∇LC
X Y −∇LC

Y X on Σ.

Proof of Theorem 4.1.14: A.2.5. Let X,Y and Z ∈ Γ(TΣ). By Propo-

sition 4.1.11 we have

RA(X,Y )Z =∇A
X∇A

Y Z −∇A
Y∇A

XZ −∇A
[X,Y ]Z

=∇A
X(∇LC

Y Z + S(Y ) on Z)−∇A
Y (∇LC

X Z + S(X) on Z)

− (∇LC
[X,Y ]Z + S([X,Y ]))

=∇LC
X ∇LC

Y Z + [∇LC
X S(Y )] on Z

+ S(Y ) on (∇LC
X Z) + S(X) on ∇LC

Y Z + S(X) on (S(Y ) on Z)

−∇LC
Y ∇LC

X Z − [∇LC
Y S(X)] on Z − S(X) on (∇LC

Y Z)

− S(Y ) on ∇LC
X Z − S(Y ) on (S(X) on Z)

−∇LC
[X,Y ]Z − S(∇LC

X Y −∇LC
Y X) on Z

=RLC(X,Y )Z + [∇LC
X S(Y )] on Z − S(∇LC

X Y ) on Z

− [(∇LC
Y S(X)] on Z − S(∇LC

Y X) on Z + S(X) on [S(Y ) on Z]

− S(Y ) on [S(X) on Z]

=RLC(X,Y )Z + (∇LC
X S)(Y ) on Z − (∇LC

Y S)(X) on Z

+ [S(X) on S(Y )] on Z

=RLC(X,Y )Z

+ [(∇LC
X S)(Y )− (∇LC

Y S)(X) + S(X) on S(Y )] on Z.

Proof of Lemma 4.1.15: A.2.6.

i.) Follows directly from the definition of the curvature tensor.



180 Technical Proofs

ii.) By Theorem 4.1.14 we get

g(RA(X,Y )Z,W ) =g(R(X,Y )Z,W )

+ g([(∇LC
X S)(Y )− (∇LC

Y S)(X)

+ S(X) on S(Y )] on Z,W ),

for X,Y, Z and W ∈ Γ(TΣ). Due to the fact that R(X,Y )Z fulfills the

property wanted, it is sufficient to analyze the second addend. Using

Lemma 4.1.8 we obtain

g(V on Z,W ) = g(V,Z onW ) = −g(V,W on Z) = −g(V onW,Z)

for all V,W,Z ∈ Γ(TΣ). And by defining V := (∇LC
X S)(Y ) −

(∇LC
Y S)(X) + S(X) on S(Y ) the second property of our Lemma fol-

lows.

Proof of Theorem 4.1.17: A.2.7.

(1) From Theorem 4.1.14 follows

RA(X,Y )Z =RLC(X,Y )Z

+ [(∇LC
X S)(Y )− (∇LC

Y S)(X) + S(X) on S(Y )] on Z

(A.5)

We split the task into the three different addends that appear in (A.5).

We have

a.) For the Riemannian R ∈ Γ(Λ2T ∗Σ⊗End(TΣ)) of the Levi-Civita

connection we have Bianchi’s first identity

S{RLC(X,Y )Z} = 0;

b.) Concerning the second addend by Lemma 4.1.8 we obtain

S{(S(X) on S(Y )) on Z}
= S{g(S(X), Z)S(Y )− g(S(Y ), Z)S(X)}
= S{g(S(X), Z)S(Y )− g(S(Z), X)S(Y )}
= S{[g(S(X), Z)− g(S(Z), X)]S(Y )}

=

{
0 if S symmetric,

S{[S(X) on S(Y )] on Z} otherwise;
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c.) By Proposition 4.1.11 we see that

S{[(∇LC
X S)(Y )− (∇LC

Y S)(X)] on Z}
=S{[∇LC

X S(Y )] on Z − S(∇LC
X Y ) on Z

− [∇LC
Y S(X)] on Z + S(∇LC

Y X) on Z}
=S{∇LC

X (S(Y ) on Z)− S(Y ) on (∇LC
X Z)− S(∇LC

X Y ) on Z

−∇LC
Y (S(X) on Z) + S(X) on (∇LC

Y Z) + S(∇LC
Y X) on Z}

=S{∇LC
X (S(Y ) on Z)− S(X) on (∇LC

Z Y )− S(∇LC
Y Z) on X

−∇LC
X (S(Z) on Y ) + S(X) on (∇LC

Y Z) + S(∇LC
Z Y ) on X}

=S{∇LC
X (S(Y ) on Z + Y on S(Z)) + S(X) on (∇LC

Y Z −∇LC
Z Y )

− S(∇LC
Y Z −∇LC

Z Y ) on X}
=S{∇LC

X TA(Y,Z) + S(X) on [Y,Z]− S([Y, Z]) on X}
=S{∇LC

X TA(Y,Z) + TA(X, [Y,Z])}.

(2) We have

−S{(∇A
ZR

A)(X,Y )} =−S{(∇A
ZR

A)(X,Y )}+ S{[∇A
Z , R

A(X,Y )]

−RA([X,Y ], Z)}
=−S{[∇A

Z , R
A(X,Y )]−RA(∇A

ZX,Y )

−RA(X,∇A
ZY )}

+ S{[∇A
Z , R

A(X,Y )]} −S{RA([X,Y ], Z)}
=S{RA(∇A

ZX,Y ) +RA(Y,∇A
XZ)}

−S{RA([X,Y ], Z)}
=S{RA(∇A

XY,Z)} −S{RA(∇A
YX,Z)}

−S{RA([X,Y ], Z)}
=S{RA(TA(X,Y ), Z)},

where in the last step we used Theorem 4.1.13.

Proof of Proposition 4.1.18: A.2.8.

(a) This follows from the definition of the Ricci tensor defined as follows:

RicA(X,Y ) := trTM[RA(on, X, Y,on)]. Thus w.r.t the connection A :=
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ωLC + S̃ we get:

RicA(Y,Z) = RicLC(Y,Z) +
∑
i

{g((∇eiS)(Y ) on Z, ei)

− g((∇Y S)(ei) on Z, ei)}

+
∑
i

{g(Z, S(Y ))g(S(ei), ei)− g(Z, S(ei)g(S(Y ), ei)}

=RicLC(Y,Z) +
∑
i

{g((∇eiS(Y )) on Z, ei)

− g(S(∇eiY ) on Z, ei)

− g((∇Y S(ei)) on Z, ei)

+ g(S(∇Y ei) on Z, ei)}

+
∑
i

{g(Z, S(Y ))g(S(ei), ei)− g(Z, S(ei)g(S(Y ), ei)}

= RicLC(Y,Z) +
∑
i

{g(∇ei(S(Y ) on Z), ei)

− g(S(Y ) on ∇eiZ, ei)
− g(S(∇eiY ) on Z, ei)

− g(∇Y (S(ei) on Z), ei)

+ g(S(ei) on ∇Y Z, ei)
+ g(S(∇Y ei) on Z, ei)}

+
∑
i

{g(Z, S(Y ))g(S(ei), ei)− g(Z, S(ei)g(S(Y ), ei)}

=RicLC(Y, Z) +
∑
i

{g((S(Y ) on Z),∇eiei)

− g(S(Y )∇eiZ, ei)
− g(S(∇eiY ) on Z, ei)

− g((S(ei) on Z),∇Y ei)
+ g(S(ei) on ∇Y Z, ei)
+ g(S(∇Y ei) on Z, ei)}

+
∑
i

{g(Z, S(Y ))g(S(ei), ei)− g(Z, S(ei)g(S(Y ), ei)}
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=RicLC(Y,Z)−
∑
i

{g(S(Y ) on ∇eiZ, ei)

+ g(S(∇eiY ) on Z, ei)

+ g((S(ei) on Z),∇Y ei)
− g(S(ei) on ∇Y Z, ei)
− g(S(∇Y ei) on Z, ei)}

+
∑
i

{g(Z, S(Y ))g(S(ei), ei)− g(Z, S(ei)g(S(Y ), ei)},

where we used Proposition 4.1.11 in the third and Theorem 4.1.12 in

the fourth line, respectively.

(b) The Ricci curvature scalar is given by RA := trTM[RicA(·, ·)]. Thus a

further contraction of the remaining two arguments of the Ricci tensor

w.r.t A, see Eq. (4.20), yields

RA =RLC −
∑
ij

{g(S(ej) on ∇eiej , ej) + g(S(∇eiej) on ej , ei)

+ g((S(ei) on ej),∇ejei)
− g(S(ei) on ∇ejei, ei)− g(S(∇ejei) on ei, ej)}

+
∑
ij

g(ej , S(ej))g(S(ej), ei)−
∑
i

g(S(ei), S(ei))

=RLC + tr(S)2 − tr(S2).

A.3. Proofs of Chapter 5

Proof of Theorem 5.1.1: A.3.1. We will study the two addends in

Eq. (5.2) one after another:

i.) By using of the Weingarten formula Eq. (2.39) and the equation of
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Gauss Eq. (2.43) the first addend in (5.2) yields

3∑
i,j=1

g(RM(ei, ej)ej , ei) =
3∑

i,j=1

g(RΣ(ei, ej)ej , ei)

−
3∑

i,j=1

g(Wein(ei), ei)g(Wein(ej), ei)

+
3∑

i,j=1

g(Wein(ej), ej)g(Wein(ei), ei)

=RΣ −
∑
i

g(Wein(ei),Wein(ei))

+
∑
j

g(Wein(ej), ej)
∑
i

g(Wein(ei), ei)

=RΣ − tr(Wein2) + tr(Wein)2,

(A.6)

where RΣ denotes the Ricci scalar on Σ.

ii.) In order to simplify the second addend in (5.2) we have to introduce:

Definition A.3.2.

div(X) :=
3∑
i=1

g(∇Mei X, ei)− g(∇Mn X,n)

Hence we obtain

Lemma A.3.3.

tr(Wein) = div(n)

Proof. We have

div(n) =

3∑
i=1

g(∇Mei n, ei)− g(∇Mn n, n)

=
3∑
i=1

g(Wein(ei), ei) = tr(Wein).

QED.
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In addition div satisfies the following Lemma:

Lemma A.3.4. For functions f ∈ C(M) and vector fields X ∈ Γ(TM)

we have

div(fX) = g(gradf,X) + fdiv(X).

Proof. Now, Lemma A.3.4 follows from the definition g(gradF,X) :=

dfX = X(f). QED.

Using Lemma A.3.3, we obtain

div(tr(Wein)n) =n(tr(Wein)) + tr(Wein)div(n)

=n(tr(Wein)) + tr(Wein)2.
(A.7)

And due to [ei,n] = ∇Mei n−∇Mn ei the 2nd term in Eq. (5.2) reads

3∑
i=1

g(RM(ei, n)n, ei) =
∑
i

g(∇Mei ∇
M
n n−∇Mn ∇Mei n−∇M[ei,n]n, ei)

=
∑
i

g(∇Mei ∇
M
n n, ei)︸ ︷︷ ︸

(A)

−
∑
i

g(∇Mn ∇Mei n, ei)︸ ︷︷ ︸
(B)

−
∑
i

g(∇M∇Mei nn, ei)︸ ︷︷ ︸
(C)

+
∑
i

g(∇M∇Mn ei
n, ei)︸ ︷︷ ︸

(D)

(A.8)

(A) Due to g(n,n) = −1 we have g(∇Mn n,n) = 0. Hence we obtain

g(∇Mn ∇Mn n,n) = −g(∇Mn ,∇Mn n) = −‖∇Mn n‖2. Thus the first

term gets∑
i

g(∇Mei ∇
M
n n, ei) =div(∇Mn n) + g(∇Mn n, n)

=div(∇Mn n)− ‖∇Mn n‖2.
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(B) By using Eq. (A.7) the 2nd summand yields

∑
i

g(∇Mn ∇Mei n, ei) =
∑
i

n(g(∇Mei n, ei)−
∑
i

g(∇Mei n,∇Mn ei)

=n(
∑
i

g(Wein(ei), ei))−
∑
i

g(∇Mei n,∇Mn ei)

=n(tr(Wein))−
∑
i

g(∇Mei n,∇Mn ei)

− tr(Wein)2 + div(tr(Wein)n)

−
∑
i

g(∇Mei n,∇Mn ei)

(C) The 3rd term gets

∑
i

g(∇M∇Mei nn, ei) =
∑
i

g(∇MWein(ei)
n, ei)

=
∑
i

g(Wein(Wein(ei)), ei) = tr(Wein2)

(D) In order to calculate the 4th addend, we expand ∇Mn ei in the or-

thonormal basis (n, e1, . . . , e3), i.e. ∇Mn ei =
∑

j g(∇Mn ei, ej)ej −
g(∇Mn ei,n)n. In addition due to g(ei, ej) = δij resp. g(n, ei) =

0, we get g(∇Mn ei, ej) = −g(ei,∇Mn ej) resp. g(∇Mn n, ei) =
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−g(n,∇Mn ei). Then we obtain∑
i

g(∇M∇Mn ei
n, ei) =

∑
i

g(∇M∑
j g(∇Mn ei,ej)ej−g(∇Mn ei,n)nn, ei)

=
∑
i,j

g(∇Mn ei, ej)g(∇Mej n, ei)

−
∑
i

g(∇Mn ei,n)g(∇Mn n, ei)

=−
∑
i,j

g(ei,∇Mn ej)g(∇Mej n, ei)

+
∑
i

g(ei,∇Mn n)g(∇Mn n, ei)

+
∑
j

g(n,∇Mn ej)g(∇Mej n,n)

− g(n,∇Mn n)g(∇Mn n,n)

=−
∑
j

g(∇Mn ej ,∇Mej n) + g(∇Mn n,∇Mn n)

=−
∑
j

g(∇Mn ej ,∇Mej n) + ‖∇Mn n‖2.

Collecting terms we obtain for Eq. (A.8)

3∑
i=1

g(RM(ei,n)n, ei) =div(∇Mn n)− ‖∇Mn n‖2

− [−tr(Wein)2 + div(tr(Wein)n)

−
∑
i

g(∇Mei n,∇Mn ei)]

− tr(Wein2)−
∑
j

g(∇Mn ej ,∇Mej n)

+ ‖∇Mn n‖
=tr(Wein)2 − tr(Wein2) + div(∇Mn n)

+ div(tr(Wein)n),
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and hence by using Eq. (A.6) and Eq. (A.9) we obtain for the Ricci scalar

RM on (M, g)

RM =

3∑
i,j=1

g(RM(ei, ej)ej , ei)− 2

3∑
i=1

g(RM(ei,n)n, ei)

=RΣ − tr(Wein2) + tr(Wein)2

− 2[tr(Wein)2 − tr(Wein2) + div(∇Mn n) + div(tr(Wein)n)]

=RΣ + tr(Wein2)− tr(Wein)2 − 2[div(∇Mn n) + div(tr(Wein)n)].

(A.9)
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[76] Wöhr, A. J., and Lamon, R. Quintessence and (Anti-)Chaplygin

Gas in Loop Quantum Cosmology. Phys.Rev. D81 (2010), 024026.





Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig
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